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We conducted an experiment where we assessed participants’ understanding
of different representations of proofs for description logics [2]. The main formats
we used are full formal proofs in a tree-shaped representation, e.g. based on
consequence-based reasoning procedures [9, 18], and linearized translations of
these proofs into text, e.g. as produced by various verbalization techniques [1,
11,16]. In addition, to find out how detailed proofs should be, we added shortened
representations for each of these two versions, in which some (easy) reasoning
steps were omitted or merged. We chose these four combinations since they
are representative of the state-of-the-art in DL explanations. Differently from
previous studies [13–16], we directly compared textual and formal proof formats.

Participants. 16 participants (four female) were assessed with a mean age of
23 (standard deviation = 1.71). Our international participants were recruited
from undergraduate and graduate university students with basic knowledge of
logic, which was required to understand the proofs. Participants were recruited
via advertisements on mailing lists. Screening criteria were familiarity with first-
order logic (e.g. through a lecture), a stable Internet connection, installing a
video conference app with video access (on their mobile device or computer) and
the permission to record their handwriting and voice during the experiment.

Conditions and Design. We used two different conditions with two levels
each. One condition was the representational form of the proof, which was either
textual or formal. The other condition was the length of the proof, which was
either short or long. Thus, there were the four following condition combinations:
Long Text, Short Text, Long Formal, and Short Formal. We used a 2× 2 within-
subjects design, which means that each participant saw all four combinations.

Material. The proofs were chosen such that they represent an unintuitive con-
sequence, e.g. the unsatisfiability of a concept name, or that any amputation
of a finger is also an amputation of the whole hand [3]. All four examples were
chosen from the literature on DL explanations, in particular [3, 7, 12, 17]. For
each of them, four different proof representations were manually created, not
automatically generated, to make them comparable in difficulty.
? This is an abstract of the paper [4] which will appear at DL 2020.
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CClt v ∃ct.C u ∀ct.C
CClt v MaObj MaObj v ∃ct.At

CClt v ∃ct.At
CClt v ∃ct.(At u C)

C v Cmp
At u C v At u Cmp At u Cmp v ⊥

At u C v ⊥
CClt v ⊥

Since every cell culture is a material object and every material object contains an atom,
every cell culture contains an atom. From the facts that every cell culture contains an
atom and that every cell culture contains a cell and contains only cells, it follows that
every cell culture contains something which is both an atom and a cell.

Every cell is a compound. Thus, any object which is an atom and a cell at the same
time is also an atom and a compound. There is no object which is an atom and a
compound at the same time. Therefore, there is no object which is both an atom and
a cell.

Furthermore, since every cell culture contains something which is both an atom and a
cell and there is no object which is both an atom and a cell, there is no cell culture.

Fig. 1. A formal and a textual representation of a proof. For the sake of presentation,
in the formal proof we abbreviate the words “Atom”, “Cell”, “CellCulture”, “Materi-
alObject”, “Compound” and “contains” to “At”, “C”, “CClt”, “MaObj”, “Cmp” and
“ct”. For the experiment, the formal version was printed without abbreviation.

Figure 1 depicts a short formal and a short textual representation for one of
the examples. Each of them (as well as their longer versions) were shown below
a list of the involved TBox axioms (Cell v Compound etc.), a textual translation
of these axioms (e.g. “Every cell is a compound.”), as well as a short statement
of the entailment (“The ontology above implies that there is no cell culture.”).
The full details of the experiment are available online3.

To make sure the participants really understood the proofs a logic expert
reviewed the video of each participant after each session. Due to the think-
aloud technique the expert was able to follow the participant’s thought and
rated the video based on the participant’s understanding on a scale from 1 (no
understanding) to 3 (complete understanding).

Independent and Dependent Variables. To assess participants’ experience
we asked them how they would rate their experience with propositional, descrip-
tion, first order logic on a Likert-like scale from 1 (no knowledge) to 5 (expert).
We evaluated how they rated the difficulty of each proof on a Likert-like scale
from 1 (very easy) to 5 (very difficult). To compare the proof representations,
we asked the participants to rank the proofs at the end of the experiment based
on their comprehensibility (first rank = very easy, fourth rank = very difficult).
It was possible to give several proofs the same rank. They were also asked to
comment on the ranking and on what they liked and disliked about the proofs.

Hypotheses. We stated three hypotheses concerning the participants’ self-
rating of the difficulty of the proofs and their self-rated experience with logic.
3 https://cloud.perspicuous-computing.science/s/Wmtmyp8JQNaF2AD
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Hypothesis 1 : It is easier to understand a short, concise explanation than a
longer version (in the same representation format).

Hypothesis 2 : Users with less experience in logic can understand the longer
text better than a short formal proof.

Hypothesis 3 : Users with more experience in logic can understand a long
formal proof better than a long text.

Results. To compute the quantitative analyses IBM SPSS Statistics (Version
26) predictive analytics software for Windows [6] and the Macro PROCESS [5]
was used. For all hypotheses, we used a p-value threshold of 0.05.

For Hypothesis 1, a multiple linear regression with contrast coding (K1, K2,
K3) was conducted. K1 contrasted the textual representation against the formal
one. K2 contrasted the short vs. long proofs and K3 the interaction between the
two general conditions. The three contrasts explained 14.2% of variance in the
rating after each proof, R2 = .14, F(3, 60) = 3.30, p < .05. Only K2 was found
to be a significant predictor in the linear regression, β = −.29, t(60) = −2.42,
p < .05. This means that the participants rated the shorter proofs as being easier
than the longer ones, which was independent of the presentation format. Thus,
Hypothesis 1 could be supported by our data.

For Hypotheses 2 and 3, we computed moderator analyses with the two
condition combinations as a predictor, the experience as a moderator variable
and the rating after each proof as the criterion. However, neither Hypothesis 2
nor 3 was supported by our data. Experience with logic did not make a difference
on the understanding of the different proof representations.

Additionally to the three hypotheses, we used Friedman’s ANOVA for com-
paring the comprehensibility ranking of the proof representations at the end of
the experiment (first rank = very easy, fourth rank = very difficult). It revealed a
significant difference in the ranking of the condition combinations, χ2(3) = 15.29,
p < .01 with a moderate effect size (Kendall’s W = .32). For the post-hoc pair-
wise comparisons Bonferroni correction was used which resulted in a p-threshold
of 0.008, resulting in only two significant comparisons.

The participants’ ranking of condition combinations is shown in Figure 2. The
combination Short Text was preferred over Long Text, Z = 1.53, p < .008. The
median ranking for Short Text and Long Text was 2 and 3.5, respectively. Addi-
tionally, Short Formal was preferred over Long Text, Z = 1.50, p < .008. Short
Formal had the lowest median ranking with 1.50. Both comparisons showed
moderate effect sizes, r = 0.38 for both. Median ranking for Long Formal was 2.

Only one participant chose Long Text on the first rank. However, nobody put
Long Text on the second rank, but 15 chose the third or fourth rank for it. Thus,
most participants ranked it as (very) difficult. Short Text was never assigned the
fourth rank, but by 13 participants it was considered very easy or easy.

Discussion. Short proofs were rated as being easier than long proofs, indepen-
dent of the presentation format. Thus, future experiments and theoretical ap-
proaches should focus on shortening proofs. With our data, Hypotheses 2 and 3
could not be supported. However, the rankings and discussions showed individ-
ual user preferences between formal and textual representations. One possibility
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Fig. 2. The participants’ ranking of conditions with 1 = very easy and 4 = very difficult

to further assess this could be to include experts working in the field of logic,
like computer scientists and mathematicians teaching logic at a university. This
way, there could be a clearer distinction between novices, e.g. students having
attended a single lecture about logic, vs. experts. Maybe then one could find an
influence of experience on the perception of difficulty of the proofs.

On the other hand, the ultimate goal is to explain logical conclusions to
domain experts who are not familiar with logic. Here, an interesting direction
of study is to generate (concise) textual explanations [1, 11, 16], or perhaps a
combination of graphical and textual elements to better convey the structure of
a proof while still providing each (derived) axiom in a readable form.

From a procedural point of view, it would be preferable to use a between-
subjects design (different people test each condition) instead of within-subjects
(when the same person tests all the conditions), to minimize learning effects,
which however requires more participants. Of course we would also like to com-
pare other proof representations, e.g. pure justifications, linear vs. non-linear
formats, mixed formal/textual presentations as mentioned above, incorporating
annotations such as axiom numbering or coloring, and most importantly inter-
active approaches such as the proof plugin for the Protégé ontology editor [8].
The main goal with these different representations should always be usability,
which has to be assessed experimentally.

As was demonstrated by the participants’ different opinions and preferences
about proof representations, it makes sense to incorporate the user as an active
element in the design of a suitable presentation. User modeling [10] can help
make automatic design decisions, by taking into account user preferences or the
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user’s existing knowledge, e.g. in the form of a background ontology that the user
is assumed to know intimately.
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