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ABSTRACT

For a probabilistic extension of the description logic EL⊥, we consider the task of automatic acquisition
of terminological knowledge from a given probabilistic interpretation. Basically, such a probabilistic

interpretation is a family of directed graphs the vertices and edges of which are labeled, and where

a discrete probability measure on this graph family is present. The goal is to derive so-called concept

inclusions which are expressible in the considered probabilistic description logic and which hold true

in the given probabilistic interpretation. A procedure for an appropriate axiomatization of such graph

families is proposed and its soundness and completeness is justified.

Keywords Data mining · Knowledge acquisition · Probabilistic description logic · Knowledge base ·
Probabilistic interpretation · Concept inclusion



CONTENTS

1 Introduction 4

2 The Probabilistic Description Logic P>
1 EL⊥ 5

2.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Concept Inclusion Bases in EL⊥ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Axiomatization of Concept Inclusions in P>
1 EL⊥ 9

3.1 The Almost Certain Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Finitely Many Probability Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 The Probabilistic Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4 A Concept Inclusion Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3



1 INTRODUCTION

Description Logics (abbrv.DLs) [2] are frequently used knowledge representation and reasoning for-
malisms with a strong logical foundation. In particular, these provide their users with automated

inference services that can derive implicit knowledge from the explicitely represented knowledge. Decid-

ability and computational complexity of common reasoning tasks have been widely explored for most

DLs. Besides being used in various application domains, their most notable success is the fact that DLs

constitute the logical underpinning of theWeb Ontology Language (abbrv.OWL) and many of its profiles.
DLs in its standard form only allow for representing and reasoning with crisp knowledge without

any degree of uncertainty. Of course, this is a serious shortcoming for use cases where it is impossible
to perfectly determine the truth of a statement. For resolving this expressivity restriction, probabilistic

variants of DLs [5] have been introduced. Their model-theoretic semantics is built upon so-called

probabilistic interpretations, that is, families of directed graphs the vertices and edges of which are

labeled and for which there exists a probability measure on this graph family.

Results of scientific experiments, e.g., in medicine, psychology, or biology, that are repeated several

times can induce probabilistic interpretations in a natural way. In this document, we shall develop a

suitable axiomatization technique for deducing terminological knowledge from the assertional data

given in such probabilistic interpretations. More specifically, we consider a probabilistic variant P>
1 EL⊥

of the description logic EL⊥, show that reasoning in P>
1 EL⊥ is ExpTime-complete, and provide a

method for constructing a set of rules, so-called concept inclusions, from probabilistic interpretations

in a sound and complete manner.

This document also resolves an issue found by Franz Baader with the techniques described by the au-

thor in [8, Sections 5 and 6]. In particular, the concept inclusion base proposed therein in Proposition 2 is

only complete with respect to those probabilistic interpretations that are also quasi-uniformwith a proba-

bility ε of eachworld. Herein, we describe amore sophisticated axiomatization technique of not necessar-

ily quasi-uniform probabilistic interpretations and that ensures completeness of the constructed concept

inclusion base with respect to all probabilistic interpretations, but which, however, disallows nesting of
probability restrictions. It is not hard to generalize the following results to amore expressive probabilistic

description logic, for example to a probabilistic variantP>
1M of the description logicM, for which an ax-

iomatization technique is available [6]. That way, we can regain the same, or even a greater, expressivity

as the author has tried to have tackled in [8], but without the possibility to nest probability restrictions.
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2 THE PROBABILISTIC
DESCRIPTION LOGIC P>

1EL⊥

The probabilistic description logicP>
1 EL⊥ extends the light-weight description logic EL⊥ [2] bymeans for

expressing and reasoning with probabilities. Put simply, it is a variant of the logic Prob-EL introduced by
Gutiérrez-Basulto, Jung, Lutz, and Schröder in [5] where nesting of probabilistic quantifiers is disallowed,

only the relation symbols> and≥ are available for the probability restrictions, and further the bottom
concept description⊥ is present. We introduce its syntax and semantics as follows.

2.1 SYNTAX

Fix some signature Σ, which is a disjoint union of a set ΣC of concept names and a set ΣR of role names.
Then, P>

1 EL⊥ concept descriptions C over Σmay be constructed by means of the following inductive
rules (where A ∈ ΣC, r ∈ ΣR,m ∈ {≥,>} and p ∈ [0, 1]∩Q).1

C ::= ⊥ | > | A | CuC | E

r. C | P

m p. D

D ::= ⊥ | > | A | DuD | E

r. D

We denote the set of all P>
1 EL⊥ concept descriptions over Σ by P>

1 EL⊥(Σ). An EL⊥ concept description
is a P>

1 EL⊥ concept description not containing any subconcept of the form

P

m p. C, and we shall
write EL⊥(Σ) for the set of all EL⊥ concept descriptions over Σ. A concept inclusion (abbrv.CI) is an
expression of the form C v D, and a concept equivalence (abbrv.CE) is of the form C ≡ D, where
both C and D are concept descriptions. A terminological box (abbrv. TBox) is a finite set of CIs and CEs.
Furthermore, we also allow for so-called wildcard concept inclusions of the form P

m1 p1.∗ v P

m2 p2.∗
that, basically, are abbreviations for the set { P

m1 p1. C v P

m2 p2. C | C ∈ EL⊥(Σ) }.
An example of a P>

1 EL⊥ concept description is the following.

Catu P≥ 1
2 .

E

hasPhysicalCondition.Aliveu P≥ 1
2 .

E

hasPhysicalCondition.Dead (2.1)

1
If we treat these two rules as the production rules of a BNF grammar, C is its start symbol.
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2.2 SEMANTICS

A probabilistic interpretation over Σ is a tuple I := (∆I , ΩI , ·I , PI) consisting of a non-empty set ∆I of
objects, called the domain, a non-empty, countable setΩI ofworlds, a discrete probabilitymeasurePI on

ΩI , and an extension function ·I such that, for eachworldω ∈ ΩI , any concept name A ∈ ΣC ismapped

to a subset AI(ω) ⊆ ∆I and each role name r ∈ ΣR is mapped to a binary relation rI(ω) ⊆ ∆I ×∆I .
Note that PI : ℘(ΩI) → [0, 1] is a mapping which satisfies PI(∅) = 0 and PI(ΩI) = 1, and is
σ-additive, that is, for all countable families (Un | n ∈N ) of pairwise disjoint setsUn ⊆ ΩI it holds true
thatPI(

⋃{Un | n ∈N}) = ∑(PI(Un) | n ∈N ). In particular, we follow the assumption in [5, Sec-

tion 2.6] and consider only probabilistic interpretationswithout any infinitely improbableworlds, i.e., with-

out any worlds ω ∈ ΩI such thatPI{ω} = 0. We call a probabilistic interpretation finitely representable
if ∆I is finite, ΩI is finite, the active signature ΣI := { σ | σ ∈ Σ and σI(ω) 6= ∅ for some ω ∈ ΩI }
is finite, and ifPI has only rational values. In the sequel of this document we will also utilize the notion

of interpretations, which are the models upon which the semantics of EL⊥ is built; these are, basically,
probabilistic interpretations with only one world, that is, these are tuples I := (∆I , ·I) where ∆I is a
non-empty set of objects, called domain, and where ·I is an extension function that maps concept names
A ∈ ΣC to subsets AI ⊆ ∆I andmaps role names r ∈ ΣR to binary relations rI ⊆ ∆I ×∆I .
Fix some probabilistic interpretation I. The extension CI(ω)

of a P>
1 EL⊥ concept description C in

a world ω of I is defined by means of the following recursive formulae.

⊥I(ω) := ∅

>I(ω) := ∆I

(CuD)I(ω) := CI(ω) ∩DI(ω)

(

E

r. C)I(ω) := { δ | δ ∈ ∆I , (δ, ε) ∈ rI(ω), and ε ∈ CI(ω)
for some ε ∈ ∆I }

(

P

m p. C)I(ω) := { δ | δ ∈ ∆I andPI{δ ∈ CI} m p }

Please note that we use the abbreviation {δ ∈ CI} := {ω | ω ∈ ΩI and δ ∈ CI(ω) }. All but the last
formula can be used similarily to recursively define the extension CI of an EL⊥ concept description
C in an interpretation I.
A toy example of a probabilistic interpretation is the following ICat. As one quickly verifies, only the

object SchrödingersCat belongs to the extension of the concept description from Equation (2.1).

ICat(ω1) :

PICat{ω1} := 1
2

SchrödingersCat

Cat

pcS
Alive

NeighborsCat

Cat

pcN
Alive

hasPhysicalCondition

hasPhysicalCondition

likes likes

2 The Probabilistic Description Logic P>
1 EL⊥ 6



ICat(ω2) :

PICat{ω2} := 1
2

SchrödingersCat

Cat

pcS
Dead

NeighborsCat

Cat

pcN
Alive

hasPhysicalCondition

hasPhysicalCondition

likes likes

A concept inclusionC v D or a concept equivalenceC ≡ D is valid in a probabilistic interpretation I if
CI(ω) ⊆ DI(ω)

orCI(ω) = DI(ω)
, respectively, is satisfied for all worldsω ∈ ΩI , andwe shall thenwrite

I |= C v D or I |= C ≡ D, respectively. A wildcard CI

P

m1 p1.∗ v P

m2 p2.∗ is valid in I, written
I |= P

m1 p1.∗ v P

m2 p2.∗, if, for each EL⊥ concept description C, the CI

P

m1 p1. C v P

m2 p2. C
is valid in I. Furthermore, I is amodel of a TBox T , denoted as I |= T , if each concept inclusion in
T is valid in I. A TBox T entails a concept inclusion C v D, symbolized by T |= C v D, if C v D is
valid in every model of T . In the sequel of this document, we may also use the denotation C ≤Y D
instead of Y |= C ≤ D where Y is either an interpretation or a terminological box and≤ is a suitable
relation symbol, e.g., one ofv,≡,w, and wemay analogously write C 6≤Y D for Y 6|= C ≤ D.

2.3 COMPLEXITY

Reasoning in P>
1 EL⊥, more specifically deciding subsumption with respect to a TBox, is ExpTime-

complete, and, consequently, more expensive than reasoning in its non-probabilistic sibling EL⊥, for
which the similar decision problem is well-known to beP-complete, that is, reasoning in EL⊥ is tractable.

Propositio 1 In P>
1 EL⊥, the problem of deciding whether a terminological box entails a concept

inclusion is ExpTime-complete.

Approbatio Containment in ExpTime follows from [5, Theorem 3] and the fact that P>
1 EL⊥ is a

sublogic of Prob-ALC. ExpTime-hardness is a consequence of [5, Theorem 13 and Sections A.1, A.2,

and A.3], where ExpTime-hardness of the logics Prob-EL∼p
using non-nested probability restrictions

for∼ ∈ {≥,>}, that is, of sublogics of P>
1 EL⊥, is demonstrated.

2.4 CONCEPT INCLUSION BASES IN EL⊥

In the next section, we will use techniques for axiomatizing concept inclusions in EL⊥ as developed
by Baader and Distel in [1, 4] for greatest fixed-point semantics, and as adjusted by Borchmann, Distel,

and the author in [3] for the role-depth-bounded case. A brief introduction is as follows. A concept
inclusion base for an interpretation I is a TBox T such that, for each concept inclusion C v D, it holds
true that I |= C v D if, and only if, T |= C v D. For each finite interpretation I with finite active
signature, there is a canonical base Can(I) with respect to greatest fixed-point semantics, which has
minimal cardinality among all concept inclusion bases for I, cf. [4, Corollary 5.13 and Theorem 5.18],
and similarily there is a minimal canonical base Can(I, d) with respect to an upper bound d ∈N on

the role depths, cf. [3, Theorem 4.32]. The construction of both canonical bases is built upon the notion

of amodel-based most specific concept description, which, for an interpretation I and a subset X ⊆ ∆I ,

2 The Probabilistic Description Logic P>
1 EL⊥ 7



is a concept description C such that X ⊆ CI and, for each concept description D, it holds true that
X ⊆ DI implies ∅ |= C v D. These exist either if greatest fixed-point semantics is applied (in order
to be able to express cycles present in I) or if the role depth of C is bounded by some d ∈ N, and

these are then denoted as XI or XId , respectively. This mapping ·I : ℘(∆I)→ EL⊥(Σ) is the adjoint
of the extension function ·I : EL⊥(Σ)→ ℘(∆I), and the pair of both constitutes a Galois connection,
cf. [4, Lemma 4.1] and [3, Lemmas 4.3 and 4.4], respectively.

As a variant of these two approaches, the author presented in [9] a method for constructing canonical

bases relative to an existing terminological box. If I is an interpretation and B is a terminological box
such that I |= B, then a concept inclusion base for I relative to B is a terminological box T such that,
for each concept inclusion C v D, it holds true that I |= C v D if, and only if, T ∪B |= C v D. The
appropriate canonical base is denoted by Can(I,B), cf. [9, Theorem 1].

2 The Probabilistic Description Logic P>
1 EL⊥ 8



3 AXIOMATIZATION
OF CONCEPT INCLUSIONS INP>

1EL⊥

In this section, we shall develop an effective method for axiomatizing P>
1 EL⊥ concept inclusions which

are valid in a given finitely representable probabilistic interpretation. After defining the appropriate

notion of a concept inclusion base, we show how this problem can be tackled using the aforementioned
existing results on computing concept inclusion bases in EL⊥. More specifically, we devise an extension
of the given signature by finitely many probability restrictions

P

m p. C that are treated as additional
concept names, and we define a so-called probabilistic scaling I P

of the input probabilistic interpretation

I which is a (single-world) interpretation that suitably interprets these new concept names and,
furthermore, such that there is a correspondence between CIs valid in I and CIs valid in I P

. This

correspondencemakes it possible to utilize the abovementioned techniques for axiomatizing CIs in EL⊥.

Definitio 2 A concept inclusion base for a probabilistic interpretation I is a terminological box T which
is sound for I, that is, T |= C v D implies I |= C v D for each concept inclusion C v D,1 and which
is complete for I, that is, I |= C v D only if T |= C v D for any concept inclusion C v D.

3.1 THE ALMOST CERTAIN SCALING

A first important step is to significantly reduce the possibilities of concept descriptions occuring as a

filler in the probability restrictions, that is, of fillers C in expressions

P

m p. C. As it turns out, it suffices
to consider only those fillers that are model-based most specific concept descriptions of some suitable

scaling of the given probabilistic interpretation I.
Definitio 3 Let I be a probabilistic interpretation I over some signature Σ. Then, its almost certain
scaling is defined as the interpretation I× over Σ with the following components.

∆I× := ∆I ×ΩI

·I× :

{
A 7→ { (δ, ω) | δ ∈ AI(ω) } for each A ∈ ΣC

r 7→ { ((δ, ω), (ε, ω)) | (δ, ε) ∈ rI(ω) } for each r ∈ ΣR

1
Of course, soundness is equivalent to I |= T .

9



Lemma 4 Consider a probabilistic interpretation I and a concept description P

m p. C. Then, the
concept equivalence

P

m p. C ≡ P

m p. CI×I× is valid in I.

Approbatio Using structural induction on C, it can be proven that CI(ω)×{ω} = CI× ∩ (∆I ×{ω})
is satisfied for each world ω ∈ ΩI , cf. [10, Lemma 16]. It follows that CI(ω) = π1(CI× ∩ (∆I ×{ω}))
(where π1 projects pairs to their first components). By applying well-known properties of Galois con-

nections we obtain that CI(ω) = CI×I×I(ω)
, and soPI{δ ∈ CI} = PI{δ ∈ CI×I×I} holds true.

3.2 FINITELYMANY PROBABILITY BOUNDS

As next step, we restrict the probability bounds p occuring in probability restrictions

P

m p. C. Apparently,
it is sufficient to consider only those values p that can occur when evaluating the extension of P>

1 EL⊥

concept descriptions in I, which, obviously, are the values PI{δ ∈ CI} for any δ ∈ ∆I and any
C ∈ EL⊥(Σ). Denote the set of all these probability values as P(I). Of course, we have that
{0, 1} ⊆ P(I). If I is finitely representable, then P(I) is finite too, it holds true that P(I) ⊆ Q, and the

following equation is satisfied, which can be demonstrated using arguments from the proof of Lemma 4.

P(I) = {PI{δ ∈ XI×I} | δ ∈ ∆I and X ⊆ ∆I ×ΩI }

For each p ∈ [0, 1), we define (p)+I as the next value in P(I) above p, that is, we set

(p)+I :=
∧
{ q | q ∈ P(I) and q > p }.

If the considered probabilistic interpretation I is clear from the context, then we may also write p+

instead of (p)+I . To prevent a loss of information due to only considering probabilities in P(I), we shall
use the wildcard concept inclusions

P

> p.∗ v P≥ p+.∗ for p ∈ P(I) \ {1}.

3.3 THE PROBABILISTIC SCALING

Having found a finite number of representatives for probability bounds as well as a finite number of

fillers to be used in probability restrictions, we now show that we can treat these finitely many concept

descriptions as concept names of a signature Γ extending Σ in a way such that a concept inclusion
is valid in I if, and only if, the concept inclusion projected onto this extended signature Γ is valid in
a suitable scaling of I that interprets Γ.

Definitio 5 Assume that I is a probabilistic interpretation over a signature Σ. Then, the signature
Γ is defined as follows.

ΓC := ΣC ∪ {

P≥ p. XI× | p ∈ P(I) \ {0}, X ⊆ ∆I ×ΩI , and⊥ 6≡∅ XI× 6≡∅ >}
ΓR := ΣR

The probabilistic scaling of I is defined as the interpretation I P

over Γ that has the following components.

∆I

P

:= ∆I ×ΩI

·I P

:

{
A 7→ { (δ, ω) | δ ∈ AI(ω) } for each A ∈ ΓC

r 7→ { ((δ, ω), (ε, ω)) | (δ, ε) ∈ rI(ω) } for each r ∈ ΓR

3 Axiomatization of Concept Inclusions in P>
1 EL⊥ 10



Note that I P

extends I× by also interpreting the new concept names in ΓC \ΣC, that is, the restriction

I P�Σ equals I×.

Definitio 6 The projectionπI(C) of aP>
1 EL⊥ concept descriptionCwith respect to some probabilistic

interpretation I is obtained from C by replacing each subconcept of the form

P

m p. D with suitable
elements from ΓC \ΣC, and, more specifically, we recursively define it as follows.

πI(A) := A if A ∈ ΣC ∪ {⊥,>}
πI(CuD) := πI(C)uπI(D)

πI(

E

r. C) :=

E

r. πI(C)

πI(

P

m p. C) :=



⊥ ifm p = > 1

> otherwise ifm p = ≥ 0

⊥ otherwise if CI×I× ≡∅ ⊥

> otherwise if CI×I× ≡∅ >

P≥ p. CI×I× otherwise ifm = ≥ and p ∈ P(I)

P≥ p+. CI×I× otherwise

Lemma 7 A P>
1 EL⊥ concept inclusion C v D is valid in some probabilistic interpretation I if, and

only if, the projected CI πI(C) v πI(D) is valid in I P

.

Approbatio We start with showing that C v D is valid in I if, and only if, πI(C) v πI(D) is valid

in I. We do this by proving that C and the projection πI(C) have the same extension in any world of
I, and analogously for D. In particular, we proceed with structural induction on C, and according to the
definition of a projection, the only non-trivial case considers probabilistic restrictions occuring in C. For
that purpose, we denote by π′I(

P

m p. E) the concept description that is obtained from the projection
πI(

P

m p. E) by replacing EI×I× with E. It is readily verified that then

P

m p. E and π′I(

P

m p. E) have
the same extension in each world of I. An application of Lemma 4 now yields that, in every world of
I, also the extensions of π′I(

P

m p. E) and πI(

P

m p. E) are the same.
Eventually, the equivalence of I |= πI(C) v πI(D) and I P|= πI(C) v πI(D) then follows from

the very definition of the probabilistic scaling I P

and the fact that the projections πI(C) and πI(D)

can be interpreted as EL⊥ concept descriptions over Γ.

Lemma 8 Assume that T is aP>
1 EL⊥ terminological box and that C v D is an EL⊥ concept inclusion.

Then, T |= C v D implies T |= P

m p. C v P

m p. D for anym ∈ {≥,>} and any p ∈ [0, 1]∩Q.

Approbatio Fix somemodel I of T and letPI{δ ∈ CI} m p for an object δ ∈ ∆I . From T |= C v D
we infer that, for each world ω ∈ ΩI , it holds true that δ ∈ CI(ω)

implies δ ∈ DI(ω)
. Consequently,

we have that {δ ∈ CI} ⊆ {δ ∈ DI} and, thus, PI{δ ∈ DI} m p due to the monotonicity of the
probability measurePI .

3.4 A CONCEPT INCLUSION BASE

As final step, we show that each concept inclusion base of the probabilistic scaling I P

induces a

concept inclusion base of I. While soundness is easily verified, completeness follows from the fact
that C vT πI(C) vT πI(D) v∅ D holds true for every valid CI C v D of I.

3 Axiomatization of Concept Inclusions in P>
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Theorema 9 Fix some finitely representable probabilistic interpretation I. If T P

is a concept inclusion

base for the probabilistic scaling I P

(with respect to the set B of all tautological P>
1 EL⊥ concept inclu-

sions used as background knowledge), then the following terminological box T is a concept inclusion
base for I.

T := T P∪ { P

> p.∗ v P≥ p+.∗ | p ∈ P(I) \ {1} }

Approbatio Soundness is apparently satisfied. We proceed with showing completeness; thus, fix

some P>
1 EL⊥ concept inclusion C v D which is valid in I. We shall demonstrate the validity of the

following subsumptions.

C vT πI(C) vT πI(D) v∅ D

Lemma 7 immediately yields that πI(C) v πI(D) is valid in the probabilistic scaling I P

. Since T P

is complete for I P

relative to B, it follows that T P∪ B entails πI(C) v πI(D) with respect to non-

probabilistic entailment, and, thus, T entails πI(C) v πI(D) with respect to probabilistic entailment.

We use the operator π′I from the proof of Lemma 7 again. Using structural induction on D, it is
apparent that π′I(D) v∅ D holds true. Since the probability restriction constructor (more specifically,
the mapping E 7→ P

m p. E) is monotone and EI×I× v∅ E holds true for each E ∈ EL⊥(Σ), we further
obtain that πI(

P

m p. E) v∅ π′I(

P

m p. E), and then structural induction yields πI(D) v∅ π′I(D).

It remains to show that C vT πI(C). For each concept description E ∈ EL⊥(Σ), the CI E v EI×I×

is trivially valid in I×, and since the restriction I P�Σ equals I×, we conclude that I P|= E v EI×I× .
Completeness of T P

for I P

relative to B together with the fact that E does not contain any probability
restrictions (i.e., subconcepts of the form

P

m q. F) yields that T P|= E v EI×I× with respect to non-
probabilistic entailment, and so T entails E v EI×I× with respect to probabilistic entailment. According
to Lemma 8 then T entails P

m p. E v P

m p. EI×I× . It is readily verified that the set of wildcard CIs in T
entails

P

m p. EI×I× v π′I(

P

m p. EI×I×) and, furthermore, that π′I(

P

m p. EI×I×) ≡∅ πI(

P

m p. E).
Using the condensed result

P

m p. E vT πI(

P

m p. E) within a structural induction on C then shows
that C v πI(C) is entailed by T .

Note that, according to the proof of Theorema 9, we can expand the above TBox T to a finite TBox that
does not contain wildcard CIs and is still a CI base for I by replacing eachwildcard CI P

> p.∗ v P≥ q.∗
with the CIs

P

> p. XI× v P≥ q. XI× where X ⊆ ∆I ×ΩI such that ⊥ 6≡∅ XI× 6≡∅ >. The same
hint applies to the following canonical base.

Corollarium 10 Let I be a finitely representable probabilistic interpretation, and let B denote the
set of all EL⊥ concept inclusions over Γ that are tautological with respect to probabilistic entailment,
i.e., are valid in every probabilistic interpretation. Then, the canonical base for I that is defined as

Can(I) := Can(I P,B)∪ { P

> p.∗ v P≥ p+.∗ | p ∈ P(I) \ {1} }

is a concept inclusion base for I, and it can be computed effectively.
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