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Computing Compliant Anonymisations of
Quantified ABoxes w.r.t. EL Policies

(Extended Version)∗

Franz Baader, Francesco Kriegel,
Adrian Nuradiansyah, Rafael Peñaloza

Abstract

We adapt existing approaches for privacy-preserving publishing of linked
data to a setting where the data are given as Description Logic (DL) ABoxes
with possibly anonymised (formally: existentially quantified) individuals
and the privacy policies are expressed using sets of concepts of the DL EL.
We provide a chacterization of compliance of such ABoxes w.r.t. EL policies,
and show how optimal compliant anonymisations of ABoxes that are non-
compliant can be computed. This work extends previous work on privacy-
preserving ontology publishing, in which a very restricted form of ABoxes,
called instance stores, had been considered, but restricts the attention to
compliance. The approach developed here can easily be adapted to the
problem of computing optimal repairs of quantified ABoxes.

1 Introduction

Before publishing data concerned with persons, one may want to or be legally
required to hide certain private information [14]. For example, a shady politician
may not want the public to know that he is not only a politician, but also a busi-
nessman, and that he is additionally related to someone who is both a politician
and a businessman. Before they publish data about their boss, his aids thus need
to remove or modify certain information, but being honest themselves, they want
to keep the changes minimal, and they do not want to invent incorrect informa-
tion. This poses the question of how to change a given data set in a minimal
way such that all the information to be published follows from the original one,
but certain privacy constraints are satisfied. Basically the same question is asked
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1 INTRODUCTION 2

in ontology repair [4], with the difference that the information to be removed is
deemed to be erroneous rather than private.

A survey on privacy-preserving data publishing in general is given in [14]. In the
context of ontologies, two different approaches for preserving privacy constraints
have been investigated. In the controlled query evaluation framework, the source
data are left unchanged, but an additional layer, called censor, is introduced,
which decides whether and how queries are answered [15, 8, 10]. In contrast,
anonymisation approaches modify the source data in a minimal way such that
secrets that should be preserved can no longer be derived [11, 13, 12, 3]. We
use the approach for privacy-preserving publishing of linked data introduced in
[11, 12] as a starting point, where the information to be published is a relational
dataset, possibly with (labelled) null values, and the privacy constraints (called
policy) are formulated as conjunctive queries. A dataset is compliant with such
a policy if the queries have no answers. In our example, the dataset consists of

{Politician(d),Businessman(d), related(d, g),Politician(g),Businessman(g)},

and the policy of the two conjunctive queries Politician(x) ∧ Businessman(x)
and ∃y.related(x, y) ∧ Politician(y) ∧ Businessman(y). Since the first query has
d and g, and the second has d as answers, the dataset does not comply with
this policy. The only anonymisation operation provided in [11, 12] for making
the given dataset compliant is to replace constants (naming known individuals,
like d and g) or null values by new null values. In our example, we can achieve
compliance by renaming one occurrence of d and one occurrence of g:

{Politician(d),Businessman(n1), related(d, g),Politician(n2),Businessman(g)}.

Basically, this has the effect of removing Businessman(d) and Politician(g) from
the dataset. While this is one of the optimal anonymisations (w.r.t. minimal loss
of information) that can be obtained with the anonymisation operation allowed in
[11, 12], it is not optimal without this restriction. In fact, if we add related(d, n2)
to this anonymisation, then the resulting dataset is still compliant, and it retains
the information that d is related to some politician. The main difference of our
approach to the one in [11, 12] is that there only certain operations are available
for anonymising ABoxes, whereas we consider all possible ABoxes that are implied
by the given one. Optimality in [11, 12] looks only at the range of ABoxes that
can be obtained using the anonymisation operations defined there. Thus, optimal
anonymisations obtained by the approach in [11, 12] may not be optimal in our
sense, as illustrated by the example above.

The aim of this paper is to determine a setting where optimal compliant anonymi-
sations exist and can effectively be computed. To this purpose, we restrict the
datasets with labelled null values of [11, 12] to unary and binary relations, as
usually done in DL ABoxes. In order to express the labelled null values, we
consider an extension of ABoxes, called quantified ABoxes, in which some of
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the object names occurring in the ABox are existentially quantified. The main
restriction is, however, that policies are expressed as concepts of the DL EL,
which can be seen as restricted form of conjunctive queries. The policy in our
example can be expressed by the EL concepts Politician u Businessman and
∃related .(Politician u Businessman).

In this setting, we characterise compliance of quantified ABoxes, and use this char-
acterisation to show how to compute the set of all optimal compliant anonymi-
sations of a non-compliant quantified ABox by a deterministic algorithm with
access to an NP oracle that runs in exponential time. We also show that a cer-
tain (non-empty) subset of this set can be computed in deterministic exponential
time without oracle. If we are only interested in answers to instance queries
(i.e., which instance relationships follow from the given ABox), we can replace
classical logical entailment by IQ-entailment when defining the notion of an op-
timal compliant anonymisation. In this case, the full set of all optimal compliant
anonymisations can be computed in deterministic exponential time, and the sizes
of the anonymisations can be reduced as well.

These results improve on the ones in [3], where a severely restricted form of
ABoxes, called instance stores, was investigated. The ABox in our example is not
an instance store, due to the role assertion between the individuals d and g. Note
that, even in this restricted case, the set of optimal compliant anonymisations
may be exponentially large, which demonstrates that the exponential complexity
of our algorithms cannot be avoided.

In [11, 12] and [3], safety is introduced as a strengthening of compliance. Basi-
cally, safety means that the hidden facts should not be derivable even if additional
compliant information is added. The compliant anonymisation in the above ex-
ample is not safe since adding Businessman(d) would make it non-compliant.
Due to the space restrictions, we cannot present results for safety here, though
the methods developed in this paper can be extended to deal also with safety [5].

2 Formal Preliminaries

In this section, we first introduce the logical formalisms considered in this paper,
and then recall some definitions and known results for them.

From a logical point of view, we consider only formulas in the so-called primitive
positive (pp) fragment of first-order logic (FO) [19], which consists of existentially
quantified conjunctions of atomic relational formulas. Atomic relational formulas
are of the form R(x1, . . . , xn), where R is an n-ary relation symbol and the xi are
variables. Not all variables occurring in the conjunction need to be existentially
quantified, i.e., a pp formula may contain both quantified and free variables. We
say that the pp formula ∃~x.ϕ1(~x, ~z1) entails ∃~y.ϕ2(~y, ~z2) if the following is a valid
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FO formula: ∀~z1.∀~z2.(∃~x.ϕ1(~x, ~z1)→ ∃~y.ϕ2(~y, ~z2)).

From a database point of view, pp formulas are conjunctive queries (CQs), where
the free variables are usually called answer variables [1]. Entailment of pp formu-
las corresponds to CQ containment, which is a well-known NP-complete problem
[9].1 The relational datasets with labelled null values (which generalize RDF
graphs) considered in [11, 12] can also be viewed as pp formulas, where the quan-
tified variables are the labelled null values.

Following the tradition in DL, we consider a signature that contains only unary
and binary relation symbols, respectively called concept names and role names.
Basically, a quantified ABox is just a pp formula over such a signature, but defined
in line with the notation usually employed in the DL community.

Definition 1. Let Σ be a signature, given by pairwise disjoint, countably infi-
nite sets ΣO, ΣC, and ΣR of object-, concept-, and role names, respectively. A
quantified ABox ∃X.A consists of

• the quantifier prefix ∃X. , where X is a finite subset of ΣO whose elements
are called variables, and

• the matrix A, which is a set of assertions of the form A(u) ( concept asser-
tions) and r(u, v) ( role assertions), for A ∈ ΣC, r ∈ ΣR, and u, v ∈ ΣO.

We denote the set of elements of ΣO \X occurring in A as ΣI(∃X.A), and call
them individual names.

An interpretation I = (∆I , ·I) of Σ consists of a non-empty set ∆I, called the
domain, and an interpretation function mapping each object name u ∈ ΣO to an
element uI ∈ ∆I, each concept name A ∈ ΣC to a subset AI ⊆ ∆I, and each
role name r ∈ ΣR to a binary relation rI over ∆I. It is a model of the quantified
ABox ∃X.A if there is an interpretation J = (∆I , ·J ) such that

• ·J coincides with ·I on ΣC, ΣR, and ΣO \X, and

• uJ ∈ AJ for all A(u) ∈ A and (uJ , vJ ) ∈ rJ for all r(u, v) ∈ A.

Given two quantified ABoxes ∃X.A and ∃Y.B, we say that ∃X.A entails ∃Y.B
(written ∃X.A |= ∃Y.B) if every model of ∃X.A is a model of ∃Y.B. Two
quantified ABoxes are equivalent if they entail each other.

Any quantified ABox ∃X.A can be expressed by a pp formula, which existen-
tially quantifies (in arbitrary order) over the variables in X and conjoins all the
assertions from A. The individual names in ΣI(∃X.A) are the free variables of
this pp formula and the variables in X are the quantified variables. Entailment of
quantified ABoxes corresponds to entailment of the corresponding pp formulas,
and thus to containment of conjunctive queries. Consequently, the entailment

1NP-hardness holds even if only unary and binary relation symbols are available.
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problem for quantified ABoxes is NP-complete. It is well known [9, 1] that con-
tainment of conjunctive queries can be characterised using homomorphisms. This
characterisation can be adapted to quantified ABoxes as follows.

Henceforth, when considering two quantified ABoxes, say ∃X.A and ∃Y.B, we
assume without loss of generality that they are renamed apart in the sense that
X is disjoint with Y ∪ ΣI(∃Y.B) and Y is disjoint with X ∪ ΣI(∃X.A). This
also allows us to assume that the two ABoxes are built over the same set of
individuals ΣI := ΣI(∃X.A)∪ΣI(∃Y.B). A homomorphism from ∃X.A to ∃Y.B
is a mapping h : ΣI ∪X → ΣI ∪ Y that satisfies the following conditions:

1. h(a) = a for each individual name a ∈ ΣI;

2. A(h(u)) ∈ B if A(u) ∈ A and r(h(u), h(v)) ∈ B if r(u, v) ∈ A.

Proposition 2. Let ∃X.A,∃Y.B be quantified ABoxes that are renamed apart.
Then, ∃X.A |= ∃Y.B iff there exists a homomorphism from ∃Y.B to ∃X.A.

Traditional DL ABoxes are not quantified. Thus, an ABox is a quantified ABox
where the quantifier prefix is empty. Instead of ∃∅.A we simply write A. The
matrix A of a quantified ABox ∃X.A is such a traditional ABox. Note, however,
that one can draw fewer consequences from ∃X.A than from its matrix A.

Example 3. Consider the ABox A := {r(a, x), A(x)}, which entails A(x) (where
we view A(x) as a singleton ABox). In contrast, the quantified ABox ∃{x}.A
does not entail A(x) since, due to the existential quantification, the x in ∃{x}.A
stands for an arbitrary object instead of a specific one with name x. This shows
that the quantification allows us to hide information about certain individuals.
We can, however, still derive from ∃{x}.A that a (which is not quantified) is
related with some individual that belongs to A.

Such properties of individuals can be expressed using concept descriptions of the
DL EL.

Definition 4. Given two pairwise disjoint, countably infinite sets ΣC and ΣR

of concept and role names, we define EL atoms and EL concept descriptions by
simultaneous induction as follows.

• An EL atom is either a concept name A ∈ ΣC or an existential restriction
∃r.C, where r ∈ ΣR and C is an EL concept description.

• An EL concept description is a conjunction
d
C, where C is a finite set of

EL atoms.

Given an interpretation I = (∆I , ·I) of a signature Σ containing ΣC and ΣR (see
Definition 1), we extend the interpretation function ·I to EL atoms and concept
descriptions as follows:

• (∃r.C)I := { δ | there exists some γ such that (δ, γ) ∈ rI and γ ∈ CI },
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• (
d
C)I :=

⋂
C∈C C

I, where the intersection over the empty set C = ∅ is ∆I.

Given EL concept descriptions C,D and a quantified ABox ∃X.A, we say that

• C is subsumed by D (written C v∅ D) if CI ⊆ DI holds for all inter-
pretations I, and C is equivalent to D (written C ≡∅ D) if C v∅ D and
D v∅ C. We write C @∅ D to express that C v∅ D, but C 6≡∅ D.

• the object u ∈ ΣO is an instance of C w.r.t. ∃X.A (written ∃X.A |= C(u))
if uI ∈ CI holds for all models I of ∃X.A.

To make the syntax introduced above more akin to the one usually employed
for EL, we denote the empty conjunction

d
∅ as > (top concept), singleton con-

junctions
d
{C} as C, and conjunctions

d
C for |C| ≥ 2 as C1 u . . . u Cn, where

C1, . . . , Cn is an enumeration of the elements of C in an arbitrary order. Given
an EL concept description C =

d
C, we sometimes denote the set of atoms C

as Conj(C). The set Sub(C) of subconcepts of an EL concept description C is
defined in the usual way, i.e., Sub(A) := {A}, Sub(∃r.C) := {∃r.C} ∪ Sub(C),
and Sub(

d
C) := {

d
C} ∪

⋃
D∈C Sub(D). We denote the set of atoms occurring in

Sub(C) with Atoms(C). The subscript ∅ in v∅ indicates that no terminological
axioms are available, i.e., we consider subsumption w.r.t. the empty TBox.

It is well-known that EL concept descriptions C can be translated into se-
mantically equivalent pp formulas φC(x) with one free variable x. For ex-
ample, the EL concept description C :=

d
{A, ∃r.

d
{B, ∃r.

d
{A,B}}}, which

we can also write as A u ∃r.(B u ∃r.(A uB)), translates into the pp formula
φC(x) = ∃y.∃z.(A(x) ∧ r(x, y) ∧B(y) ∧ r(y, z) ∧A(z) ∧B(z)). The subsumption
and the instance problems thus reduce to entailment of pp formulas:

C v∅ D iff φC(x) entails φD(x) and ∃X.A |= C(u) iff ∃X.A entails φC(u).

Thus, the homomorphism characterisation of entailment applies to subsumptions
and instances as well. However, since the pp formulas obtained from EL concept
descriptions are tree-shaped, the existence of a homomorphism can be checked
in polynomial time. Thus, the subsumption and the instance problem are in P
[6, 18]. The fact that EL concept descriptions can be translated into pp formulas
(and thus quantified ABoxes) also shows that quantified ABoxes can express EL
ABoxes with concept assertions of the form C(u) for complex EL concepts C.

The homomorphism characterisation of subsumption also yields the following
recursive characterisation of subsumption [7].

Lemma 5. Let C,D be EL concept descriptions. Then C v∅ D holds iff the
following two statements are satisfied:

1. A ∈ Conj(D) implies A ∈ Conj(C) for each concept name A;

2. for each existential restriction ∃r.F ∈ Conj(D), there is an existential re-
striction ∃r.E ∈ Conj(C) such that E v∅ F .
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An analogous characterisation can be given for the instance problem w.r.t. (un-
quantified) ABoxes.

Lemma 6. Let A be an ABox, D an EL concept description, and u ∈ ΣO. Then
A |= D(u) holds iff the following two statements are satisfied:

1. for each concept name A ∈ Conj(D), the ABox A contains A(u),

2. for each existential restriction ∃r.E ∈ Conj(D), the ABox A contains a role
assertion r(u, v) such that A |= E(v).

Regarding the effect that the existential quantification in quantified ABoxes has
on the instance problem, we generalise the observations made in Example 3.

Lemma 7. If ∃X.A be a quantified ABox, C an EL concept description, x ∈ X,
and a ∈ ΣI(∃X.A), then ∃X.A |= C(a) iff A |= C(a), and ∃X.A |= C(x) iff
C = >.

Note that, according to our definition of the syntax of EL, the only EL concept
description equivalent to > =

d
∅ is > itself. We also need the reduced form Cr

of an EL concept description C [17], which is defined inductively as follows.

• For atoms, we set Ar := A for A ∈ ΣC and (∃r.C)r := ∃r.Cr.

• To obtain the reduced form of
d
C, we first reduce the elements of C, i.e.,

construct the set Cr := {Cr | C ∈ C }. Then we build Min(Cr) by removing
all elements D that are not subsumption minimal, i.e., for which there is
an E in the set such that E @∅ D. We then set (

d
C)r :=

d
Min(Cr).

Adapting the results in [17], one can show that C ≡∅ C
r and that C ≡∅ D implies

Cr = Dr. In particular, this implies that, on reduced EL concept descriptions,
subsumption is a partial order and not just a pre-order.

3 Compliant Anonymisations w.r.t. Classical En-
tailment

A policy is a finite set of EL concept descriptions. Intuitively, a policy says that
one should not be able to derive that any of the individuals of a quantified ABox
belongs to a policy concept.

Definition 8. Let ∃X.A,∃Y.B be quantified ABoxes and P a policy. Then

1. ∃X.A is compliant with P at object u ∈ ΣO if A 6|= P (u) for each P ∈ P;
2. ∃X.A is compliant with P if it is compliant with P at each element of

ΣI = ΣI(∃X.A);
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3. ∃Y.B is a P-compliant anonymisation of ∃X.A if ∃X.A |= ∃Y.B and
∃Y.B is compliant with P;

4. ∃Y.B is an optimal P-compliant anonymisation of ∃X.A if it is a P-com-
pliant anonymisation of ∃X.A, and ∃X.A |= ∃Z.C |= ∃Y.B implies
∃Y.B |= ∃Z.C for every P-compliant anonymisation ∃Z.C of ∃X.A.

We require that an anonymisation of a quantified ABox is entailed by it, and
also compare different anonymisations using entailment. Later on, we will look
at a setting where a weaker notion than classical entailment is employed. In the
following we assume without loss of generality that all concepts in a given policy
are reduced and incomparable w.r.t. subsumption. In fact, given a policy P , we
can first reduce the elements of P , i.e., construct the set Pr := {P r | P ∈ P}, and
then build Max(Pr) by removing all elements that are not subsumption maximal.
Any quantified ABox is compliant with P iff it is compliant with Max(Pr). We
call such a policy reduced.

Since the instance problem in EL is in P, compliance can obviously be tested in
polynomial time. However, our main purpose is not to test for compliance of a
given quantified ABox, but to compute compliant anonymisations of it in case
it is not compliant. For this purpose, we need an appropriate characterisation
of compliance. The following lemma is an easy consequence of Lemma 6. Its
formulation uses the notion of a hitting set. Given a set of sets {P1, . . . ,Pn}, a
hitting set of this set is a set H such that H ∩ Pi 6= ∅ for i ∈ {1, . . . , n}.
Lemma 9. The quantified ABox ∃X.A is compliant with the policy P at u ∈ ΣO

iff there is a hitting set H of {Conj(P ) | P ∈ P } such that

• ∃X.A is compliant with H∩ΣC at u, i.e., A 6∈ H for each concept assertion
A(u) in A, and

• ∃X.A is compliant with { Q | ∃r.Q ∈ H } at v for each role assertion
r(u, v) in A.

Computing compliant anonymisations

We assume that ΣI(∃X.A) 6= ∅ since otherwise ∃X.A is trivially compliant, and
additionally that the policy P does not contain > since otherwise no compliant
anonymisation exists.

If a quantified ABox is not compliant with P , then the characterisation of com-
pliance in Lemma 9 tells us that, for some of the individuals a ∈ ΣI, the required
hitting sets do not exist. To overcome this problem, one needs to remove some
of the (implied) instance relationships for these individuals. Compliance seed
functions tell us which ones to remove.

Definition 10. A compliance seed function (abbrv. csf) on ∃X.A for P is a
mapping s : ΣI → ℘(Atoms(P)) such that the following holds for each a ∈ ΣI:
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1. the set s(a) contains only atoms C where A |= C(a),

2. for each P ∈ P with A |= P (a), the set s(a) contains an atom subsuming
P , i.e., there is some C ∈ s(a) such that P v∅ C, and

3. the set s(a) does not contain v∅-comparable atoms.

Assuming that > 6∈ P , a compliance seed function always exists because Conj(P )
is non-empty for every P ∈ P ; thus one can take as atom C an arbitrary element
of Conj(P ) to satisfy Property 2. Property 3 avoids redundancies in seed func-
tions, and thus reduces their overall number. If it does not hold for the set of
atoms chosen to satisfy Property 2, we can simply remove the atoms that are not
subsumption-maximal from this set.

We show that each compliance seed function induces a compliant anonymisation.
For concept names A ∈ s(a), we simply remove the concept assertion A(a) from
A. For atoms of the form ∃r.C ∈ s(a), we need to modify the role successors of
a such that ∃r.C(a) is no longer entailed. To avoid losing more information than
required, we will not just remove assertions from the objects in A, but also split
such objects into several objects by introducing new variables, as motivated by
the simple example in the introduction.

To be more precise, we will use the elements of the following set as variables.

Y :=

 yu,K

∣∣∣∣∣∣∣
u ∈ ΣI ∪X, K ⊆ {C ∈ Atoms(P) | A |= C(u) },
K does not contain v∅-comparable atoms, and
if u ∈ ΣI, then K 6= s(u)


For a ∈ ΣI, there is no variable ya,s(a) in Y . To simplify the following definition, we
will, however, use ya,s(a) as a synonym for the individual a, i.e., in this definition
the object names yu,K and yv,L range over the elements of Y and these synonyms
for individual names.

Definition 11. Consider a quantified ABox ∃X.A that is not compliant with the
policy P, a compliance seed function s on ∃X.A for P, and Y as defined above.
The canonical compliant anonymisation ca(∃X.A, s) of ∃X.A induced by s is
the quantified ABox ∃Y.B, where B consists of the following assertions:

1. A(yu,K) ∈ B if A(u) ∈ A and A 6∈ K;
2. r(yu,K, yv,L) ∈ B if r(u, v) ∈ A and, for each existential restriction ∃r.Q ∈
K with A |= Q(v), the set L contains an atom subsuming Q, i.e., there is
D ∈ L such that Q v∅ D.

We illustrate this definition by an abstract and slightly modified version of the
example from the introduction.

Example 12. The ABox

∃{x}.{A(a), B(a), A(x), B(x), r(a, x)}
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ya,∅

A,B

ya,{B}

A

ya,{A}

B

ya,{A,B}

ya,{∃r.(AuB)}

A,B

ya,{B,∃r.(AuB)}

A

ya,{A,∃r.(AuB)}

B

ya,{A,B,∃r.(AuB)}

yx,∅A,B yx,{B}A yx,{A} B yx,{A,B}

Figure 1: Canonical anonymisation induced by the seed function s in Example 12.

is not compliant with the policy P := {A u B, ∃r.(A uB)}. In fact, it entails
both (A u B)(a) and (∃r.(A uB))(a). There exist only two csfs s and t, where
s(a) = {A,∃r.(A uB)} and t(a) = {B, ∃r.(A uB)}. Fig. 1 shows the canonical
anonymisation induced by s. The gray node represents the individual a, and all
other nodes are variables introduced by the construction. Since there is only one
role name r, we did not label the edges connecting objects with it. The canonical
anonymisation induced by t differs from the one shown in Fig. 1 in that a then
corresponds to ya,{B,∃r.(AuB)}.

We want to show that ca(∃X.A, s) is a compliant anonymisation of ∃X.A. This
is an easy consequence of the following lemma.

Lemma 13. Let ca(∃X.A, s) = ∃Y.B be the canonical compliant anonymisation
of ∃X.A induced by the compliance seed function s, and consider an EL concept
description Q and an EL atom C. The following properties hold:

1. The mapping h : ΣI ∪ Y → ΣI ∪ X : yu,K 7→ u is a homomorphism from
ca(∃X.A, s) to ∃X.A.

2. If A 6|= Q(u), then B 6|= Q(yu,K) for all objects u ∈ ΣI∪X and yu,K ∈ ΣI∪Y .

3. If C ∈ K, then B 6|= C(yu,K) for all objects yu,K ∈ ΣI ∪ Y .

Proof. 1. It is easy to verify that the mapping h defined in the formulation of
the lemma is a homomorphism. In particular, since ya,s(a) is synonym for a, this
mapping maps every individual a ∈ ΣI to itself.

2. It is an easy consequence of the homomorphism characterization of the instance
problem that B |= C(yu,K) implies A |= C(h(yu,K)). Since h(yu,K) = u, the second
property stated in the lemma is the contrapositive of this fact.

3. The third property can be shown by induction on the role depth of C, using the
definition of ca(∃X.A, s) and Property 2. If C = A ∈ ΣC, then A ∈ K implies
A(yu,K) 6∈ B, and thus B 6|= A(yu,K). Now, assume that C = ∃r.Q and that
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r(yu,K, yv,L) ∈ B. We must show that B 6|= Q(yv,L). If A 6|= Q(v), then this is a
consequence of Property 2. If A |= Q(v), then the definition of ca(∃X.A, s) yields
an atom D ∈ L such that Q v∅ D. Since the homomorphism characterisation of
subsumption implies that the role depth of D is then bounded by the role depth
of Q, induction yields B 6|= D(yv,L), and thus B 6|= Q(yv,L).

Proposition 14. Let ∃X.A be a quantified ABox that does not comply with the
policy P, and s a compliance seed function on ∃X.A for P. Then ca(∃X.A, s)
is entailed by ∃X.A and complies with P.

Proof. Property 1 of Lemma 13 and Proposition 2 yield ∃X.A |= ca(∃X.A, s).
For compliance of ca(∃X.A, s) = ∃Y.B with P , let P ∈ P and a = ya,s(a) ∈ ΣI.
If A 6|= P (a), then Property 2 of Lemma 13 yields B 6|= P (a). Otherwise, there is
an atom C ∈ s(a) such that P v∅ C, by the definition of a csf. Then Property 3
of Lemma 13 yields B 6|= C(a), and thus B 6|= P (a).

This proposition shows that the set

CA(∃X.A,P) := { ca(∃X.A, s) | s is a csf on ∃X.A for P }

contains only compliant anonymisations of ∃X.A. This set actually covers all
compliant anonymisations of ∃X.A in the following sense.

Proposition 15. If ∃Z.C is a P-compliant anonymisation of ∃X.A, then there
exists a csf s such that ca(∃X.A, s) |= ∃Z.C.

Proof. Since ∃X.A |= ∃Z.C, Proposition 2 implies the existence of a homomor-
phism h from ∃Z.C to ∃X.A. We define the mapping f : ΣI∪Z → ℘(Atoms(P)):

f(u) := Maxv∅({C ∈ Atoms(P) | C 6|= C(u) and A |= C(h(u)) }).

We claim that the restriction s of f to ΣI is a csf. Assume that a ∈ ΣI and P ∈ P
with A |= P (a). Since ∃Z.C complies with P , there is an atom C ∈ Conj(P ) such
that C 6|= C(a). Thus, h(a) = a yields that either C ∈ f(a) or there is C ′ ∈ f(a)
with C v∅ C

′. In both cases, Property 2 of Definition 10 is satisfied. Since the
subsumption-maximal elements of a set of reduced atoms are incomparable w.r.t.
subsumption,2 Property 3 is satisfied as well.

Let ∃Y.B := ca(∃X.A, s). To show that ∃Y.B |= ∃Z.C, we prove that the
mapping k : ΣI ∪ Z → ΣI ∪ Y where k(u) := yh(u),f(u) is a homomorphism. If
A(u) ∈ C, then A(h(u)) ∈ A since h is a homomorphism, but A 6∈ f(u). Thus
A(yh(u),f(u)) ∈ B. If r(u, v) ∈ C, we must show that r(yh(u),f(u), yh(v),f(v)) ∈ B.
Assume that ∃r.Q ∈ f(u) and A |= Q(h(v)). The former yields C 6|= (∃r.Q)(u),
and thus C 6|= Q(v). Thus, there is an atom D ∈ Conj(Q) with A |= D(h(v)) and
C 6|= D(v). This implies that either D itself or an atom subsuming D belongs to
f(v). In both cases, we obtain r(yh(u),f(u), yh(v),f(v)) ∈ B.

2Recall that we assume that policies are reduced, which implies that the elements of
Atoms(P) are reduced, and thus subsumption is a partial order on them.
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The next theorem is a straightforward consequence of the last two propositions.

Theorem 16. The set CA(∃X.A,P) is a set of P-compliant anonymisations of
∃X.A that contains (up to equivalence) all optimal P-compliant anonymisations
of ∃X.A. It can be computed in (deterministic) exponential time. There is a
(deterministic) algorithm with access to an NP oracle that computes the set of all
optimal P-compliant anonymisations of ∃X.A and runs in exponential time.

Proof. There are exponentially many csfs, which can be computed in exponential
time. For each csf, the canonical anonymisation induced by it can also be com-
puted in exponential time. Assume now that ∃Z.C is an optimal P-compliant
anonymisation of ∃X.A. By Proposition 15, there exists a csf s such that
ca(∃X.A, s) |= ∃Z.C. Since ∃Z.C is optimal, ∃Z.C and ca(∃X.A, s) are equiv-
alent. The non-optimal elements of CA(∃X.A,P) can be removed from this set
by applying entailment tests. These tests can be realised using an NP oracle.

Note that this complexity result considers combined complexity, where the policy
P is assumed to be part of the input. For data complexity, where the policy is as-
sumed to be fixed, our approach shows that all optimal compliant anonymisations
can be computed in polynomial time with an NP oracle.

At the moment, it is not clear whether the set of optimal compliant anonymi-
sations of a quantified ABox can be computed in exponential time. The reason
why our approach does not run in exponential time without an NP oracle is that
the elements of CA(∃X.A,P) to which the oracle is applied may be exponen-
tially large in the size of ∃X.A. Thus, one may ask whether one can design an
approach that only generates optimal compliant anonymisations. We answer this
question affirmatively in the rest of this section, but unfortunately the approach
we introduce does not produce all of them.

Computing optimal compliant anonymisations

The main idea underlying our approach is to define an appropriate partial order
on csfs.

Definition 17. Let ∃X.A be a quantified ABox that does not comply with the
policy P, and s, t csfs on ∃X.A for P. We say that s is covered by t (written
s ≤ t) if for each a ∈ Σ and C ∈ s(a) there is an atom D ∈ t(a) s.t. C v∅ D.

It is easy to see that this relation is a partial order. Reflexivity and transitivity
are trivial. To show anti-symmetry, assume that s ≤ t and t ≤ s. It suffices to
prove that s(a) ⊆ t(a) holds for all a ∈ ΣI; the inclusion in the other direction
can be shown symmetrically. Assume that C ∈ s(a). Since s ≤ t, this implies
that there is an atom D ∈ t(a) with C v∅ D. But then t ≤ s yields an atom
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C ′ ∈ s(a) such that D v∅ C ′. Since the elements of s(a) are incomparable
w.r.t. subsumption, this yields C = C ′, and thus C ≡∅ D. Since both atoms are
assumed to be reduced, we obtain C = D, which yields C ∈ t(a).

To show that entailment between canonical anonymisations implies covering for
the compliance seed functions inducing them, we need the following lemma.

Lemma 18. Let ca(∃X.A, s) = ∃Y.B be the canonical compliant anonymisation
of ∃X.A induced by the csf s, C ∈ Atoms(P), and yu,K ∈ Y a variable. If
A |= C(u) and B 6|= C(yu,K), then K contains an atom subsuming C.

Proof. We prove the lemma by induction on the role depth of C. In the base
case, C = A ∈ ΣC. Thus, A |= C(u) implies that A(u) ∈ A, and thus A 6∈ K
would yield A(yu,K) ∈ B, contradicting the assumption that B 6|= C(yu,K).

Induction step: if C = ∃r.D, then A |= C(u) implies that there is an object v
such that r(u, v) ∈ A and A |= D(v). Assume that K does not contain an atom
subsuming ∃r.D. We claim that this implies the existence of a variable yv,L ∈ Y
such that r(yu,K, yv,L) ∈ B. Since K does not contain an atom subsuming ∃r.D,
we know that, for every existential restriction ∃r.Q ∈ K, we have D 6v∅ Q, and
thus Conj(Q) must contain an atom CQ such that D 6v∅ CQ. Let L consist of
the subsumption-maximal elements of the set {CQ | ∃r.Q ∈ K and A |= Q(v) }.
Then we have yv,L ∈ Y and r(yu,K, yv,L) ∈ B. Since B 6|= C(yu,K), this implies
that B 6|= D(yv,L), and thus there is an atom C ′ ∈ Conj(D) with A |= C ′(v) and
B 6|= C ′(yv,L). Induction yields an atom C ′′ ∈ L such that C ′ v∅ C

′′. Together
with C ′ ∈ Conj(D), this shows that D v∅ C ′′. However, by construction, L
contains only atoms CQ such that D 6v∅ CQ. This contradiction shows that
our assumption that K does not contain an atom subsuming C = ∃r.D cannot
hold.

Proposition 19. Let s and t be csfs on ∃X.A for P. Then the entailment
ca(∃X.A, s) |= ca(∃X.A, t) implies that s ≤ t.

Proof. Let ∃Y.B = ca(∃X.A, s) and ∃Z.C = ca(∃X.A, t), and assume that
∃Y.B |= ∃Z.C. We must show for all a ∈ ΣI that C ∈ s(a) implies the existence
of an atom D ∈ t(a) with C v∅ D. By the definition of csfs and Property 3 of
Lemma 13, C ∈ s(a) implies A |= C(a) and B 6|= C(a). Since ∃Y.B |= ∃Z.C, the
latter yields C 6|= C(a). By Lemma 18, t(a) contains an atom subsuming C.

As an easy consequence of this proposition we obtain that the set

CAmin(∃X.A,P) := { ca(∃X.A, s) | s is a ≤-minimal csf on ∃X.A for P }

contains only optimal compliant anonymisations of ∃X.A.

Theorem 20. The set CAmin(∃X.A,P) is non-empty, contains only optimal P-
compliant anonymisation of ∃X.A, and can be computed in exponential time.
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Proof. Since policies are assumed not to contain>, the set of all csfs is non-empty.
Since it is a finite set, it must contain minimal elements w.r.t. the partial order
≤. Assume the ca(∃X.A, s) ∈ CAmin(∃X.A,P) is not optimal. Then there is
a compliant anonymisation ∃Z.C of ∃X.A such that ∃Z.C |= ca(∃X.A, s), but
∃Z.C and ca(∃X.A, s) are not equivalent. By Proposition 15, there exists a csf
t such that ca(∃X.A, t) |= ∃Z.C. But then we have ca(∃X.A, t) |= ca(∃X.A, s),
which yields t ≤ s by Proposition 19. Since s = t would imply that ∃Z.C and
ca(∃X.A, s) are equivalent, we actually have t < s, which contradicts the mini-
mality of s. The set CAmin(∃X.A,P) can be computed in exponential time, by
first generating all csfs, then removing the non-minimal ones, and finally gener-
ating the induced canonical anonymisations.

A simple consequence of this theorem is that one optimal compliant anonymi-
sation can always be computed in exponential time w.r.t. combined complexity,
and polynomial time w.r.t. data complexity. One simply needs to compute a
minimal csf s, and then build ca(∃X.A, s). In contrast to computing all optimal
compliant anonymisations, this process does not need an NP oracle. In general,
however, not all optimal compliant anonymisations of ∃X.A are contained in
CAmin(∃X.A,P). Technically, the reason is that the converse of Proposition 19
need not hold. The following gives a concrete example where CAmin(∃X.A,P) is
not complete.

Example 21. Consider the policy P := {∃r.A} and the non-compliant ABox
∃∅.A, with A := {r(a, b), A(b)}. The only minimal csf is the function s defined
as s(a) := {∃r.A} and s(b) := ∅. In ca(∃∅.A, s), the individual b still belongs to
A, but the role assertions r(a, b) is no longer there.

Consider the (non-minimal) csf t defined as t(a) := {∃r.A} and t(b) := {A}.
In ca(∃∅.A, t), the individual b does not belong to A, but the role assertions
r(a, b) is still there. Thus, ca(∃∅.A, s) and ca(∃∅.A, t) are incomparable w.r.t.
entailment, although s < t. We claim that ca(∃∅.A, t) is optimal. Otherwise, we
can use Proposition 15 to obtain a csf t′ < t such that ca(∃∅.A, t′) |= ca(∃∅.A, t).
However, the only csf smaller than t is s, which yields a contradiction.

4 Compliant Anonymisations w.r.t. IQ-Entailment

Since we are only interested in instance queries (i.e., checking which instance
relationships C(a) hold for individuals a in a quantified ABox), it makes sense to
consider a different notion of entailment and equivalence based on which instance
relationships are implied by the ABox. Switching to this alternative notion of
entailment allows us to improve on the results shown in the previous section.

Definition 22. Let ∃X.A and ∃Y.B be quantified ABoxes. We say that ∃X.A
IQ-entails ∃Y.B (written ∃X.A |=IQ ∃Y.B) if ∃Y.B |= C(a) implies ∃X.A |=
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C(a) for all EL concept descriptions C and all a ∈ ΣI. Two quantified ABoxes
are IQ-equivalent if they IQ-entail each other.

Obviously, ∃X.A |= ∃Y.B implies ∃X.A |=IQ ∃Y.B, but the converse need not
be true. Whereas entailment can be characterised using homomorphisms, IQ-
entailment is characterised using simulations. Similar results have been shown in
the context of interpolation and separability, but for interpretations rather than
ABoxes (see, e.g., Lemma 4 in [20]). A simulation from ∃X.A to ∃Y.B is a
relation S ⊆ (ΣI ∪X)× (ΣI ∪ Y ) that satisfies the following properties:

1. (a, a) ∈ S for each individual name a ∈ ΣI;

2. if (u, v) ∈ S and A(u) ∈ A, then A(v) ∈ B;
3. if (u, v) ∈ S and r(u, u′) ∈ A, then there exists an object v′ ∈ ΣI ∪ Y such

that (u′, v′) ∈ S and r(v, v′) ∈ B.

Proposition 23. Let ∃X.A and ∃Y.B be quantified ABoxes that are renamed
apart. Then, ∃Y.B |=IQ ∃X.A iff there exists a simulation from ∃X.A to ∃Y.B.

Proof. To prove the only-if direction, we define an appropriate relation S and
show that it is a simulation:

S := { (u, v) | A |= C(u) implies B |= C(v) for each EL concept description C }

1. Since ∃Y.B IQ-entails ∃X.A, S contains the pair (a, a) for each a ∈ ΣI.

2. Let (u, v) ∈ S and A(u) ∈ A. Then A |= A(u), which yields B |= A(v) by
the definition of S. By Lemma 6, this implies that B contains A(v).

3. Let (u, v) ∈ S and consider a role assertion r(u, u′) ∈ A. It follows that A
entails ∃r.>(u) and so B entails ∃r.>(v), i.e., v has at least one r-successor
in B. Since B is finite, v can only have finite number of r-successors in B. We
use a diagonalization argument. Assume that, for each r(v, v′) ∈ B, there
is an EL concept description Cv′ such that A |= Cv′(u

′) and B 6|= Cv′(v
′).

Define C :=
d
{ Cv′ | r(v, v′) ∈ B }, which is a well-defined EL concept

description since v has only finitely many r-successors. Then A |= C(u′),
and so A |= ∃r.C(u). We conclude that B |= ∃r.C(v), and so there must
exist r(v, v′) ∈ B such that B |= C(v′), which contradicts our construction
of C. It follows that there must exist an r-successor v′ of v in B such that
A |= C(u′) implies B |= C(v′) for all EL concept descriptions C, and thus
the pair (v, v′) is in S and the role assertion r(u′, v′) is in B.

For the if direction, assume that S is a simulation from ∃X.A to ∃Y.B. If
∃X.A |= C(a), then there is a homomorphism from the pp formula φC(a) cor-
responding to C(a) to ∃X.A such that a is mapped to a. The composition
of this homomorphism with S yields a simulation from φC(a) to ∃Y.B. Since
φC(a) is tree-shaped, the existence of such a simulation implies the existence of
a homomorphism from φC(a) to ∃Y.B, which yields ∃Y.B |= C(a).
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Since the existence of a simulation can be decided in polynomial time [16], this
proposition implies that IQ-entailment can be decided in polynomial time. We
redefine the notions “compliant anonymisation” and “optimal compliant anonymi-
sation” by using IQ-entailment rather than entailment.

Definition 24. Let ∃X.A,∃Y.B be quantified ABoxes and P a policy. Then

1. ∃Y.B is a P-compliant IQ-anonymisation of ∃X.A if ∃X.A |=IQ ∃Y.B
and ∃Y.B is compliant with P;

2. ∃Y.B is an optimal P-compliant IQ-anonymisation of ∃X.A if it is a
P-compliant IQ-anonymisation of ∃X.A, and ∃X.A |=IQ ∃Z.C |=IQ ∃Y.B
implies ∃Y.B |=IQ ∃Z.C for every P-compliant IQ-anonymisation ∃Z.C of
∃X.A.

We can show that CA(∃X.A,P) covers all compliant IQ-anonymisations of ∃X.A
w.r.t. IQ-entailment. The proof of this result is similar to the proof of Proposi-
tion 15.

Proposition 25. If ∃Z.C is a P-compliant IQ-anonymisation of ∃X.A, then
there exists a csf s such that ca(∃X.A, s) |=IQ ∃Z.C.

Proof. Since ∃X.A IQ-entails ∃Z.C, Proposition 23 implies the existence of a
simulation S from ∃Z.C to ∃X.A. We define the mapping s : ΣI → ℘(Atoms(P))
as follows:

s(a) := Maxv∅({C ∈ Atoms(P) | C 6|= C(a) and A |= C(a) }).

The fact that s is a compliance seed function can be shown as in the proof of
Proposition 15.

Let ∃Y.B := ca(∃X.A, s). To show that ∃Y.B |=IQ ∃Z.C, we prove that the
relation T ⊆ (ΣI ∪ Z)× (ΣI ∪ Y ) defined as T := { (u, yu′,f(u,u′)) | (u, u′) ∈ S } is
a simulation, where f is defined as

f(u, u′) := Maxv∅({C ∈ Atoms(P) | C 6|= C(u) and A |= C(u′) }).

1. For each individual name a, we have (a, a) ∈ S. It follows that (a, ya,f(a,a))
is in T. Since f(a, a) = s(a) and ya,s(a) is a synonym for a in ca(∃X.A, s),
we conclude that T contains the pair (a, a) as well.

2. Assume that A(u) ∈ C and (u, yu′,f(u,u′)) ∈ T. Then, (u, u′) ∈ S by the
definition of T. Thus, A(u) ∈ C implies A(u′) ∈ A since S is a simula-
tion. However, A 6∈ f(u, u′) since C |= A(u). By Definition 11, this yields
A(yu′,f(u,u′)) ∈ B.

3. Let r(u, v) ∈ C and (u, yu′,f(u,u′)) ∈ T. Then (u, u′) ∈ S, which implies that
there exists an object name v′ such that r(u′, v′) ∈ A and (v, v′) ∈ S. We
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show that r(yu′,f(u,u′), yv′,f(v,v′)) ∈ B. Thus, assume that ∃r.Q ∈ f(u, u′)
and A |= Q(v′). The former yields C 6|= (∃r.Q)(u) by the definition of f ,
and thus C 6|= Q(v). Consequently, there is an atom D ∈ Conj(Q) such that
A |= D(v′) and C 6|= D(v). Thus, either D itself or an atom subsuming D
belongs to f(v, v′). In both cases, we obtain r(yu′,f(u,u′), yv′,f(v,v′)) ∈ B.

As in Section 3, this implies that CA(∃X.A,P) contains (up to IQ-equivalence)
all optimal compliant IQ-anonymisations. Since IQ-entailment can be decided in
polynomial time, removing non-optimal elements from CA(∃X.A,P) can now be
realised in exponential time without NP oracle.

Theorem 26. Up to IQ-equivalence, the set of all optimal P-compliant IQ-
anonymisations of ∃X.A can be computed in exponential time.

This theorem shows that using IQ-entailment improves the complexity of our
algorithm for computing optimal compliant anonymisations. For data complexity,
it is even in P. Moreover, in the setting of IQ-entailment the set CAmin(∃X.A,P)
turns out to be complete. Indeed, the converse of Proposition 19 holds as well in
this setting.

Proposition 27. Let s and t be compliance seed functions on ∃X.A for P. Then
we have ca(∃X.A, s) |=IQ ca(∃X.A, t) iff s ≤ t.

Proof. Let ∃Y.B = ca(∃X.A, s) and ∃Z.C = ca(∃X.A, t). The proof that
ca(∃X.A, s) |=IQ ca(∃X.A, t) implies s ≤ t is basically the same as the one
for Proposition 19. We only need to replace ∃Y.B |= ∃Z.C with ∃Y.B |=IQ ∃Z.C
in the argument.

For the converse direction, assume that s ≤ t. To prove ca(∃X.A, s) |=IQ

ca(∃X.A, t), it is sufficient to show that the relation

S := { (yu,K′ , yu,K) | for each C ∈ K there is some C ′ ∈ K′ such that C v∅ C
′ }

is a simulation from ca(∃X.A, t) to ca(∃X.A, s).

1. The assumption s ≤ t immediately implies (ya,t(a), ya,s(a)) ∈ S for each
individual name a. Since ya,t(a) and ya,s(a) are both synonyms for a in
ca(∃X.A, t) and ca(∃X.A, s), respectively, we conclude that S contains
the pair (a, a).

2. Consider a pair (yu,K′ , yu,K) ∈ S and assume that the concept assertion
A(yu,K′) occurs in the matrix C of ca(∃X.A, t), i.e., A(u) ∈ A and A 6∈ K′.
The definition of S then yields A 6∈ K, and thus A(yu,K) belongs to the
matrix B of ca(∃X.A, s).

3. Let (yu,K′ , yu,K) ∈ S and r(yu,K′ , yv,L′) ∈ C. By Definition 11, the latter
implies r(u, v) ∈ A and, for each ∃r.Q′ ∈ K′, there is some D′ ∈ L′
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such that Q′ v∅ D
′. Since (yv,L′ , yv,L′) ∈ S trivially holds, it is sufficient

to show that r(yu,K, yv,L′) ∈ B. Thus, consider an existential restriction
∃r.Q ∈ K. The assumption (yu,K′ , yu,K) ∈ S shows that there must exist
some ∃r.Q′ ∈ K′ satisfying Q v∅ Q

′. As already pointed out, there is some
D′ ∈ L′ such that Q′ v∅ D

′. Definition 11 and transitivity of subsumption
thus yields r(yu,K, yv,L′) ∈ B as required.

As a consequence, we obtain the following improvement over Theorem 26.

Theorem 28. Up to IQ-equivalence, the set CAmin(∃X.A,P) consists of all op-
timal P-compliant IQ-anonymisations of ∃X.A, and it can be computed in expo-
nential time.

Thus, it is not necessary to compute the whole set CA(∃X.A,P) first and then re-
move non-optimal elements. One can directly compute the set CAmin(∃X.A,P).
Using IQ-entailment also allows us to reduce the sizes of the elements of this set.
In fact, it is easy to see that removing variables not reachable by a role path from
an individual results in a quantified ABox that is IQ-equivalent to the original
one. For the canonical anonymisation depicted in Fig. 1, this yields an ABox
that, in addition to the individual a (i.e., the grey node) contains only the three
variables yx,{B}, yx,{A}, and yx,{A,B} that are directly reachable from a. In prac-
tice, one would not first generate all variables and then remove the unreachable
ones, but generate only the reachable ones in the first place.

5 Computing Optimal Repairs

Repairing an ontology means that one wants to change it such that one or more
erroneous consequences are removed. According to [4], the ontology O′ is a repair
of a given ontology O w.r.t. some axiom α that follows from it if O entails O′

and O′ does not entail α. We first generalise this definition to a setting where
several axioms are removed as consequences in one go, and then explain the close
connection between repairs and compliant anonymisations.

Definition 29. A repair request is a finite set of EL concept assertions P (a)
where P is a (possibly complex) EL concept description and where a is an indi-
vidual name. Given two quantified ABoxes ∃X.A and ∃Y.B, we say that ∃Y.B is
a repair of ∃X.A w.r.t. a repair request R if ∃X.A |= ∃Y.B and ∃Y.B 6|= P (a)
for each P (a) ∈ R. Furthermore, ∃Y.B is an optimal R-repair of ∃X.A if it is
an R-repair of ∃X.A, and ∃X.A |= ∃Z.C |= ∃Y.B implies ∃Y.B |= ∃Z.C for
each R-repair ∃Z.C of ∃X.A.

Repair requests generalise policies in the following sense. For a policy P , define
the repair request RP := { P (a) | P ∈ P and a ∈ ΣI }. Then, the P-compliant
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anonymisations of a quantified ABox ∃X.A coincide with the RP-repairs of
∃X.A. Thus, compared with policies, repair requests provide us with a more
fine grained control of which consequences are to be removed from a quantified
ABox. In fact, whereas policies treat all individuals in the same way, what in-
formation is to be removed can depend on the particular individual when using
repair requests.

Similar to policies, the set of all atoms occurring in a repair requestR is described
by Atoms(R) :=

⋃
P (a)∈R Atoms(P ). In addition, we can also define reduced form

of repair requests. If a repair request contains two concept assertions P (a) and
Q(a) where P @∅ Q, then each quantified ABox not entailing Q(a) does not entail
P (a) as well. We call a repair request reduced if it does not contain two such
assertions and if further each concept assertion is given by a reduced concept
description. For a repair request R, let its reduction be defined as

Rr := {P r(a) | P (a) ∈ R and there is no Q(a) ∈ R such that P @∅ Q }.

Then each R-repair is an Rr-repair and vice versa. This shows that we can
assume without loss of generality that all repair requests are reduced.

Similarly as in Definition 10, we can define seed functions for repair requests to
guide the construction of canonical repairs.

Definition 30. A repair seed function (abbrv. rsf) on ∃X.A for R is a mapping
s : ΣI → ℘(Atoms(R)) such that

1. s(a) ⊆ {C ∈ Atoms(R) | A |= C(a) } for all a ∈ ΣI,

2. for each P (a) ∈ R with A |= P (a), the set s(a) contains an atom subsuming
P , i.e., there is some C ∈ s(a) such that P v∅ C, and

3. for each a ∈ ΣI, the set s(a) does not contain v∅-comparable atoms.

For each repair seed function s, the canonical R-repair of ∃X.A w.r.t. s is defined
in the exact same way as the canonical compliant anonymization ca(∃X.A, s) in
Definition 11, but we denote it as repair(∃X.A, s). The set of all canonical R-
repairs of ∃X.A is denoted as Repairs(∃X.A,R).

It is straightforward to verify that Lemma 13 is still valid, and it is easy to
see how to adapt Propositions 14 and 15 (and the proofs) to the case of repair
requests. As a consequence, we obtain the following result, which is an adaptation
of Theorem 16.

Theorem 31. The set Repairs(∃X.A,R) is a set of R-repairs of ∃X.A that
contains (up to equivalence) all optimal R-repairs of ∃X.A. It can be computed
in (deterministic) exponential time. There is a (deterministic) algorithm with
access to an NP oracle that computes the set of all optimal R-repairs of ∃X.A
and runs in exponential time.
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Note that the above time complexities refer to combined complexity; for data
complexity (where the size of the repair request is irrelevant) the exponential
time complexity drops to polynomial time complexity.

All further results on computing canonical anonymisations can be transferred as
well. We can define a partial order on repair seed functions such that the minimal
repair seed functions induce a non-empty set of optimal repairs that can be com-
puted in exponential time (combined complexity) and in polynomial time (data
complexity), cf. Definition 17 and Theorem 20. Furthermore, it is easy to modify
the above results to IQ-entailment with the result that, up to IQ-equivalence, the
set of all optimal R-IQ-repairs of ∃X.A can be computed in exponential time
(combined complexity) and in polynomial time (data complexity), both without
access to the NP oracle deciding subsumption between quantified ABoxes, cf.
Theorems 26 and 28.

6 Conclusions

We have developed methods to hide private information (as expressed by a policy
P) while modifying the knowledge base (given by a quantified ABox ∃X.A)
in a minimal way. More formally, we have shown how to compute the set of
all optimal P-compliant anonymisations of ∃X.A. In general, this set contains
exponentially many anonymisations that may be of exponential size. As already
shown in [3] for the restricted case of an EL instance store, this exponential blow-
up cannot be avoided in the worst case, both regarding the number and the size
of the anonymisations. These exponential lower bounds hold both for the case
of classical entailment and of IQ-entailment (since for instance stores this does
not make a difference). Nevertheless, we have shown that using IQ-entailment
leads to a more efficient algorithm (exponential time instead of exponential time
with NP oracle), and may result in considerably smaller anonymisations. One
may ask why we did not restrict our attention to IQ-entailment altogether. The
reason is that, even if one considers only policies expressed by EL concepts, one
may still want to query the ABoxes using general conjunctive queries. ABoxes
that are IQ-equivalent, but not equivalent, may yield different answers to CQs.
An interesting topic for future research is to see whether our approach can be
extended to policies expressed by CQs rather than EL concepts. A first step in
this direction could be to extend the policy language to ELI or acyclic CQs.

We have seen that there is a close connection between computing a compliant
anonymisation of and repairing an ABox [4]. Basically, if C ∈ P , then we want
to avoid conclusions of the form C(a) for all individuals a, whereas repairs want
to get rid of conclusions C(a) for a specific individual a. We have explained
how to adapt our notion of a compliance seed function to the repair setting. By
making small modifications to our framework, we can thus also compute optimal
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repairs.

As mentioned in the introduction, achieving compliance of a knowledge base is
not always sufficient. Instead, one sometimes wants to ensure the more strin-
gent requirement of safety [11, 12, 3]. Currently, we investigate how to extend
the results presented in this paper from compliance to safety. Although adapt-
ing our approach to deal with the case of safety is not trivial, and requires the
development of new methods, the basic formal setup for both problems remains
unchanged. In particular, the results for compliance presented here are important
stepping-stones since our approach basically reduces safety to compliance w.r.t.
a modified policy [5]. Another interesting topic for future research is to consider
compliance and safety of ABoxes w.r.t. terminological knowledge. Without ad-
ditional restrictions, optimal compliant anonymisations (repairs) need no longer
exist [4], but we conjecture that our methods can still be applied if the termino-
logical knowledge is cycle-restricted in the sense introduced in [2].
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