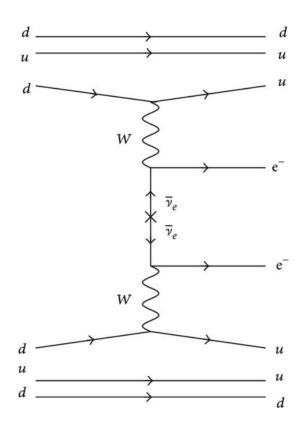
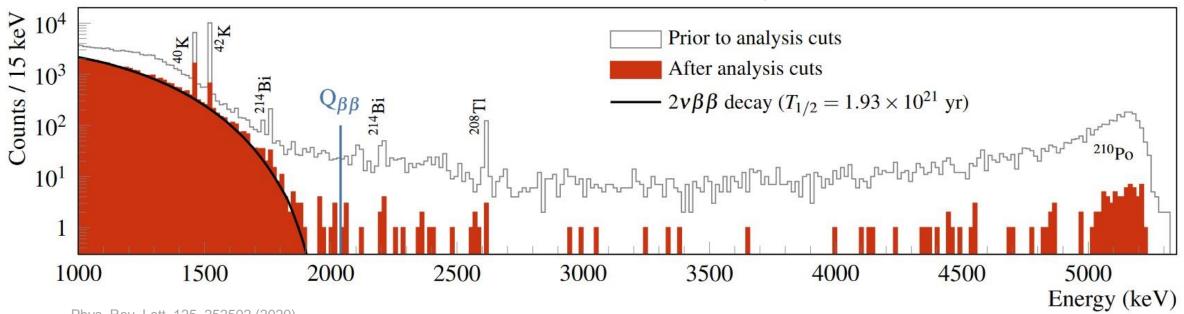

Institute of Nuclear and Particle Physics (IKTP) TU Dresden


Investigation of neutron-induced γ rays from Ge-nuclides in the region of interest of GERDA/LEGEND

• Marie Pichotta, Toralf Döring, Hans Hoffmann, Konrad Schmidt, Ronald Schwengner, Steffen Turkat, Birgit Zatschler, and Kai Zuber

GERDA & LEGEND

- searching for $0\nu\beta\beta$ decay of ⁷⁶Ge (Q = 2039 keV)
- located at LNGS (Laboratori Nazionali del Gran Sasso), 1400 m underground



GERDA & LEGEND

- searching for $0v\beta\beta$ decay of ⁷⁶Ge (Q = 2039 keV)
- quasi background-free experiments

Phys. Rev. Lett. 125, 252502 (2020)

→ precise understanding of background is crucial

- searching for $0\nu\beta\beta$ decay of ⁷⁶Ge (Q = 2039 keV)
- previous work (Camp & Foster, 1971) indicates γ -ray line at $E_{\gamma} = 2040.7 \,\text{keV}$ from decay of ⁷⁶Ga into excited ⁷⁶Ge states ^[1]

⁷² Ge	⁷³ Ge	⁷⁴ Ge	⁷⁵ Ge	⁷⁶ Ge	⁷⁷ Ge	⁷⁸ Ge
Stable	Stable	Stable	β-	Stable	β-	β-
71 Ga	⁷² Ga	⁷³ Ga	⁷⁴ Ga	⁷⁵ Ga	⁷⁶ Ga	⁷⁷ Ga
Stable	β-	β-	β-	β-	β-	β-
⁷⁰ Zn	⁷¹ Zn	⁷² Zn	⁷³ Zn	⁷⁴ Zn	⁷⁵ Zn	⁷⁶ Zn
Stable	β-	β-	β-	β-	β-	β-

- searching for $0\nu\beta\beta$ decay of ⁷⁶Ge (Q = 2039 keV)
- previous work (Camp & Foster, 1971) indicates γ -ray line at $E_{\gamma} = 2040.7 \,\text{keV}$ from decay of ⁷⁶Ga into excited ⁷⁶Ge states ^[1]

⁷² Ge Stable	⁷³ Ge Stable	⁷⁴ Ge Stable	⁷⁵ Ge β-	⁷⁶ Ge Stable	⁷⁷ Ge β-	
⁷¹ Ga Stable		⁷³ Ga β-				
⁷⁰ Zn Stable		⁷² Zn β-				⁷⁶ Zn β-

- searching for $0\nu\beta\beta$ decay of ⁷⁶Ge (Q = 2039 keV)
- previous work (Camp & Foster, 1971) indicates γ -ray line at $E_{\gamma} = 2040.7 \,\text{keV}$ from decay of ⁷⁶Ga into excited ⁷⁶Ge states ^[1]

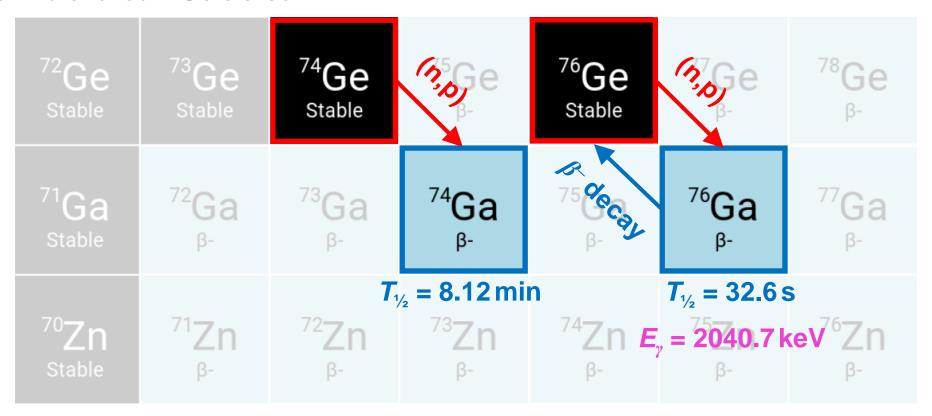
⁷² Ge Stable	⁷³ Ge Stable	⁷⁴ Ge Stable	⁷⁵ Ge β-	⁷⁶ Ge Stable	3, _β Ge	⁷⁸ Ge β-
⁷¹ Ga Stable		⁷³ Ga β-		⁷⁵ Ga β-	⁷⁶ Ga β-	⁷⁷ Ga β-
⁷⁰ Zn Stable	⁷¹ Zn β-	⁷² Zn β-		⁷⁴ Zn β-	$T_{\frac{1}{2}} = 32.6 \text{ s}$ ^{75}Zn $^{6-}$	

- searching for $0\nu\beta\beta$ decay of 76 Ge (Q = 2039 keV)
- previous work (Camp & Foster, 1971) indicates γ -ray line at $E_{\gamma} = 2040.7 \,\text{keV}$ from decay of ⁷⁶Ga into excited ⁷⁶Ge states ^[1]

⁷² Ge	⁷³ Ge	⁷⁴ Ge	⁷⁵ Ge	⁷⁶ Ge	3,0Ge	⁷⁸ Ge
Stable	Stable	Stable	β-	Stable	β-	β-
⁷¹ Ga	⁷² Ga	⁷³ Ga	⁷⁴ Ga	75 % Co. β-	⁷⁶ Ga	⁷⁷ Ga
Stable	β-	β-	β-		β-	β-
⁷⁰ Zn Stable	⁷¹ Zn β-	⁷² Zn β-	⁷³ Zn β-	⁷⁴ Zn β-	$T_{\frac{1}{2}} = 32.6 \text{ s}$ ^{75}Zn $^{6-}$	⁷⁶ Zn β-

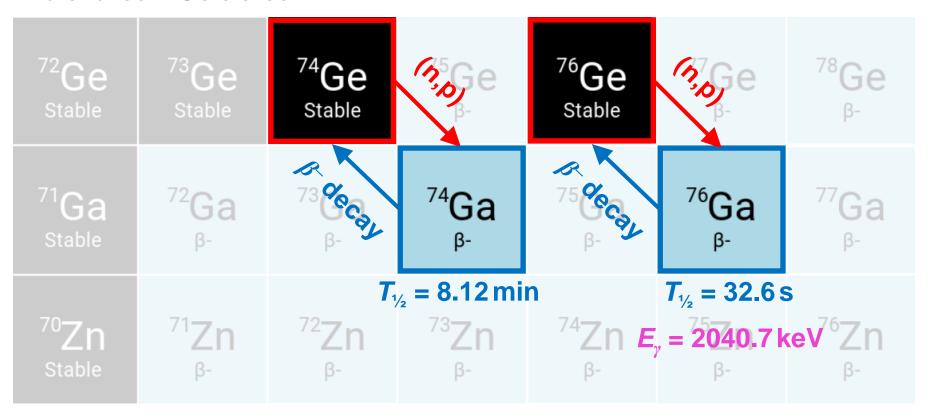
- searching for $0\nu\beta\beta$ decay of ⁷⁶Ge (Q = 2039 keV)
- previous work (Camp & Foster, 1971) indicates γ -ray line at $E_{\gamma} = 2040.7 \,\text{keV}$ from decay of ⁷⁶Ga into excited ⁷⁶Ge states ^[1]

⁷² Ge	⁷³ Ge	⁷⁴ Ge	⁷⁵ Ge	76Ge Stable 78Ge β-
Stable	Stable	Stable	β-	
⁷¹ Ga	⁷² Ga	⁷³ Ga	⁷⁴ Ga	75 Ga β- 77 Ga β-
Stable	β-	β-	β-	
⁷⁰ Zn Stable	⁷¹ Zn β-	⁷² Zn β-	⁷³ Zn β-	$T_{\frac{1}{2}} = 32.6 \text{ s}$ $74\text{Zn } E_{\gamma} = 2040.7 \text{ keV}^{6}\text{Zn}$ β^{-} β^{-}

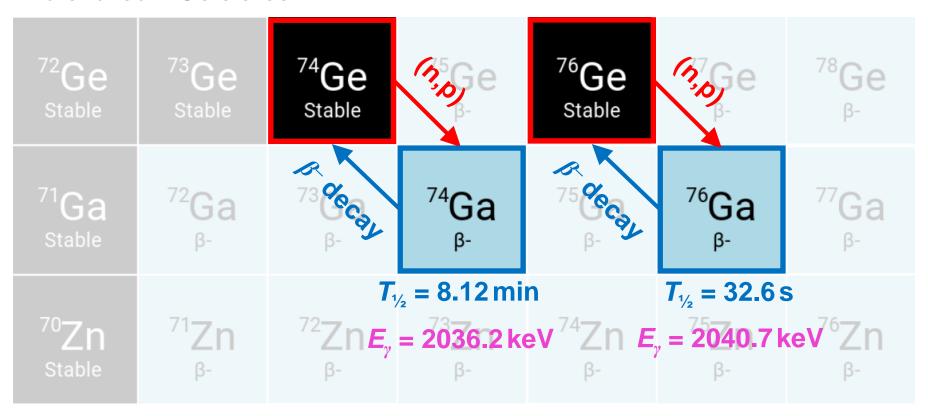


- searching for $0\nu\beta\beta$ decay of 76 Ge (Q = 2039 keV)
- previous work (Camp & Foster, 1971) indicates γ -ray line at $E_{\gamma} = 2040.7 \,\text{keV}$ from decay of ⁷⁶Ga into excited ⁷⁶Ge states ^[1]

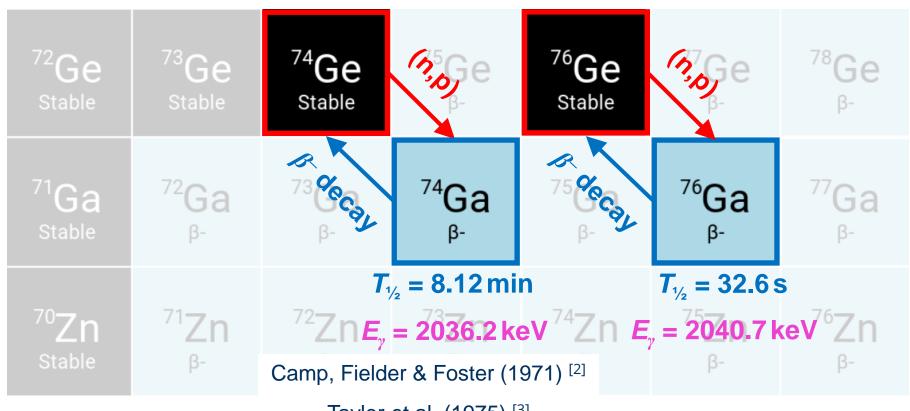
⁷² Ge	⁷³ Ge	⁷⁴ Ge	⁷⁵ Ge	76Ge Stable 78Ge β-
Stable	Stable	Stable	β-	
⁷¹ Ga	⁷² Ga	⁷³ Ga	⁷⁴ Ga	75 Ga β- 77 Ga β-
Stable	β-	β-	β-	
⁷⁰ Zn	⁷¹ Zn	⁷² Zn	⁷³ Zn	$T_{\frac{1}{2}} = 32.6 \text{ s}$ $^{74}\text{Zn } E_{\gamma} = \frac{2040.7 \text{ keV}^6 \text{Zn}}{\beta^-}$
Stable	β-	β-	β-	



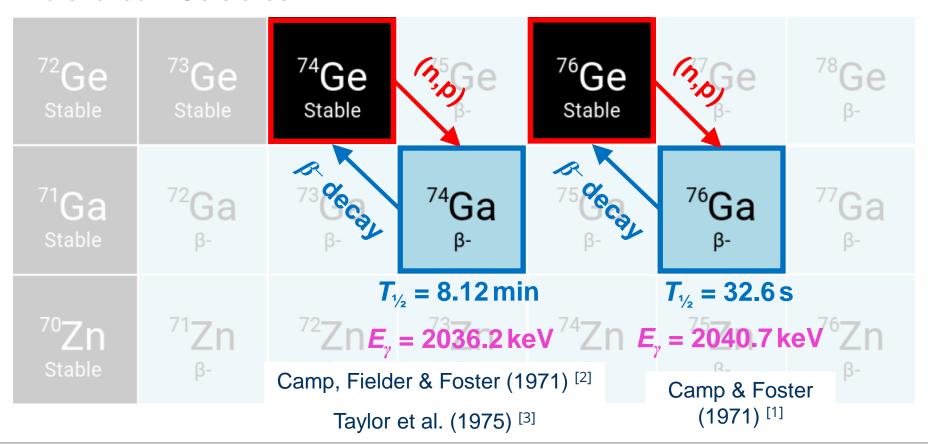
- searching for $0\nu\beta\beta$ decay of 76 Ge (Q = 2039 keV)
- previous work (Camp & Foster, 1971) indicates γ -ray line at $E_{\gamma} = 2040.7 \text{ keV}$ from decay of ⁷⁶Ga into excited ⁷⁶Ge states ^[1]

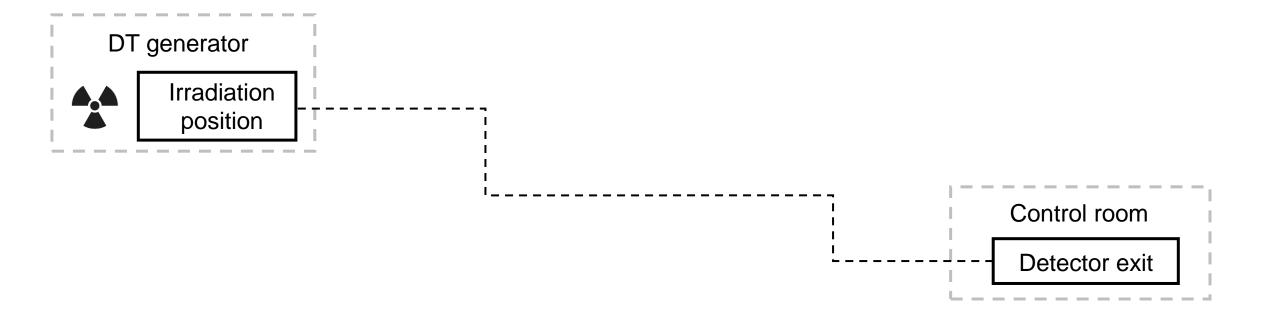


- searching for $0\nu\beta\beta$ decay of ⁷⁶Ge (Q = 2039 keV)
- previous work (Camp & Foster, 1971) indicates γ -ray line at $E_{\gamma} = 2040.7 \text{ keV}$ from decay of ⁷⁶Ga into excited ⁷⁶Ge states ^[1]

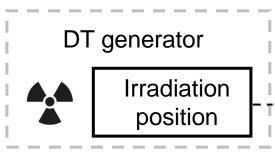


- searching for $0\nu\beta\beta$ decay of ⁷⁶Ge (Q = 2039 keV)
- previous work (Camp & Foster, 1971) indicates γ -ray line at $E_{\gamma} = 2040.7 \text{ keV}$ from decay of ⁷⁶Ga into excited ⁷⁶Ge states ^[1]


- searching for $0\nu\beta\beta$ decay of ⁷⁶Ge (Q = 2039 keV)
- previous work (Camp & Foster, 1971) indicates γ -ray line at $E_{\gamma} = 2040.7 \,\text{keV}$ from decay of ⁷⁶Ga into excited ⁷⁶Ge states ^[1]

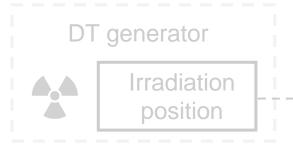


- searching for $0\nu\beta\beta$ decay of 76 Ge (Q = 2039 keV)
- previous work (Camp & Foster, 1971) indicates γ -ray line at $E_{\gamma} = 2040.7 \text{ keV}$ from decay of ⁷⁶Ga into excited ⁷⁶Ge states ^[1]



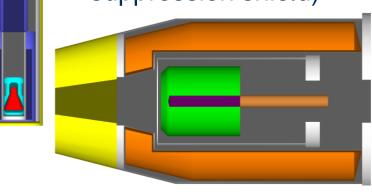
transportation of samples by pneumatic tube system

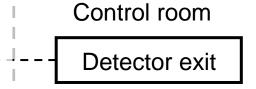
transportation of samples by pneumatic tube system



 DT generator produces
 14.1 MeV quasimonoenergetic neutrons

transportation of samples by pneumatic tube system

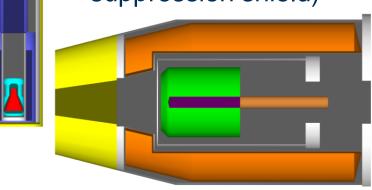


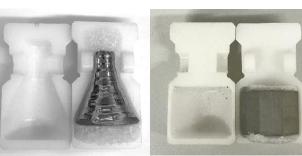


DT generator produces 14.1 MeV quasimonoenergetic neutrons

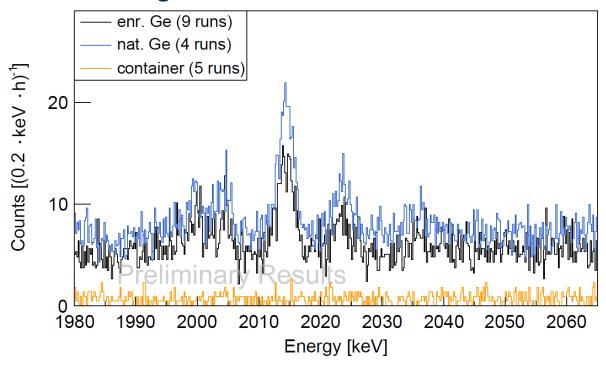
BGO (active Compton suppression shield)

transportation of samples by pneumatic tube system

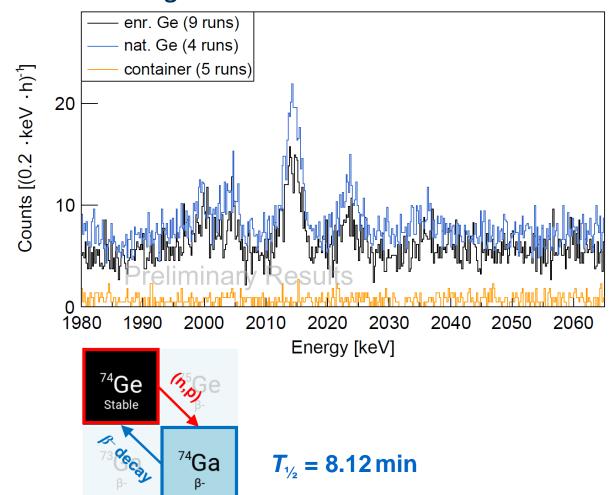



DT generator produces 14.1 MeV quasimonoenergetic neutrons

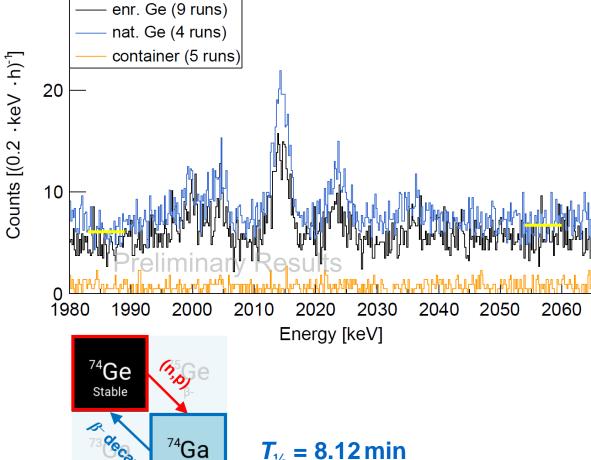
BGO (active Compton suppression shield)

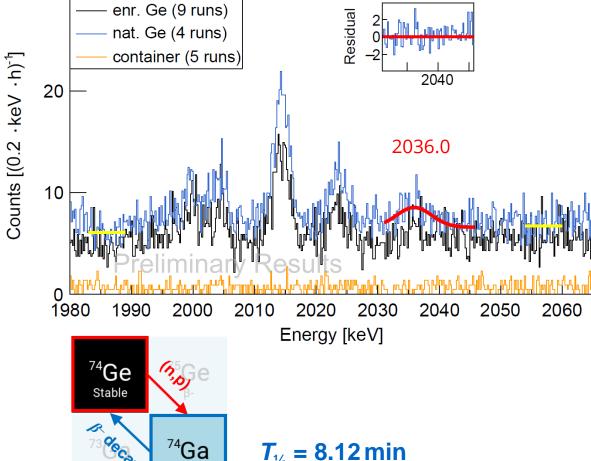


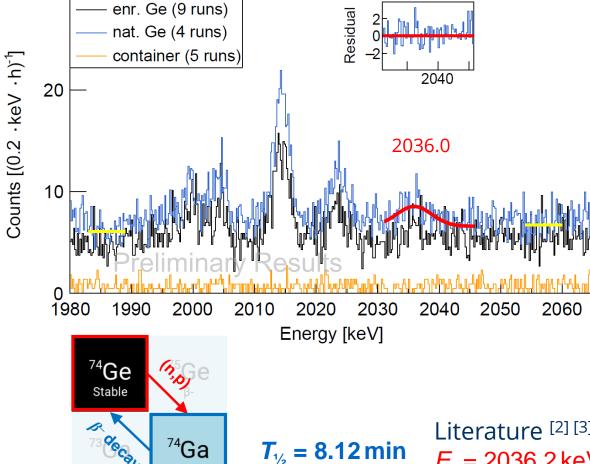
enriched Ge-sample (≈ 89.5% of 76 Ge)


Control room

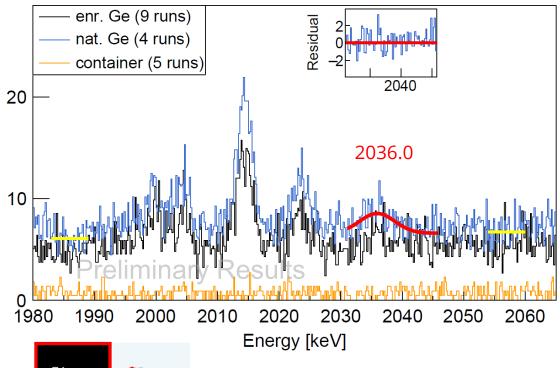
natural Ge-sample $(7.4\% \text{ of } ^{76}\text{Ge})$

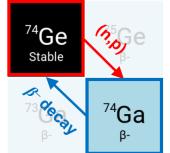






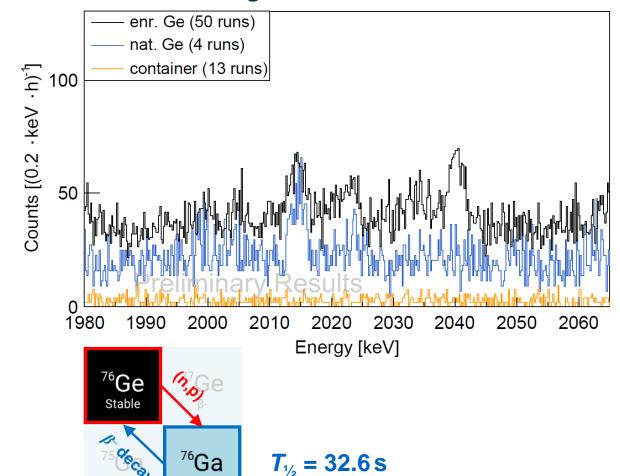
Timing window: 5 - 30 min





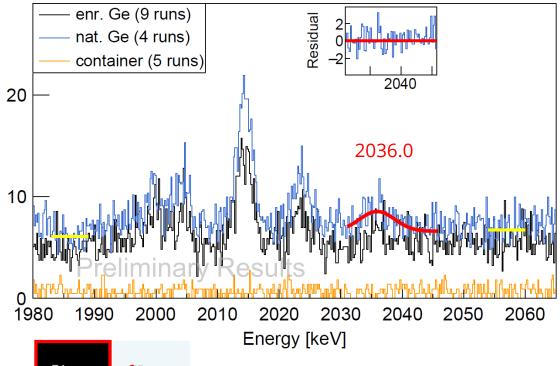
Literature [2] [3]

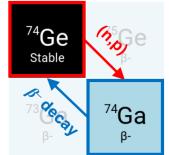
 $E_{v} = 2036.2 \, \text{keV}$



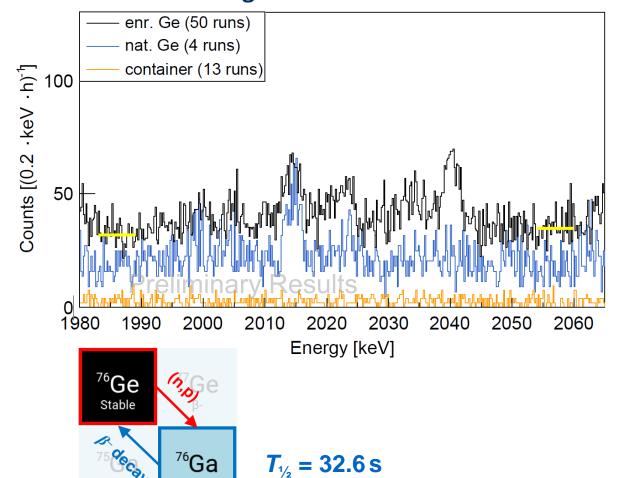
 $T_{1/2} = 8.12 \, \text{min}$

Literature [2] [3] $E_{v} = 2036.2 \, \text{keV}$


Timing window: 0 - 90 s

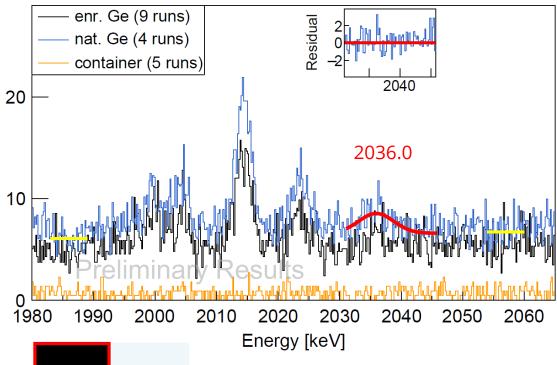


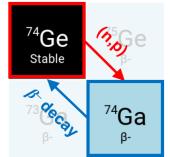
Counts [(0.2 ·keV ·h)⁻¹]



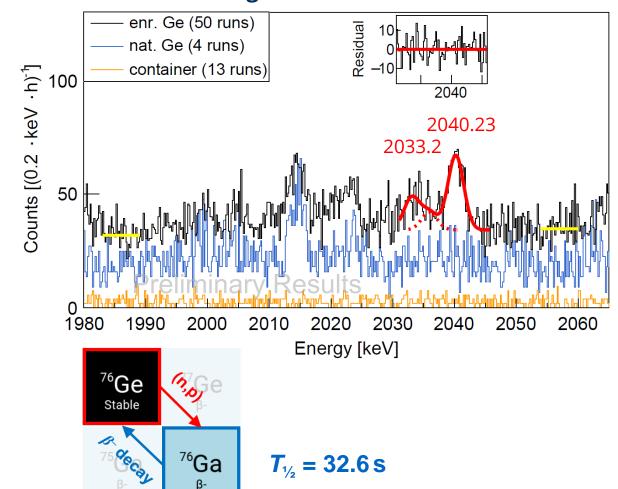
 $T_{\frac{1}{2}} = 8.12 \, \text{min}$

Literature [2] [3] $E_y = 2036.2 \text{ keV}$


Timing window: 0 - 90 s



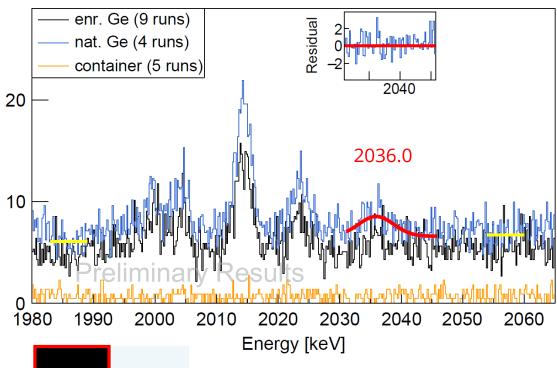
Counts [(0.2 ·keV ·h)⁻¹]

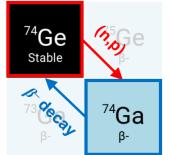

Counts [(0.2 ·keV ·h)⁻¹]

 $T_{\frac{1}{2}} = 8.12 \, \text{min}$

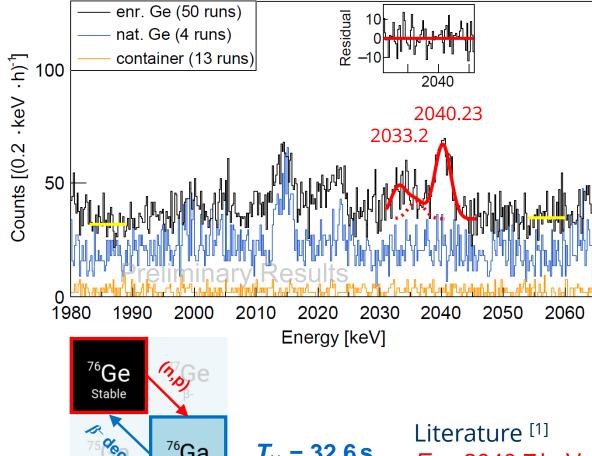
Marie Pichotta

Literature [2] [3] $E_y = 2036.2 \text{ keV}$


Timing window: 0 - 90 s



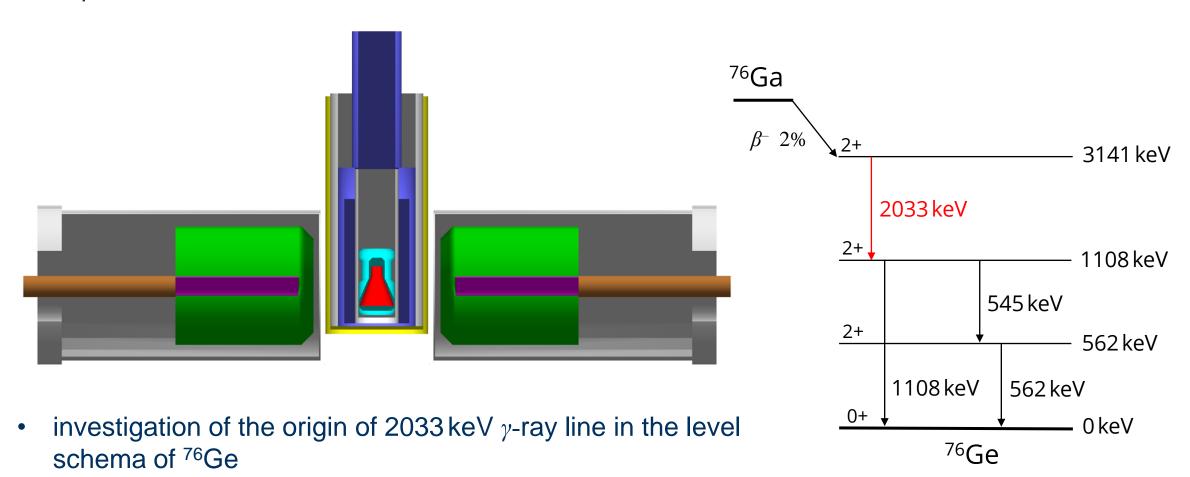
Summed spectra around Q = 2039 keV



 $T_{1/2} = 8.12 \, \text{min}$

Literature [2] [3] $E_v = 2036.2 \, \text{keV}$

Timing window: 0 - 90 s


 $E_{v} = 2040.7 \, \text{keV}$

Counts [(0.2 ·keV ·h)⁻¹]

Extended detection setup

implementation of second HPGe for coincidence measurement

Summary

- existence of γ -ray line at $E_{\gamma} = (2040.23 \pm 0.16) \,\mathrm{keV}$ from ⁷⁶Ga confirmed
 - \rightarrow ⁷⁶Ge itself can contribute to potential background for ⁷⁶Ge $\beta\beta$ decay experiments
- found new γ -ray line at $E_{\gamma} = (2033.2 \pm 0.3) \,\mathrm{keV}$ from ⁷⁶Ga

Outlook

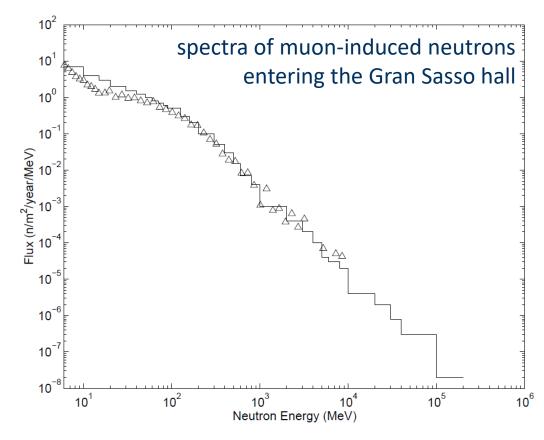
- publication in progress
- determination of emission probabilities of 76 Ga and 74 Ga γ -ray lines
- coincidence measurement to investigate origin of 2033 keV line in the level schema of ⁷⁶Ge

Literature

^[1] D. C. Camp and B. P. Foster, "Energy levels in ⁷⁶Ge from the decay of ⁷⁶Ga", Nucl. Phys. A, 177:401–417, 1971

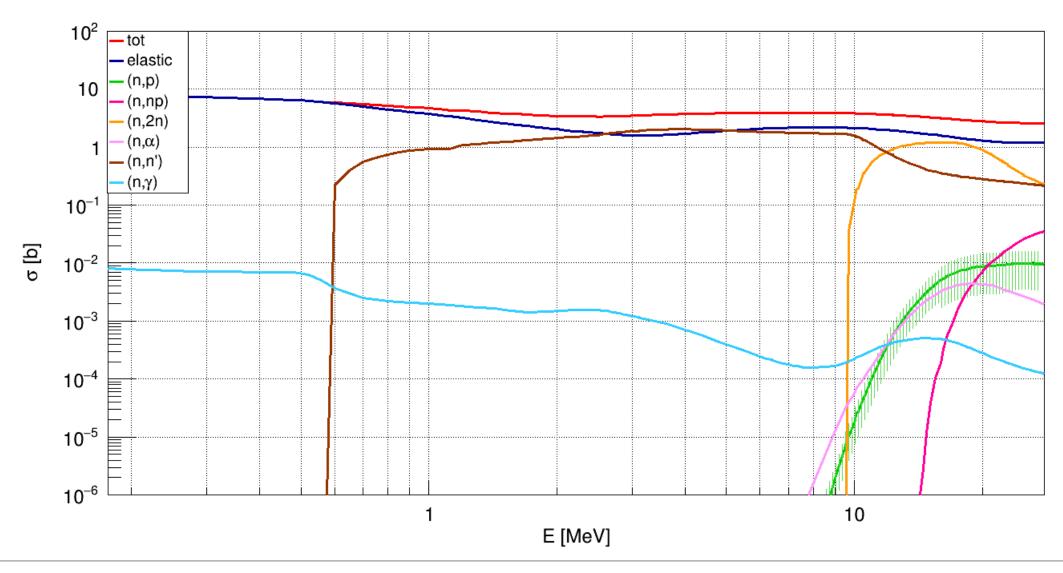
^[2] D. C. Camp, D. R. Fielder, and B. P. Foster, "Energy levels in ⁷⁴Ge from the decay of ⁷⁴Ga", Nuclear Physics A, 163(1):145 – 160, 1971

[3] H. W. Taylor, R. L. Schulte, P. J. Tivin, and H. Ing, "The decay of 8.0 min ⁷⁴Ge", Can. J. Phys., 53:107, 1975

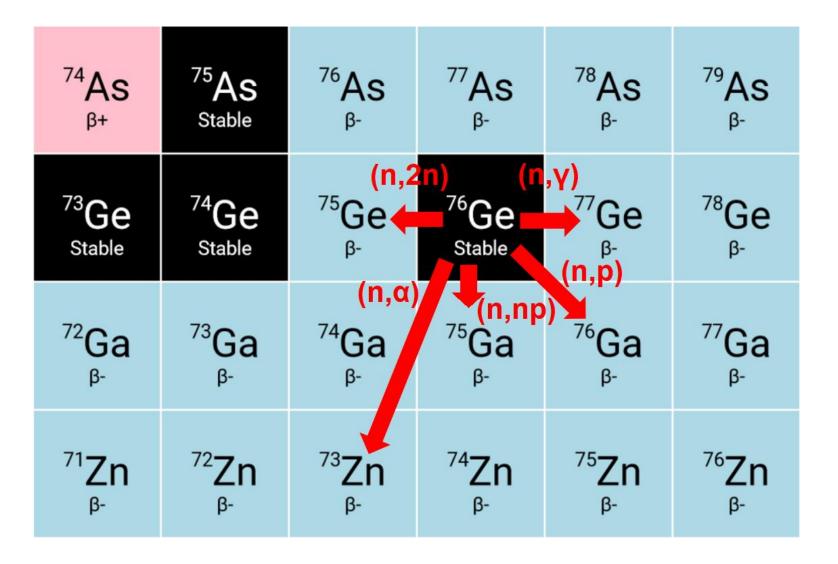


Thanks for your attention!

How dangerous is the 2040 keV γ -ray line?

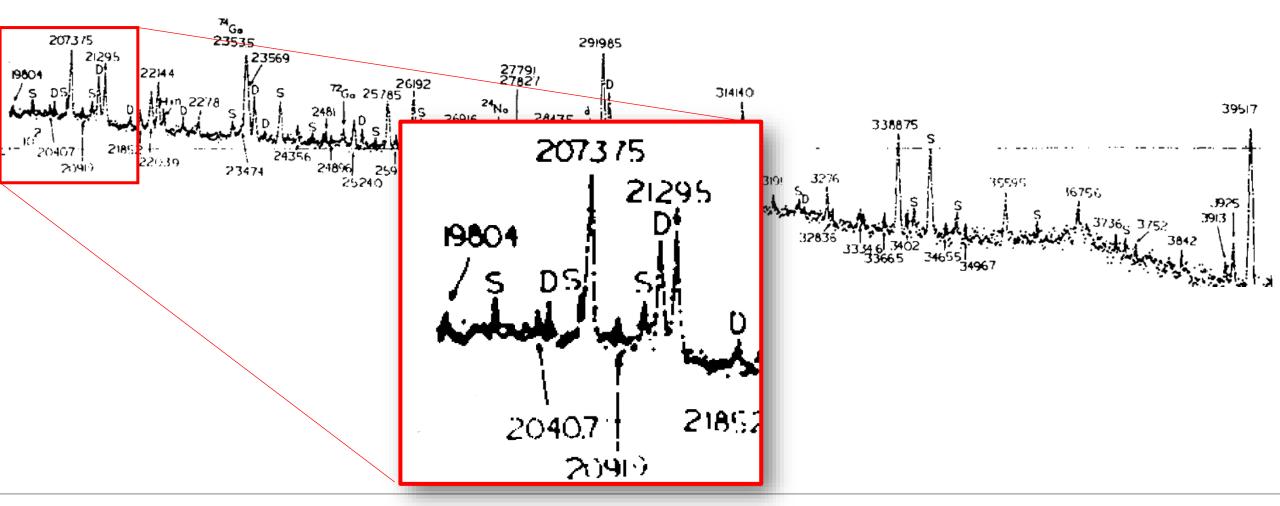

- cosmic muons induce several processes of neutron production
 - → high energetic neutrons can enter setup
- Cherenkov detector and LAr cryostat reduces prompt muon-induced background with "only" 99.2% efficiency [4]
- production of 2040 keV γ -ray due to (n,p) and (n,n') reactions on ⁷⁶Ge
 - \rightarrow probability strongly depends on σ , v_{γ} and neutron flux

Neutron Background Studies for the CRESST Dark Matter Experiment, H. Wulandari, J. Jochum, W. Rau, F. von Feilitzsch, 2004



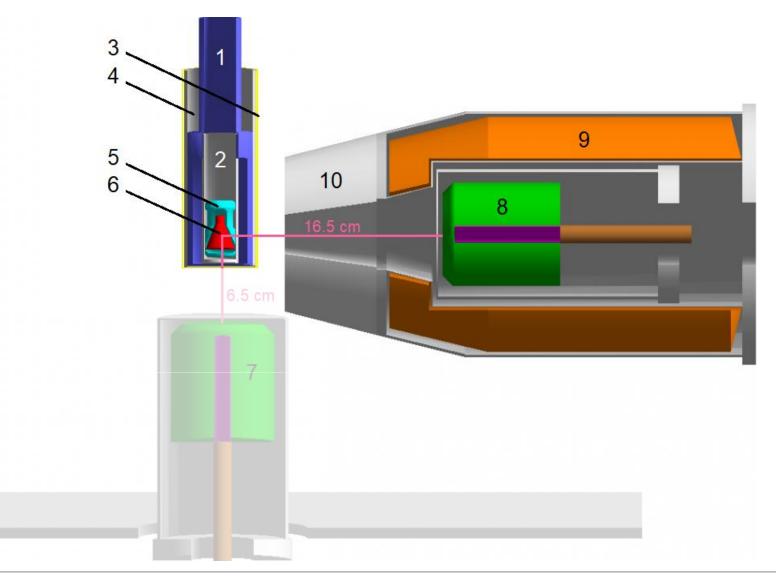
Neutron cross-sections of ⁷⁶Ge

Possible reactions with 14 MeV neutrons

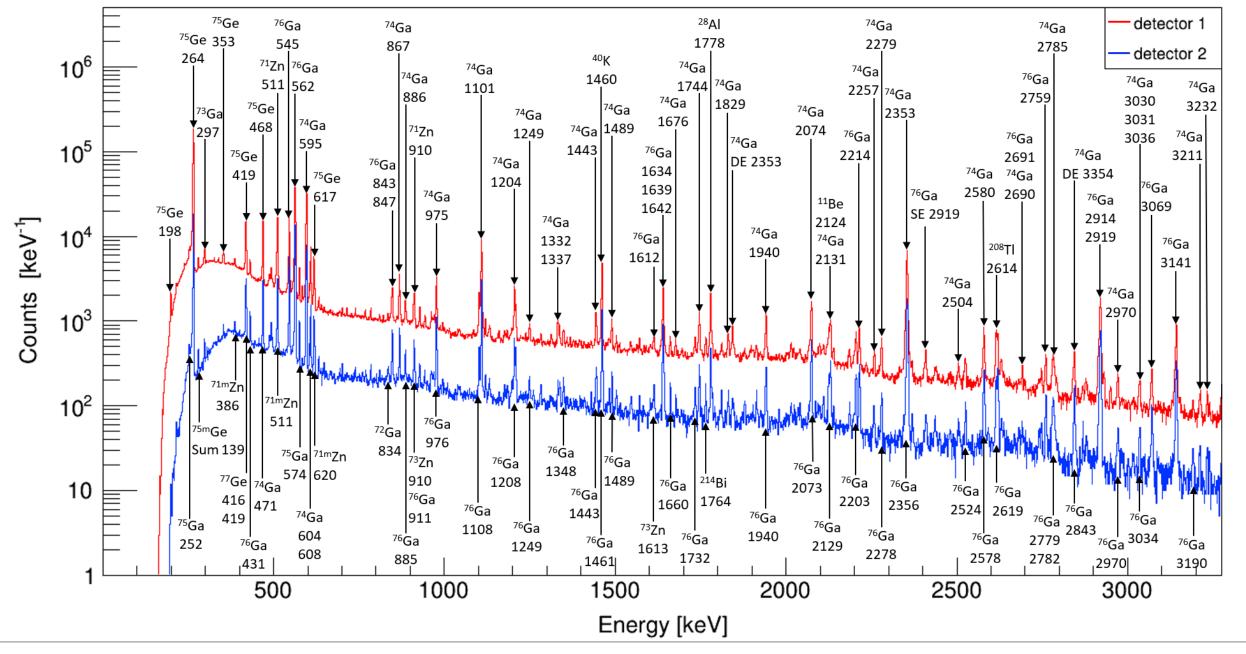

Possible γ -ray structures within the fit range of 1980-2070 keV

Channel	E [keV]	ν_{γ} [%]	$T_{1/2}$
$^{76}\mathrm{Ge}(n,\alpha)^{73}\mathrm{Zn}$	1979.7	0.41	$24.5\mathrm{s}$
76 Ge $(n,p)^{76}$ Ga	1980.4	0.22	$32.6\mathrm{s}$
72 Ge $(n,p)^{72}$ Ga	1991.16	0.101	$14.10\mathrm{h}$
74 Ge $(n,p)^{74}$ Ga	1999.3	0.4	$8.12\mathrm{min}$
74 Ge $(n,p)^{74}$ Ga	2004.6	< 0.4957	$8.12\mathrm{min}$
74 Ge $(n,p)^{74}$ Ga	2014.45	1.29	$8.12\mathrm{min}$
74 Ge $(n,p)^{74}$ Ga	2023.9	0.45	$8.12\mathrm{min}$
$^{76}\mathrm{Ge}(n,\alpha)^{73}\mathrm{Zn}$	2028.3	0.026	$24.5\mathrm{s}$
72 Ge $(n,p)^{72}$ Ga	2028.94	0.115	$14.10\mathrm{h}$
$^{74}\mathrm{Ge}(n,\alpha)^{71}\mathrm{Zn}$	2064.6	0.045	$2.45\mathrm{min}$
Compton edges			
72 Ge $(n,p)^{72}$ Ga	1984.96	0.218	14.10 h
76 Ge $(n,p)^{76}$ Ga	1985.29	2.24	$32.6\mathrm{s}$
74 Ge $(n,p)^{74}$ Ga	2002.64	0.1	$8.12\mathrm{min}$
74 Ge $(n,p)^{74}$ Ga	2027.54	1.75	$8.12\mathrm{min}$
76 Ge $(n,p)^{76}$ Ga	2049.06	0.44	$32.6\mathrm{s}$
74 Ge $(n,p)^{74}$ Ga	2049.31	2.34	$8.12\mathrm{min}$
$^{74}{ m Ge}(n,\alpha)^{71}{ m Zn}$	2064.90	0.026	$2.45\mathrm{min}$

SE peaks $E = E_{\gamma}$ - 511 keV						
72 Ge $(n,p)^{72}$ Ga	1980.026	7.73	$14.10\mathrm{h}$			
74 Ge $(n,p)^{74}$ Ga	1993.2	0.65	$8.12\mathrm{min}$			
72 Ge $(n,p)^{72}$ Ga	1996.718	13.33	$14.10\mathrm{h}$			
72 Ge $(n,p)^{72}$ Ga	2004.857	0.258	$14.10\mathrm{h}$			
76 Ge $(n,p)^{76}$ Ga	2013.0	0.80	$32.6\mathrm{s}$			
74 Ge $(n,p)^{74}$ Ga	2069.07	1.28	$8.12\mathrm{min}$			
76 Ge $(n,p)^{76}$ Ga	2067.55	2.24	$32.6\mathrm{s}$			
DE peaks $E = I$	E_{γ} - 1022 keV					
74 Ge $(n,p)^{74}$ Ga	1996.8	0.064	$8.12\mathrm{min}$			
74 Ge $(n,p)^{74}$ Ga	2008.3	< 0.1652	$8.12\mathrm{min}$			
74 Ge $(n,p)^{74}$ Ga	2009.7	0.19	$8.12\mathrm{min}$			
76 Ge $(n,p)^{76}$ Ga	2012.6	0.52	$32.6\mathrm{s}$			
74 Ge $(n,p)^{74}$ Ga	2014.1	0.046	$8.12\mathrm{min}$			
74 Ge $(n,p)^{74}$ Ga	2021.6	0.046	$8.12\mathrm{min}$			
76 Ge $(n,p)^{76}$ Ga	2047.9	0.92	$32.6\mathrm{s}$			



Previous experiment by Camp & Foster (1971)



- **1.+ 2.** End piece of the tube system
- 3. Lead shielding (3 mm)
- **4.** Aluminium shielding (5 mm)
- **5.** Sample container
- **6.** Sample
- 7.+ 8. HPGe detectors
- **9.** BGO
- **10.** Lead collimator

