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Abstract. Description logics in their standard setting only allow for repre-
senting and reasoning with crisp knowledge without any degree of uncertainty.
Of course, this is a serious shortcoming for use cases where it is impossible
to perfectly determine the truth of a statement. For resolving this expressivity
restriction, probabilistic variants of description logics have been introduced.
Their model-theoretic semantics is built upon so-called probabilistic interpre-
tations, that is, families of directed graphs the vertices and edges of which are
labeled and for which there exists a probability measure on this graph family.
Results of scientific experiments, e.g., in medicine, psychology, or biology, that
are repeated several times can induce probabilistic interpretations in a natural
way. In this document, we shall develop a suitable axiomatization technique
for deducing terminological knowledge from the assertional data given in such
probabilistic interpretations. More specifically, we consider a probabilistic vari-
ant of the description logic EL⊥, and provide a method for constructing a set
of rules, so-called concept inclusions, from probabilistic interpretations in a
sound and complete manner.

Keywords: Data mining · Knowledge acquisition · Probabilistic description
logic · Knowledge base · Probabilistic interpretation · Concept inclusion

1 Introduction

Description Logics (abbrv.DLs) [2] are frequently used knowledge representation and
reasoning formalisms with a strong logical foundation. In particular, these provide
their users with automated inference services that can derive implicit knowledge from
the explicitly represented knowledge. Decidability and computational complexity of
common reasoning tasks have been widely explored for most DLs. Besides being used in
various application domains, their most notable success is the fact that DLs constitute
the logical underpinning of the Web Ontology Language (abbrv.OWL) and its profiles.
Logics in their standard form only allow for representing and reasoning with crisp

knowledge without any degree of uncertainty. Of course, this is a serious shortcoming for
use cases where it is impossible to perfectly determine the truth of a statement or where
there exist degrees of truth. For resolving this expressivity restriction, probabilistic
variants of logics have been introduced. A thorough article on extending first-order logics
with means for representing and reasoning with probabilistic knowledge was published
by Halpern [12]. In particular, Halpern explains why it is important to distinguish
between two contrary types of probabilities: statistical information (type 1) and degrees



of belief (type 2). The crucial difference between both types is that type-1 probabilities
represent information about one particular world, the real world, and assume that
there is a probability distribution on the objects, while type-2 probabilities represent
information about a multi-world view such that there is a probability distribution on
the set of possible worlds. Following his arguments and citing two of his examples, the
first following statement can only be expressed in type-1 probabilistic logics and the
second one is only expressible in type-2 probabilistic logics.

1. “The probability that a randomly chosen bird will fly is greater than 0.9.”
2. “The probability that Tweety (a particular bird) flies is greater than 0.9.”

Bacchus has published a further early work on probabilistic logics [3]. In particular,
he defined the probabilistic first-order logic Lp, which allows to express various kinds
of probabilistic/statistical knowledge: relative, interval, functional, conditional, inde-
pendence. It is of type 1, since its semantics is based on probability measures over the
domain of discourse (the objects). However, it also supports the deduction of degrees
of belief (type 2) from given knowledge by means of an inference mechanism that is
called belief formation and is based on an inductive assumption of randomization.

In [13], Heinsohn introduced the probabilistic description logic ALCP as an extension
of ALC. An ALCP ontology is a union of some acyclic ALC TBox and a finite set of
so-called p-conditionings, which are expressions of the form C

[p,q]→ D where C and D
are Boolean combinations of concept names and where p and q are real numbers from
the unit interval [0,1]. ALCP allows for expressing type-1 probabilities only, since a

p-conditioning C
[p,q]→ D is defined to be valid in an interpretation I if it holds true that

p ≤ |CI ∩DI|/|CI| ≤ q, that is, a uniform distribution on the domain of I is assumed
and it is measured which percentage of the objects satisfying the premise C also satisfies
the conclusion D. In particular, this means that only finite models are considered, which
is a major restriction. Heinsohn shows how important reasoning problems (consistency
and determining minimal p-conditionings) can be translated into problems of linear
algebra. Please note that there is a strong correspondence with the notion of confidence
of a concept inclusion as utilized by Borchmann in [4], cf. Section 2.

Another probabilistic extension ofALC was devised by Jaeger [14]: the description logic
PALC. Probabilities can be assigned to both terminological information and assertional
information, rendering it a mixture of means for expressing type-1 and type-2 probabil-
ities. A PALC ontology is a union of an acyclic ALC TBox, a finite set of probabilistic
terminological axioms of the form P (C | D) = p, and a finite set of probabilistic asser-
tions of the form P (a ∈ C) = p. The model-theoretic semantics are defined by extending
the usual notion of a model with a probability measures: one measure µ dedicated to the
probabilistic terminological axioms, and one measure νa dedicated to the probabilistic
assertions for each individual a. Furthermore, these probability measures are defined on
some finite subalgebra of the Lindenbaum-Tarski algebra of ALC concept descriptions
that is generated by the concept descriptions occurring in the ontology, and it is further
required that each ABox measure νa has minimal cross entropy to the TBox measure µ.
Lukasiewicz introduced in [23] the description logics P-DL-Lite, P-SHIF(D), and

P-SHOIN (D) that are probabilistic extensions of DL-Lite and of the DLs underlying
OWL Lite and OWL DL, respectively. We shall now briefly explain P-SHOIN (D),
the others are analogous. It allows for expressing conditional constraints of the form
(φ|ψ)[l, u] where φ and ψ are elements from some fixed, finite set C of SHOIN (D)
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concept descriptions, so-called basic classification concepts, and where l and u are real
numbers from the unit interval [0,1]. Similar to PALC, P-SHOIN (D) ontologies are
unions of some SHOIN (D) ontology, a finite set of conditional constraints (PTBox) as
probabilistic terminological knowledge, and a finite set of conditional constraints (PABox)
as probabilistic assertional knowledge for each probabilistic individual. The semantics are
then defined using interpretations that are additionally equipped with a discrete probabil-
ity measure on the Lindenbaum-Tarski algebra generated by C. Note that, in contrast to
PALC, there is only one probability measure available in each interpretation. While the
terminological knowledge is, just like for PALC, the default knowledge from which we only
differ for a particular individual if the corresponding knowledge requires us to do so, the
inference process is different, i.e., cross entropy is not utilized in any way. In order to allow
for drawing inferences from a P-SHOIN (D) ontology, lexicographic entailment is defined
for deciding whether a conditional constraint follows from the terminological part or for
a certain individual. A thorough complexity analysis shows that the decision problems in
these three logics are NP-complete, EXP-complete, and NEXP-complete, respectively.

Gutiérrez-Basulto, Jung, Lutz, and Schröder consider in [11] the probabilistic descrip-
tion logics Prob-ALC and Prob-EL where probabilities are always interpreted as degrees
of belief (type 2). Among other language constructs, a new concept constructor is
introduced that allows to probabilistically quantify a concept description. The semantics
are based on multi-world interpretations where a discrete probability measure on the
set of worlds is defined. Consistency and entailment is then defined just as usual, but
using such probabilistic interpretations. A thorough investigation of computational
complexity for various probabilistic extensions of DLs is provided: for instance, the
common reasoning problems in Prob-EL and in Prob-ALC are EXP-complete, that is,
not more expensive than the same problems in ALC.
One should never mix up probabilistic and fuzzy variants of (description) logics.

Although at first sight one could get the impression that both are suitable for any use
cases where imprecise knowledge is to be represented and reasoned with, this is definitely
not the case. A very simple argument against this is that in fuzzy logics we can easily
evaluate conjunctions by means of the underlying fixed triangular norm (abbrv. t-norm),
while it is not (always) possible to deduce the probability of a conjunction given the
probabilities of the conjuncts. For instance, consider statements α and β. If both have
fuzzy truth degree 1/2 and the t-norm is Gödel’s minimum, then α ∧ β has the fuzzy
truth degree 1/2 as well. In contrast, if both have probabilistic truth degree 1/2, then the
probability of α ∧ β might be any value in the interval [0, 1/2], but without additional
information we cannot bound it further or even determine it exactly.

Within this document, we make use of the syntax and semantics of [11]. It is easy to
see that the probabilistic multi-world interpretations can be represented as families of
directed graphs the vertices and edges of which are labeled and for which there exists a
probability measure on this graph family. More specifically, we shall develop a suitable ax-
iomatization technique for deducing terminological knowledge from the assertional data
given in such probabilistic interpretations. In order to prevent the generated ontology
from overfitting, a description logic that is not closed under Boolean operations is chosen.
Since conjunction is essential, this implies that we leave out disjunction and negation. We
consider a probabilistic variant Prob>EL⊥ of the description logic EL⊥, show that reason-
ing in Prob>EL⊥ is EXP-complete, and provide a method for constructing a set of rules,
so-called concept inclusions, from probabilistic interpretations in a sound and complete
manner. Within this document, the usage of probability restrictions is only allowed for
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lower probability bounds. This choice shall ease readability; it is not hard to verify that
similar results can be obtained when additionally allowing for upper probability bounds.
Results of scientific experiments, e.g., in medicine, psychology, biology, finance, or

economy, that are repeated several times can induce probabilistic interpretations in
a natural way. Each repetition corresponds to a world, and the results of a particular
repetition are encoded in the graph structure of that world. For instance, a researcher
could collect data on consumption of the drugs ethanol and nicotine as well as on
occurrence of serious health effects, e.g., cancer, psychological disorders, pneumonia, etc.,
such that a world corresponds to a single person and all worlds are equally likely. Then,
the resulting probabilistic interpretation could be analyzed with the procedure described
in the sequel of this document, which produces a sound and complete axiomatization
of it. In particular, the outcome would then be a logical-statistical evaluation of the
input data, and could include concept inclusions like the following.1

E

drinks. (Alcoholu

E

frequency.TwiceAWeek)
v

P

≥ 1/10.

E

suffersFrom.Canceru

P

≥ 1/5.

E

develops.PsychologicalDisorder

E

smokes.Tobacco
v

P

≥ 1/4.

E

suffersFrom.Canceru

P

≥ 1/3.

E

suffersFrom.Pneumonia

The first one states that any person who drinks alcohol twice a week suffers from cancer
with a probability of at least 10% and develops some psychological disorder with a
probability of at least 20%; the second one expresses that each person smoking tobacco
suffers from cancer with a probability of at least 25% and suffers from pneumonia with
a probability of at least 331/3%.

However, one should be cautious when interpreting the results, since the procedure,
like any other existing statistical evaluation techniques, cannot distinguish between
causality and correlation. It might as well be the case that an application of our
procedure yields concept inclusions of the following type.

P

≥ 1/2.

E

develops.PsychologicalDisorder
v

P

≥ 1/3.

E

drinks. (Alcoholu

E

frequency.Daily)

The above concept inclusion reads as follows: any person who develops a psychological
disorder with a probability of at least 50% drinks alcohol on a daily basis with a
probability of at least 331/3%.
It should further be mentioned that for evaluating observations by means of the

proposed technique no hypotheses are necessary. Instead, the procedure simply provides
a sound and complete axiomatization of the observations, and the output is, on the one
hand, not too hard to be understood by humans (at least if, the probability depth is not
set too high) and, on the other hand, well-suited to be further processed by a computer.
This document also resolves an issue found by Franz Baader with the techniques

described by the author in [15, Sections 5 and 6]. In particular, the concept inclusion

1 Please note that, although similar statements with adjusted probability bounds do hold
true in real world, the mentioned statements are not taken from any publications in the
medical or psychological domain. The author has simply read according Wikipedia articles
and then wrote down the statements.
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base proposed therein in Proposition 2 is only complete with respect to those prob-
abilistic interpretations that are also quasi-uniform with a probability ε of each world.
Herein, we describe a more sophisticated axiomatization technique of not necessarily
quasi-uniform probabilistic interpretations that ensures completeness of the constructed
concept inclusion base with respect to all probabilistic interpretations, but which,
however, only allows for bounded nesting of probability restrictions. It is not hard to
generalize the following results to a more expressive probabilistic description logic, for
example to a probabilistic variant Prob>M of the description logicM, for which an
axiomatization technique is available [17]. That way, we can regain the same, or even a
greater, expressivity as the author has tried to tackle in [15], but without the possibility
to nest probability restrictions arbitrarily deep. A first step for resolving this issue has
already been made in [20] where a nesting of probability restrictions is not supported.
As a follow-up, we now expand on these results in [20] with the goal to allow for nesting
of probabilistically quantified concept descriptions.
Due to space constraints, no proofs could be included here, but have rather been

moved to a corresponding technical report [21].

2 Related Work

So far, several approaches for axiomatizing concept inclusions (abbrv.CIs) in different
description logics have been developed, and many of these utilize sophisticated techniques
from Formal Concept Analysis [8,9]: on the one hand, there is the so-called canonical base,
cf. Guigues and Duquenne in [10], that provides a concise representation of the implica-
tive theory of a formal context in a sound and complete manner and, on the other hand,
the interactive algorithm attribute exploration exists, which guides an expert through the
process of axiomatizing the theory of implications that are valid in a domain of interest, cf.
Ganter in [7]. In particular, attribute exploration is an interactive variant of an algorithm
for computing canonical bases [7], and it works as follows: the input is a formal context
that only partially describes the domain of interest (that is, there may be implications
that are not valid, but for which this partial description does not provide a counterex-
ample), and during the run of the exploration process a minimal number of questions is
enumerated and posed to the expert (such a question is an implication for which no coun-
terexample has been explored, and the expert can either confirm its validity or provide a
suitable counterexample). On termination, a minimal sound and complete representation
of the theory of implications that are valid in the considered domain has been generated.

A first pioneering work on axiomatizing CIs in the description logic FLE has been
developed by Rudolph [24], which allows for the exploration of a CI base for a given inter-
pretation in a multi-step approach such that each step increases the role depth of concept
descriptions occurring in the CIs. Later, a refined approach has been developed by Baader
and Distel [1,6] for axiomatizing CI bases in the description logic EL⊥. They found tech-
niques for computing and for exploring such bases that contain a minimal number of CIs
and that are both sound and complete not only for those valid CIs up to certain role depth
but instead for all valid ones. However, due to possible presence of cycles in the input
interpretation they need to apply greatest fixed-point semantics; luckily, there is a finite
closure ordinal for any finitely representable interpretation, that is, there is a certain role
depth up to which the concept descriptions in the base can be unraveled to obtain a base
for all valid CIs with respect to the standard semantics. Borchmann, Distel, and the au-
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thor devised a variant of these techniques in [5] that circumvents the use of greatest fixed-
point semantics, but which can only compute minimal CI bases that are sound and com-
plete for all concept inclusions up to a set role depth—of course, if one chooses the closure
ordinal as role-depth bound, then also these bases are sound and complete for all valid CIs
w.r.t. standard semantics. Further variants that allow for the incorporation of background
knowledge or allow for a more expressive description logic can be found in [16,17,22].

However, all of the mentioned approaches have in common that they heavily rely on
the assumption that the given input interpretation to be axiomatized does not contain
errors—otherwise these errors would be reflected in the constructed CI base. A reasonable
solution avoiding this assumption has been proposed by Borchmann in [4]. He defined the
notion of confidence as a statistical measure of validity of a CI in a given interpretation,
and developed means for the computation and exploration of CI bases in EL⊥ that are
sound and complete for those CIs the confidence of which exceeds a pre-defined threshold.
Furthermore, in [19] the author defined the notion of probability of a CI in a probabilistic
interpretation, and showed how corresponding bases of CIs exceeding a probability thresh-
old can be constructed in a sound and complete manner. Both works have in common
that they only allow for a statistical or probabilistic quantification of CIs, that is, it is only
possible to assign a degree of truth to whole CIs, and not to concept descriptions occurring
in these. For instance, one can express that A v

E

r.B has a confidence or probability of
2/3, but one cannot write that every object which satisfies A with a probability of 5/6 also
satisfies

E

r.B with a probability of 1/3. As a solution to this, the author first considered
in [18] implications over so-called probabilistic attributes in Formal Concept Analysis and
showed how these can be axiomatized from a probabilistic formal context. Then in [20],
his results have been extended to the probabilistic description logic Prob>1 EL⊥, a sublogic
of Prob>EL⊥ that does not allow for nesting of probabilistically quantified concept
descriptions. In Section 5 we shall expand on the results from [20] with the goal to consti-
tute an effective procedure for axiomatizing CI bases in Prob>EL⊥, that is, we extend the
procedure in [20] to allow for nesting of probabilistically quantified concept descriptions.

3 The Probabilistic Description Logic Prob>EL⊥

The probabilistic description logic Prob>EL⊥ constitutes an extension of the tractable
description logic EL⊥ [2] that allows for expressing and reasoning with probabilities.
More specifically, it is a sublogic of Prob-EL introduced by Gutiérrez-Basulto, Jung,
Lutz, and Schröder in [11] in which only the relation symbols > and ≥ are available for
the probability restrictions, and in which the bottom concept description ⊥ is present.2
In the sequel of this section, we shall introduce the syntax and semantics of Prob>EL⊥.
Furthermore, we will show that a common inference problem in Prob>EL⊥ is EXP-
complete and, thus, more expensive than in EL⊥ where the same problem is P-complete.

Throughout the whole document, assume that Σ is an arbitrary but fixed signature,
that is, Σ is a disjoint union of a set ΣC of concept names and a set ΣR of role names.
Then, Prob>EL⊥ concept descriptionsC overΣ may be inductively constructed bymeans
of the following grammar rule (where A ∈ ΣC, r ∈ ΣR, m ∈ {≥,>} and p ∈ [0,1]∩Q).

C ::= ⊥ (bottom concept description/contradiction)

2 We merely introduce ⊥ as syntactic sugar; of course, it is semantically equivalent to the
unsatisfiable probabilistic restriction

P

>1.>.
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| > (top concept description/tautology)
| A (concept name)
| C uC (conjunction)

|

E

r.C (existential restriction)

|

P

mp.C (probability restriction)

Within this document, we stick to the default conventions and denote concept names
by letters A or B, denote concept descriptions by letters C, D, E, etc., and denote role
names by letters r, s, t, etc., each possibly with sub- or superscripts. Furthermore, we
write Prob>EL⊥(Σ) for the set of all Prob>EL⊥ concept descriptions over Σ. An EL⊥
concept description is a Prob>EL⊥ concept description not containing any subconcept of
the form

P

mp.C,3 and we shall write EL⊥(Σ) for the set of all EL⊥ concept descriptions
over Σ. If both C and D are concept descriptions, then the expression C v D is
a concept inclusion (abbrv.CI), and the expression C ≡ D is a concept equivalence
(abbrv.CE). A terminological box (abbrv.TBox) is a finite set of CIs and CEs.

An example of a Prob>EL⊥ concept description is the following; it describes cats that
are both alive and dead with a respective probability of at least 50%. In particular, we
could consider the below concept description as a formalization of the famous thought
experiment Schrödinger’s Cat.

Catu

P

≥ 1/2.

E

hasPhysicalCondition.Alive
u

P

≥ 1/2.

E

hasPhysicalCondition.Dead (1)

The probability depth pd(C) of a Prob>EL⊥ concept description C is defined as the
maximal nesting depth of probability restrictions within C, and we formally define
it as follows: pd(A) := 0 for each A ∈ ΣC ∪ {⊥,>}, pd(C uD) := pd(C) ∨ pd(D),4
pd(

E

r.C) := pd(C), and pd(

P

mp.C) := 1 + pd(C). Then, Prob>nEL⊥(Σ) denotes the
set of all Prob>EL⊥ concept descriptions over Σ the probability depth of which does
not exceed n.
Our considered logic Prob>EL⊥ possesses a model-theoretic semantics; so-called

probabilistic interpretations function as models. Such a probabilistic interpretation over
Σ is a tuple I := (∆I,ΩI, ·I,PI) that consists of a non-empty set ∆I of objects, called
the domain, a non-empty, countable set ΩI of worlds, a discrete probability measure
PI on ΩI, and an extension function ·I such that, for each world ω ∈ ΩI, any concept
name A ∈ ΣC is mapped to a subset AI(ω) ⊆ ∆I and each role name r ∈ ΣR is
mapped to a binary relation rI(ω) ⊆ ∆I×∆I. We remark that the discrete probability
measure is a mapping PI : ℘(ΩI)→ [0,1] which satisfies PI(∅) = 0 and PI(ΩI) = 1,
and which is σ-additive, that is, for all countable families (Un | n ∈ N ) of pairwise
disjoint sets Un ⊆ ΩI it holds true that PI(

⋃
{Un | n ∈N}) =

∑
(PI(Un) | n ∈N ).

We shall follow the assumption in [11, Section 2.6] and consider only probabilistic
interpretations without any infinitely improbable worlds, i.e., which do not contain
any world ω ∈ ΩI with PI{ω} = 0. Furthermore, a probabilistic interpretation I is

3 The author does not use the denotation PmpC for probability restrictions as in [11], since
quantifiers are usually single letters rotated by 180 degrees.

4 Note that ∨ denotes the binary supremum operator for numbers, which here coincides
with the maximum operator, since there are only finitely many arguments.
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finitely representable if ∆I is finite, ΩI is finite, the active signature

ΣI := {σ | σ ∈ Σ and σI(ω) 6= ∅ for some ω ∈ ΩI }

is finite, and if PI has only rational values.
It is easy to see that, for any probabilistic interpretation I, each world ω ∈ ΩI can

be represented as a labeled, directed graph: the node set is the domain ∆I, the edge
set is

⋃
{ rI(ω) | r ∈ ΣR }, any node δ is labeled with all those concept names A that

satisfy δ ∈ AI(ω), and any edge (δ, ε) has a role name r as a label if (δ, ε) ∈ rI(ω) holds
true. That way, we can regard probabilistic interpretations also as discrete probability
distributions over description graphs.

Later, we will also use the notion of interpretations, which are the models upon which
the semantics of EL⊥ is built. Put simply, these are probabilistic interpretations with only
one world, that is, these are tuples I := (∆I, ·I) where ∆I is a non-empty set of objects,
called domain, and where ·I is an extension function that maps concept names A ∈ ΣC

to subsets AI ⊆ ∆I and maps role names r ∈ ΣR to binary relations rI ⊆ ∆I ×∆I.
Let I be a probabilistic interpretation. Then, the extension CI(ω) of a Prob>EL⊥

concept description C in a world ω of I is recursively defined as follows.

⊥I(ω) := ∅ >I(ω) := ∆I (C uD)I(ω) := CI(ω) ∩DI(ω)

(

E

r.C)I(ω) := { δ | δ ∈ ∆I, (δ, ε) ∈ rI(ω), and ε ∈ CI(ω) for some ε ∈ ∆I }
(

P

mp.C)I(ω) := { δ | δ ∈ ∆I and PI{δ ∈ CI} m p}

In the last of the above definitions we use the abbreviation

{δ ∈ CI} := {ω | ω ∈ ΩI and δ ∈ CI(ω) }.

All but the last formula can be used in a similar manner to define the extension
CI of an EL⊥ concept description C in an interpretation I. Please note that, in
accordance with [11], there is nothing wrong with the above definition of extensions;
in particular, it is true that the extension (

P

mp.C)I(ω) of a probabilistic restric-
tion

P

mp.C is indeed independent of the concrete world ω, i.e., it holds true that
(

P

mp.C)I(ω) = (

P

mp.C)I(ψ) whenever ω and ψ are arbitrary worlds in ΩI. This
is due to the intended meaning of

P

mp.C: it describes the class of objects for which
the probability of being a C is mp. As a probabilistic interpretation I provides a
multi-world view where probabilities can be assigned to sets of worlds, the probability of
an object δ ∈ ∆I being a C is defined as the probability of the set of all those worlds in
which δ is some C, just like we have defined it above. We shall elaborate on this again
as soon as we have defined validity of concept inclusions in probabilistic interpretations,
and mind that extensions of a fixed probabilistic quantification are equal in all worlds.
A toy example of a probabilistic interpretation is ICat shown in Figure 1. As one

quickly verifies, only the object SchrödingersCat belongs to the extension of the concept
description from Equation (1).

A concept inclusion C v D or a concept equivalence C ≡ D is valid in I if, for each
world ω ∈ ΩI, it holds true that CI(ω) ⊆ DI(ω) or CI(ω) = DI(ω), respectively, and
we shall then write I |= C v D or I |= C ≡ D, respectively. Furthermore, I is a model
of a TBox T , denoted as I |= T , if every concept inclusion or concept equivalence
in T is valid in I. A TBox T entails a concept inclusion or concept equivalence α,
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ICat(ω1):

P
ICat{ω1} := 1/2

SchrödingersCat

Cat

pcS

Alive

NeighborsCat

Cat

pcN

Alive

hasPhysicalCondition

hasPhysicalCondition

likes likes

ICat(ω2):

P
ICat{ω2} := 1/2

SchrödingersCat

Cat

pcS

Dead

NeighborsCat

Cat

pcN

Alive

hasPhysicalCondition

hasPhysicalCondition

likes likes

Figure 1. An exemplary probabilistic interpretation

symbolized by T |= α, if α is valid in every model of T . In case T |= C v D we say
that C is subsumed by D with respect to T , and if T |= C ≡ D, then we call C and
D equivalent to each other with respect to T .

If Y is either an interpretation or a terminological box and ≤ is a suitable relation
symbol, e.g., one of v, ≡, w, then we may also use the denotation C ≤Y D instead
of Y |= C ≤ D and, analogously, we may write C 6≤Y D for Y 6|= C ≤ D.

Considering again the above definition of extensions of concept descriptions together
with the just defined validity of concept inclusions, we can also justify the indepen-
dence of (

P

mp.C)I(ω) from world ω in the following way. Fix some probabilistic
interpretation as well as some concept inclusion C v D. Since concept inclusions are
terminological axioms, and as such represent knowledge that globally holds true, it
is only natural to say that C v D is valid in I if, and only if, C v D is valid in each
slice I(ω) for any world ω ∈ ΩI—apparently, this is what we have defined above.
If C =

P

≥p.C′ and D =

P

≥ q.D′ are probabilistic restrictions, then the intended
meaning of the concept inclusion

P

≥p.C′ v

P

≥ q.D′ is that any object being a C′
with probability at least p is also a D′ with probability q or greater. Of course, this
is equivalent to (

P

≥p.C′)I(ω) ⊆ (

P

≥ q.D′)I(ω) for each world ω ∈ ΩI, that is, to
I |=

P

≥p.C′ v

P

≥ q.D′. This argumentation can now be extended to the general
case where C and D are arbitrary Prob>EL⊥ concept descriptions.
For some of the upcoming proofs we need the following lemma, which expresses

the fact that the probabilistic restriction constructor—more specifically, each mapping
C 7→

P

mp.C for m ∈ {≥,>} and p ∈ [0,1]∩Q—is monotonic.

Lemma 1. Consider a Prob>EL⊥ terminological box T and a Prob>EL⊥ concept
inclusion C v D. Then, C vT D implies

P

mp.C vT

P

mp.D for any m ∈ {≥,>}
and for each p ∈ [0,1]∩Q.

Proof. Fix some model I of T and let PI{δ ∈ CI} m p for an object δ ∈ ∆I. From
T |= C v D we infer that, for each world ω ∈ ΩI, it holds true that δ ∈ CI(ω)
implies δ ∈ DI(ω). Consequently, we have that {δ ∈ CI} ⊆ {δ ∈ DI} and, thus,
PI{δ ∈ DI} m p due to the monotonicity of the probability measure PI. ut
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For a complexity analysis, we consider the following subsumption problem.

Instance: Let T be a TBox and let C v D be a concept inclusion.
Question: Is C subsumed by D w.r.t. T , i.e., does C vT D hold true?

The next proposition shows that this problem is EXP-complete and, consequently,
more expensive than deciding subsumption w.r.t. a TBox in its non-probabilistic sibling
EL⊥—a problem which is well-known to be P-complete. We conclude that reasoning
in Prob>EL⊥ is worst-case intractable, while reasoning in EL⊥ is always tractable.

Proposition 2. In Prob>EL⊥, the subsumption problem is EXP-complete.

Proof. Containment in EXP follows from [11, Theorem 3] and the fact that Prob>EL⊥
is a sublogic of Prob-ALC. EXP-hardness is a consequence of [11, Theorem 13 and Sec-
tions A.1, A.2, and A.3], where EXP-hardness of the logics Prob-EL∼p for ∼ ∈ {≥,>},
that is, of sublogics of Prob>EL⊥, is demonstrated. ut

4 Concept Inclusion Bases in EL⊥

When developing a method for axiomatizing Prob>EL⊥ concept inclusions valid in
a given probabilistic interpretation in the next section, we will use techniques for
axiomatizing EL⊥ CIs valid in an interpretation as developed by Baader and Distel
in [1,6] for greatest fixed-point semantics, and as adjusted by Borchmann, Distel, and
the author in [5] for the role-depth-bounded case. A brief introduction is as follows. A
concept inclusion base for an interpretation I is a TBox T such that, for each CI C v D,
it holds true that C vI D if, and only if, C vT D. For each finite interpretation I
with finite active signature, there is a canonical base Can(I) with respect to greatest
fixed-point semantics, which contains a minimal number of CIs among all concept
inclusion bases for I, cf. [6, Corollary 5.13 and Theorem 5.18], and similarly there is
a minimal canonical base Can(I, d) with respect to an upper bound d ∈N on the role
depths, cf. [5, Theorem 4.32]. The construction of both canonical bases is built upon the
notion of a model-based most specific concept description (abbrv.MMSC), which, for an
interpretation I and some subset Ξ ⊆ ∆I, is a concept description C such that Ξ ⊆ CI
and, for each concept description D, it holds true that Ξ ⊆ DI implies C v∅ D. These
exist either if greatest fixed-point semantics is applied (in order to be able to express
cycles present in I) or if the role depth of C is bounded by some d ∈ N, and these
are then denoted as ΞI or ΞId, respectively. These mappings ·I : ℘(∆I)→ EL⊥gfp(Σ)
and ·Id : ℘(∆I) → EL⊥d(Σ) are the adjoints of the respective extension functions
·I : EL⊥gfp(Σ)→ ℘(∆I) and ·I : EL⊥d(Σ)→ ℘(∆I), and the pair of both constitutes
a Galois connection, cf. [6, Lemma 4.1] and [5, Lemmas 4.3 and 4.4], respectively.
As a variant of these two approaches, the author presented in [16] a method for

constructing canonical bases relative to an existing TBox. If I is an interpretation and B
is a TBox such that I |= B, then a concept inclusion base for I relative to B is a TBox
T such that, for each CI C v D, it holds true that C vI D if, and only if, C vT ∪B D.
The corresponding canonical base is denoted as Can(I,B), cf. [16, Theorem 1].

So far, the complexity of computing CI bases in the description logic EL⊥ has not
been determined. Using simple arguments, one could only infer that the canonical base
Can(I) can be computed in double exponential time with respect to the cardinality
of the domain ∆I. However, since we want to determine the computational complexity
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of the task of constructing CI bases in the probabilistic description logic Prob>EL⊥,
which we will describe and prove in the next section and which we will build on top
of means for computing such bases in EL⊥, we cite a recent answer from the author
to this open question in the following proposition.

[22, Proposition 2]. For each finitely representable interpretation I, its canonical
base Can(I) can be computed in deterministic exponential time with respect to the car-
dinality of the domain ∆I. Furthermore, there are finitely representable interpretations
I for which a concept inclusion base cannot be encoded in polynomial space w.r.t. |∆I|.

It is not hard to adapt this result to the role-depth-bounded case; one can show that
computing Can(I, d) can be done in deterministic exponential time w.r.t. |∆I| and d.

5 Axiomatization of Concept Inclusions in Prob>nEL⊥

In this section, we shall develop an effective method for axiomatizing Prob>nEL⊥ concept
inclusions which are valid in a given finitely representable probabilistic interpretation.
After defining the appropriate notion of a concept inclusion base, we show how this
problem can be tackled using the aforementioned existing results on computing concept
inclusion bases in EL⊥ from Section 4. More specifically, we devise an extension of the
given signature by finitely many probability restrictions

P

mp.C that are treated as
additional concept names, and we define so-called scalings In of the input probabilistic
interpretation I which are (single-world) interpretations that suitably interpret these
new concept names and, furthermore, such that there is a correspondence between
Prob>nEL⊥ CIs valid in I and CIs valid in In. This very correspondence makes it
possible to utilize the above mentioned techniques for axiomatizing CIs in EL⊥.

Definition 3. A Prob>nEL⊥ concept inclusion base for a probabilistic interpretation
I is a Prob>nEL⊥ terminological box T which is sound for I, that is, C vT D implies
C vI D for each Prob>nEL⊥ concept inclusion C v D,5 and complete for I, that is,
C vI D only if C vT D for any Prob>nEL⊥ concept inclusion C v D.

The following definition is to be read inductively, that is, initially some objects are
defined for the probability depth n = 0, and if the objects are defined for the probability
depth n, then these are used to define the next objects for the probability depth n+ 1.

A first important step is to significantly reduce the possibilities of concept descriptions
occurring as a filler in the probability restrictions, that is, of fillers C in expressionsP

mp.C. As it turns out, it suffices to consider only those fillers that are model-based
most specific concept descriptions of some suitable scaling of the given probabilis-
tic interpretation I. We shall demonstrate that there are only finitely many such
fillers—provided that the given probabilistic interpretation I is finitely representable.

As next step, we restrict the probability bounds p occurring in probability restrictionsP

mp.C. Apparently, it is sufficient to consider only those values p that can occur when
evaluating the extension of Prob>n+1EL⊥ concept descriptions in I, which, obviously,
are the values PI{δ ∈ CI} for any δ ∈ ∆I and any C ∈ Prob>nEL⊥(Σ). In the sequel
of this section we will see that there are only finitely many such probability bounds
if I is finitely representable.
5 Of course, soundness is equivalent to I |= T .
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Having found a finite number of representatives for probability bounds as well as
a finite number of fillers to be used in probability restrictions for each probability
depth n, we now show that we can treat these finitely many concept descriptions
as concept names of a signature Γn extending Σ in a way such that any Prob>nEL⊥
concept inclusion is valid in I if, and only if, that concept inclusion projected onto
the extended signature Γn is valid in a suitable scaling of I that interprets Γn.

Definition 4. Fix some probabilistic interpretation I over a signature Σ. Then, we
define the following objects Γn, In, and PI,n by simultaneous induction over n ∈N.

1. The nth signature Γn is inductively defined as follows. We set (Γ0)C := ΣC and
(Γ0)R := ΣR. The subsequent signatures are then obtained in the following way.6

(Γn+1)C := (Γn)C ∪

{

P

≥p.XIn
∣∣∣∣∣ p ∈ PI,n \ {0}, X ⊆ ∆I ×ΩI,and ⊥ 6≡∅ XIn 6≡∅ >

}
(Γn+1)R := ΣR

2. The nth scaling of I is defined as the interpretation In over Γn that has the
following components.

∆In := ∆I ×ΩI

·In :

{
A 7→ { (δ,ω) | δ ∈ AI(ω) } for each A ∈ (Γn)C

r 7→ { ((δ,ω), (ε,ω)) | (δ, ε) ∈ rI(ω) } for each r ∈ (Γn)R

3. The nth set PI,n of probability values for I is given as follows.

PI,n := {PI{δ ∈ CI} | δ ∈ ∆I and C ∈ Prob>nEL⊥(Σ)}

Furthermore, for each p ∈ [0,1), we define (p)+I,n as the next value in PI,n above
p, that is, we set

(p)+I,n :=
∧
{ q | q ∈ PI,n and q > p}.

Of course, we have that {0,1} ⊆ PI,n for each n ∈ N. Note that In+1 extends
In by also interpreting the additional concept names in (Γn+1)C \ (Γn)C, that is, the
restriction In+1�Γn

equals In. Similarly, In�Γm
and Im are equal if m ≤ n.

As explained earlier, it suffices to only consider fillers in probabilistic restrictions
that are model-based most specific concept descriptions. More specifically, the following
holds true.

Lemma 5. Consider a probabilistic interpretation I and a concept description

P

mp.C
such that C ∈ EL⊥(Γn) for some n ∈ N. Then, the concept equivalence

P

mp.C ≡P

mp.CInIn is valid in I.
6 The mapping ·I : ℘(∆I) → EL⊥(Σ) for some (non-probabilistic) interpretation I has
been introduced in Section 4.
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Proof. Using structural induction on EL⊥ concept descriptions C over Σ, it can be
proven that CI(ω) × {ω} = CIn ∩ (∆I × {ω}) is satisfied for each world ω ∈ ΩI and
for every n ∈N, cf. [19, Lemma 16]. For extending this result to Prob>nEL⊥ concept
descriptions that are in EL⊥(Γn), we need to show a further inductive case for the
probability restrictions

P

mp.C. As one quickly verifies, the following equalities hold
true for all probability restrictions

P

mp.C ∈ (Γn)C.

(

P

mp.C)I(ω) × {ω} = { (δ,ω) | PI{δ ∈ CI} m p} = (

P

mp.C)In ∩ (∆I × {ω})

It follows that, for any n ∈ N and for each concept description C ∈ EL⊥(Γn), it
holds true that CI(ω) = π1(C

In ∩ (∆I × {ω})) (where π1 projects pairs to their first
components). By applying well-known properties of Galois connections we obtain that
CI(ω) = CInInI(ω), and so PI{δ ∈ CI} = PI{δ ∈ CInInI} holds true. ut

The above lemma does not hold true for arbitrary fillers C, but only for fillers that
can (syntactically) also be seen as EL⊥ concept descriptions over Γn. However, this does
not cause any problems, since we can simply project any other filler onto this signature
Γn. In particular, we define projections of arbitrary Prob>nEL⊥ concept descriptions
onto the signature Γn in the following manner.

Definition 6. Fix some n ∈ N as well as a probabilistic interpretation I. The nth
projection πI,n(C) of a Prob>nEL⊥ concept description C with respect to I is obtained
from C by replacing subconcepts of the form

P

mp.D with suitable elements from (Γn)C
and, more specifically, we recursively define it as follows. We set πI,0(C) := C for
each concept description C ∈ EL⊥(Σ). The subsequent projections are then given in
the following manner.

πI,n+1(A) := A if A ∈ ΣC ∪ {⊥,>}
πI,n+1(C uD) := πI,n+1(C)u πI,n+1(D)

πI,n+1(

E

r.C) :=

E

r. πI,n+1(C)

πI,n+1(

P

mp.C) :=



⊥ if mp = >1

> else if mp = ≥0

⊥ else if (πI,n(C))In+1In+1 ≡∅ ⊥
> else if (πI,n(C))In+1In+1 ≡∅ >P

≥p.(πI,n(C))In+1In+1 else if m = ≥ and p ∈ PI,n+1

P

≥ (p)+I,n+1.(πI,n(C))
In+1In+1 else

For technical details, we introduce further notation: we denote by π′I,n+1(

P

mp.C)
and π′′I,n+1(

P

mp.C) the concept description that is obtained from the projection
πI,n+1(

P

mp.C) by replacing (πI,n(C))
In+1In+1 with πI,n(C) and C, respectively.

Usually, projection mappings in mathematics are idempotent. It is easy to verify
by induction over n that this also holds true for our projection mappings πI,n which
we have just defined. This justifies the naming choice. Furthermore, we can show that
the mappings πI,n are intensive, i.e., projecting some Prob>nEL⊥ concept description
C onto the nth signature Γn yields a more specific concept description, cf. the next
lemma. Furthermore, the mappings πI,n are monotonic—a fact that can be proven by
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induction over n as well. As a corollary, it follows that each mapping πI,n is a kernel
operator. However, please just take this as a side note, since we do not need the two
additional properties of idempotency and monotonicity within this document.

Lemma 7. Assume that I is a probabilistic interpretation, let n ∈N, and fix some
Prob>nEL⊥ concept description C. Then, it holds true that πI,n(C) v∅ C.

Proof. We prove by induction over k that πI,k(C) v∅ C for any k ≤ n and every
C ∈ Prob>kEL⊥(Σ). Due to equality of C and its 0th projection πI,0(C), the base
case for k = 0 is obvious. For the inductive step for k + 1, we continue with an
(inner) induction on the structure of C. All cases, except the case for a probability
restriction

P

mp.D, are easy. We claim that πI,k+1(

P

mp.D) v∅

P

mp.D. Since
(πI,k(D))Ik+1Ik+1 v∅ πI,k(D), it follows by means of Lemma 1 that

πI,k+1(

P

mp.D) v∅ π′I,k+1(

P

mp.D). (2)

The induction hypothesis together with Lemma 1 implies that

π′I,k+1(

P

mp.D) v∅ π′′I,k+1(

P

mp.D) (3)

and, furthermore, it is apparent that

π′′I,k+1(

P

mp.D) v∅

P

mp.D. (4)

In summary, Equations (2) – (4) show that πI,k+1(
P

mp.D) is subsumed by
P

mp.D
with respect to the empty TBox. ut

As a crucial observation regarding projections, we see that—within our given proba-
bilistic interpretation I—we do not have to distinguish between any Prob>nEL⊥ concept
description C and its nth projection πI,n(C), since the upcoming lemma shows that
both always possess the same extension in each world of I. Simply speaking, the
signatures Γn contain enough building bricks to describe anything that happens within
I up to a probability depth of n.

Lemma 8. Assume that I is a probabilistic interpretation, let n ∈N, and consider
some Prob>nEL⊥ concept description C. Then, C and its nth projection πI,n(C) have
the same extension in any world of I.

Proof. We show the claim by means of an outer induction on n and an inner induction on
the structure ofC. The outer base case for n = 0 is trivial, since thenC and its projection
πI,0(C) are equal. We proceed with the outer inductive case for n+ 1 and a structural
induction on C. Then, according to the definition of an (n+1)th projection, the only non-
trivial case considers probabilistic restrictions occurring in C. It is readily verified thatP

mp.E and π′′I,n+1(

P

mp.E) have the same extension in each world of I. Using the fact
that E is a Prob>nEL⊥ concept description together with the outer induction hypothesis,
we infer that π′′I,n+1(

P

mp.E) and π′I,n+1(

P

mp.E) have the same extension in each
world of I too. An application of Lemma 5 now yields that, in every world of I, also
the extensions of π′I,n+1(

P

mp.E) and πI,n+1(

P

mp.E) are the same. ut
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As a last important statement on the properties of the projection mappings, we
now demonstrate that validity of some concept inclusion C v D with a probabil-
ity depth not exceeding n is equivalent to validity of the projected concept inclusion
πI,n(C) v πI,n(D) in the scaling In. This is a key lemma for the upcoming construction
of a concept inclusion base for I.

Lemma 9. Let n ∈N, and consider a probabilistic interpretation I as well as some
Prob>nEL⊥ concept inclusion C v D. Then, C v D is valid in I if, and only if, the
nth projected concept inclusion πI,n(C) v πI,n(D) is valid in the nth scaling In.

Proof. We start with observing that, according to Lemma 8, C v D is valid in I if,
and only if, πI,n(C) v πI,n(D) is valid in I. Then, the equivalence of I |= πI,n(C) v
πI,n(D) and In |= πI,n(C) v πI,n(D) follows from the very definition of the nth
scaling In and the fact that the projections πI,n(C) and πI,n(D) can be interpreted
as EL⊥ concept descriptions over Γn. ut

Now we go on to considering the sets PI,n of essential probability values. As we have
already claimed, these sets are always finite—provided that the fixed probabilistic inter-
pretation is finitely representable. In order to prove this, we need the following statement.

Lemma 10. For each probabilistic interpretation I and any n ∈ N, the following
equation is satisfied.

PI,n = {PI{δ ∈ XInI} | δ ∈ ∆I and X ⊆ ∆I ×ΩI }

Proof. Fix some Prob>nEL⊥ concept description C. From Lemma 8 we infer that

PI{δ ∈ CI} = PI{δ ∈ (πI,n(C))
I}

holds true. In the proof of Lemma 5 we have shown that PI{δ ∈ DI} = PI{δ ∈
DInInI} holds true for each Prob>EL⊥ concept description D over Σ that (syntac-
tically) is also an EL⊥ concept description over Γn. Hence, we can use this identity
for D := πI,n(C), which yields that

PI{δ ∈ (πI,n(C))
I} = PI{δ ∈ (πI,n(C))

InInI}.

Of course, we have that (πI,n(C))In ⊆ ∆I ×ΩI.
Since C is an arbitrary concept description, we conclude that PI,n is a subset of
{PI{δ ∈ XInI} | δ ∈ ∆I and X ⊆ ∆I×ΩI }. The reverse set inclusion is trivial. ut

For most, if not all, practical use case we can argue that the given probabilistic
interpretation I can be assumed as finitely representable. Utilizing some of our previous
results then implies that each nth scaling of I is finitely representable as well. More
specifically, the following is satisfied.

Corollary 11. If I is a finitely representable probabilistic interpretation, then it holds
true that, for each n ∈ N, the subset Γn \Σ of the nth signature is finite, the nth
scaling In is finite and has a finite active signature, and the nth set PI,n of probability
values is finite and satisfies PI,n ⊆Q.
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As already mentioned in Sections 2 and 4, we want to make use of existing techniques
that allow for axiomatizing interpretations in the description logic EL⊥. In order to do
so, we need to be sure that the semantics of EL⊥ and its probabilistic sibling Prob>EL⊥
are not too different, or expressed alternatively, that there is a suitable correspon-
dence between (non-probabilistic) entailment in EL⊥ and (probabilistic) entailment in
Prob>EL⊥. A more sophisticated formulation is presented in the following lemma.

Lemma 12. Let T be a Prob>EL⊥ TBox, and assume that B is a set that consists
of tautological Prob>EL⊥ concept inclusions, i.e., ∅ |= B. If C v D is a Prob>EL⊥
concept inclusion that is entailed by T ∪ B with respect to non-probabilistic entailment,
then C v D is also entailed by T with respect to probabilistic entailment.

Proof. Fix some signature Σ, let T ∪B |= C v D (non-probabilistically), and consider
some probabilistic interpretation I such that I |= T . Of course, it also holds true that
I |= B. We extend Σ to the signature Γ defined as follows: ΓC := ΣC∪{

P

mp.C | m ∈
{≥,>}, p ∈ [0,1] ∩Q, and C ∈ Prob>EL⊥(Σ) } and ΓR := ΣR. It is apparent that,
syntactically, EL⊥(Γ ) = Prob>EL⊥(Σ) holds true. Furthermore, we define the interpreta-
tion J where∆J := ∆I×ΩI, AJ := { (δ,ω) | δ ∈ AI(ω) } for each A ∈ ΓC, and rJ :=
{ ((δ,ω), (ε,ω)) | (δ, ε) ∈ rI(ω) } for each r ∈ ΓR. We can show with structural induction
thatCJ =

⋃
{CI(ω)×{ω} | ω ∈ ΩI } for anyC ∈ EL⊥(Γ ). Consequently, I |= E v F

is equivalent to J |= E v F for each Prob>EL⊥ concept inclusion E v F . It follows that
J |= T ∪B, and we infer that J |= C v D, which implies that I |= C v D. As I is an
arbitrary model of T , we can safely conclude that T |= C v D (probabilistically). ut

As final step, we show that each concept inclusion base of the probabilistic scaling
In induces a Prob>nEL⊥ concept inclusion base of I. While soundness is easily verified,
completeness follows from the fact that C vT πI,n(C) vT πI,n(D) v∅ D holds true
for every valid Prob>nEL⊥ concept inclusion C v D of I.

Theorem 13. Fix a number n ∈N and some finitely representable probabilistic in-
terpretation I. If Tn is a concept inclusion base for the nth scaling In with respect to
some set Bn of tautological Prob>nEL⊥ concept inclusions used as background knowledge,
then the following terminological box T is a Prob>nEL⊥ concept inclusion base for I.

T := Tn ∪
⋃
{UI,` | ` ∈ {1, . . . , n}} where

UI,` := {

P

>p.XI`I` v

P

≥ (p)+I,`.X
I`I` | p ∈ PI,` \ {1} and X ⊆ ∆I ×ΩI }

Proof. Soundness is apparently satisfied. We proceed with showing completeness; thus,
fix some Prob>nEL⊥ concept inclusion C v D which is valid in I. We shall demonstrate
the validity of the following subsumptions.

C vT πI,n(C) vT πI,n(D) v∅ D

According to Lemma 7, it holds true that πI,n(D) v∅ D. Lemma 9 immediately
yields that πI,n(C) v πI,n(D) is valid in the nth scaling In. Since Tn is complete for
In relative to Bn, it follows that Tn ∪Bn entails πI,n(C) v πI,n(D) with respect to
non-probabilistic entailment and, thus, T entails πI,n(C) v πI,n(D) with respect to
probabilistic entailment.
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It remains to show that C vT πI,n(C) holds true; we do so by proving with an
induction on k that C vT πI,k(C) holds true for each k ≤ n and C ∈ Prob>kEL⊥(Σ).
The base case where k = 0 is obvious, since each Prob>0 EL⊥ concept description C
equals its 0th projection πI,0(C). For the inductive case for k + 1, we proceed with an
inner induction on the structure of C. The only non-trivial case considers probability
restrictions

P

mp.E. Of course, E is then a Prob>kEL⊥ concept description, and the
induction hypothesis yields that E vT πI,k(E). As an immediate consequence from
Lemma 1 we infer that

P

mp.E vT

P

mp.πI,k(E). (5)

Furthermore, the concept inclusion πI,k(E) v (πI,k(E))Ik+1Ik+1 is valid in Ik+1. Since
In�Γk+1

= Ik+1 holds true, and both πI,k(E) and (πI,k(E))
Ik+1Ik+1 (syntactically)

are EL⊥ concept descriptions over Γk+1 ⊆ Γn, we conclude that the considered con-
cept inclusion πI,k(E) v (πI,k(E))

Ik+1Ik+1 is valid in In. Consequently, this CI is
(non-probabilistically) entailed by Tn ∪ Bn and, according to Lemma 12, it is hence
(probabilistically) entailed by T . An application of Lemma 1 now shows that

P

mp.πI,k(E) vT

P

mp.(πI,k(E))Ik+1Ik+1. (6)

Obviously, the subset UI,k+1 of T entails the concept inclusion

P

mp.(πI,k(E))Ik+1Ik+1 v π′′I,k+1(

P

mp.(πI,k(E))Ik+1Ik+1),

and since the latter concept description is exactly πI,k+1(

P

mp.E) we infer that
P

mp.(πI,k(E))Ik+1Ik+1 vT πI,k+1(

P

mp.E). (7)

Putting the results from Equations (5) – (7) together now demonstrates the truth of
the claim that

P

mp.E is subsumed by πI,k+1(

P

mp.E) with respect to T . ut

As already mentioned in Section 4 and according to [16], a suitable such concept
inclusion base Tn for the nth scaling In with respect to background knowledge Bn
exists and can be computed effectively, namely the canonical base Can(In,Bn). This
enables us to immediately draw the following conclusion.

Corollary 14. Let I be a finitely representable probabilistic interpretation, fix some
n ∈ N, and let Bn denote the set of all EL⊥ concept inclusions over Γn that are
tautological with respect to probabilistic entailment, i.e., are valid in every probabilistic
interpretation. Then, the canonical base for I and probability depth n that is defined as

Can(I, n) := Can(In,Bn)∪
⋃
{UI,` | ` ∈ {1, . . . , n}}

is a Prob>nEL⊥ concept inclusion base for I, and it can be computed effectively.

Eventually, we close our investigations with a complexity analysis of the problem
of actually computing the canonical base Can(I, n). As it turns out, this computation
is—in terms of computational complexity—not more expensive than the corresponding
axiomatization task in EL⊥, cf. [22, Proposition 2]; both in EL⊥ and in Prob>nEL⊥
concept inclusion bases can be computed in exponential time.
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However, this result only holds true if we dispense with the pre-computation of the
tautological background knowledge Bn at all. First of all, Γn can have exponential size,
and there are d-exponentially many EL⊥ concept descriptions over some fixed signature.
Thus, a naïve enumeration of Bn is too expensive. However, also computing the implica-
tive background knowledge on the FCA side with utilizing some Prob>EL⊥ reasoner on
demand is too expensive as well. This is due to the fact that one needs to enumerate all
implications C→ {D} where C∪ {D} is a subset of the attribute set of the induced
formal context of Id. On the one hand, the number of such implications is exponential
in the size of the attribute set and this attribute set can contain exponentially many
concept descriptions that can each have an exponential size. On the other hand, we have
already seen that deciding subsumption in Prob>EL⊥ is an EXP-complete problem.
Even a more sophisticated approach that directly uses a Prob>EL⊥ reasoner to close
a pseudo-intent against the tautological Prob>EL⊥ concept inclusions does not solve
this problem due to the exponential size of the attributes of the induced context and
subsumption being EXP-complete for Prob>EL⊥.
Hence, if we define Can∗(I, n) := Can(In) ∪

⋃
{ UI,` | ` ∈ {1, . . . , n} }, then

Can∗(I, n) is still a Prob>nEL⊥ concept inclusion base for I but, as a drawback, might
contain tautological axioms. Its advantage is that it can always be computed in
exponential time.

Proposition 15. For any finitely representable probabilistic interpretation I and any
n ∈ N, the canonical base Can∗(I, n) can be computed in deterministic time that is
exponential in |∆I| · |ΩI| and polynomial in n. Furthermore, there are finitely repre-
sentable probabilistic interpretations I for which a concept inclusion base cannot be
encoded in polynomial space with respect to |∆I| · |ΩI| · n.

Proof. The statements are obtained as corollaries of [22, Proposition 2] for the following
reasons. The sum of two rational numbers can be computed in polynomial time. This
result is necessary for determining the complexity of evaluating a Prob>EL⊥ concept
description C in some world of a probabilistic interpretation I, which is polynomial in
|C|+|∆I|·|ΩI|. For each n ∈N, it holds true that the cardinality of PI,n is bounded by
|∆I| · 2|∆I|·|ΩI|, i.e., |PI,n| is exponential in |∆I| · |ΩI|. For each n ∈N, we have that
the cardinality of Γn \Σ is bounded by n · |∆I| ·22·|∆I|·|ΩI|, i.e., |Γn \Σ| is exponential
in |∆I| · |ΩI|. Furthermore, each element in Γn \Σ has an encoding of exponential
size, and we conclude that Γn \Σ also has an encoding of exponential size. ut

6 Conclusion

We have devised an effective procedure for computing finite axiomatizations of ob-
servations that are represented as probabilistic interpretations. More specifically, we
have shown how concept inclusion bases—TBoxes that are sound and complete for
the input data set—can be constructed in the probabilistic description logic Prob>EL⊥.
In a complexity analysis we found that we can always compute a canonical base in
exponential time.
Future research is possible in various directions. One could extend the results to

a more expressive probabilistic DL, e.g., to Prob>M, or one could include upper
probability bounds. Furthermore, for increasing the practicability of the approach, it
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could be investigated how the construction of a concept inclusion base can be made
incremental or interactive. It might be the case that there already exists a TBox and
there are new observations in form of a probabilistic interpretation; the goal is then to
construct a TBox being a base for the CIs that are entailed by the existing knowledge as
well as hold true in the new observations. While this would represent a push approach of
learning, future research could tackle the pull approach as well, i.e., equip the procedure
with expert interaction such that an exploration of partial observations is made possible.

Additionally, it is worth investigating whether the proposed approach could be
optimized; for instance, one could check if equivalent results can be obtained with a
subset of Γn or with another extended signature. Currently, it is also unknown whether,
for each finitely representable probabilistic interpretation I, there is some finite bound
n on the probability depth such that each Prob>nEL⊥ concept inclusion base for I is
also sound and complete for all Prob>EL⊥ concept inclusions that are valid in I—much
like this is the case for the role depth in EL⊥.
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