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The canonical base of a formal context plays a distinguished role in Formal Concept
Analysis, as it is the only minimal implicational base known so far that can be described
explicitly. Consequently, several algorithms for the computation of this base have been
proposed. However, all those algorithms work sequentially by computing only one pseudo-
intent at a time – a fact that heavily impairs the practicability in real-world applications.
In this paper, we shall introduce an approach that remedies this deficit by allowing the
canonical base to be computed in a parallel manner with respect to arbitrary implicational
background knowledge. First experimental evaluations show that for sufficiently large data
sets the speed-up is proportional to the number of available CPU cores.
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1. Introduction

Formal Concept Analysis is a branch of mathematical order theory that allows to draw
connections between otherwise unrelated research fields like logic and data mining. In
particular, it provides methods to investigate problems from the realm of data mining under
a mathematical point of view. For this purpose, data sets are represented as formal contexts,
a mathematical abstraction of relational databases that allows to apply mathematical
reasoning. Formal Concept Analysis then allows to study valid implications in those formal
contexts, which loosely correspond to functional dependencies in databases. The set of all
those valid implications of a formal context, called the implicational theory, is of interest in
a large variety of applications, e.g., in learning knowledge bases from examples (Distel 2011;
Borchmann, Distel, and Kriegel 2016; Kriegel 2016a). In such applications, computing a
minimal set of implications that captures the whole implicational theory is often desirable.
Those minimal bases provide a minimal representation of all implicational knowledge
contained in a given data set. One of those bases is the canonical base, which is the only
minimal implicational base that is known to be describable explicitly.
Conducting the computation of the canonical base may impose a major challenge,

endangering the practicability of the underlying approach of extracting implicational
knowledge from data sets. There are two known algorithms for computing the canonical
base of a formal context (Ganter 2010; Obiedkov and Duquenne 2007). Both algorithms
work sequentially, i.e., they compute one implication after the other. Moreover, both
algorithms compute in addition to the implications of the canonical base all formal concepts
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of the given context. This is a disadvantage, as the number of formal concepts can be
exponential in the size of the canonical base. On the other hand, the size of the canonical
base can be exponential in the size of the underlying formal context anyway (Kuznetsov
2004), and so this blowup cannot be avoided completely. Additionally, up to today it is
not known whether the canonical base can be computed in output-polynomial time, and
certain complexity results hint at a negative answer (Distel and Sertkaya 2011). For the
algorithm from Ganter (2010), and indeed for any algorithm that enumerates the canonical
base in a so-called lectic order, it was shown by Distel (2010) that it cannot conduct the
computation with polynomial delay between two successive implications, unless P = NP.

However, the impact of theoretical complexity results for practical applications is often hard
to access, and it may thus be worth investigating faster algorithms for theoretically intractable
results nonetheless. A popular approach in this direction is to explore the possibilities of
parallelizing known sequential algorithms. This is also true for Formal Concept Analysis,
as can be seen by the development of parallel versions for computing the set of all formal
concept of a formal context (Vychodil, Krajča, and Outrata 2008; Fu and Nguifo 2004).
In this work we want to investigate a parallel algorithm for computing the canonical

base of a formal context K. The underlying idea is actually quite simple, and was used
by Lindig (2000) to (sequentially) compute the concept lattice of a formal context. In
a nutshell, to compute the canonical base, we compute the closure system of all intents
and pseudo-intents of K. This set can be computed bottom up, in a level-wise order, and
this computation can be done in parallel provided that the corresponding ordered set has
a certain “width” at a particular level. The crucial observation is that the upper neighbors
of an intent or pseudo-intent B can be easily computed by just iterating over all attributes
m /∈ B and computing the closure of B ∪{m}. In the approach of Lindig mentioned above,
this closure is just the usual double-prime operation B 7→ BII of the underlying formal
context K. In our approach it is the closure operator the closures of which are exactly
the intents and pseudo-intents of K. Experimental results presented in this work indicate
that for suitably large data sets the computation of the canonical base can be sped up
by a factor proportional to the number of available CPU cores.

Surprisingly, despite the simplicity of our approach, we are not aware of any prior work
on computing the canonical base of a formal context in a parallel manner.

The paper is structured as follows. After recalling all necessary notions of Formal Concept
Analysis in Section 2 and of background implications in Section 3, we shall describe in Sec-
tion 4 our approach of computing the canonical base in parallel. Benchmarks of this algorithm
are presented in Section 5, and we shall close this work with some conclusions in Section 6.

2. Preliminaries

This section gives a brief overview on the notions of Formal Concept Analysis (Ganter
and Wille 1999) that are used in this document. The basic structure is a formal context
K := (G,M,I) consisting of a set G of objects, a set M of attributes, and an incidence
relation I ⊆ G×M . For a pair (g,m) ∈ I, we also use the infix notation g I m, and say
that the object g has the attribute m. Furthermore, K induces the derivation operators
·I : ℘(G) → ℘(M) and ·I : ℘(M) → ℘(G) that are defined as follows for object sets
A ⊆ G and attribute sets B ⊆M :

AI := {m ∈M | ∀g ∈ A : g I m} and BI := {g ∈ G | ∀m ∈ B : g I m}.

In other words, AI is the set of all attributes that all objects from A have in common,
and dually BI is the set of all objects which have all attributes from B. It is well-known
that both derivation operators form a so-called Galois connection between the powersets
℘(G) and ℘(M), i.e., the following statements hold true for all subsets A,A1,A2 ⊆ G
and B,B1,B2 ⊆M :
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(1) A ⊆ BI ⇔ B ⊆ AI.
(2) A ⊆ AII.
(3) AI = AIII.
(4) A1 ⊆ A2 ⇒ AI

2 ⊆ AI
1.

(5) B ⊆ BII.
(6) BI = BIII.
(7) B1 ⊆ B2 ⇒ BI

2 ⊆ BI
1.

A formal concept of K is a pair (A,B) such that AI = B as well as B = AI. We refer
to A as the extent, and to B as the intent of (A,B). The set of all formal concepts is
denoted as B(K), and Int(K) symbolizes the set of all intents of K. Furthermore, B(K)
can be ordered by defining (A,B) ≤ (C,D) if A ⊆ C (or dually if B ⊇ D), and indeed
then (B(K),≤) is a complete lattice where infima and suprema are given as follows:∧

t∈T
(At,Bt) = (

⋂
t∈T

At, (
⋃
t∈T

Bt)
II) and

∨
t∈T

(At,Bt) = ((
⋃
t∈T

At)
II,
⋂
t∈T

Bt).

One of the earliest results of Formal Concept Analysis was the proof showing that every
complete lattice can be represented as the concept lattice (B(K),≤) of a suitably chosen
formal context K (Wille 1982, Theorem on Page 5).

An implication over the setM is an expression of the formX → Y whereX,Y ⊆M . An
implicationX → Y is valid inK ifXI ⊆ Y I , and this is denoted asK |= X → Y . A setL of
implications is valid inK, and we writeK |= L, if each implication in L is valid inK. The set
of all implications overM is symbolized by Imp(M), and Imp(K) is the set of all implications
that are valid inK. An implicationX → Y follows from the set L ifX → Y is valid in every
context with attribute set M in which L is valid, and we shall denote this by L |= X → Y .
Furthermore, a model of X → Y is a set T ⊆M such that X ⊆ T implies Y ⊆ T , and
we may then write T |= X → Y . It is easy to prove the validity of the following lemma.

Lemma 1. Let K be a formal context, and X → Y an implication. Then the following
statements are equivalent:

(1) X → Y is valid in K.
(2) Each object intent {g}I for g ∈ G is a model of X → Y .
(3) Each intent AI for A ⊆ G is a model of X → Y .
(4) Y ⊆ XII.

A model of L is a model of all implications in L, and XL is the smallest superset of
X that is a model of L. The set XL can be computed as follows.

XL =
⋃
{XL(n) | n ∈ N+ }

where XL(1) := X ∪
⋃
{B | A→ B ∈ L and A ⊆ X }

and XL(n+1) := (XL(n))L(1) for all n ∈ N+.

We shall denote the set of all models of an implication set L as Mod(L).
The following lemma shows some well-known equivalent statements for entailment of

implications from implication sets. We will not prove them here.

Lemma 2. Let L ∪ {X → Y } be a set of implications over M. Then, the following
statements are equivalent:

(1) X → Y follows from L.
(2) If K is a formal context with attribute set M such that L is valid in K, then

X → Y is also valid in K.
(3) If T ⊆M and T is a model of L, then T is a model of X → Y , too.
(4) Y ⊆ XL.
From the above definition of a formal concept it follows that an attribute set B ⊆M is
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an intent of K if B = BII . An attribute set P ⊆M is called a pseudo-intent of K if it is no
intent, i.e., P 6= P II , and for each pseudo-intentQ ( P the set inclusionQII ⊆ P is satisfied.
We denote the set of all pseudo-intents of K by PsInt(K). Then, the canonical base of K
is defined as the following implication set, cf.Guigues and Duquenne (1986); Ganter (1984):

Can(K) := {P → P II | P ∈ PsInt(K)}.

The canonical base has the property that it is a minimal implicational base of K, i.e., it is
an implicational base of K, meaning that it is a set of valid implications of K (soundness)
such that every valid implication of K is entailed by it (completeness). Furthermore, its
cardinality is minimal among all implicational bases of K.
For an implication set L, we define the closure operator L∗ as follows:

XL
∗
:=
⋃
{XL(n)∗ | n ∈ N+ }

where XL(1)
∗
:= X ∪

⋃
{B | A→ B ∈ L and A ( X }

and XL(n+1)∗ := (XL(n)
∗
)L(1)

∗
for all n ∈ N+.

In particular, let K∗ := Can(K)∗. It is then easy to verify that a subset X ⊆ M is an
intent or a pseudo-intent of K if, and only if, X is a closure of K∗, cf. Lemma 4.
Note that there is a strong correspondence between Formal Concept Analysis and

Propositional Logic. A formal context is just another notion for a set of propositional
models (where the attributes in M are considered as propositional variables). In particular,
for a formal context K := (G,M,I) the set PK := {χMgI | g ∈ G} is a set of propositional
models such that for each implication X → Y over M , X → Y is valid in K if, and only
if,
∧
X →

∧
Y is valid in PK. Note that χMB : M → {0,1} is the characteristic function

of B in M , i.e., χMB (m) := 1 if m ∈ B, and χMB (m) := 0 otherwise.
Conversely, if P ⊆ {0,1}M is a set of propositional models over a set M of

propositional variables, then the formal context KP := ({p−1(1) | p ∈ P },M,3) satisfies
P |=

∧
X →

∧
Y if, and only if, KP |= X → Y , for all implications X → Y over

M . Here, p−1 denotes the pre-image of a propositional model p : M → {0,1}, i.e.,
p−1 : {0,1} → ℘(M) where p−1(i) := {m ∈M | p(m) = i}.

3. Background Knowledge

In a former paper (Kriegel and Borchmann 2015) we have presented a parallel algorithm for
computing canonical bases of formal contexts. However, the presence of background knowl-
edge in form of an implication set was not investigated. Henceforth, we will provide an exten-
sion that allows for the computation of canonical bases with respect to background knowledge.

First, some notions have to be introduced. Let K := (G,M,I) be a formal context, and
let B be a set of implications over M . We may distinguish two cases: Either B is valid
in K, or B is not valid in K, i.e., B contains at least one implication that is not valid in K.
First assume that all background implications in B are valid in K. In (Stumme

1996; Ganter 1999) the following notions have been introduced. A B-pseudo-intent of
K is an attribute set P ⊆ M that is no intent of K, but is a model of B, and for all
B-pseudo-intents Q ( P it is true that QII ⊆ P . The set of all these pseudo-intents is
denoted by PsInt(K,B), and then the canonical base of K relative to B is given as

Can(K,B) := {P → P II | P ∈ PsInt(K,B)}

It is an implicational base of K relative to B, i.e., its union with B is an implicational
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base of K, or equivalently, for all implications X → Y , it is true that

K |= X → Y ⇔ Can(K,B)∪B |= X → Y.

Furthermore, it is minimal (in the sense of minimal cardinality) among all implicational
bases of K relative to B.

Second, in the more general case assume that there is at least one background implication
in B that is not valid in K. However, the set of background implications is considered
to be correct, as it has been created, adjusted, or checked, manually by a human expert.
Then this would imply that the observed dataset, described by the formal context K, is
faulty. The goal is to axiomatize those implications that do not already follow from the
background knowledge B, but have all those intents of K as models which are also models
of B. In particular, this is similar to the notion of a C-implication where C is a closure
operator on M , as introduced by Belohlávek and Vychodil (2006, 2013). Of course, there
is a one-to-one correspondence between closure operators on M and implication sets on
M , and hence it does not matter whether we describe the external constraints as a closure
operator C or as an implication set B.
A B-implication is an implication where both premise and conclusion are models of B.

Furthermore, a B-implication X → Y is valid in (K,B) if each intent of K that is a model
of B also is a model of X → Y . For an implication set L ∪ {X → Y }, we say that L
B-entailsX → Y if each model of L that is a model of B also is a model of X → Y . It is
readily verified that this is equivalent to L∪B |= X → Y . An implicational base of (K,B)
is a set L of B-implications that are valid in (K,B) (soundness), and furthermore B-entails
all B-implications that are valid in (K,B) (completeness), i.e., for each B-implication
X → Y , it holds true that (K,B) |= X → Y if, and only if, B ∪L |= X → Y .

XIIgB :=
⋂
{Y | X ⊆ Y ⊆M and Y = Y II and Y = Y B }

is the smallest superset of X that is both an intent of K and a model of B. Attribute
sets X that are closed, i.e., which satisfy X = XIIgB, are called intents of (K,B).
We shall denote the set of all intents of (K,B) by Int(K,B). It is easy to verify that
Int(K,B) = Int(K) ∩Mod(B). Note that in the lattice of closure operators, ·IIgB is the
supremum of the closure operator ·II : ℘(M)→ ℘(M) which is induced by K, and the
closure operator ·B : ℘(M)→ ℘(M) which is induced by B.
Lemma 3. Let K be a formal context, and B ∪ {X → Y } be an implication set. Then
the following statements are equivalent:

(1) X → Y is valid in (K,B).
(2) Each intent of (K,B) is a model of X → Y .
(3) Y ⊆ XIIgB.

A pair (A,B) where A ⊆ G and B ⊆M is a formal concept of (K,B) if B is an intent
of (K,B) and A = BI. The set of all formal concepts of (K,B) is denoted as B(K,B).
Belohlávek and Vychodil (2006, 2013) prove that this set of formal concepts constitutes
a complete lattice. An attribute set P ⊆M is called pseudo-intent of (K,B) if P is no
intent of K, but is a model of B, and contains all closures QIIgB for pseudo-intents Q ( P .
The set of all pseudo-intents is PsInt(K,B), and the canonical base is defined as

Can(K,B) := {P → P IIgB | P ∈ PsInt(K,B)}.

It can be shown that this base is a minimal implicational base of the implications valid
in (K,B). It is easy to show that an attribute set X ⊆M is an intent or a pseudo-intent
of (K,B) if, and only if, it is a model of B as well as a closure of (K,B)∗ := Can(K,B)∗.

Finally, note that this latter case is really a generalization of the former, since if K |= B,
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all intents of K are models of B, i.e., Y = Y II implies Y = Y B. Thus, the closure operators
·IIgB and ·II coincide.

4. Parallel Computation of the Canonical Base with Background Knowledge

The well-known NextClosure algorithm developed by Ganter (2010) can be used to
enumerate the implications of the canonical base. The mathematical idea behind this
algorithm is to compute all intents and pseudo-intents of our formal context K in a certain
linear order, namely the lectic order. As an advantage the next (pseudo-)intent is uniquely
determined, but we potentially have to compute several candidate closures in order to find
it. As we have seen in Section 2, those sets form a complete lattice, and the NextClosure
algorithm uses the closure operator K∗ of this lattice to enumerate the pseudo-intents
(and the intents as a by-product) of K in the lectic order. Furthermore, this algorithm
is inherently sequential, i.e., it is not possible to parallelize it.
In our approach we shall not make use of the lectic order. Indeed, our algorithm will

enumerate all intents and pseudo-intents of (K,B) in the subset-order, with no further
restrictions. As a benefit we get a very easy and obvious way to parallelize this enumeration.
Moreover, in multi-threaded implementations no communication between different threads
is necessary. However, as it is the case with all other known algorithms for computing
the canonical base, we also have to compute all intents in addition to all pseudo-intents
of the given formal context K and the background knowledge B.

The main idea is very simple and works as follows. From the definition of pseudo-intents
we see that in order to decide whether an attribute set P ⊆M is a pseudo-intent we only
need all pseudo-intents Q ( P , i.e., it suffices to know all pseudo-intents with a smaller
cardinality than P . This allows for the level-wise computation of the canonical base with
respect to the subset inclusion order, i.e., we can enumerate the (pseudo-)intents with
respect to increasing cardinality.

An algorithm that implements this idea works as follows. First we start by considering the
B-closure of the empty set, as it is the smallest model of B. Of course, it must either be an
intent or a pseudo-intent, and the distinction can be made by checking whether ∅B = ∅IIgB.
Then assuming inductively that all pseudo-intents with cardinality< k have been determined,
we can correctly decide whether a subset P ⊆M with |P | = k is a pseudo-intent or not.

To compute the set of all intents and pseudo-intents of (K,B), the algorithm manages
a set of candidates that contains the (pseudo-)intents on the current level. Then, whenever
a pseudo-intent P has been found, the ⊆-next closure is uniquely determined by its
closure P IIgB. If an intent B has been found, then the ⊆-next closures must be of the
form (B ∪ {m})(K,B)∗ for an attribute m /∈ B. However, as we are not aware of the full
implicational base of (K,B) yet, but only of an approximation L of it, the operators
(K,B)∗ and L∗ do not coincide on all models of B. We will show that they yield the
same closure for models B of B with a cardinality |B| ≤ k if L contains all implications
P → P IIgB where P is a pseudo-intent of (K,B) with a cardinality |P | < k. Consequently,
the L∗-closure of a set B ∪{m} may not be an intent or a pseudo-intent of (K,B). Instead,
they are added to the candidate list, and are processed when all pseudo-intents with
smaller cardinality have been determined. We will formally prove that this technique is
correct. Furthermore, the computation of all pseudo-intents and intents of cardinality k
can be done in parallel, since they are independent of each other.

In summary, we can describe the inductive structure of the algorithm as follows: Let K
be a finite formal context, and B be a set of background implication. We use four variables:
k denotes the current cardinality of candidates, C is the set of candidates, B is a set of
formal concepts, and L is an implication set. Then the algorithm works as follows.

(1) Set k := |∅B|, C := {∅B}, B := ∅, and L := ∅.
(2) In parallel: For each candidate set C ∈ C with cardinality |C| = k, determine
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whether it is both L∗-closed and B-closed. If not, then add its closure CL∗gB to
the candidate set C, and go to Step 5.

(3) If C is an intent of (K,B), then add the formal concept (CI,C) to B. Otherwise,
C must be a pseudo-intent, and thus we add the implication C → CIIgB to the
set L, and add the formal concept ((CIIgB)I,CIIgB) to the set B.

(4) For each observed intent CIIgB, add all its upper neighbors CIIgB ∪ {m} where
m /∈ CIIgB to the candidate set C.

(5) Wait until all candidates of cardinality k have been processed. If k < |M |, then
increase the candidate cardinality k by 1, and go to Step 2. Otherwise return B and L.

In order to approximate the operator L∗ we furthermore introduce the following notion: If
L is a set of implications, then L�k denotes the subset of L that consists of all implications
the premises of which have a cardinality not exceeding k.

Lemma 4. Let K := (G,M,I) be a formal context, B ⊆ Imp(M) an implication set over
M, and L ⊆ Imp(M) the canonical base of (K,B). Then, for all attribute sets X ⊆ M
that are models of B, the following statements are equivalent:

(1) X is either an intent or a pseudo-intent of (K,B).
(2) X is (K,B)∗-closed.
(3) X is L∗-closed.
(4) X is (L�|X|−1)∗-closed.
(5) There is a k ≥ |X| − 1 such that X is (L�k)∗-closed.
(6) For all k ≥ |X| − 1, it holds that X is (L�k)∗-closed.

Proof. (1⇒2) If X ∈ Int(K,B), then it immediately follows that X contains all
(K,B)-closures of its subsets (since ·IIgB is a closure operator), and hence must be
closed under (K,B)(1)∗. Consequently, X is a closure of (K,B)∗. If X ∈ PsInt(K,B), then
it is (K,B)(1)∗-closed by definition of a pseudo-intent. (2⇒1) Vice versa, assume that
X is a closure of (K,B)∗ which is no intent of (K,B). Since X is a model of B, it follows
that it cannot be an intent of K. Hence, X must be a pseudo-intent of (K,B). (2⇔3) is
trivial. (3⇔4) follows directly from the fact that P ( X implies |P | < |X|. (4⇔5) The
only-if direction is trivial. Consider k ≥ |X| − 1 such that X is (L�k)∗-closed. Then X
contains all conclusions B where A→ B ∈ L is an implication with premise A ( X such
that |A| ≤ k. Of course, A ( X implies |A| < |X|, and thus X is (L�|X|−1)∗-closed as
well. (4⇔6) The only-if-direction is trivial. Finally, assume that k ≥ |X| − 1 and X is
(L�|X|−1)∗-closed. Obviously, there are no subsets A ( X with |X| ≤ |A| ≤ k, and so X
must be (L�k)∗-closed, too.

As an immediate consequence of Lemma 4 we infer that in order to decide the
(K,B)∗-closedness of an attribute set X it suffices to know all implications in the canonical
base the premises of which have a lower cardinality than X.

Corollary 5. If L contains all implications P → P IIgB where P is a pseudo-intent
of (K,B) with |P | < k, and otherwise only implications with premise cardinality k, then
for all attribute sets X ⊆M with |X| ≤ k, the following statements are equivalent:

(1) X is either an intent or a pseudo-intent of (K,B).
(2) X is a closure of L∗ and a model of B.
In a certain sense, this corollary allows us to approximate the set of all (K,B)∗-closures in

the order of increasing cardinality, and thus also permits the approximation of the closure oper-
ator L∗ where L is the canonical base of (K,B). In the following Lemma 6 we will characterize
the structure of the lattice of all (K,B)∗-closures, and also give a method to compute upper
neighbors. It is true that between comparable pseudo-intents there must always be an intent.
In particular, the unique upper (K,B)∗-closed neighbor of a pseudo-intent must be an intent.
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Algorithm 1. NextClosuresWithBackgroundKnowledge
Input: a formal context K := (G,M,I)
Input: an implication set B ⊆ Imp(M)
Initialize: a candidate set C := {∅B}
Initialize: a formal concept set B := ∅
Initialize: an implication set L := ∅
1 for all k = |∅B|, . . . , |M | do
2 for all C ∈ C with |C| = k do in parallel
3 if C = CL

∗
and C = CB then

4 if C 6= CII then
5 L := L∪ {C → CIIgB}
6 B := B∪ {((CIIgB)I,CIIgB)}
7 C := C∪ {CIIgB ∪ {m} |m 6∈ CIIgB }
8 else
9 C := C∪ {CL∗gB}
10 Wait for termination of all parallel processes.
Output: the set B of all formal concepts of (K,B)
Output: the canonical base L of (K,B)

Lemma 6. Let K := (G,M,I) be a formal context, and B ⊆ Imp(M) be an implication
set over M. Then the following statements hold true:

(1) If P ⊆ M is a pseudo-intent of (K,B), then there is no intent or pseudo-intent
strictly between P and P IIgB.

(2) If B ⊆ M is an intent, then the next intents or pseudo-intents are of the form
(B ∪ {m})(K,B)∗ for attributes m /∈ B.

(3) If X ( Y ⊆ M are neighboring (K,B)∗-closures, then Y = (X ∪ {m})(K,B)∗ for
all attributes m ∈ Y \X.

Proof. (1) Assume that P ∈ PsInt(K,B). Then for every intent B between P and P IIgB,
i.e., P ⊆ B ⊆ P IIgB, we have that B = BIIgB = P IIgB. Thus, there cannot be an
intent strictly between P and P IIgB. Furthermore, if Q were a pseudo-intent such that
P ( Q ⊆ P IIgB, then by definition of a pseudo-intent it follows that P IIgB ⊆ Q, which
is an obvious contradiction.
(2) Let B ⊆ M be an intent of (K,B). Consider a subset X ⊇ B that is an in-

tent or a pseudo-intent of (K,B) such that there is no other intent or pseudo-intent
between them. Of course, then B ⊆ B ∪ {m} ⊆ X for all m ∈ X \ B. Consequently,
B = B(K,B)∗ ( (B ∪ {m})(K,B)∗ ⊆ X(K,B)∗ = X. Then (B ∪ {m})(K,B)∗ is an intent or a
pseudo-intent between B and X which strictly contains B, and thus (B ∪{m})(K,B)∗ = X.

(3) Let m ∈ Y \X. Then X ∪{m} ⊆ Y implies that X ( (X ∪{m})(K,B)∗ ⊆ Y , since
Y is already closed. Consequently, (X ∪ {m})(K,B)∗ = Y .

We are now ready to formulate our algorithm NextClosuresWithBackgroundKnowl-
edge in pseudo-code, see Algorithm 1. In the remainder of this section we shall show that
this algorithm always terminates for finite formal contexts K and sets B of background
implications, and that it returns the canonical base as well as the set of all formal concepts
of (K,B). Beforehand, let us introduce the following notation:

(1) Algorithm 1 is in state k (where −1 ≤ k ≤ |M |) if it has processed all candidate
sets with a cardinality ≤ k, but none of cardinality > k.

(2) Ck denotes the set of candidates in state k.
(3) Lk denotes the set of implications in state k.
(4) Bk denotes the set of formal concepts in state k.

Proposition 7. Let K := (G,M,I) be a formal context, let B ⊆ Imp(M) be an
implication set over M, and assume that Algorithm 1 has been started on (K,B) and is

8
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in state k. Then, the following statements are true:

(1) Ck contains all pseudo-intents of (K,B) with cardinality k + 1, and all intents of
(K,B) with cardinality k + 1 the corresponding formal concept of which is not yet
in Bk.

(2) Bk contains all formal concepts of (K,B) the intent of which has cardinality ≤ k.
(3) Lk contains all implications P → P IIgB where the premise P is a pseudo-intent

of (K,B) with cardinality ≤ k.
(4) Between the states k and k + 1 an attribute set with cardinality k + 1 is an intent

or pseudo-intent of (K,B) if, and only if, it is a closure of both L∗ and B.

Proof. We prove the statements by induction on k. The base case handles the initial state k =∣∣∅B∣∣−1. Of course, ∅B is always an intent or a pseudo-intent of (K,B). Furthermore, it is con-
tained in the candidate setC. As ∅B is the smallest model of B, there are no models of B with
cardinality≤ |∅B|−1, and soB|∅B|−1 and L|∅B|−1 trivially satisfy Statements 2 and 3. Finally,
we have that L|∅B|−1 = ∅, and hence every attribute set is L∗|∅B|−1-closed, in particular ∅B.

We now assume that the induction hypothesis is true for k. For every implication
set L between states k and k + 1, i.e., Lk ⊆ L ⊆ Lk+1, the induction hypothesis yields
that L contains all implications P → P IIgB where P is a pseudo-intent of (K,B) with
cardinality ≤ k, and furthermore only implications the premises of which have cardinality
k + 1 (by definition of Algorithm 1). Additionally, we know that the candidate set C
contains all pseudo-intents P of (K,B) where |P | = k + 1, and all intents B of (K,B)
such that |B| = k + 1 and (BI,B) /∈ B. Corollary 5 immediately yields the validity of
Statements 2 and 3 for k + 1, as those (K,B)∗-closures are recognized correctly in Line 3.
Then Lk+1 contains all implications P → P IIgB where P is a pseudo-intent of (K,B) with
|P | ≤ k+ 1, and hence each implication set L with Lk+1 ⊆ L ⊆ Lk+2 contains all those
implications, too, and furthermore only implications with a premise cardinality k + 2. By
another application of Corollary 5 we conclude that also Statement 4 is satisfied for k + 1.
Finally, we show Statement 1 for k + 1. Consider any (K,B)∗-closed set X where
|X| = k + 2. Then Lemma 6 states that for all lower (K,B)∗-neighbors Y and all
m ∈ X \ Y it is true that (Y ∪ {m})(K,B)∗ = X. We proceed with a case distinction.
If there is a lower (K,B)∗-neighbor Y which is a pseudo-intent, then Lemma 6 yields

that the (unique) next (K,B)∗-neighbor is obtained as Y IIgB, and the formal concept
((Y IIgB)I, Y IIgB) is added to the set B in Line 6. Of course, it is true that X = Y IIgB.

Otherwise all lower (K,B)∗-neighbors Y are intents, and in particular this is the case for
X being a pseudo-intent, cf. Lemma 6. Then for all these Y we have (Y ∪ {m})(K,B)∗ = X
for all m ∈ X \Y . Furthermore, all sets Z with Y ∪{m} ( Z ( X are not (K,B)∗-closed.
Since X \ Y is finite, the following sequence must also be finite:

C0 := Y ∪ {m} and Ci+1 := CL
∗gB

i where L|Ci|−1 ⊆ L ⊆ L|Ci|.

The sequence is well-defined, since implications from L|Ci| \ L|Ci|−1 have no influence on
the closure of Ci. Furthermore, the sequence obviously ends with the set X, and contains
no further (K,B)∗-closed sets, and each of the sets C0,C1, . . . appears as a candidate
during the run of the algorithm, cf.Lines 7 and 9.

From the previous result we can infer that in the last state |M | the set B contains
all formal concepts of (K,B), and that L is the canonical base of (K,B). Both sets are
returned from Algorithm 1, and hence we can conclude that NextClosuresWithBack-
groundKnowledge is sound and complete. The following corollary summarizes our results
obtained so far, and also shows termination.

Corollary 8. If Algorithm 1 is started on a finite formal context K and a finite
implication set B as input, then it terminates, and returns both the set of all formal
concepts as well as the canonical base of (K,B) as output.

9
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Algorithm 2. NextClosures
Input: a formal context K := (G,M,I)
Initialize: a candidate set C := {∅}
Initialize: a formal concept set B := ∅
Initialize: an implication set L := ∅
1 for all k = 0, . . . , |M | do
2 for all C ∈ C with |C| = k do in parallel
3 if C = CL

∗
then

4 if C 6= CII then
5 L := L∪ {C → CII}
6 B := B∪ {(CI,CII)}
7 C := C∪ {CII ∪ {m} |m 6∈ CII }
8 else
9 C := C∪ {CL∗}
10 Wait for termination of all parallel processes.
Output: the set B of all formal concepts of K
Output: the canonical base L of K

Proof. The second part of the statement is a direct consequence of Proposition 7. In the
final state |M | the set L contains all implications P → P IIgB where P is a pseudo-intent
of (K,B). In particular, L is the canonical base. Furthermore, the set B contains all formal
concepts of (K,B).
Finally, the computation time between states k and k + 1 is finite, because there are

only finitely many candidates of cardinality k + 1, and the computation of closures of
the operators ·L∗, ·B, ·II, and ·IIgB, can be done in finite time. As there are exactly |M |
states for a finite formal context, the algorithm must terminate.

One could ask whether there are formal contexts that do not allow for a speed-up in the enu-
meration of all intents and pseudo-intents on parallel execution. This would happen for formal
contexts the intents and pseudo-intents of which are linearly ordered, i.e., form a chain with re-
spect to the subset inclusion order. However, the next Lemma 9 shows that this is impossible.

Remark that a formal contextK := (G,M,I) is clarified if {g}I = {h}I implies g = h for
all objects g,h ∈ G, and dually {m}I = {n}I implies m = n for all attributes m,n ∈M .

Lemma 9. For each non-empty clarified formal context, the set of its intents and
pseudo-intents is not linearly ordered with respect to the subset inclusion order.

Proof. Assume that K := (G,M,I) with G := {g1, . . . , gn}, n > 0, were a clarified formal
context with (pseudo-)intents P1 ( P2 ( . . . ( P`. In particular, then all object intents form
a chain gI1 ( gI2 ( . . . ( gIn where n ≤ `. Since K is clarified, it follows |gIj+1 \ gIj | = 1 for
all j, and hence w.l.o.g.M = {m1, . . . ,mn}, and gi I mj if, and only if, i ≥ j. Hence, K is
isomorphic to the ordinal scale Kn := ({1, . . . , n},{1, . . . , n},≤). It is easy to verify that the
pseudo-intents ofKn are either ∅, or of the form {m,n}wherem < n−1, a contradiction.

Consequently, there is no formal context with a linearly ordered set of intents and
pseudo-intents. Hence, a parallel enumeration of the intents and pseudo-intents will always
result in a speed-up compared to a sequential enumeration.
In the case where no background knowledge is available, i.e., B = ∅, we can easily see

that Algorithm 1 may be simplified to Algorithm 2 which computes the canonical base of a
formal context K, as it has been described by Kriegel (2015); Kriegel and Borchmann (2015).

5. Benchmarks

The purpose of this section is to show that our parallel Algorithms 1 and 2 for computing the
canonical base indeed yield a speed-up, both qualitatively and quantitatively, compared to

10
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Formal Context Objects Attributes Density
a car.cxt 1728 25 28%
b mushroom.cxt 8124 119 19%
c tic-tac-toe.cxt 958 29 34%
d wine.cxt 178 68 20%
e algorithms.cxt 2688 54 22%
f o1000a10d10.cxt 1000 10 10%
g o1000a20d10.cxt 1000 20 10%
h o1000a36d17.cxt 1000 36 16%
i o1000a49d14.cxt 1000 49 14%
j o1000a50d10.cxt 1000 50 10%
k o1000a64d12.cxt 1000 64 12%
l o1000a81d11.cxt 1000 81 11%
m o1000a100d10-001.cxt 1000 100 11%
n o1000a100d10-002.cxt 1000 100 11%
o o1000a100d10.cxt 1000 100 11%
p o2000a81d11.cxt 2000 81 11%
q 24.cxt 17 26 51%
r 35.cxt 18 24 43%
s 51.cxt 26 17 76%
t 54.cxt 20 20 48%
u 79.cxt 25 26 68%

Figure 1. Formal Contexts in Benchmarks

the classical algorithm based on NextClosure (Ganter 2010). To this end, we shall present
the running times of our algorithm NextClosures when applied to selected data sets and
with a varying number of available CPU cores. We shall see that, up to a certain limit, the
running time of our algorithm decreases proportional to the number of available CPU cores.
Furthermore, we shall also show that this speed-up is not only qualitative, but indeed yields a
real speed-up compared to the original sequential algorithm for computing the canonical base.
The presented algorithms NextClosures and NextClosuresWithBackgroundKnowl-

edge have been integrated into Concept Explorer FX (Kriegel 2010–2017). The
implementations are straight-forward adaptions of Algorithms 1 and 2 to the programming
language Java 8, and heavily use the new Stream API and thread-safe concurrent collection
classes (like ConcurrentHashMap). As we have described before, the processing of all
candidates on the current cardinality level can be done in parallel, i.e., for each of them
a separate thread is started that executes the necessary operations for Lines 3 to 9 in
Algorithms 1 and 2, respectively. Furthermore, as the candidates on the same level cannot
affect each other, no communication between the threads is needed. More specifically,
we have seen that the decision whether a candidate is an intent or a pseudo-intent is
independent of all other sets with the same or a higher cardinality.
The formal contexts used for the benchmarks1 are listed in Figure 1, and are either

obtained from the FCA Data Repository ( a to d , and f to p ), randomly created
( q to u ), or created from experimental results ( e ). For each of them we executed the
implementation at least three times, and recorded the average computation times. The
experiments were performed on the following two systems:

Taurus (1 Node of Bull HPC-Cluster)
CPU: 2x Intel Xeon E5-2690 with eight cores @ 2.9GHz, RAM: 32GB

Atlas (1 Node of Megware PC-Farm)
CPU: 4x AMD Opteron 6274 with sixteen cores @ 2.2GHz, RAM: 64GB

Please note that the experiments were only conducted for the implementation of the

1The test contexts used for the experiments can be obtained from the authors via email.
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Figure 2. Benchmark Results (left: Atlas, right: Taurus)
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Figure 3. Benchmark Results (red: Atlas, blue: Taurus)

simpler Algorithm 2 without any background knowledge. The execution of Algorithm 1
would surely be slower, and the concrete slow-down depends on the size of the background
knowledge B, due to the additional costs for computing closures with respect to the induced
closure operator ·B, and for computing closures of the supremum of ·II and ·B, respectively.
However, the processing of all candidates with the same cardinality is still independent,
i.e., the same scaling behaviour is to be expected when more CPU cores are available
and utilized, and of course if the input formal context is large enough.

The benchmark results are displayed in Figures 2 and 3. While in Figure 2 the individual
results for the test contexts are tagged by their label as defined in Figure 1, no individual
labeling is done in Figure 3. However, solid lines represent large formal contexts with more
than 20 attributes and more than 100 objects, and dotted lines denote smaller formal contexts.
The charts have both axes logarithmically scaled, to emphasize the correlation between the
execution times and the number of available CPU cores. We can see that the computation
time is almost inverse linear proportional to the number of available CPU cores, provided that
the context is large enough, meaning there are enough candidates on each cardinality level
for the computation to be done in parallel. However, we note that there are some cases where
the computation times increase when utilizing all available CPU cores. We are currently not
aware of an explanation for this exception, but we conjecture that this is due to some technical
details of the platforms or the operation systems, e.g., some background tasks that are
executed during the benchmark, or overhead caused by thread maintenance. Note that we did
not have full system access during the experiments, but could only execute tasks by scheduling
them in a batch system. Additionally, for some of the test contexts only benchmarks for a large
number of CPU cores could be performed, due to the time limitations on the test systems.

Furthermore, we have performed the same benchmark with small-sized contexts having
at most 15 attributes. The computation times were far below one second. We have noticed
that there is a certain number of available CPU cores for which there is no further increase
in speed of the algorithm. This happens when the number of candidates is smaller than
that of the available CPU cores.
Finally, we compared our two implementations of NextClosure and NextClosures

when only one CPU core is utilized. The comparison was performed on a notebook with

13



April 24, 2017 International Journal of General Systems NextClosures-IJGS

Ne
xt
Cl
os
ur
e
(1

C
P
U

C
or
e)

Ne
xt
Cl
os
ur
es

(1
C
P
U

C
or
e)

Ne
xt
Cl
os
ur
es

(2
C
P
U

C
or
es
)

Ne
xt
Cl
os
ur
es

(4
C
P
U

C
or
es
)

1s
1m

in
1h

a

a

a

a

a

c

c

c

c
c

d

d

d

d

d

e e

e

e

e

f

f

f

f

f

g g

g

g

g

h

h

h

h

h

q

q

q

q

q

r

r

r

r

r

s

s

s

s
s

t
t

t

t

t

u

u

u

u

u

C
om

pu
ta
tio

n
T
im

e

Figure 4. Performance Comparison
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Figure 5. Performance Comparison

Intel Core i7-3720QM CPU with four cores @ 2.6GHz and 8GB RAM. The results are
shown in Figures 4 and 5. We conclude that our proposed algorithm is on average as fast
as NextClosure on the test contexts. The computation time ratio is between 1

3 and 3,
depending on the specific context. Low or no speed-ups are expected for formal contexts
where NextClosure does not have to compute candidate closures in order to find the
next, but where it can find the next intent or pseudo-intent immediately. Those formal
contexts exist and some of them have been used in our benchmarks.

Please do not take the absolute computation times too seriously, as they can certainly be
lowered by utilizing other more efficient data structures, or faster programming languages. For
example, NextClosures was reimplemented in Concept Explorer FX (Kriegel 2010–2017),
and the new version essentially operates on java.util.BitSets. Due to its smaller memory
footprint and the faster execution of its methods (compared to java.util.HashSet), the
absolute computation times were reduced by a factor of approximately 10.

6. Conclusion

In this paper we have introduced the parallel algorithm NextClosuresWithBackground-
Knowledge for the computation of the canonical base of a formal context with respect to
a set of background implications. It constructs the set of all intents and pseudo-intents of a
given formal context from bottom to top in a level-wise order and increasing cardinality. As
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the elements in a certain level of the corresponding lattice can be computed independently,
they can also be enumerated in parallel, thus yielding a parallel algorithm for computing the
canonical base. Indeed, first benchmarks show that NextClosures allows for a speed-up
that is proportional to the number of available CPU cores, up to a certain natural limit.
Furthermore, we have compared its performance to the well-known algorithm NextClosure
when utilizing only one CPU core. It could be observed that on average our algorithm (on
one CPU core) has the same performance as NextClosure, at least for the test contexts.
A famous algorithm from Formal Concept Analysis, which is based on the classical

NextClosure algorithm, is attribute exploration (Ganter and Obiedkov 2016). This algo-
rithm allows a domain expert to examine a data set for completeness, i.e., to assess whether
for each object in a certain target domain a representative is present in the data set in
question. The algorithm achieves this by trying to find differences between the implicational
theory of the current data set and the target domain. If some such implication is found, the do-
main expert is asked whether it is indeed valid in the target domain. If not, then the data set
is incomplete, and the expert is required to present some counterexample that is added to it.

Attribute exploration has a number of nice applications, but those applications are mostly
concerned with rather small or purely mathematical domains. This is because the algorithm
itself does not scale very well for large data sets, as it is based on the sequential NextClosure
algorithm to compute the next implication. However, Kriegel (2016b) shows how our parallel
NextClosures algorithm can be extended to a parallel attribute exploration algorithm.
This takes away one important obstacle for the practicability of attribute exploration. Hence,
as a logical next step in our line of research, real-world applications that were previously
inaccessible to attribute exploration shall be sought and investigated.
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