

Dr. Dennis Gaus (TU Dresden) & Dr. Heike Link (DIW Berlin)

"Friedrich List" Faculty of Transport and Traffic Sciences, Institute of Transport and Economics Chair of Economics, esp. Transport Policy and Spatial Economics

The Heterogeneity of Perceived Public Transport Reliability

ITEA Conference 2025, Evanston June 27, 2025

1 Introduction & Motivation

- Joint work: Dr. Heike Link (DIW Berlin)
- Extensive dataset (survey & tracking) on travel behaviour, including experiences of delays, cancellations, replacement service, and shuttle service on public transport (PT) trips
- Descriptive analysis showed significant heterogeneity in (stated) experienced delays & cancellations
 - Partly explainable (e.g., longer trips, trips in rush hour)
 - Partly difficult to explain (e.g., gender, availability of alternative transport modes)
- Do people of different groups <u>perceive</u> PT delays in different ways?

2 Literature Overview

- Established literature on travel time perception (Clark, 1982)
 - PT travel times are consistently perceived as higher than they actually are (Peer et al., 2014)
 - Distorted mode choice due to biased travel time assessment (van Exel & Rietveld, 2010)
 - Perception differs between socio-economic groups (Meng et al., 2018)
- Travel time variability influences mode choice
 - Unreliable/fluctuating PT travel times lower commuting satisfaction (Cantwell et al., 2009)
 - Trade-off between absolute travel time and travel time reliability depends on the context (Soza-Parra et al., 2021; Ehreke et al., 2019)
- But: no existing research on perception of PT travel time variation/delays/irregularities (?)

3 Data & Approach

- Panel: nationwide, representative (>15 years), app-based, N=5000, 04-12/2023
- Survey data: 3 waves (June, September, December 2023)
 - Socio-demographics, mobility behavior, season ticket ownership, PT Experiences
 - 2547 reported last PT trips (Time, Duration, Mode, Purpose, Irregularities)
- GPS tracking data: April-December 2023
 - Start & end time & location, mode, purpose of 4 million trips
- Idea: Find "last PT trips" from surveys in GPS tracking data
 - Comparison between survey and tracking-> Identification of biases
 - Combination with Google Maps information -> Optimal travel times
- Matched dataset: 674 "last PT trips" found, 567 used

3 Data: Duration & Delay Measures

Multiple measures of travel times and delays:

- Stated travel time (Survey)
- Stated delay (Survey)
- Measured travel time (Tracking)

- Stated optimal travel time
- -> Similar to stated travel time by definition
- Calculated optimal travel time (Google Maps) -> Similar to stated optimal travel time?
- Calculated delay: "real" travel time (tracking) calculated optimal travel time
- Idea: Difference between stated delay and calculated delay = Delay Perception Bias (DPB)
 - 2000 stated last trips (no LDPT): 22.1% with delay
 - 567 matched last trips: 16.4% with stated delay, 25.4% with calculated delay >10mins

4 Survey Data Findings: Delay Perception

Heckman model: Who experiences delays and how much?

- Explanatory: D_{WE} , Time, Dur, UsedModes, Purpose, AvailModes, Status, Male, Age, HHSize, HHInc, Regtype
- **Probit:** $P(D_D = 1|X) = f(Explanatory, NumModes) |$ **Linear:**<math>D = f(Explanatory, IMR)

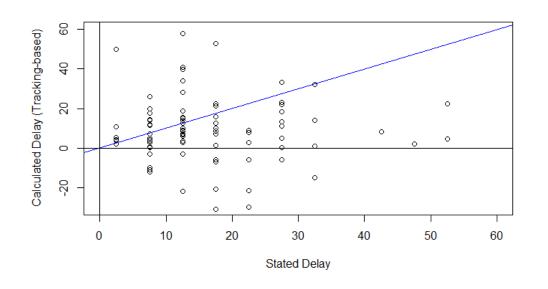
Trip characteristics results:

	Selection	Outcome
DayWE	-0.17	-6.10
Time.09-12	0.05	-3.13
Time.12-15	0.09	0.81
Time.15-19	-0.19	-4.42
Time.19-23	-0.00	5.17
Time.23-05	-0.42	-9.55
Time.NA	-0.18	-1.86
Duration	0.01 ***	0.31 **

	Selection	Outcome
Mode_LocPT	-0.05	-0.06
Mode_RegTr	0.33 ***	12.07 *
Mode_SBahn	0.11	2.27
Purpose_WorkEdu	0.32 ***	2.38
Purpose_ShopErrand	-0.01	0.81
Purpose_Accomp	0.06	2.40
Purpose_FreeHoliday	-0.08	-2.25
NumModes	0.06	-

4 Survey Data Findings: Delay Perception

Personal characteristics results:


	Selection	Outcome
AvailBike	0.11	-1.05
AvailCar.None	-	-
AvailCar.Passenger	0.09	-3.00
AvailCar.Driver	-0.02	-3.87
AvailCar.Company	0.05	-3.50
Status.Working	-	-
Status.NotWorking	0.02	0.90
Status.Education	0.07	1.35
Status.Retired	-0.11	-2.96
Male	-0.26 ***	-1.63
Age	-0.01 **	-0.09
HHSize	-0.01	0.90

	Selection	Outcome
HHInc.<1000	-	-
HHInc.1000-2000	-0.17	-9.75 **
HHInc.2000-3000	-0.14	-4.55
HHInc.3000-4000	-0.00	-3.68
HHInc.>4000	0.12	0.71
HHInc.NA	-0.09	-3.58
Regtype.M	-	-
Regtype.R	-0.03	-2.08
Regtype.U	0.20 *	5.42
IMR	-	25.15
N	1606	344
(Pseudo-)R2	0.18	0.68

5 Tracking Data Findings: Delay Perception Bias

- 25% of stated optimal travel times & 20% of measured travel times faster than Google Maps (-> "negative delay")
- Correlation between stated and calculated delay: 0.20

Heckman model: Does stated delay differ from calculated delay and how much?

- Explanatory: Purpose, AvailModes, Status, Male, Age, HHSize, HHInc, Regtype, PTShare
- **Probit:** $P(D_{DPB} = 1|X) = f(Explanatory, NumModes) |$ **Linear:**<math>DPB = f(Explanatory, IMR)
- $D_{DPB} = 1$ if DPB is more than 5 minutes or 10% of calculated delay
- *DPB* measured as % deviation of stated delay from calculated delay

5 Tracking Data Findings: Delay Perception Bias

	Selection	Outcome
Purpose_WorkEdu	-0.24	0.42
Purpose_ShopErrand	-0.18	1.47 **
Purpose_Accomp	0.35	0.61
Purpose_FreeHol	-0.25	-0.05
AvailBike	0.21	-0.29
AvailCar.None	-	-
AvailCar.Passenger	0.11	0.63
AvailCar.Driver	-0.02	1.45
AvailCar.Company	-0.12	1.20
Status.Working	-	-
Status.NotWorking	0.22	0.06
Status.Education	0.03	2.10
Status.Retired	-0.04	-1.03
Male	0.21	-1.66 **
Age	0.00	0.01

	Selection	Outcome
HHSize	-0.08	0.31
HHInc.<1000	-	-
HHInc.1000-2000	0.24	-3.63 **
HHInc.2000-3000	0.52	-4.47 **
HHInc.3000-4000	0.39	-4.28 **
HHInc.>4000	0.66	-5.26 **
HHInc.NA	0.67	-6.09 **
Regtype.M	-	-
Regtype.R	-0.01	-1.17
Regtype.U	-0.05	-1.00
PTShare	0.14	1.12
NumModes	0.16 **	-
IMR	-	-4.17
N	322	223
(Pseudo-)R2	0.07	0.17

6 Next Steps & Further Work

- Wrap up conclusions on survey model
- No conclusions on bias model yet
- Further work on matching algorithm & measure calculation (focus on cases with delay)
- Revisit Google Maps travel times -> How are people consistently faster than Google?
- Disentangle actual PT delay and deviation from Google Maps travel times
- A lot to do! Work in progress, to be continued

Thank you for your attention!

The Heterogeneity of Perceived Public Transport Reliability Dr. Dennis Gaus & Dr. Heike Link – ITEA Conference 2025, Evanston

References

- Cantwell, M., Caulfield, B., & O'Mahony, M. (2009). Examining the Factors that Impact Public Transport Commuting Satisfaction. Journal of Public Transportation, 12(2), 1-21. https://doi.org/10.5038/2375-0901.12.2.1
- Clark, J.E. (1982). Modeling travelers' perceptions of travel time. *Transportation Research Record*, 890, 7-11.
- Ehreke, I., Hess, S., Weis, C., & Axhausen, K. W. (2019). Reliability in the German Value of Time Study. *Transportation Research Record*, 2495, 14-22. https://doi.org/10.3141/2495-02
- Meng, M., Rau, A., & Mahardhika, H. (2018). Public transport travel time perception: Effects of socioeconomic characteristics, trip characteristics and facility usage. Transportation Research Part A: Policy and Practice, 114, 24-37.
- Peer, S., Knockaert, J., Koster, P., & Verhoef, E. T. (2014). Over-reporting vs. overreacting: Commuters' perceptions of travel times. Transportation Research Part A: Policy and Practice, 69, 476-494.
- Soza-Parra, J., Raveau, S. & Muñoz, J. C. (2022). Public transport reliability across prefer-ences, modes, and space. *Transportation*, 49, 621–640. https://doi.org/10.1007/s11116-021-10188-2
- van Exel, A., Jacob, N., & Rietveld, P. (2010). Perceptions of public transport travel time and their effect on choice-sets among car drivers. *The Journal of Transport and Land Use*, 2(3), 75-86.

