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Abstract

Large Language Models (LLMs) exhibit strong
In-Context Learning (ICL) capabilities when
prompts with demonstrations are used. How-
ever, fine-tuning still remains crucial to fur-
ther enhance their adaptability. Prompt-based
fine-tuning proves to be an effective fine-tuning
method in low-data scenarios, but high de-
mands on computing resources limit its prac-
ticality. We address this issue by introduc-
ing a prompt-based parameter-efficient fine-
tuning (PEFT) approach. GNNAVI leverages
insights into ICL’s information flow dynamics,
which indicates that label words act in prompts
as anchors for information propagation. GN-
NAVI employs a Graph Neural Network (GNN)
layer to precisely guide the aggregation and
distribution of information flow during the pro-
cessing of prompts by hardwiring the desired
information flow into the GNN. Our experi-
ments on text classification tasks with GPT-2
and Llama2 show GNNAVI surpasses standard
prompt-based fine-tuning methods in few-shot
settings by updating just 0.2% to 0.5% of pa-
rameters. We compare GNNAVI with prevalent
PEFT approaches, such as prefix tuning, LoRA
and Adapter in terms of performance and ef-
ficiency. Our analysis reveals that GNNAVI
enhances information flow and ensures a clear
aggregation process. 1

1 Introduction

Large language models (LLMs) show remarkable
In-Context-Learning (ICL) capabilities by learn-
ing from prompts with demonstrations (Wan et al.,
2023; Sun et al., 2023; Patel et al., 2023; Mekala
et al., 2023; Ko et al., 2023), with the exponential
growth in model sizes. However, fine-tuning LLMs
still remains essential for further enhancing their
adaptability (Zhang et al., 2023). Prompt-based
fine-tuning (Schick and Schütze, 2021a; Ma et al.,

1Our code is available at https://github.com/
ShuzhouYuan/GNNavi.

Figure 1: Visualization of Full Parameter Fine-tuning
(FPFT) and GNNAVI from the perspective of informa-
tion flow (top words to bottom words). Without GN-
NAVI, tokens interact with every preceding word in
FPFT, leading to confusion in information flow. Con-
versely, in GNNAVI, label words aggregate informa-
tion from preceding words ( blue path ), and the fi-
nal token aggregates information from the label words
( pink path ), resulting in a clearer information aggrega-
tion process.

2024), adopting objectives that simulate the lan-
guage modeling process, emerges as a viable tech-
nique, particularly in low-data settings (Gao et al.,
2021). Yet, the substantial computational demands
of Full-Parameter Fine-Tuning (FPFT), which up-
dates billions of parameters, pose a practical chal-
lenge. In fact, optimizing a relatively small subset
of an LLM’s parameters can significantly improve
its performance (Ding et al., 2023), paving the way
for Parameter-Efficient Fine-Tuning (PEFT) meth-
ods. These methods include Adapter (Houlsby
et al., 2019), Prompt-Tuning (Lester et al., 2021),
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Prefix Tuning (Li and Liang, 2021), and LoRA (Hu
et al., 2022). They offer alternatives to FPFT but
are often not tailored to the prompt-based fine-
tuning of LLMs.

Recent advances in understanding the ICL mech-
anism offer a new avenue for PEFT of LLMs. ICL’s
success in leveraging few-shot demonstrations and
prompts (Brown et al., 2020) has motivated the
adoption of prompt-based fine-tuning for moder-
ately sized language models in a few-shot learn-
ing manner (Ma et al., 2023; Schick and Schütze,
2021b). Recognizing the specific features of fine-
tuning LLMs within the framework of ICL, we
propose GNNAVI, a novel PEFT method designed
expressly for prompt-based learning. Our method
draws inspiration from recent insights into the un-
derlying process of ICL from an information flow
perspective, particularly the role of label words
in the prompt (Wang et al., 2023). Label words
act as anchors with two functions: aggregating in-
formation from context words and directing this
information to the last token for accurate predic-
tions. GNNAVI incorporates this understanding
through the integration of a Graph Neural Network
(GNN) layer (Kipf and Welling, 2017; Hamilton
et al., 2017) into LLMs, optimizing the prompt-
based fine-tuning process by navigating the infor-
mation flow within prompts, as visualized in Figure
1. Following the paths of information flow, we in-
sert a GNN layer into the deep layers2 of the LLM.
We treat the input text as a graph, where each token
serves as a node, and connect these nodes according
to the paths of information flow. The GNN layer
aims to guide the information flow by aggregating
information from neighbouring nodes.

As a PEFT method, GNNAVI adopts a
lightweight fine-tuning strategy, updating only the
parameters of the GNN layer. Experimenting with
few-shot training examples on GPT2-XL (Radford
et al., 2019) and Llama2 (Touvron et al., 2023),
GNNAVI achieves remarkable results with just
0.2% of the trainable parameters of the full model,
consistently outperforming FPFT and other PEFT
methods across various classification tasks. Addi-
tionally, we analyze the attention interaction be-
tween tokens and find that GNNAVI demonstrates
a more stable and clear information aggregation
process compared to FPFT.

In summary, our contributions are: i) We pro-
2We use “deep layers” to refer to the last few layers of the

LLM. For instance, in GPT2-XL, there are 48 layers, with the
last 12 layers considered as deep layers in our work.

pose a novel PEFT method, GNNAVI, inspired by
the information flow perspective of LLMs. GN-
NAVI effectively navigates the information aggre-
gation process in LLMs. ii) We apply GNNAVI

to text classification tasks with few-shot training
examples, outperforming baselines while updating
only 0.2% to 0.5% of parameters. iii) Our work
sheds light on the application of GNNs in NLP and
provides novel insights for future research. To the
best of our knowledge, we are the first to utilize
GNNs to enhance the performance of LLMs from
the information flow perspective.

2 Related Work

Prompt-Based Learning GPT-3 (Brown et al.,
2020) has sparked interest in prompt-based learn-
ing methods, and particularly in the ICL paradigm.
This surge in attention has fostered a multifaceted
exploration into the factors influencing ICL per-
formance, including input perturbation (Yoo et al.,
2022; Min et al., 2022), selection of demonstra-
tion (Liu et al., 2022; Nie et al., 2023a), and
calibration techniques (Zhao et al., 2021a; Nie
et al., 2023b). Concurrently, there has been a
deep dive into understanding the underlying mech-
anism of ICL, employing diverse theoretical frame-
works such as gradient descent (Dai et al., 2023),
Bayesian inference (Xie et al., 2022) and informa-
tion flow (Wang et al., 2023). Following the route
of ICL, prompt-based fine-tuning has emerged
as an effective strategy in scenarios with lim-
ited data (Gao et al., 2021; Schick and Schütze,
2021a,b). We leverage insights from these inves-
tigations into the ICL mechanism and propose a
tailored PEFT method for LLMs.

Parameter-Efficient Fine-Tuning (PEFT)
PEFT focuses on enhancing language model
performance on downstream tasks by optimizing a
small number of parameters, instead of fine-tuning
all parameters (Ding et al., 2023). Various PEFT
strategies have been explored. Addition-based
methods only train modules or parameters added to
the model, such as Adapter (Houlsby et al., 2019),
Prompt tuning (Lester et al., 2021), and Prefix
tuning (Li and Liang, 2021). Specification-based
methods selectively fine-tune specific parameters
in the original model while keeping the remainder
frozen, such as BitFiT (Ben Zaken et al., 2022).
Reparameterization-based methods transform
existing parameters into a more parameter-efficient
form, such as LoRA (Hu et al., 2022). Recent
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Figure 2: Visualization of GNNAVI with an example of sentiment analysis, where label words and the last token are
highlighted in blue and pink, respectively. a) The GNN layer is integrated into a decoder-only LLM. The LLM
processes a prompt containing demonstrations and generates the next token as the prediction. b) The input text is
transformed into a graph, with tokens as nodes and information flow paths as edges. c) Visualizing the working
mechanism of the GNN: Node representations are updated by aggregating information from neighboring nodes. To
maintain simplicity, not all nodes are listed.

advancements in PEFT research have increasingly
prioritized memory efficiency, aiming to enable
the training of LLMs with minimal computational
resources, such as MeZO (Malladi et al., 2023)
and HiFT (Liu et al., 2024). Our proposed PEFT
method is designed specifically for LLMs and
draws upon the intricacies of how LLMs process
and learn from prompts.

GNN for NLP GNNs are predominantly utilized
in NLP tasks involving structural input, such as
graph-to-text generation (Gardent et al., 2017) and
graph-enhanced question answering (Zhang et al.,
2022). Previous approaches employ GNNs to en-
code complex graph and node representations. For
instance, Koncel-Kedziorski et al. (2019) intro-
duced Graph Transformer, which extends graph
attention networks (Veličković et al., 2018) for en-
coding scientific graph inputs, while Li et al. (2021)
utilize GNNs to encode knowledge graphs and
align them with text embeddings from pretrained
language models. Additionally, GNNs serve as
auxiliary tools for pretrained language models to
encode complex structural information for AMR-
to-text generation (Ribeiro et al., 2021). Unlike
prior work, we leverage GNNs for information ag-
gregation based on the perspective of information
flow.

3 Method

3.1 Architecture of GNNAVI

Intuition Wang et al. (2023) demonstrated that
the working mechanism of LLM follows specific
paths of information flow. The label words in the in-
put prompt serve two roles for the final predictions:
acting as information aggregators by gathering in-
formation from their preceding words and propa-
gating the aggregated information to the last token
position where the prediction is generated. Build-
ing upon their insights, we posit that navigating the
flow of information aggregation can enhance both
efficiency and effectiveness of LLMs. Leveraging
the GNN’s proficiency in information aggregation
at the graph level, we explore LLMs from a graph
theory perspective and utilize GNN as a tool to
guide the information flow.

Working Mechanism We illustrate the working
mechanism of GNNAVI in Figure 2. For example,
in a sentiment analysis task, the prompt comprises
one demonstration from each class and the text to
be classified. An LLM processes this prompt layer
by layer. The GNN layer is inserted after the l-th
decoder layer of the LLM3. Receiving the token

3In our preliminary experiments, GNNAVI performs opti-
mally when the GNN layer is inserted in the last quarter of the
layers in LLM. Thus, we add the GNN layer after the 42nd
layer of GPT2-XL and after the 28th layer of Llama2-7b in
our experiments. A detailed analysis is conducted in §6.1.
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representations from the l-th layer, the GNN layer
learns node representations by aggregating infor-
mation from neighboring nodes. Subsequently, the
node representations are propagated to the next
layer in LLM as hidden states. The nodes are con-
nected following the paths of information flow. As
depicted in Figure 2(b), the label words ‘Positive’
and ‘Negative’ aggregate information from their
preceding tokens and pass the information to the
last token ‘:’ of the prompt. In case the label word
is tokenized into subtokens, we use the first subto-
ken to serve as the label word, following previous
work (Zhao et al., 2021b; Wang et al., 2023). We
freeze the pretrained parameters of the LLM dur-
ing training and update only the parameters in the
GNN layer.

Graph Neural Network The graph neural net-
work aggregates information from neighboring
nodes to model graph and node representations
by message passing. To formulate an NLP task on
a graph level, we consider the input text as a graph.
We define a directed graph G as a triple (V, E ,R)
with a set of nodes V = {v1, . . . , vn} (one node
for each token), a set of relation types R4, and a
set of edges E of the form (v, r, v′) with v, v′ ∈ V ,
and r ∈ R. Each node vi is associated with a fea-
ture vector xi, which is the token representation
of the i-th token in the l-th layer. In Figure 2, for
instance, the first token ‘Review’ is connected with
the label token ‘Positive’. This edge is represented
by the triple (Review, aggregate,Positive), where
aggregate denotes an edge directed towards a la-
bel node.

The node representations in GNN layer are up-
dated by aggregating the information from neigh-
boring nodes. The aggregation algorithms vary
across different GNN architectures. For example,
the learning process of Graph Convolutional Net-
work (GCN) (Kipf and Welling, 2017) is formulatd
as:

hv = σ


W

∑

v′∈N(v)

h
(l)

v′

|N(v)|


 (1)

where hv denotes the updated node representation
of v, h(l)v′ denotes the token representation of its
neighbouring nodes from l-th decoder layer, σ is
the activation function, W is the trainable param-
eter of GNN, N(v) includes all the neighbouring
nodes of v.

4In our work, we only consider one relation type: the
directed edge from node v to node v′.

We also include another GNN architecture,
GraphSAGE (Hamilton et al., 2017), in our studies,
which involves a more complex learning process:

hv = σ
(
W

(
h(l)
v ⊕ AGG({h(l)

v′ , ∀v′ ∈ N(v)})
))

(2)

The concatenation function ⊕ concatenates aggre-
gated information with the node current representa-
tion, and the aggregation function AGG compiles
message passing from neighboring nodes using
techniques such as mean, pool and LSTM.5 We
visualize the information aggregation process of
GNN in Figure 2(c).

3.2 Task Formulation
In our work, we implement prompt-based fine-
tuning for text classification tasks. Our goal is
to predict the correct class given a few examples.
We reformulate the task as a language modeling
problem. Let M be a language model with vocab-
ulary V , and let L be a set of label words. The
training set T consists of pairs (s, l), where s is a
sequence of tokens from the vocabulary V and l is
a label word from the set L. In a sentiment anal-
ysis task, for instance, we define a pattern P(s, l)
which associates a text s =‘Nice performance’ and
a label word l =‘Positive’ as follows:

Review: Nice performance. Sentiment: Positive

For a k-class classification task, we sample one
demonstration per class from the training set T ,
and concatenate them with the text s to be classified
to form the prompt X(s):

X(s) = P(s1, l1)⊕ . . .⊕P(sk, lk)⊕P(s, ε) (3)

⊕ denotes the concatenation of the input demon-
strations and ε is the empty string. A more intuitive
example is shown in Figure 2. The language model
reads the prompt X(s) and predicts the next token
l, which is the label assigned to s. M is initialized
with pretrained parameters ϕ, and fine-tuned by
minimizing the cross-entropy loss:

ℓ = −
∑

(s,l)∈T
log pϕ(X(s), l) (4)

pϕ(., .) returns the probability which M assigns to
the correct label l. In our work, we randomly select
one demonstration per class to form the prompt and
remove them from T . The training examples are
then sampled from the remaining samples in T .

5We apply mean aggregation to GraphSAGE in this work.
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4 Experiments

4.1 Datasets

We implement text classification tasks using five
commonly used datasets from different domains,
including SST-2: Stanford Sentiment Treebank Bi-
nary for sentiment analysis (Socher et al., 2013);
EmoC: EmoContext for 4-label emotion classifi-
cation (Chatterjee et al., 2019); TREC: Text RE-
trieval Conference Question Classification (TREC)
for question type classification containing 6 types
(Li and Roth, 2002; Hovy et al., 2001); Ama-
zon: binary classification for Amazon reviews
(McAuley and Leskovec, 2013); AGNews: AG’s
news topic classification dataset for topic classifi-
cation with 4 labels (Zhang et al., 2015).

4.2 Experimental Setting

The prompt is designed following the template in
Equation 3. We take one demonstration per class
to form the prompt6 and append the sample to be
predicted at the end of the prompt. Following a few-
shot learning setting, we experiment with different
numbers of training samples, namely 5, 10, 20,
50, 100, and 200 samples per class. The training
samples are randomly selected from the original
training set. Another 1000 samples from the orig-
inal training set are sampled as the validation set,
and 1000 samples from the original test set are used
for evaluation.7 The accuracy on the validation set
is employed to identify the best-performing model,
which is subsequently evaluated on the test set. We
report the average accuracy over five random seeds.
The hyperparameters can be found in Appendix A.

4.3 Models

As GNNAVI is built on the base of decoder-only
LLMs, we select two large language models, both
with over 1 billion parameters, and equip them
with GNNAVI. Specifically, we choose GPT2-XL
with 1.6 billion parameters (Radford et al., 2019)
and Llama2 with 7 billion parameters (Touvron
et al., 2023). For the GNN layer, we opt for GCN
and GraphSAGE, denoted as GNNAVI-GCN and
GNNAVI-SAGE in the experiments. To integrate
GNNAVI with GPT2-XL and Llama2, we modify
their source codes from Huggingface (Wolf et al.,
2019) and utilize GNN models provided by Py-
Torch Geometric (Fey and Lenssen, 2019).

6The templates of prompts are presented in Appendix B.
7The original test set of SST-2 contains less than 1000

samples, so we keep the original test set for model evaluation.

4.4 Baselines

ICL one-shot per class: In-context learning (ICL)
follows the scenario where the LLM is initial-
ized with pre-trained parameters and instructed
by demonstrations to perform text classification
tasks. None of the model parameters are updated.
We sample one demonstration per class to form
the prompt. The demonstrations used to form the
prompt are consistent with those used for other
methods under the same random seed.

ICL few-shot per class: To compare with the
low-data fine-tuning setting, we implement ICL
with 5 additional shots per class as the demonstra-
tions. This setting is comparable to a training set
with a size of 5 samples per class. Due to the
limited input length of GPT2-XL, AGNews and
Amazon are set to 4 additional shots per class.

Low-Rank Adaptation (LoRA): LoRA is a
PEFT method that reduces the number of trainable
parameters by injecting trainable rank decomposi-
tion matrices into each layer of the LLM (Hu et al.,
2022). We implement LoRA using the Python li-
brary PEFT (Mangrulkar et al., 2022).

Prefix-tuning (Prefix): Prefix-tuning utilizes a
soft-prompt strategy, incorporating virtual tokens
into the LLM and updating only the parameters
of the virtual tokens (Li and Liang, 2021). We
implement prefix-tuning using the PEFT library
(Mangrulkar et al., 2022). The number of virtual
tokens8 is set to maintain a comparable size of
trainable parameters as for GNNAVI.

Adapter: We insert a standard adapter module
after the feed-forward sub-layer of each layer in the
LLM (Houlsby et al., 2019). The adapter module
is added using AdapterHub (Pfeiffer et al., 2020;
Poth et al., 2023).

Full Parameter Fine-tuning (FPFT): Full pa-
rameter fine-tuning is implemented as a strong base-
line, where all the model parameters are updated
during the training process.

5 Results

We report the results with 5 and 200 training exam-
ples in Table 1, which reflect the performance under
the scenarios where only limited training examples
are available and sufficient training examples are
provided respectively. Full results are presented in
Appendix C.

8The number of virtual tokens can be found in Appendix
A.
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Method #Param SST-2 EmoC TREC Amazon AGNews Average #Param SST-2 EmoC TREC Amazon AGNews Average

GPT2-XL Llama2

k = 0

ICL - 55.44 6.48 54.68 53.32 72.12 48.41 - 67.55 9.60 70.36 94.98 84.14 65.33

k = 5

ICL - 63.17 6.30 57.68 53.67 50.43 46.25 - 86.93 20.18 45.72 92.30 80.16 65.06

LoRA 2.5M 91.98 50.60 75.20 88.80 85.20 78.36 4.2M 95.42 64.20 88.40 91.80 86.60 85.28
Prefix 6.1M 59.13 73.46 32.92 60.00 75.40 60.18 39.3M 50.96 58.56 21.36 49.36 25.78 41.20

Adapter 15.4M 79.82 76.00 79.60 91.45 81.25 81.62 198M 50.92 84.05 18.80 49.45 24.80 45.60
FPFT 1.6B 62.13 61.30 65.28 73.00 80.82 68.51 6.7B 94.63 61.92 81.72 95.86 87.58 84.34

GNNAVI-GCN 2.6M 84.31 75.48 76.72 90.90 83.16 82.11 16.8M 94.56 78.30 83.2 94.00 86.25 86.63
GNNAVI-SAGE 5.1M 81.95 78.70 77.92 88.66 82.88 82.02 33.6M 92.91 80.12 80.80 95.66 86.06 87.11

k = 200

LoRA 2.5M 90.83 80.80 90.80 82.00 86.20 86.13 4.2M 91.29 86.80 93.60 95.80 90.40 91.32
Prefix 6.1M 50.92 80.18 69.80 59.80 79.08 67.96 39.3M 48.35 81.72 45.68 52.28 27.54 51.11

Adapter 15.4M 88.65 80.70 96.60 92.30 89.80 89.61 198M 50.92 85.05 88.20 49.45 81.50 67.57
FPFT 1.6B 68.97 73.70 80.16 74.82 85.34 76.60 6.7B 95.64 79.90 96.76 96.12 91.44 91.97

GNNAVI-GCN 2.6M 90.67 78.82 91.88 92.94 89.20 88.70 16.8M 95.36 82.85 95.50 96.45 91.05 92.24
GNNAVI-SAGE 5.1M 90.46 82.68 92.32 93.44 89.28 89.64 33.6M 95.30 81.94 94.76 95.96 90.68 91.73

Table 1: Results of different training methods (accuracy). k denotes the number of training examples per class,
#Param denotes the number of trainable parameters. The best scores are highlighted with bold.

LoRA Prefix Adapter FPFT GNNAVI-GCN GNNAVI-SAGE

GPT2-XL Llama2

Figure 3: Results of average accuracy with different number of training examples. The x-axis denotes the number of
training examples per class.

5.1 Overall Performance

Observing the results of GPT2-XL, GNNAVI re-
markably rivals ICL, FPFT, and other parameter-
efficient baselines. Under the low-data setting
of 5 training examples, both GNNAVI-GCN and
GNNAVI-SAGE outperform FPFT by over 13%,
achieving higher accuracy than other PEFT meth-
ods by 0.4% to 21%. Increasing the number of
training examples to 200, the average performance
of GNNAVI improves to 89.64% and outperforms
other baselines.

Similar to GPT2-XL, GNNAVI achieves the best
performance with Llama2 among all the baselines.
With only 5 training examples, GNNAVI-SAGE
achieves 2.77% higher average accuracy than FPFT.
Comparing with other PEFT methods, GNNAVI

shows higher average accuracy from 1.8% to 35%.
And with 200 training examples, GNNAVI-GCN
achieves 92.24% average accuracy, outperforming
FPFT, Prefix-tuning, Adapter, and LoRA.

5.2 Efficiency Analysis

SST-2 EmoC TREC Amazon Agnews

GPT2-XL 4.7× 6.3× 4.1× 3.9× 3.4×
Llama2 4.3× 2.4× 1.6× 1.4× 1.2×

Table 2: The ratio by which the training process is
accelerated for one training epoch for GNNAVI-GCN
compared to FPFT.

GNNAVI significantly reduces the number of
trainable parameters compared to the baselines
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for both GPT2-XL and Llama2. GNNAVI-GCN
for GPT2-XL achieves the highest average ac-
curacy with 5 training examples containing only
2.5 million trainable parameters, which is 615
times smaller than FPFT, six times smaller than
Adapter, twice smaller than Prefix, and similar to
LoRA. As for Llama2, GNNAVI saves over 6.6
billion trainable parameters compared to FPFT and
achieves better results. GNNAVI-GCN also up-
dates fewer parameters than Prefix and Adapter.
Although LoRA contains fewer trainable param-
eters than GNNAVI-GCN in Llama2, the perfor-
mance of LoRA cannot compete with GNNAVI-
GCN and GNNAVI-SAGE. Table 2 shows that by
saving a significant amount of training parameters,
GNNAVI-GCN speeds up the training process by
a factor of up to 6 compared to FPFT.

5.3 Influence of Training Examples

(a) GPT2-XL

(b) Llama2

Figure 4: The improvement gained by adding training
examples for GNNAVI-SAGE, compared to using 5
training examples per class.

Adding more training examples improves the
accuracy for most baselines and GNNAVI. As
depicted in Figure 3, GNNAVI consistently out-
performs other methods as the number of train-
ing examples increases. While other methods also
show improvement with more training examples,

the extent of improvement is not as consistent as
for GNNAVI, particularly for Prefix and Adapter.

Figure 4 shows the performance of GNNAVI for
the different tasks as a function of the number of
training examples. We observe that the effect of
adding training examples is similar for both GPT2-
XL and Llama2. Notably, adding more training ex-
amples yields significant improvements, especially
in low-data settings (e.g. with 10, 20, and 50 train-
ing examples) where GNNAVI shows a substantial
improvement, except for EmoC. However, the sig-
nificance diminishes when more than 50 training
examples are provided, the improvement is not as
pronounced here as in low-data settings.

6 Ablation Study

In §6.1 of this section, we delve into the influence
of the position where the GNN layer is inserted
in the LLM. In §6.2, we investigate the effects
of removing one of the information flow paths on
performance. All of these studies are conducted
using GNNAVI-SAGE with 5 training samples per
class under the experimental settings outlined in
§4.2.

6.1 Position of GNN Layer

Figure 5: Performance Comparison with GNN inserted
at various positions in GPT2-XL.

The position where the GNN layer is inserted
significantly impacts the model’s performance. Fig-
ure 5 illustrates the performance of GNNAVI when
the GNN layer is inserted at different locations in
GPT2-XL. With the exception of EmoC, all tasks
exhibit lower performance when the GNN layer is
added in the first 10 layers of GPT2-XL. Perfor-
mance improves as the GNN is added in deeper
layers, reaching peak accuracy around the 44th
layer. Subsequently, accuracy declines until the
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last layer. This trend may stem from the gradual
initiation of the information flow process in the
early layers of LLM, where the GNN’s influence is
limited due to insufficient token interaction. Con-
versely, in the final layers, the information flow
process is nearly complete, rendering it too late for
the GNN to guide effectively. Despite variations
in performance changes across tasks, the average
performance suggests that the optimal placement
for the GNN layer is between the 38th and 42nd
layers for GPT2-XL.

6.2 Removal of Information Flow

We conduct an ablation study to investigate how
removing specific information flow paths affects
the results while retaining others. In our approach,
we connect the label words to their preceding words
to aggregate information and to the last token to
distribute the information from the label words.
These connections are referred to as the aggregation
and distribution paths in the ablation study. As
illustrated in Figure 6, we remove one path and
retain another.

Figure 6: Visualisation of the ablation study on the
removal of information flow.

SST-2 EmoC TREC Amazon Agnews Average

GNNAVI-SAGE 81.95 78.70 77.92 88.66 82.88 82.02
-aggregation -0.07 -1.10 -0.68 +0.56 -0.08 -0.27
-distribution +3.07 -12.88 -2.44 +1.64 -1.44 -2.41

Table 3: Ablation Study: Removal of information flow.
The name indicates the removed path.

As shown in Table 3, both the aggregation and
distribution paths contribute significantly to the
performance. Removing either of them results in
a decrease in the average accuracy across the five
tasks. Except for the two binary classification tasks
SST-2 and Amazon, removing the distribution path
causes a greater drop in performance. Based on
these results, we conclude that the distribution path

plays a more significant role in the information flow
process, especially for tasks with more than two
labels.

7 Further Discussion: Information Flow

While the attention mechanism in LLM offers an
information flow perspective for interpreting the
model’s working mechanism (Wang et al., 2023), it
treats the input text as a fully connected graph. In
contrast, GNNAVI explicitly connects the context
tokens to the label tokens for information aggre-
gation and the label tokens to the final token for
information distribution. Thereby, the correct infor-
mation flow is hardwired into the GNN. There is no
need to learn it by adjusting the attention weights.
To further investigate the differences in informa-
tion flow between FPFT and GNNAVI, we utilize
the saliency technique (Simonyan et al., 2013) for
interpretation. Following the approach of Wang
et al. (2023), we compute the saliency score for
each element of the attention matrix using a Taylor
expansion (Michel et al., 2019):

Il =
∑

h

∣∣∣∣A⊤
h,l

∂L(x)

∂Ah,l

∣∣∣∣ , (5)

where Ah,l represents the attention matrix of the
h-th attention head in the l-th layer. x is the input,
and L(x) is the loss function. The saliency matrix
Il for the l-th layer is obtained by averaging the
values across all attention heads. Each element
Il(i, j) of the matrix denotes the significance of
the information flow from the j-th word to the i-th
word in the prompt.

We employ three quantitative metrics to assess
the information flow: Sagg measures the informa-
tion flow of the aggregation path from previous
context words to label words, Sdist measures the
information distribution from label words to the
last token, and Srest accounts for other information
flow between remaining words excluding Sagg and
Sdist. The average significance of information flow
can be formulated as:

S =

∑
(i,j)∈C Il(i, j)

|C| , (6)

where C is the total number of token interactions
involved.9

As depicted in Figure 7, the information flow of
GNNAVI appears more stable compared to FPFT.

9The full formulas of Sagg , Sdist, and Srest can be found
in Appendix D.
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Figure 7: Comparison of information flow between
FPFT and GNNAVI for SST-2. Both models are trained
with 5 training examples per class.

In FPFT, without guided navigation, tokens inter-
act with every preceding word, leading to a trend
of confusion between the information flow Sdist

and Srest. This indicates a struggle to identify
the ‘right’ information for final prediction. Con-
versely, GNNAVI adheres to the information flow
guided by the GNN, resulting in stable curves that
depict a consistent information aggregation process,
aligning with the findings of Wang et al. (2023).
Compared to FPFT, the stable curves affirm that
GNNAVI serves as a navigator, ensuring the infor-
mation flows in predefined directions.

8 Conclusion

In this work, we propose a novel PEFT method,
GNNAVI, leveraging GNN to navigate informa-
tion flow within LLMs. Specifically tailored for
prompt-based fine-tuning, GNNAVI significantly
reduces the number of trainable parameters by sim-
ply adding a GNN layer into LLMs to guide the
information flow within the prompt. GNNAVI out-
performs FPFT and other PEFT methods across
various classification tasks, even with few train-
ing examples. Our work offers insights into han-
dling LLMs from a graph perspective and presents

a novel application of GNNs in NLP. Future work
could explore different token connectivities for
GNNs or utilize GNNs to control the information
flow in LLMs.

Limitation

Although GNNAVI introduces a novel insight for
NLP research, there are several limitations in our
work. Firstly, GNNAVI is susceptible to the qual-
ity of the demonstrations. We find that its perfor-
mance heavily relies on the selection of demon-
strations when only a few training examples are
available. However, this issue is alleviated with an
increase in the number of training examples. Sec-
ondly, while GNNAVI builds upon the information
flow of LLMs, it offers a more transparent working
mechanism. However, as a black-box model, the
working mechanism of the GNN layer is not inves-
tigated in this work. Thirdly, we only evaluated
the performance of GNNAVI on text classification
tasks, other NLP tasks are not explored in this study.
We leave these limitations for future work.
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A Hyperparameters

We present the hyperparameters for GNNAVI and
other baselines in Table 4. The models were trained
using NVIDIA A100-SXM4-40GB GPUs. Due to
limited resources, the batch size was set to 1, and
full parameter fine-tuning of Llama2 was imple-
mented using 8 bits. We observed that for Llama2,
GNNAVI and other PEFT methods were sensitive
to the selection of prompts with very few train-
ing samples, and thus could not achieve optimal
performance. To address this, we replaced these
results by using another random seed to change the
demonstrations in the prompt.

B Demonstration Templates and Label
Words

The templates for the prompt are presented in Table
5. [S] denotes the demonstration selected to form
the prompt, [L] represents the label word of the
demonstration, and [Si] denotes the sample to be
predicted.

C Full Results

Due to space constraints, the complete results are
provided in Table 6. Each value in the table repre-
sents the average accuracy over five experiments
conducted with different random seeds.

D Formula of Saliency Score

We utilize l to denote the label words, such as ‘Pos-
itive’ and ‘Negative’, while f represents the final
token, such as ‘:’. Additionally, t denotes other
tokens excluding label and final tokens.
Sagg calculates the mean significance of infor-

mation flow from the previous context words to
label words:

Sagg =

∑
(i,j)∈Ctl

Il(i, j)

|Ctl|
,

Ctl = {(lk, j) : k ∈ [1, C], j < lk} .
(7)

Sdist calculates the mean significance of infor-
mation flow from the label words to the final token:

Sdist =

∑
(i,j)∈Clf

Il(i, j)

|Clf |
,

Clf = {(f, lk) : k ∈ [1, C]} .
(8)

Srest calculates the mean significance of infor-
mation flow among the rest words, excluding Sagg

and Sdist:

Srest =

∑
(i,j)∈Ctt

Il(i, j)

|Ctt|
,

Ctt = {(i, j) : j < i} − Ctl − Clf .

(9)
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Hyperparameter GNNAVI Prefix Adapter LoRA FPFT
learning rate 1e-2 1e-2 5e-5 5e-4 5e-5
optimizer Adam Adam AdamW AdamW AdamW
epochs 50 50 50 50 50
early Stop 15 15 15 15 15
random seed [0, 42, 312, 411, 412, 421, 520, 1218]
virtual tokens - 40(GPT2), 150(Llama2) -

Table 4: Hyperparameters for GNNAVI and baselines.

Task Template Label Words

SST-2

Review:
[S]
Sentiment:
[L]
Review:
[Si]
Sentiment:

Positive, Negative

EmoC

Dialogue:
[S]
Emotion:
[L]
Dialogue:[Si]
Emotion:

Happy, Sad,
Angry, Others

TREC

Question:
[S]
Answer Type:
[L]
Question:
[Si]
Answer Type:

Abbreviation, Entity,
Description, Person,
Location, Number

Amazon

Review:
[S]
Sentiment:
[L]
Review:
[Si]
Sentiment:

Positive, Negative

AGNews

Article:
[S]
Answer:
[L]
Article:
[Si]
Answer:

World, Sports,
Business, Technology

Table 5: Template for prompt.
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k Method #Param SST-2 EmoC TREC Amazon AGNews Average #Param SST-2 EmoC TREC Amazon AGNews Average

GPT2-XL Llama2

0 ICL - 55.44 6.48 54.68 53.32 72.12 48.41 - 67.55 9.60 70.36 94.98 84.14 65.33

5

ICL - 63.17 6.30 57.68 53.67 50.43 46.25 - 86.93 20.18 45.72 92.30 80.16 65.06

LoRA 2.5M 91.98 50.60 75.20 88.80 85.20 78.36 4.2M 95.42 64.20 88.40 91.80 86.60 85.28
Prefix 6.1M 59.13 73.46 32.92 60.00 75.40 60.18 39.3M 50.96 58.56 21.36 49.36 25.78 41.20

Adapter 15.4M 79.82 76.00 79.60 91.45 81.25 81.62 198M 50.92 84.05 18.80 49.45 24.80 45.60
FPFT 1.6B 62.13 61.30 65.28 73.00 80.82 68.51 6.7B 94.63 61.92 81.72 95.86 87.58 84.34

GNNAVI-GCN 2.6M 84.31 75.48 76.72 90.90 83.16 82.11 16.8M 94.56 78.30 83.2 94.00 86.25 86.63
GNNAVI-SAGE 5.1M 81.95 78.70 77.92 88.66 82.88 82.02 33.6M 92.91 80.12 80.80 95.66 86.06 87.11

10

LoRA 2.5M 88.08 53.20 86.40 90.60 86.80 81.02 4.2M 94.73 63.00 92.80 92.60 90.40 86.71
Prefix 6.1M 51.08 77.58 38.16 65.94 61.48 58.85 39.3M 50.80 76.98 21.20 51.42 26.44 45.37

Adapter 15.4M 86.70 70.65 87.40 90.60 86.15 84.30 198M 50.92 85.60 41.00 52.20 52.15 56.37
FPFT 1.6B 69.01 71.90 52.48 75.82 81.34 70.11 6.7B 92.91 68.06 84.24 96.22 88.64 86.01

GNNAVI-GCN 2.6M 84.63 83.97 74.80 91.57 87.00 84.39 16.8M 91.86 70.75 82.40 96.35 89.30 84.99
GNNAVI-SAGE 5.1M 87.41 77.98 78.28 91.90 84.52 84.02 33.6M 94.06 76.02 83.96 95.76 87.64 87.49

20

LoRA 2.5M 85.09 69.00 86.00 94.00 89.20 84.66 4.2M 95.64 70.80 83.60 96.20 90.60 87.37
Prefix 6.1M 56.68 83.28 39.20 61.22 80.62 64.20 39.3M 50.57 78.70 27.92 52.08 26.30 47.11

Adapter 15.4M 88.42 74.65 89.00 89.45 86.50 85.60 198M 50.92 85.80 18.80 56.40 24.80 47.34
FPFT 1.6B 73.10 70.72 68.36 77.40 80.44 74.00 6.7B 95.32 69.96 88.08 95.52 89.04 87.58

GNNAVI-GCN 2.6M 86.93 76.23 79.67 92.70 86.07 84.32 16.8M 94.78 75.25 84.80 96.00 89.30 88.27
GNNAVI-SAGE 5.1M 88.67 78.96 82.52 92.02 86.24 85.68 33.6M 94.56 79.92 84.56 95.64 88.54 88.64

50

LoRA 2.5M 89.45 74.80 54.80 93.60 91.80 80.89 4.2M 93.12 72.40 94.40 95.40 91.60 89.20
Prefix 6.1M 50.90 79.78 26.72 74.42 74.40 61.24 39.3M 50.48 76.22 28.08 50.96 27.60 46.67

Adapter 15.4M 86.75 77.85 91.60 90.50 88.75 87.09 198M 50.92 76.80 44.40 49.45 33.45 51.00
FPFT 1.6B 70.60 71.68 76.40 67.84 83.10 73.92 6.7B 95.46 74.20 91.92 95.82 90.48 89.58

GNNAVI-GCN 2.6M 89.49 79.50 87.93 92.40 87.43 87.35 16.8M 95.07 83.05 88.70 95.85 90.80 90.81
GNNAVI-SAGE 5.1M 90.14 75.70 87.96 93.26 87.30 86.87 33.6M 94.72 79.04 90.72 96.00 90.68 90.23

100

LoRA 2.5M 89.22 84.00 88.40 93.20 84.80 87.92 4.2M 92.66 86.60 94.80 95.40 67.60 87.41
Prefix 6.1M 56.26 72.28 32.04 69.48 51.18 56.25 39.3M 49.11 76.20 40.28 52.38 26.82 48.96

Adapter 15.4M 86.93 82.85 92.00 92.40 87.60 88.36 198M 58.83 84.95 84.00 68.10 24.80 64.14
FPFT 1.6B 72.82 73.42 68.56 78.74 84.86 75.68 6.7B 95.07 76.06 96.20 96.20 91.04 90.91

GNNAVI-GCN 2.6M 89.41 81.30 90.20 92.67 87.97 88.31 16.8M 94.27 81.20 91.60 96.00 90.80 90.77
GNNAVI-SAGE 5.1M 90.46 80.16 91.12 93.28 88.58 88.72 33.6M 94.45 81.20 90.88 96.08 90.78 90.68

200

LoRA 2.5M 90.83 80.80 90.80 82.00 86.20 86.13 4.2M 91.29 86.80 93.60 95.80 90.40 91.32
Prefix 6.1M 50.92 80.18 69.80 59.80 79.08 67.96 39.3M 48.35 81.72 45.68 52.28 27.54 51.11

Adapter 15.4M 88.65 80.70 96.60 92.30 89.80 89.61 198M 50.92 85.05 88.20 49.45 81.50 67.57
FPFT 1.6B 68.97 73.70 80.16 74.82 85.34 76.60 6.7B 95.64 79.90 96.76 96.12 91.44 91.97

GNNAVI-GCN 2.6M 90.67 78.82 91.88 92.94 89.20 88.70 16.8M 95.36 82.85 95.50 96.45 91.05 92.24
GNNAVI-SAGE 5.1M 90.46 82.68 92.32 93.44 89.28 89.64 33.6M 95.30 81.94 94.76 95.96 90.68 91.73

Table 6: Results with different training methods (accuracy). k denotes the number of training examples per class.
#Param denotes the number of trainable parameters. The best scores under the same circumstances of training
examples are highlighted with bold.
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