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This paper introduces a comprehensive approach for computing energy-efficient flight
trajectories for unmanned aerial vehicles (UAVs) while considering trajectory uncertainties.
The specific locations and environmental conditions under which the UAV will operate are
inherently uncertain. Our goal is to minimize the sensitivity to these uncertainties in order
to mitigate potential energy losses. The primary optimization objective is to minimize energy
consumption by exploiting local wind phenomena, while accounting for negative effects of
drift and turbulence. The flight path planning algorithm uses a precalculated time-averaged
wind field to optimize the flight path and a time-dependent wind field to account for turbulent
airflow dynamics. To address the optimization sensitivity to uncertainties, a specialized cost
function is integrated into the A-star Algorithm, a type of branch-and-bound optimizer. Three
distinct uncertainties are independently established for optimization: local drift, reduced
upwind due to vortices, and turbulence avoidance. The key strategies applied address these
uncertainties to achieve energy-efficient flight paths with reduced sensitivity. The proposed
approach is demonstrated using a benchmark scenario involving a delivery UAV. Optimized
flight trajectories are compared against shortest path trajectories. The results demonstrate
significant energy saving potential when flying in urban areas by exploiting knowledge of the
current wind conditions and minimizing the effects of uncertainties.

I. Introduction
In urban environments, the field of last-mile logistics currently faces significant challenges. Increasing traffic

congestion and space usage demand innovative solutions. Especially, the final step of the supply chain is often the least
efficient. However, electrically powered unmanned aerial vehicles (UAVs) present a promising solution for improving
last-mile logistics, even in remote areas, while minimizing environmental impact. This paper is driven by the expanding
integration of delivery UAVs into urban environments for last-mile logistics. Delivery UAVs have the capability to
alleviate urban street traffic and reduce delivery times. Furthermore, their degree of automatization and fully electric
propulsion make them cost efficient and environmentally friendly. In general, UAVs have lower payload capacities
compared to ground-based vehicles [1] and optimizing their efficiency is highly important. A proven strategy to increase
energy efficiency is to optimize the flight paths. In previous research [2–4], we demonstrated that exploiting wind
conditions in urban areas inside the path optimization can significantly reduce the power consumption for typical
delivery missions.

However, uncertainties in environmental conditions and deviations from the trajectory can negatively impact the
actual gains. The common uncertainties considered in path planning for UAVs are weather uncertainties [5–7] or GPS
accuracy [8]. Among the most prevalent uncertainties are wind-related factors. Altering wind conditions, induced by
gusts and inadequate trajectory-following control, can result in deviations from desired aircraft positions. Numerous
strategies have been developed to treat these uncertainties in research. One such strategy involves the implementation of
predefined buffer zones to avoid conflicts among multiple aircraft using the same airspace [5]. Moreover, innovative
approaches have been explored to handle uncertainties in wind magnitude and direction. For instance, probabilistic path
planning methodologies have been applied to Montgolfiere balloons navigating the atmospheric conditions of Saturn’s
moon, Titan [9]. Similarly, Gaussian distributions have been used to model uncertainty in time-varying wind fields,
with the aim of minimizing UAV energy consumption through wind-energy exploitation [10]. A study conducted by
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Kay et al. [11] investigated the impact of turbulent flow on UAV wing performance, prompting considerations to avoid
excessively turbulent areas where reduced performance may occur. Wang et al. [12] further specifies the influence
of environmental factors, such as constant wind, turbulent flow, various types of wind shear, and propeller vortex, on
UAV operations in low-altitude environments. Simulation tests were conducted to assess the effects of different wind
conditions on UAV trajectories and flight dynamics, revealing potential instabilities in flight states. Consequently, it was
advised to steer clear of areas presenting hazardous conditions.

The present paper addresses this issue by obtaining energy-efficient flight paths which are less sensitive with respect
to the uncertainty of the actual flight. The previous studies identified three main sources of uncertainties heavily
impacting the actual performance. The first source is a local path offset also referred to as drift. It results in a change of
the encountered wind conditions and reduces the actual energy savings. The second uncertainty type is the temporal
variability of wind in an urban environment due to turbulent airflow. It requires an examination of scenarios where the
UAV encounters worse wind conditions than those represented by the time-averaged data considered in our previous
research. The last uncertainty source is the explicit consideration of turbulence in the optimization to circumvent
regions characterized by severe changes in wind velocities. Our preceding methodology is extended to address the
three main sources of uncertainties during the actual operation of the UAV. All three uncertainty effects are individually
incorporated into the optimization to yield a trajectory which is less sensitive to perturbations.

This paper is organized into four sections. In section II, we introduce a realistic city district representative of a
typical European area, which was developed in our previous work [3]. This city district comes with a realistic wind
field for the urban environment that was derived using a Parallelized Large-Eddy Simulation Model (PALM) [13]. The
determined wind field was substantiated through validation conducted in a wind tunnel experiment [14].

Thereafter, we provide an overview of our approach to achieving energy-optimal flight path under various wind
conditions. Section III describes our customized A-star algorithm, specifically designed to address the challenges of
energy-efficient path planning in urban environments. This algorithm builds upon the basic A-star algorithm, a widely
used method in trajectory optimization. Prior research [15, 16] demonstrates the applicability of the A-star algorithm
in trajectory optimization, with variants such as Theta-Star also being explored [17, 18]. The customized algorithm
in this paper accounts for the turning constraints of the UAV and integrates smoothing techniques to generate flyable
trajectories directly during the optimization process. Path smoothing is achieved by applying piecewise polynomials
that ensure a continuous trajectory within the limits of the UAV’s flight envelope. Specifically, continuous cubic Bézier
spiral segments, as derived in [19], are employed to satisfy the maximum curvature constraints of the UAV.

The main aspect of this paper is the consideration of the uncertainties. In Section IV, gusts are treated as follows:
Undetermined horizontal gusts cause local drift. Consequently, the effects of lateral displacement from the intended
trajectory within a specified distance were examined, taking into account deviations both to the left and right of the
desired track. Eddies introduce variability in upwind conditions, which is the primary factor influencing energy
required. Hence, the emphasis of this approach is on mitigating upwind effects. Finally, in the last approach, turbulence
is quantified, with a higher penalty factor indicating a greater need for avoidance. The feasibility of incorporating
combinations of two out of the three sensitivity factors is demonstrated as a viable feature.

We apply a realistic city district connected with the generated wind field and apply the path optimization
methodology, which includes flight trajectory modelling and their sensitivities. The effectiveness of the proposed
approach is demonstrated through two delivery tasks, where the energy-optimized paths including the sensitivities in the
optimization process are compared to the shortest routes and the energy-optimized paths without the sensitivities in
Section V.

II. Urban Logistic Scenario
In typical last-mile logistics scenarios, unmanned aerial vehicles (UAVs) are used to transport goods within

designated area of a city. This involves the UAV flying from a pick-up point to a drop-off point, powered by a fully
electric fixed-wing aircraft. The aircraft examined in this example is comparable in size and characteristics to the
Phoenix Wings PWOne delivery UAV [20], which has a wingspan of 1.3 m and a maximum take-off weight of 3.4 kg.
Operating at an average cruising speed of 60 kph, the UAV is estimated to have a glide ratio of 𝐺 = 16.

The generic city model and its wind field are adopted and validated from previous work [3, 14]. The model represents
a typical European urban area and comprises eight buildings of unique shapes and varying heights, as depicted in Figure
1. Specifically, the model includes three residential buildings with a height of 50 m, four terraced houses with a height
of 20 m each, and a supermarket building with an attached office block reaching 15 m in height. This arrangement was
designed to capture typical local wind effects found in urban environments. By exploiting these wind fields, we can
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potentially decrease the energy consumption of an UAV during a delivery mission.

Fig. 1 Generic city model that represents a typical European urban area for simulating delivery tasks

This paper examines two distinct test scenarios involving two delivery tasks under a consistent wind speed. As
illustrated in Figure 2, these scenarios use a single wind direction across all cases to remain within the influence zone
of high-rise buildings. The delivery tasks involve flying from Point South to North and East to West. The primary
objective in each scenario is to minimize the energy consumption of the UAV by taking advantage of local wind effects.
Thereafter, trajectories were computed to account for sensitivity to drift, turbulence, avoidance of turbulent areas, or a
combination thereof. Subsequently, these trajectories are compared based on their energy requirements and sensitivity.
We assume the aircraft maintains a constant true airspeed corresponding to its best-performance cruise speed. The
starting and ending altitude is set at 20 meters, a realistic altitude for air delivery in urban areas where takeoff and
landing occur in multicopter mode. The energy required for these procedures is not taken into account. The investigation
is based on average wind speeds typical of European cities, with Dresden, Germany serving as a representative example.
Three characteristic wind speeds at a height of 10 meters were selected to represent the wind speed spectrum, as detailed
in our previous paper [3]. Exemplary, we selected the calmest day for the following investigation. The day-averaged
wind speed was used to construct a wind profile shape derived from a wind tunnel experiment described in [21]. Hence,
the freestream wind speed is 𝑢𝑊∞ = 6.5 m/s for the wind profiles.

Pt. West

Pt. East

Pt. North

Pt. South

Wind

x

𝑧ℎ = 50 m

𝑧ℎ = 20 m

y

𝑧ℎ = 15 m

Fig. 2 Flight scenario with constant wind direction from west, as well as two tracks by flying from Point East to
West and South to North

The topography of the generic city model and the realistic wind field were applied to a large eddy simulation
(LES) to generate an accurate representation of the wind field within the urban environment for subsequent flight path
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optimization. Further description regarding the software used, its configurations, and validation procedures can be
found in [3]. The LES was conducted over a simulated time period of 4 hours. From this simulation, two datasets were
extracted to serve as input for the path optimization process. The wind data from the final simulated hour is used to
compute both the average wind data and the time-dependent wind data for the last minute. Therefore, Turbulence was
modeled based on the standard deviation of the time-dependent wind components at each LES vertex after simulation.
The equidistant grid points generated by the LES were also used to establish a waypoint system by connecting nearby
vertices. This waypoint system enables pathfinding for the aircraft, allow it to fly from its current vertex to neighboring
ones. Moreover, our approach entails evaluating furhter adjacent node connections to allow for greater directional
possibilities inspired by the concept of increased connectivity [17]. However, increasing connections can lead to longer
computational times. In our implementation, we have used connectivity to the waypoints of the three adjacent cells as
a trade-off between the quality of headings covered and computational efficiency, resulting in a more winding path.
Additionally, the vertical grid was supplemented with waypoints to accommodate flight paths tailored to the UAV’s
flight performance, as described in [4] clearly.

III. Trajectory Optimization
The aim of flight path planning is to minimize a cost function, denoted as 𝐽. This cost function represents the energy

required for the UAV, and optimizing it provides an energy-optimal flight path. As previously mentioned, a tailored
version of the A-Star-Algorithm is used to optimize routes or trajectories from a start to an end point. This algorithm is
built upon the basic A-Star-Algorithm widely used for pathfinding tasks. In this paper, we offer a brief explanation of
the basic A-Star-Algorithm and our customized version. Furthermore, we introduce an enhancement in the subsequent
section that addresses uncertainties influencing the energy required.

In short, the A-Star Algorithm is initialized at a start point. Then, it navigates to the end point determining the
optimal path by selecting the most favorable point at each branching. The best point is identified by the lowest total cost
of the path, computed as the sum of the exact cost 𝑔(𝑠) from the starting point to node 𝑠, and the heuristic estimated
cost from node 𝑠 to the ending point denoted by ℎ(𝑠). Thus, the algorithm begins by analyzing all possible paths in
detail from the starting point by successively selecting the next node 𝑠 with the lowest total cost 𝐽 = 𝑔(𝑠) + ℎ(𝑠), as
illustrated in Figure 3. This approach leads to computational efficiency by bypassing the examination of paths deemed
too expensive, thus saving computational time since not all possible paths have to be calculated.

𝑔(𝑠)

ℎ(𝑠)
𝑠

Fig. 3 Illustration of the distinct feature in a A-Star-Algorithm step. The total cost of a path via point 𝑠 is known
by the sum of the exact cost 𝑔(𝑠) until point 𝑠, and the heuristic estimated cost ℎ(𝑠) from node 𝑠 to the target

An extension of the basic algorithm enables to consider smoothed flight motions of the UAV. Briefly summarized,
we examine three nodes at once to allow heading changes and check if the path respects a minimum turning radius
𝑟min and maximum load factor 𝑛𝑧,max as a limit of the UAV. Here, a continuous-curvature path-smoothing algorithm
based on cubic Bezier curves including a maximum curvature constraint [19] is used. If the constraints are not fulfilled,
the path segment will be neglected. Conversely, if the constraints are satisfied, the combination of the three points is
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included for further evaluation of energy-optimal paths. For a detailed description of the extended A-Star Algorithm the
reader is referred to [4].

In our case, the exact cost function 𝑔(𝑠) includes the energy required, considering the prevailing wind conditions. A
specifically developed map tailored for the project is used to calculate the heuristic costs ℎ(𝑠) to improve the performance
of the A-Star Algorithm. This map is constructed based on energy distances, where actual distances are transformed to
equivalent energy distances, i.e., distances which reflect the energy to fly the distance. The underlying principle is a
diffusion-based method for creating density-balanced maps [22]. Updraft influences the energy required the most and is
taken as the density value during map creation. A diffusion process controls the density equalization resulting in the
creation of a distorted map. A detailed description can be found in [4].

IV. Trajectory Sensitivity
Our previous path optimization assumed perfectly known environmental conditions and accurate path tracking in

its cost function. However, real-world operation includes various uncertainties affecting the effective energy savings.
Accounting for the impact of uncertainties in the cost function promises less sensitive flight paths. The cost function in
this paper explicitly accounts for the additional energy required arising from uncertain environmental conditions. This
is accomplished in two steps. First, this section introduces the nominal cost function optimizing the flight trajectory
with variable altitude between a predetermined start and end point, as detailed in Section II. Second, several sensitivity
components are proposed, each added individually to this nominal cost, to define the exact cost function 𝑔(𝑠) in Section
III.

A. Nominal Cost Function for Exact Energy Identification
The generic flight path cost function (1) is defined as an integral over the flight path 𝑠, which is then discretized in

grid points 𝑠𝑖 sequentially flown through from start point 𝑠0 until the end point 𝑠𝑁 .

𝐽 =

∫ 𝑠𝑒

𝑠0

𝐴(𝑠) ds =
𝑁∑︁
𝑖=0

𝐴𝑖 Δ𝑠𝑖 . (1)

The function for the energy required to define the 𝐴𝑖 in Eq. (1) contains flight mechanical assumptions that are based on
standard literature, such as [23]. To simplify the calculations, the energy supplied by the propulsion system is assumed
to be proportional to the thrust force multiplied by the distance covered by the UAV. Hence, 𝐴𝑖 is substituted by the
thrust 𝑇𝑖 , defined by

𝑇𝑖 =
𝑢UAV,TAS√︃

(𝑢UAV,TAS − 𝑢𝑊,𝑖)2 − 𝑣2
𝑊,𝑖

· (𝐷 − sin(𝛾𝑖) · 𝑚𝑔 · 𝑛𝑧) . (2)

Therein the components are described physically as follows. 𝑢UAV,TAS√︃
(𝑢UAV,TAS−𝑢𝑊,𝑖 )2−𝑣2

𝑊,𝑖

is the track extension due to horizontal

wind with headwind 𝑢𝑊,𝑖 and the crosswind 𝑣𝑊,𝑖 at the 𝑖-th grid point. 𝑢UAV,TAS is the true airspeed (TAS) of the UAV.
The value of 𝐷 can be determined by the UAV’s glide ratio 𝐺:

𝐷 =
𝐿

𝐺
=
𝑚𝑔

𝐺
(3)

with 𝐿 as lift force equal to the weight force and the glide ratio 𝐺 of the fixed-wing UAV. In turning flight with roll
angle 𝜇 and load factor 𝑛𝑧 , 𝐷 increases to

𝐷 =
𝑚𝑔

𝐺
+ 𝑘 · (𝑚𝑔 · 𝑛𝑧)2

𝜌

2 𝑢
2
UAV,TAS𝑆 · 𝑐𝑜𝑠2𝜇

, (4)

where 𝑆 is the wing surface and 𝑘 the wing contour factor. The flight path angle 𝛾𝑖 is composed of two components:
the path component 𝛾𝑖,path and the wind component 𝛾𝑖,wind, as given by 𝛾𝑖 = 𝛾𝑖,path + 𝛾𝑖,wind. The wind component is
defined by Eq. (6). The altitude changing component is given by

tan(𝛾𝑖,path) =
Δ𝑠𝑖,𝑧

Δ𝑠𝑖,𝑥𝑦
, (5)
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where Δ𝑠𝑖,𝑧 is the vertical distance and Δ𝑠𝑖,𝑥𝑦 the horizontal distance to the next point. The wind component 𝛾𝑖,wind is
due to upwind condition: For instance, if there is an upwind component, the UAV needs to pitch down to maintain the
same flight level. This means that the upwind component 𝑤𝑊,𝑖 will reduce the flight path angle 𝛾𝑖,wind:

sin(𝛾𝑖,wind) =
𝑤𝑊,𝑖

𝑢∗UAV,𝑖

. (6)

This decrease in flight path angle results in a reduction of the required thrust force to maintain steady level flight. A
component of the weight vector now supports the force in the direction of flight. All wind components in the nominal
cost function are averaged values, e.g. 𝑤𝑊,𝑖 = 𝑤𝑤,𝑖 . Using Eq. (1), the exact cost for flying from start point 𝑠0 to a
point 𝑠 for the minimization of the total energy required in A-Star-Algorithm can be written as:

𝐸exact,𝑠∗ =
𝑁∑︁
𝑖=0

𝐸𝑖 =

𝑁∑︁
𝑖=0

Δ𝑠𝑖 · 𝑇𝑖 . (7)

B. Cost Function for Local Drift
So far, the cost function assumes nominal conditions without disturbances and precise path following. However, the

presence of gusts or other disturbances may lead to deviations from the optimal path with less favorable wind conditions.
To address this issue, we investigate the impact of minor deviations from the flight path, referred to as ’drift’ for this
study. For this purpose, we compute an energy consumption gradient along the planned flight path at each waypoint.
This involve calculating the energy required for the UAV to fly a specified distance perpendicular to both the left and
right sides of the path, at a distance of Δ𝑑 as depicted in Figure 4. The gradients(

Δ𝐸

Δ𝑑

)
𝑟 ,𝑖

=
𝐸 (𝑠 + Δ𝑑) − 𝐸 (𝑠)

Δ𝑑
and

(
Δ𝐸

Δ𝑑

)
𝑙,𝑖

=
𝐸 (𝑠 − Δ𝑑) − 𝐸 (𝑠)

Δ𝑑
, (8)

are calculated with the respective energy consumption on the left 𝐸 (𝑠 + Δ𝑟) and on the right 𝐸 (𝑠 − Δ𝑟) side of the route
from point 𝑠 to the next testwaypoint.

x

y 𝑠𝑖

𝐸𝑙 (𝑠𝑖)

𝐸𝑟 (𝑠𝑖)
𝐸 (𝑠𝑖)

𝑠𝑖+1

Δ𝑑

Δ𝑑

E

E

E

E

d

d

d

d

Δ𝐸
Δ𝑑

Δ𝐸
Δ𝑑

Δ𝐸
Δ𝑑

Δ𝐸
Δ𝑑

= 0

Δ𝑑 Δ𝑑

Δ𝑑 Δ𝑑

Δ𝑑 Δ𝑑

Δ𝑑 Δ𝑑

Fig. 4 Local drift at waypoint 𝑠𝑖: Calculating a gradient of energy required, by assuming the UAV flies a
specified distance Δ𝑑 perpendicular to both the left and right sides of the path

The more unfavorable largest gradient is selected to compute the total consumption to increase robustness. If both
gradients are negative, the gradient is set to zero. Eq. 9 shows the selection of the gradient in a waypoint.(

Δ𝐸

Δ𝑑

)
𝑖

= max

((
Δ𝐸

Δ𝑑

)
𝑟 ,𝑖

,

(
Δ𝐸

Δ𝑑

)
𝑙,𝑖

, 0

)
(9)
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The distance is one grid width of the LES, Δ𝑑 = 2.5𝑚. The energy consumption is now calculated by the original path
cost 𝐸𝑝𝑎𝑡ℎ and the sensitive part 𝐸𝑥𝑦−𝑠𝑒𝑛𝑠 as follows:

𝐸𝑖 = 𝐸𝑖,path + 𝐸𝑖,xy-sens = 𝐸𝑖,path + Δ𝑑 ·
(
Δ𝐸

Δ𝑑

)
𝑖

. (10)

The gradients are calculated with wind components of averaged values, e.g. 𝑤𝑊,𝑖 = 𝑤𝑤,𝑖 .

C. Cost Function for turbulent Up- and Downwind
Apart from assessing drift, time-depended disturbances are important. Temporal sensitivity along the flight path can

be analyzed at individual waypoints. In this context, the time series data from LES results are used from which the
time-dependent standard deviation of upwind 𝜎𝑖,𝑤 (𝑡 ) is calculated at each wind field point. To account for time-depended
up- and downwind, the wind component in z-direction is lowered. The required energy accounts for the reduced
upwind by subtracting the standard deviation (𝜎𝑖,𝑤 (𝑡 ) ) from the averaged value 𝑤𝑤,𝑖 . The turbulent-sensitive component
𝐸𝑖,𝜏-sens is then:

𝐸𝑖,𝜏-sens = 𝐸
(
𝑤𝑤,𝑖 − 𝜎𝑖,𝑤 (𝑡 )

)
𝑖,path − 𝐸

(
𝑤𝑤,𝑖

)
𝑖,path . (11)

D. Cost Function for Turbulence Avoidance
This approach involves the identification and avoidance of high turbulence regions along the flight path and includes

every wind component in contrast. The turbulence level at a given waypoint 𝑠𝑖 is quantified by computing the value of
the standard deviations of all wind components:

𝜎𝑖 =

√︃
𝜎2
𝑖,𝑢(𝑡 ) + 𝜎2

𝑖,𝑣 (𝑡 ) + 𝜎2
𝑖,𝑤 (𝑡 ) . (12)

A higher 𝜎𝑖 indicates a greater degree of turbulence at point 𝑠𝑖 , which should be avoided. Hence, the cost function is
determined by:

𝐸𝑖,𝜏-avoid = 𝜆 · 𝜎𝑖 and 𝐸𝑖 = 𝐸
(
𝑤𝑤,𝑖

)
𝑖
+ 𝜆 · 𝜎𝑖 , (13)

where 𝜆 is set to 1 kg·m
s . The term 𝜆 ·𝜎𝑖 ensures physical consistency and 𝜆 = 1 kg·m

s leads to the same order of magnitude
as the turbulent sensitive component 𝐸𝑖,𝜏-sens of Section IV.C.

E. Combinations of Cost Functions
The final variant of cost function involves the combination of two methodologies from above. The nominal function

is expanded to consider two sensitive components. To prevent immoderate influence from the combined components
against the nominal costs and ensure balanced weighting, a factor of 0.5 is applied to each. A combination of drift and
turbulent sensitivity is chosen, since the proximity of turbulence avoidance and turbulent sensitivity exhibits familiar
behaviour. Therefore, the exact cost calculation is proposed as

𝐸𝑖 = 𝐸
(
𝑤𝑤,𝑖

)
𝑖
+ 0.5 · 𝐸𝑖,xy-sens + 0.5 · 𝐸𝑖,𝜏-sens . (14)

Note that alternative combinations could also be chosen.

V. Results of Trajectory Optimization and Sensitivity
In this section, we present the results of the flight path optimization using the cost function proposed in Section IV.A

and their sensitive parts in Section IV.B to IV.E. The optimization was performed for two different scenarios as specified
in Section II, where each scenario involved one of the two track directions and a freestream wind speed of 6.5 m/s. For
each scenario and each sensitivity, three optimal trajectories were computed. First, using the nominal cost function of
Eq.(7). Second, adding one of the three sensitive component 𝐸𝑖,xy-sens, 𝐸𝑖,𝜏-sens, or 𝐸𝑖,𝜏-avoid to Eq.(7). Third, using a
simple shortest path optimization described by 𝐽exact,𝑖 =

∑𝑁
𝑖=0 Δ𝑠𝑖 and the direct distance as heuristic function. The

A-Star-Algorithm was used for optimization in all cases. Table 1 summarizes the different optimizations. Note that the
energy optimal trajectory without sensitives is the same each sensitivity comparison, denoted by the *.
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Table 1 Summary of calculations applied with A*

Trajectory Sensitivity ...in Optimization Process ...only in results
Shortest way * 𝐽𝑖 = Δ𝑠𝑖 𝐸𝑖 = 𝐸

(
𝑤𝑤,𝑖

)
𝑖
+ 𝐸𝑖,xy-sens

Energy-optimal nominal * 𝐸𝑖 = 𝐸
(
𝑤𝑤,𝑖

)
𝑖
+ 0 𝐸𝑖 = 𝐸

(
𝑤𝑤,𝑖

)
𝑖
+ 𝐸𝑖,xy-sens

Local Drift 𝐸𝑖 = 𝐸
(
𝑤𝑤,𝑖

)
𝑖
+ 𝐸𝑖,xy-sens 𝐸𝑖 = 𝐸

(
𝑤𝑤,𝑖

)
𝑖
+ 𝐸𝑖,xy-sens

Shortest way * 𝐽𝑖 = Δ𝑠𝑖 𝐸𝑖 = 𝐸
(
𝑤𝑤,𝑖

)
𝑖
+ 𝐸𝑖,𝜏-sens

Energy-optimal nominal * 𝐸𝑖 = 𝐸
(
𝑤𝑤,𝑖

)
𝑖
+ 0 𝐸𝑖 = 𝐸

(
𝑤𝑤,𝑖

)
𝑖
+ 𝐸𝑖,𝜏-sens

Turbulence 𝐸𝑖 = 𝐸
(
𝑤𝑤,𝑖

)
𝑖
+ 𝐸𝑖,𝜏-sens 𝐸𝑖 = 𝐸

(
𝑤𝑤,𝑖

)
𝑖
+ 𝐸𝑖,𝜏-sens

Shortest way * 𝐽𝑖 = Δ𝑠𝑖 𝐸𝑖 = 𝐸
(
𝑤𝑤,𝑖

)
𝑖
+ 𝐸𝑖,𝜏-avoid

Energy-optimal nominal * 𝐸𝑖 = 𝐸
(
𝑤𝑤,𝑖

)
𝑖
+ 0 𝐸𝑖 = 𝐸

(
𝑤𝑤,𝑖

)
𝑖
+ 𝐸𝑖,𝜏-avoid

Turbulence Avoidance 𝐸𝑖 = 𝐸
(
𝑤𝑤,𝑖

)
𝑖
+ 𝐸𝑖,𝜏-avoid 𝐸𝑖 = 𝐸

(
𝑤𝑤,𝑖

)
𝑖
+ 𝐸𝑖,𝜏-avoid

Shortest way * 𝐽𝑖 = Δ𝑠𝑖 𝐸𝑖 = 𝐸
(
𝑤𝑤,𝑖

)
𝑖

+0.5 · 𝐸𝑖,xy-sens + 0.5 · 𝐸𝑖,𝜏-sens

Energy-optimal nominal * 𝐸𝑖 = 𝐸
(
𝑤𝑤,𝑖

)
𝑖
+ 0 𝐸𝑖 = 𝐸

(
𝑤𝑤,𝑖

)
𝑖

+0.5 · 𝐸𝑖,xy-sens + 0.5 · 𝐸𝑖,𝜏-sens

Combination 𝐸𝑖 = 𝐸
(
𝑤𝑤,𝑖

)
𝑖

𝐸𝑖 = 𝐸
(
𝑤𝑤,𝑖

)
𝑖

+0.5 · 𝐸𝑖,xy-sens + 0.5 · 𝐸𝑖,𝜏-sens +0.5 · 𝐸𝑖,xy-sens + 0.5 · 𝐸𝑖,𝜏-sens

The energy required for each scenario is quantified and presented in terms of energy savings in percentage. This
percentage is calculated as

𝑝 =
𝐸shortest way − 𝐸energy opt.

𝐸shortest way
· 100% , (15)

where 𝐸shortest way and 𝐸energy opt. are the energy required without sensitive parts for the shortest path and the energy-
optimal path, respectively. If the sensitive parts are included, the notation is 𝑝-sens, calculated with the equation in the
"only in results"-column of Table 1. All paths exhibits minimal variations in altitude in the range of ±0 78m, similar
to those observed in [4]. They occur for main reason to fly over the terraced houses or for low-level flight to avoid
turbulence.

A. Results of South-North-Track
Table 2 and Figure 5 presents the results of local drift, flying South to North. Figure 5 shows different flight paths.

The orange line represents the shortest path. The blue dashed line the energy-optimal without the sensitive part, and the
blue line shows the path with the lowest energy required including the sensitive part. The flight paths obtained from
the optimization process exhibit interesting characteristics that merit further investigation. Firstly, the solely energy
optimized path closely follows the rooftops of the buildings. This is due to the presence of strong upwinds in front of
buildings. These upwinds result in lower energy consumption when flying alongside them with the wind perpendicular
to the building’s orientation. This phenomenon is akin to ridge lift, which is exploited by sail planes in mountainous
regions. Secondly, these regions tend to be more sensitive to local drift if drift occurs, see Table 2. Hence, the optimized
path including drift sensitivity is completely different and leads through areas with lower sensitive parts. Thirdly, the
shortest way has a relative small sensitive part and keeps a distance to the buildings. If drift occurs, energy will only be
saved if the local drift was explicitly respected in the optimization. Hence, a more robust trajectory is provided.

Table 2 Results of local drift

Cost function 𝐸
(
𝑤𝑤,𝑖

)
𝑖

in J 𝑝 𝐸𝑖,xy-sens in J 𝐸
(
𝑤𝑤,𝑖

)
𝑖
+ 𝐸𝑖,xy-sens in J 𝑝xy-sens

Shortest way 314.4 9.8 324.2
Energy-optimal nominal 247.6 -21.2% 84.3 331.9 +2.4%

Local Drift 289.2 -8.0% 12.3 301.5 -7.0%
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x

Wind

y

Overflight of
small building

0.0 .. 2.0 m/s
2.0 .. 4.1 m/s
4.1 .. 6.1 m/s

Fig. 5 Flight path for 𝑢𝑊∞ = 6.5m/s with wind field in height of 20 m( ), buildings ( ), shortest way ( ),
energy optimized path after A-Star-Algorithm without trajectory sensitivity ( ), and with local drift-sensitivity
( ), flying South to North

The turbulence component results in comparatively minor deviations compared to the drift sensitivity, as illustrated
in Figure 6-a). Hence, the energy savings compared to the shortest path are only marginally reduced when turbulence
sensitivity is incorporated. The sensitive components are in the same magnitude across all paths in this scenario, as
shown in the 𝐸𝑖,𝜏-sens-column in Table 3. Thus, it becomes evident that integrating turbulence sensitivity into the
optimization process yields to further energy savings, if the reduced upwind always occurs. Despite the reduction in
upwind, the optimization still results in flight towards the upwind zone in front of the terraced houses.

Table 3 Results of turbulence-sensitivity

Cost function 𝐸
(
𝑤𝑤,𝑖

)
𝑖

in J 𝑝 𝐸𝑖,𝜏-sens in J 𝐸
(
𝑤𝑤,𝑖

)
𝑖
+ 𝐸𝑖,𝜏-sens in J 𝑝𝜏-sens

Shortest way 314.4 173.4 487.8
Energy-optimal nominal 247.6 -21.2% 168.5 416.1 -14.7%

Turbulence 256.1 -18.5% 156.6 412.7 -15.4%

Applying the turbulence avoidance component, which also accounts for the standard deviation of horizontal wind,
significantly alters the flight path. Figure 6-b) shows that the path now leads behind the high-rise buildings, where
turbulence is comparatively low. These high-rise buildings have a height of 50m and the altitude of the UAVs is
approximately 20m. At this altitude, eddies resulting from the flow around the buildings are less distinctive than the
ones closer to the roof. Again, integrating the turbulence avoidance component into the optimization process promises
further energy savings, if avoidance is necessary. Table 4 quantifies this relation.

Table 5 summarizes the results for combined drift and turbulence components. The reduction in savings due to
uncertainty consideration is comparable to the outcomes observed when only using the drift component alone. However,
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Wind
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Fig. 6 Flight path for 𝑢𝑊∞ = 6.5m/s with wind field in height of 20 m( ), buildings ( ), shortest way ( ),
energy optimized path after A-Star-Algorithm without trajectory sensitivity ( ), and with a) turbulence-
sensitivity, b) turbulence-avoidance, c) combination of drift and turbulence-sensitivity (each ), flying South to
North

Table 4 Results of turbulence-avoidance

Cost function 𝐸
(
𝑤𝑤,𝑖

)
𝑖

in J 𝑝 𝐸𝑖,𝜏-avoid in J 𝐸
(
𝑤𝑤,𝑖

)
𝑖
+ 𝐸𝑖,𝜏-avoid in J 𝑝𝜏-avoid

Shortest way 314.4 221.5 535.9
Energy-optimal nominal 247.6 -21.2% 260.6 508.2 -5.2%
Turbulence Avoidance 287.5 -8.6% 203.3 490.8 -8.4%

the resulting flight path differs completely. Figure 6-c) shows that the path is aligned with the trajectory generated by the
nominal optimization. It also differs just slightly to that one from the turbulence component optimization. It can be
deduced that the turbulence component, with its higher values, has more significant influence on the overall objective.
However, the resulting path comes up with lower energy savings.

B. Results of East-West-Track
The results from the East-West track exhibit similar trends. These various paths are illustrated in Figure 7-a)-d)

with unchanged color code. The shortest path no longer follows a straight line due to the presence of a terraced house
obstructing the direct route, as well as the constrained waypoint connections, described in II. Trajectories of drift- (a),
turbulence-sensitivity (b), and their combination (d) exhibit less deviations from the purely energy-efficient trajectory.
Notably, the time-dependent airflow has a bigger fluctuation along the facade of the terraced house. Hence, the trajectory
sensitive to turbulence diverges above the building, rather than traversing near the rooftop corner. In contrast, the
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Table 5 Results of sensitivity combination

Cost function 𝐸
(
𝑤𝑤,𝑖

)
𝑖

𝑝 𝐸𝑖,xy-𝜏-comb 𝐸
(
𝑤𝑤,𝑖

)
𝑖
+ 𝐸𝑖,xy-𝜏-comb 𝑝xy-𝜏-comb

in J in J in J
Shortest way 314.4 91.6 406.0

Energy-optimal nominal 247.6 -21.2% 126.4 374.0 -7.9%
Combination 254.7 -19.0% 105.1 359.8 -11.4%

turbulence-avoidance path (c) differs significantly, as it yields along the high-rise buildings. This behavior is consistent
within the South-North track. Turbulence is comparatively less prevalent behind the towers in this height. The tables in
the appendix (6-9) present the quantitative results of the energy savings. In contrast to the results from the South-North
track, even the nominal energy-efficient path without accounting uncertainties, has energy savings if drift occurs. Again,
integrating each component or their combination into the optimization process promises further energy savings if the
anticipated uncertainties appear and less sensitivity. Moreover, the sensitive components in the East-West track exceeds
that of the South-North track, particularly noticeable in the case of the shortest path. This observation suggests that
flying for extended duration close to buildings increases path sensitivity.

x

Wind

a) b)

y
0.0 .. 2.0 m/s
2.0 .. 4.1 m/s
4.1 .. 6.1 m/s

Wind

WindWind

d)c)

Fig. 7 Flight path for 𝑢𝑊∞ =𝑢𝑊∞ =𝑢𝑊∞ = 6 5m/s with wind field in height of 20 m( ), buildings ( ), shortest way ( ),
energy optimized path after A-Star-Algorithm without trajectory sensitivity ( ), and with a) drift-sensitivity,
b) turbulence-sensitivity, c) turbulence-avoidance, d) combination of drift and turbulence-sensitivity (each ),
flying East to West

VI. Conclusion
We introduced an approach aimed at optimizing the energy efficiency of 3D flight trajectories for delivery UAVs

while considering uncertainties. The methodology applied a realistic city model including a time-dependent wind field
to facilitate the path optimization process. Our results underscored the effectiveness of integrating sensitivities into the
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A-Star Algorithm to optimize trajectories robust with respect to uncertainties. Particularly, our findings demonstrate
consistent energy savings across various types of uncertainties, resulting in a significant reduction in energy consumption
under anticipated conditions. These enhancements make the energy-efficient trajectories more robust and improve the
quality of the results obtained.

In the future, our focus will shift towards incorporating the actual position of the UAV in real-time. While our
current work considers the worst upwind condition around each waypoint, future efforts will integrate the UAV’s control
system with a path-following controller. This integration will enable the UAV to adapt its flight path dynamically
in response to time-dependent uncertainties obtained through Monte Carlo simulations. Hence, uncertainties can be
addressed in a more realistic and responsive manner.

Appendix

Table 6 Results of local drift, flying East to West

Cost function 𝐸
(
𝑤𝑤,𝑖

)
𝑖

in J 𝑝 𝐸𝑖,xy-sens in J 𝐸
(
𝑤𝑤,𝑖

)
𝑖
+ 𝐸𝑖,xy-sens in J 𝑝xy-sens

Shortest way 504.5 69.5 574
Energy-optimal nominal 418.1 -17.1% 74.2 492.3 -14.2%

Local Drift 426.4 -15.5% 35.4 461.8 -19.5%

Table 7 Results of turbulence-sensitivity, flying East to West

Cost function 𝐸
(
𝑤𝑤,𝑖

)
𝑖

in J 𝑝 𝐸𝑖,𝜏-sens in J 𝐸
(
𝑤𝑤,𝑖

)
𝑖
+ 𝐸𝑖,𝜏-sens in J 𝑝𝜏-sens

Shortest way 504.5 316.6 821.1
Energy-optimal nominal 418.1 -17.1% 272.4 690.5 -15.9%

Turbulence 442.8 -12.2% 208.6 651.4 -20.7%

Table 8 Results of turbulence-avoidance, flying East to West

Cost function 𝐸
(
𝑤𝑤,𝑖

)
𝑖

in J 𝑝 𝐸𝑖,𝜏-avoid in J 𝐸
(
𝑤𝑤,𝑖

)
𝑖
+ 𝐸𝑖,𝜏-avoid in J 𝑝𝜏-avoid

Shortest way 504.5 301 805.5
Energy-optimal nominal 418.1 -17.1% 303.5 721.6 -10.4%
Turbulence Avoidance 456.4 -9.5% 242.8 699.2 -13.2%

Table 9 Results of sensitivity combination, flying East to West

Cost function 𝐸
(
𝑤𝑤,𝑖

)
𝑖

𝑝 𝐸𝑖,xy-𝜏-comb 𝐸
(
𝑤𝑤,𝑖

)
𝑖
+ 𝐸𝑖,xy-𝜏-comb 𝑝xy-𝜏-comb

in J in J in J
Shortest way 504.5 193.05 697.55

Energy-optimal nominal 418.1 -17.1% 173.3 591.4 -15.2%
Combination 427.3 -15.3% 136.2 563.5 -19.2%
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