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Abstract. Probabilistic interpretations consist of a set of interpretations with
a shared domain and a measure assigning a probability to each interpretation.
Such structures can be obtained as results of repeated experiments, e.g., in bi-
ology, psychology, medicine, etc. A translation between probabilistic and crisp
description logics is introduced, and then utilized to reduce the construction of
a base of general concept inclusions of a probabilistic interpretation to the crisp
case for which a method for the axiomatization of a base of GCIs is well-known.
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1 Introduction

This document proposes a method for axiomatizing a base of general concept inclusions
for probabilistic interpretations. It is obtained by means of a translation between prob-
abilistic description logics and crisp description logics, and well-known results for the
construction of a base of GCIs for interpretations in crisp description logics. However,
this approach does not add further complexity as the translations may be computed in
polynomial time. There are several approaches for an integration of probabilities into
description logics. This document follows the basic definitions of Lutz and Schröder in
[8] where a probabilistic interpretation is defined as a family of standard interpretations
over the same domain such that each interpretation has a specific probability. These
structures naturally arise from experiments, e.g., in biology, psychology, or medicine,
respectively, that are repeated several times. If for example the experiments may pro-
duce results with errors, or some effects may not always be observed, then repetition is
advantageous. For all such sequences of interpretations over a shared domain the prob-
ability measure can easily be defined as a uniform discrete probability measure over
all observed interpretations. We call such probabilistic interpretations (quasi-)uniform.

At first we introduce the probabilistic description logics P01FLE⊥ and P≥FLE⊥Q≥.
Then we present a translation between P01FLE⊥ and FLE⊥ that satisfies certain con-
sistency properties w.r.t. the underlying probabilistic interpretation. By means of the
translation we utilize previous results for the construction of a base of general con-
cept inclusions. In particular, the notion of a (canonical) base of GCIs is used here
that has been found by Baader and Distel in [1, 2, 4] for the description logic EL⊥
w.r.t. greatest fixpoint semantics. Furthermore, it has been adapted by Borchmann,
Distel, and Kriegel in [3] for EL⊥ w.r.t. role-depth bounds, and has been extended
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towards the more expressive description logicALEQRSelf in [7] (hence, may also be
applied to the smaller description logics FLE⊥ and FLE⊥Q≥). The construction of a
base of probabilistic GCIs is also generalized towards the more expressive description
logic P≥FLE⊥Q≥, but only in the case of quasi-uniform probabilistic interpretations.

Most-specific generalizations in probabilistic description logics have been subject
of previous research. In [9–11] Peñaloza and Turhan investigated methods for the
construction of most-specific concept description (w.r.t. a knowledge base) and least
common subsumers in probabilistic EL. Later, in [5, 6] Ecke, Peñaloza, and Turhan,
extended their results towards nominals and complex role inclusion axioms. This
document also provides a method for the construction of probabilistic model-based
most-specific concept descriptions (w.r.t. probabilistic interpretations).

2 The Description Logics P01FLE⊥ and P≥FLE⊥Q≥

At first, we introduce the probabilistic description logic PFLE⊥Q≥ that extends the
well-known description logic FLE . A role description is either a role name r ∈ NR or
of the form P./p r for a comparator ./ ∈ {<,≤,=,≥,> }, a role name r ∈ NR, and
a probability threshold p ∈ [0, 1]. Furthermore, concept descriptions may be inductively
built according to the following syntax rule where s denotes a role description, A ∈ NC
a concept name, n ≥ 2 an integer, ./ ∈ {<,≤,=,≥,> }, and p ∈ [0, 1]:

C ::= ⊥ | > | A | CuC | ∃ s. C | ∀ s. C | ≥n. s. C | P./p C

The description logic P01FLE⊥ does not allow for qualified≥-restrictions≥n. s. C, and
only allows for probabilistic concept and role constructors P>0 and P=0. Furthermore,
the description logic P≥FLE⊥Q≥ only allows for probabilistic constructors P≥p.

A detailed overview on probabilistic extensions of the description logicsALC and
EL, and several complexity results for reasoning in probabilistic description logics
have been given by Lutz and Schröder in [8].

A probability measure on a countable set W is a mapping P : 2W → [0, 1] such that
P(∅) = 0 and P(W) = 1 hold, and furthermore for all countable pairwise disjoint
sequences (Un)n∈N of subsets Un ⊆ W it is true that P(

⊎
n∈N Un) = ∑n∈N P(Un),

i.e., P is σ-additive. For a subset U ⊆W the value P(U) is the probability of U w.r.t. P.
Let (NC, NR) be a signature. A probabilistic interpretation over (NC, NR) is a tuple
I = (∆I , W, (·Iw)w∈W , P) that consists of a set ∆I , called domain, a countable set W of
worlds, an extension function ·Iw for each world w ∈W, and a probability measure P on
W. For each world w ∈W the tuple (∆I , ·Iw) is an interpretation over (NC, NR) that
may be extended to all FLE⊥Q≥-concept descriptions in the canonical way. Further-
more, for the probabilistic constructors P./p with ./ ∈ {<,≤,=,≥,> } and p ∈ [0, 1]
their extensions are defined as follows:

(P./p C)Iw := { d ∈ ∆I |P{ v ∈W | d ∈ CIv } ./ p },
(P./p r)Iw := { (d, e) ∈ ∆I ×∆I |P{ v ∈W | (d, e) ∈ rIv } ./ p }.

Note that the extensions are independent of the world w, i.e., they coincide in all
worlds of the probabilistic interpretation. An individual d ∈ ∆I is in the extension of
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P>0 C if and only if d is possibly in the extension of C, and is in the extension of P=1 C
iff d is almost surely in the extension of C.

A world w ∈W is called possible if its probability is not 0, i.e., if P{w } > 0 holds;
otherwise we call w impossible. For a probabilistic interpretation we denote the set of all
possible worlds by Wε, and the set of all impossible worlds by W0. Of course, Wε ]W0
is a partition of W, and P(Wε) = 1 and P(W0) = 0 hold.

A general concept inclusion (GCI) is of the form C v D where C and D are concept
descriptions. It holds in a probabilistic interpretation I if and only if CIw ⊆ DIw is
satisfied for all worlds w ∈W, and we shall denote this by I |= C v D.

Let I be a probabilistic interpretation. Then a TBox B is called base of GCIs for I if
I models all GCIs in B, i.e., B is sound, and whenever a GCI holds in I then it follows
from B, i.e., B is complete.

3 Translation between P01FLE⊥ andFLE⊥

It is readily verified that d ∈ (P>0 C)Iw holds if and only if there is a possible world
v ∈ Wε such that d ∈ CIv hold. Analogously, d ∈ (P=1 C)Iw is equivalent to the
statement that d ∈ CIv is true for all possible worlds v ∈Wε. Similar statements hold
for the probabilistic role constructors P>0 r and P=1 r. Hence, it is possible to translate
P01FLE⊥-concept descriptions into FLE⊥-concept descriptions and vice versa.

For this purpose a new role name ωP, and role names r>0, r=1 for each existing role
name r ∈ NR, are introduced into the signature, and we shall denote the extended
signature by

(NC, NR)
P
01 := (NC, NR ] {ωP } ] { r>0, r=1 | r ∈ NR }).

Then the translation function τ : P01FLE⊥(NC, NR) → FLE⊥(NC, NR)
P
01 and its

inverse τ−1 are inductively defined as follows:

τ(r) := r τ−1(r) := r

τ(P>0 r) := r>0 τ−1(r>0) := P>0 r

τ(P=1 r) := r=1 τ−1(r=1) := P=1 r

τ(A) := A τ−1(A) := A

τ(CuD) := τ(C)u τ(D) τ−1(CuD) := τ−1(C)u τ−1(D)

τ(∃ s. C) := ∃ τ(s). τ(C) τ−1(∃ s. C) := ∃ τ−1(s). τ−1(C)

τ(∀ s. C) := ∀ τ(s). τ(C) τ−1(∀ s. C) := ∀ τ−1(s). τ−1(C)

τ(P>0 C) := ∃ωP. τ(C) τ−1(∃ωP. C) := P>0 τ−1(C)

τ(P=1 C) := ∀ωP. τ(C) τ−1(∀ωP. C) := P=1 τ−1(C)

For each probabilistic interpretation I = (∆I , W, (·Iw)w∈W, P) over (NC, NR) we
define the interpretation I× := (∆I ×W, ·I×) over (NC, NR)

P
01 whose extension



4

function is given as follows:

AI
×

:= { (d, w) | d ∈ AIw } (A ∈ NC)

rI
×

:= { ((d, w), (e, w)) | (d, e) ∈ rIw } (r ∈ NR)

ωI
×

P := { ((d, v), (d, w)) |P{w } > 0}

rI
×

>0 := { ((d, w), (e, w)) | (d, e) ∈ (P>0 r)Iw }

rI
×

=1 := { ((d, w), (e, w)) | (d, e) ∈ (P=1 r)Iw }

The special role ωP connects each individual d in an arbitrary world to itself in a
possible world. Then the following lemma shows the connection between the given
translation functions.

Lemma 1. Let I = (∆I , W, (·Iw)w∈W, P) be a probabilistic interpretation, d ∈ ∆I an
individual, w ∈ W a world, and C a P01FLE⊥-concept description. Then the following
equivalence holds:

d ∈ CIw if and only if (d, w) ∈ τ(C)I
×

.

Proof. by structural induction on C.

induction base: C = A
Of course, it holds that τ(A) = A. Thus, the equivalence follows by definition of I×.
inductive step: C = Du E

d ∈ (Du E)Iw ⇔ d ∈ DIw and d ∈ EIw

I.H.⇔ (d, w) ∈ τ(D)I
×

and (d, w) ∈ τ(E)I
×

⇔ (d, w) ∈ (τ(D)u τ(E))I
×
= τ(Du E)I

×

inductive step: C = ∃ r. D

d ∈ (∃ r. D)Iw ⇔ ∃e ∈ ∆I : (d, e) ∈ rIw and e ∈ DIw

I.H.⇔ ∃e ∈ ∆I : ((d, w), (e, w)) ∈ τ(r)I
×

and (e, w) ∈ τ(D)I
×

⇔ (d, w) ∈ (∃ r. τ(D))I
×
= τ(∃ r. D)I

×

The equivalences are also satisfied for probabilistic roles P>0 r, since

(d, e) ∈ (P>0 r)Iw ⇔ ((d, w), (e, w)) ∈ rI
×

>0

and τ(P>0 r) = r>0 hold by definition. Analogously for P=1 r.
inductive step: C = ∀ r. D

d ∈ (∀ r. D)Iw ⇔ ∀e ∈ ∆I : (d, e) ∈ rIw implies e ∈ DIw

I.H.⇔ ∀e ∈ ∆I : ((d, w), (e, w)) ∈ τ(r)I
×

implies (e, w) ∈ τ(D)I
×

⇔ (d, w) ∈ (∀ r. τ(D))I
×
= τ(∀ r. D)I

×

With the same arguments as for existential restrictions, the statements also hold for
probabilistic roles.
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inductive step: C = P>0 D

d ∈ (P>0 C)Iw ⇔ ∃v ∈W : P{ v } > 0 and d ∈ CIv

I.H.⇔ ∃v ∈W : ((d, w), (d, v)) ∈ ωI
×

P and (d, v) ∈ τ(C)I
×

⇔ (d, w) ∈ (∃ωP. τ(C))I
×
= τ(P>0 C)I

×

inductive step: C = P=1 D

d ∈ (P=1 C)Iw ⇔ ∀v ∈W : P{ v } > 0 implies d ∈ CIv

I.H.⇔ ∀v ∈W : ((d, w), (d, v)) ∈ ωI
×

P implies (d, v) ∈ τ(C)I
×

⇔ (d, w) ∈ (∀ωP. τ(C))I
×
= τ(P=1 C)I

×

ut

As a corollary it follows that CIw ×{w } = τ(C)I
× ∩ (∆I ×{w }), and hence also

τ(C)I
×
=

⊎
w∈W

CIw ×{w }

holds for all P01FLE⊥-concept descriptions C and all probabilistic interpretations I.

4 Construction of a Base of GCIs in P01FLE⊥

The translation τ can additionally be used to translate valid general concept inclusions
of I into valid general concept inclusions of I×. Since τ has an inverse, we may also
translate GCIs in the opposite direction. A more sophisticated characterization is given
in the next lemma.

Lemma 2. Let I be a probabilistic interpretation and C, D be P01FLE⊥-concept descriptions.
Then the general concept inclusion C v D holds in I if and only if the translated GCI
τ(C) v τ(D) holds in I×.

Proof. Consider an arbitrary individual d ∈ ∆I and an arbitrary world w ∈W. Then
the following equivalences hold:

I |= C v D⇔ ∀w ∈W ∀d ∈ ∆I : d ∈ CIw ⇒ d ∈ DIw

Lem. 1⇔ ∀(d, w) ∈ ∆I ×W : (d, w) ∈ τ(C)I
× ⇒ (d, w) ∈ τ(D)I

×

⇔ I× |= τ(C) v τ(D). ut

Having all necessary notions and lemmata at hand, we are now ready to formulate
the main proposition for the construction of a base of GCIs in P01FLE⊥. We have seen
that we may translate between valid GCIs of I and I×, and the following proposition
shows that it is possible to translate a base for I× into a base for I.

Proposition 1. Let I be a probabilistic interpretation. Every base of GCIs for the interpretation
I× can be translated into a base of GCIs for I; in particular, if B is a base of GCIs for I×, then
the set τ−1(B) := { τ−1(C) v τ−1(D) |C v D ∈ B } is a base of GCIs for I.
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Proof. Firstly, we show soundness of the translation τ−1(B). For this purpose consider
a GCI C v D ∈ B. Since B is a base for I×, it follows that C v D holds in I×. By
Lemma 6, we may conclude that τ−1(C) v τ−1(D) holds in I.

Secondly, we prove completeness of τ−1(B). Let C v D be a GCI holding in I.
Lemma 6 then states that τ(C) v τ(D) holds in I×, and thus follows from B. It
remains to show that τ−1(B) entails C v D. Consider an arbitrary model J of the
translation τ−1(B). Using Lemma 6 it follows that J × must be a model of B. By
completeness of B, we conclude that J × |= τ(C) v τ(D), and finally Lemma 6 yields
that J |= C v D. Consequently, τ−1(B) is complete for I. ut

However, the converse direction cannot be shown, as not every interpretation over
(NC, NR)

P
01 is induced by a probabilistic interpretation, and hence may have different

extensions for the additional role names. Thus, we are not able to prove that mini-
mality of the base is preserved. In particular, it is only possible to conclude C v D
if τ(C) v τ(D), but not vice versa.

Lemma 3. Let C and D be two P01FLE⊥-concept descriptions. If τ(C) v τ(D), then also
C v D is satisfied.

Proof. Let I be an arbitrary probabilistic interpretation over (NC, NR), and con-
sider its induced interpretation I× over (NC, NR)

P
01. By presumption, it follows that

τ(C)I
× ⊆ τ(D)I

×
. Now consider an arbitrary world w ∈ W and an individual

d ∈ ∆I . Using the previous Lemma 1 we get the following:

d ∈ CIw ⇔ (d, w) ∈ τ(C)I
×

⇒ (d, w) ∈ τ(D)I
×

⇔ d ∈ DIw .

As a consequence, we have C v D. ut

5 Translation between P≥FLE⊥Q≥ andFLE⊥Q≥

A probabilistic interpretation I is called quasi-uniform if all possible worlds have the
same probability, i.e., if P{ v } = P{w } holds for all v, w ∈ Wε. Then P{w } = ε

holds for all possible worlds w ∈Wε where ε := 1
|Wε| , and in particular it follows that

only finitely many possible worlds exist. A quasi-uniform probabilistic interpretation
is uniform if it does not contain impossible worlds.

In this section we only consider quasi-uniform probabilistic interpretations. Hence,
let I be quasi-uniform with probability ε for each possible world. We will extend the
translation function τ as introduced in the previous section to a translation τε from
P≥FLE⊥Q≥ toFLE⊥Q≥. For this purpose we have to extend the signature (NC, NR)
by adding new roles r≥k for each role name r ∈ NR. In particular, we define

(NC, NR)
P
≥ := (NC, NR ] {ωP } ] { r≥k | k ∈ { 1, . . . , |Wε| } }).
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Then the mapping τε extends τ as follows:

τε(P≥p r) := r≥d p
ε e

τ−1
ε (r≥k) := P≥k·ε r

τε(P≥p C) := ∃ωP. τε(C) (p ∈ (0, ε]) τ−1
ε (∃ωP. C) := P≥ε τ−1

ε (C)

τε(P≥p C) := ≥d p
ε e. ωP. τε(C) (p ∈ (ε, 1)) τ−1

ε (≥n. ωP. C) := P≥n·ε τ−1
ε (C)

τε(P≥1 C) := ∀ωP. τε(C) τ−1
ε (∀ωP. C) := P≥1 τ−1

ε (C)

Of course, the induced interpretation I× must also interpret the new role names r≥k.
Hence, we define the following extensions for them:

rI
×
≥k := { ((d, w), (e, w)) | (d, e) ∈ (P≥k·ε r)Iw }

= { ((d, w), (e, w)) |P{w ∈W | (d, e) ∈ rIw } ≥ k · ε },

i.e., ((d, w), (e, w)) ∈ rI
×
≥k holds iff there are k possible worlds w that satisfy (d, e) ∈ rIw .

Unfortunately, the mappings τε and τ−1
ε are not mutually inverse. For arbitrary con-

cept descriptions C it only holds that τε(τ−1
ε (C)) = C. For the concept description C =

P≥p A we have τε(P≥p A) = ≥d p
ε e. ωP. A, and hence τ−1

ε (τε(P≥p A)) = P≥ε·d p
ε e

A.
Obviously, if p is not of the form k · ε for a k ∈N, then the concept descriptions are
not equal. However, we may show that the concept descriptions τ−1

ε (τε(C)) and C
have the same extensions w.r.t. the interpretation I.

Lemma 4. Let I be a quasi-uniform probabilistic interpretation with 1
ε possible worlds, i.e.,

the probability of each possible world is ε. Then for each P≥FLE⊥Q≥-concept description C
and all worlds w ∈W the following equation holds:

CIw = (τ−1
ε (τε(C)))Iw .

Proof. by structural induction on C.

(induction base) Let C = A be a concept name. Then it holds that τ−1
ε (τε(A)) = A,

and hence the claim is trivial.
(induction step) At first consider a probabilistic concept description C = P≥p D.
Then we have the following equivalences:

d ∈ (P≥p D)Iw ⇔ P{ v ∈W | d ∈ DIv } ≥ p
∗⇔ P{ v ∈W | d ∈ DIv } ≥ ε · d p

ε e
I.H.⇔ P{ v ∈W | d ∈ (τ−1

ε (τε(D)))Iv } ≥ ε · d p
ε e

⇔ d ∈ (P≥ε·d p
ε e

τ−1
ε (τε(D)))Iw

⇔ d ∈ (τ−1
ε (τε(P≥p D)))Iw .

For the equivalence ∗ note that p ≤ ε · d p
ε e always holds. The other direction follows

from the fact that for each individual d which satisfies P{ v ∈W | d ∈ DIv } ≥ p there
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must be at least d p
ε e possible worlds v with d ∈ DIv since all possible worlds have

probability ε. Hence, it suffices to enforce a probability≥ ε · d p
ε e.

Analogously, we can prove that sIw = (τ−1
ε (τε(s)))Iw holds for all (probabilistic)

roles s.
Consider a conjunction C = Du E. Then we infer the following equations:

(Du E)Iw = DIw ∩ EIw

I.H.
= (τ−1

ε (τε(D)))Iw ∩ (τ−1
ε (τε(E)))Iw

= (τ−1
ε (τε(D))u τ−1

ε (τε(E)))Iw

= (τ−1
ε (τε(Du E)))Iw .

Finally, let C = ∃ s. D be an existential restriction. Then we can make the following
observations:

d ∈ (∃ s. D)Iw ⇔ ∃e ∈ ∆I : (d, e) ∈ sIw and e ∈ DIw

I.H.⇔ ∃e ∈ ∆I : (d, e) ∈ (τ−1
ε (τε(s)))Iw and e ∈ (τ−1

ε (τε(D)))Iw

⇔ d ∈ (∃ τ−1
ε (τε(s)). τ−1

ε (τε(D)))Iw

⇔ d ∈ (τ−1
ε (τε(∃ s. D)))Iw .

The case of C being a value restriction or a qualified ≥-restriction can be treated
analogously. ut

Lemma 5. Let I be a quasi-uniform probabilistic interpretation with 1
ε possible worlds. Then

for all individuals d ∈ ∆I , all worlds w ∈W, and all P≥FLE⊥Q≥-concept descriptions C,
the following equivalence holds:

d ∈ CIw ⇔ (d, w) ∈ τε(C)I
×

.

Proof. analogously to Lemma 1. We only show the induction step for a concept de-
scription P≥p C where p ∈ (ε, 1). According to the definition of τε, we have that
τε(P≥p C) = ≥d p

ε e. ωP. τε(C). Furthermore, the following equivalences hold:

d ∈ (P≥p C)Iw ⇔ P{ v ∈W | d ∈ CIv } ≥ p

⇔ ∃≥d
p
ε ev ∈Wε : d ∈ CIv

I.H.⇔ ∃≥d
p
ε ev ∈W : ((d, w), (d, v)) ∈ ωI

×
P and (d, v) ∈ τε(C)I

×

⇔ (d, w) ∈ (≥d p
ε e. ωP. τε(C))I

×
. ut

6 Construction of a Base of GCIs in P≥FLE⊥Q≥

In the previous Section 4 we have seen how a base of P01FLE⊥-GCIs holding in a
probabilistic interpretation I can be constructed by means of a base of FLE⊥-GCIs
holding in the induced interpretation I× over the extended signature (NC, NR)

P
01.

Similar results can be obtained in the case of a uniform probabilistic interpretation in
the description logic P≥FLE⊥Q≥. A more sophisticated answer is given below.
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Lemma 6. Let I be a quasi-uniform probabilistic interpretation with 1
ε possible worlds, and

let C, D be P≥FLE⊥Q≥-concept descriptions. Then the general concept inclusion C v D
is valid in I if and only if the translated GCI τε(C) v τε(D) is valid in I×.

Proof. analogously to Lemma 2. ut

Proposition 2. Let I be a quasi-uniform probabilistic interpretation with 1
ε possible worlds.

If B is a base of FLE⊥Q≥-GCIs for the induced interpretation I×, then the translation

τ−1
ε (B) := { τ−1

ε (C) v τ−1
ε (D) |C v D ∈ B }

is a base of P≥FLE⊥Q≥-GCIs for I.

Proof. analogously to Proposition 1. ut

7 Probabilistic Model-Based Most-Specific Concept Descriptions

Model-based most-specific concept descriptions (w.r.t. interpretations) have been in-
troduced by Baader and Distel in [1, 2] as an adaption of the well-known notion
of most-specific concept descriptions (w.r.t. knowledge bases). Ecke, Peñaloza, and
Turhan, investigated those most-specific concept descriptions and also least common
subsumers in probabilistic extensions of the light-weight description logic EL, cf. [5,
6, 9–11]. However, they gave constructions for those generalizations w.r.t. knowledge
bases (w.r.t. open-world assumption). In the following text the notion of a probabilistic
mmsc w.r.t. interpretations (w.r.t. closed-world assumption) is introduced. Furthermore,
we present a proposition that reduces their computation to crisp description logics.

Definition 1. Let I = (∆I , W, (·Iw)w∈W , P) be a probabilistic interpretation and X ⊆ ∆I

a set of individuals. Then a P01FLE⊥-concept description C is called probabilistic model-
based most-specific concept description (pmmsc) of X in I if it satisfies the following
conditions:

(PM1) For all worlds w ∈W it holds that X ⊆ CIw .
(PM2) If D is a P01FLE⊥-concept description such that X ⊆ ⋂

w∈W DIw , then C v D.

In the same way we may define the pmmsc in P≥FLE⊥Q≥.

All pmmscs for a subset X in I are equivalent, and hence we shall denote the pmmsc
by XI .

Proposition 3. Let I be a probabilistic interpretation and X ⊆ ∆I a set of individuals. Then
the following statements hold:

1. The P01FLE⊥-mmsc XI is equivalent to the translation τ−1((X×W)I
×
).

2. If I is quasi-uniform with 1
ε possible worlds, then the P≥FLE⊥Q≥-mmsc XI is equiv-

alent to the translation τ−1
ε ((X×W)I

×
).



10

Proof. Both statements can be proven analogously. We show the two conditions of a
pmmsc according to Definition 1.

Firstly, the definition of the mmsc in the default setting yields that X ×W ⊆
(X×W)I

×I× . From Lemmata 1 and 5 it follows that X ⊆ (τ−1((X×W)I
×
))Iw for

all worlds w ∈W, i.e., τ−1((X×W)I
×
) satisfies (PM1).

Secondly, consider a concept description D such that X ⊆ DIw for all worlds
w ∈W. Consequently, by Lemmata 1 and 5 it follows that X×{w } ⊆ τ(D)I

×
for

all w ∈W, i.e., X×W ⊆ τ(D)I
×

is true. By definition of mmscs, we conclude that
(X×W)I

× v τ(D). Then Lemmata 2 and 6 yield that τ−1(X×W)I
× v D, and

hence τ−1(X×W)I
×

satisfies (PM2). ut

8 Choice of Semantics

Upon translation of the probabilistic interpretation I to the crisp interpretation I×, we
have to introduce the additional role ωP to encode the possibility of worlds. However,
this leads to cyclic interpretations, as then every pair (p, w) is connected to all pairs
(p, v) where v ∈Wε is a possible world. Of course, I must contain at least one possible
world to ensure that P(Wε) = 1 holds. However, in cyclic interpretations like I× all
model-based most-specific concept descriptions only exist w.r.t. a role-depth bound,
cf. [3], or in gfp-semantics, cf. [4]. The limitation of the role-depth is a practical means
to ensure the existence of mmscs, and is used here.

Usually, mmscs are computed from description graphs induced by interpretations.
It turns out that in the case of interpretations constructed from probabilistic interpre-
tations we do not have to consider all paths in the graph. In particular, the following
lemma shows that we may ignore paths with two subsequent Q ωP-edges where Q
is one of the quantifiers ∃, ∀, or≥n.

Lemma 7. For arbitrary P≥FLE⊥Q≥-concept descriptions C, D and probability thresholds
p, q ∈ [0, 1] the following equivalence holds:

P≥p (CuP≥q D) ≡ P≥p CuP≥q D.

Proof. The statement easily follows from the following observations:

d ∈ (P≥p (CuP≥q D))Iw

⇔ P{ v ∈W | d ∈ CIv and P{u ∈W | d ∈ DIu } ≥ q } ≥ p

⇔ P{ v ∈W | d ∈ CIv } ≥ p and P{u ∈W | d ∈ DIu } ≥ q

⇔ d ∈ (P≥p CuP≥q D)Iw .

As the equivalences hold for arbitrary probabilistic interpretations I and worlds
w ∈W, the concept equivalence is true in general. ut

The lemma above yields (after translation w.r.t. τ, or τε, respectively) that in order to
compute model-based most-specific concept descriptions we do not have to consider
any paths in the description graph of I× that have two subsequent Q ωP-edges.
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However, we cannot interchange ∃ r and P≥p restrictions as even in the simplest
case the concept descriptions ∃ r. P≥ 1

2
A and P≥ 1

2
∃ r. A may have different exten-

sions in a probabilistic interpretation. Consider for example the uniform probabilistic
interpretation I = ({ d, e },{ v, w }, ·Iv , ·Iw ,{ { v } 7→ 1

2 ,{w } 7→ 1
2 }). The extension

functions are given by the two graphs below:

w1 :
d er

w2 :
d e

A

Then it holds that (∃ r. P≥ 1
2

A)Iw1 = { d }, but (P≥ 1
2
∃ r. A)Iw1 = ∅.

For the computation of the induced interpretation I× all vertices in the two graphs
above are equipped with ωP-loops, and furthermore there are ωP-edges between
vertices for the same individual in different worlds. Then the following mmscs can
be obtained:

(d, w1)
I× = ∃ r. P>0 AuP>0 ∃ r. P>0 A

(d, w2)
I× = P>0 ∃ r. P>0 A

(e, w1)
I× = P>0 A

(e, w2)
I× = AuP>0 A

(∆I ×W)I
×
= >

If I is a probabilistic interpretation such that all mmscs exist in the interpretations
Iw for all worlds w ∈W, then also all mmscs exist in the induced interpretation I×.
They can be computed by means of restricted unravellings as follows: Consider the
description graph G(d,w)

I× of I× that is rooted at (d, w). Then we consider the restricted

unravelling G(d,w)
I× �ωP

∞ such that only paths in G(d,w)
I× that do not have two subsequent

ωP-edges are allowed as vertices in the restricted unravelling. Since the mmscs in all
interpretations Iw exist, there are no infinite paths from each (e, v). As a consequence,
we obtain that all model-based most-specific concept descriptions exist in I×.

9 Complexity of Base Construction

In both probabilistic description logics P01FLE⊥ and P≥FLE⊥Q≥ the complexity of
the construction of a base of GCIs can be double-exponential in the size of the input
interpretation. The translation of the probabilistic interpretation I to the crisp inter-
pretation I× can be obtained in polynomial time. The same holds for the translation of
concept descriptions, i.e., they may be translated in polynomial time. Furthermore, the
computation of a base of GCIs for a crisp interpretation has double-exponential time
complexity in the worst case. This is due to the fact that the necessary induced context
KI of an interpretation may have exponential size in I (since there may be exponen-
tially many model-based most-specific concept descriptions for I), and furthermore the
canonical implicational base of a formal context may have an exponential size w.r.t. the
size of the formal context. Hence, the construction of bases of GCIs for probabilistic
interpretations also has a double-exponential time complexity in the worst case.



12 REFERENCES

10 Conclusion

We have defined translations between probabilistic description logics and crisp de-
scription logics that preserve entailment of general concept inclusions. They have
been used to reduce the problem of construction of a base of GCIs for a probabilistic
interpretation to the same problem in crisp description logics for which a well-known
and practical solution exists. For this purpose we used the description FLE⊥Q≥ that
was equipped with probabilistic role and concept constructors, in the first case only
allowing probabilities > 0 and = 1 to express possibility and certainty almost everywhere,
and in the other case only allowing for lower-bound probabilities≥ p where p ∈ (0, 1].

Furthermore, we have shown how most-specific concept descriptions can be con-
structed for probabilistic interpretations – again by a reduction to the crisp case.
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