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This paper proposes the design of a single linear parameter-varying (LPV) controller for the
combined control and smooth transition between two modes in a spacecraft mission. Current
industry practice for transitioning between different controller modes is to use a discrete
switching approach. When predefined criteria are satisfied, the controller of one mode is turned
off and the controller of the other is initialised, resulting in an undesirable transient behaviour.
In addition, each controller must individually undergo a rigorous verification and validation
(V&V) process. A single controller synthesised using LPV methods streamlines the V&V process
and improves the transient behaviour. The proposed design follows a mixed-sensitivity control
scheme with LPV weights that are derived from the performance and robustness requirements
of the individual modes. The controller is synthesised by minimising the induced L2-norm of
the closed-loop interconnections between the controller and weighted plant. The performance
and robustness of the controller is demonstrated on an acquisition and pointing task of a flexible
satellite through a Monte-Carlo campaign.

I. Introduction

Spacecraft control systems are comprised of multiple modes, each with specifically designed controllers for their
individual objectives, as in [1, 2]. Consider a satellite reorientation manoeuvre; a fast initial turning rate is realised

with an acquisition controller then command is handed over to a pointing controller which is subject to tighter tracking
requirements. To execute this manoeuvre, current industry practice would be to use a discrete switching approach,
i.e., when predefined criteria are met the acquisition controller is halted and the pointing controller initialises. This
initialisation period causes a discontinuity, leading to undesirable, possibly disruptive transient behaviour in the response
[3]. Moreover, it cannot be guaranteed that the pointing controller is able to keep the initial transients within attitude or
actuation requirements [4].

The present paper, therefore, proposes combining the two separate mode controllers into a single linear parameter-
varying (LPV) controller. This approach greatly streamlines the rigorous verification and validation (V&V) process
[5], as only one algorithm must be verified, where it previously would have been two. Moreover, the controller gains
transition from acquisition to pointing in a continuous manner, resolving the need for re-initialisation and as such
improving the response performance. The LPV design extends from the principles of H∞ design, the theory of which is
well understood and has extensive literature. The controller is synthesised by minimising the induced L2-norm of the
closed-loop interconnections of the controller and an LPV generalised plant, established using a modified version of a
recently proposed mixed-sensitivity weighting scheme developed by Theis et al. [6]. This scheme uses a minimum
number of physically interpretable weights that correspond directly to the performance and robustness requirements
of the closed-loop system. It has been successfully applied to many use-cases in aerospace [6–8]. This scheme has
previously been applied to spacecraft attitude control in [9], demonstrating that satellite pointing control, with stringent
requirements, can easily be translated into the mixed-sensitivity framework. Thus, it logically follows that the framework
can be extended to use LPV weights in order to synthesise a controller for a problem with changing requirements. In
this case, a mode transition attitude control task.

Previous attempts at tackling the smooth mode transition objective were successful in improving the transient
response performance. For example, the second mode controller can be initialised with the states of the previous one,
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although, this requires an intermediate state settling [10]. Alternatively, both controllers can be run simultaneously and
their output commands blended together along a pre-defined trajectory, but this increases computational effort. Other
works have derived parameter-dependent control laws analytically, either by blending two existing mode controllers
[11, 12], or via gain scheduling [13]. While these methods produce a better time response, they lack statements on
robustness and stability during the transition phase – a clear indicator for the superiority of an LPV representation.
The induced L2-norm provides performance bounds across the entire domain, including the transition period. Thus,
robustness and stability are guaranteed while the controller is transitioning between the modes. Although commonly
misinterpreted, the same result cannot be said of gain scheduling as each controller is synthesised independently and
there are no guarantees for the performance when interpolating between controllers. For LPV synthesis, even when
synthesising along a grid, it still considers a continuous domain with respect to the scheduling parameter 𝜌. So, in
comparison to gain scheduling, when interpolating an LPV controller between synthesis grid points (with respect to the
trajectory of 𝜌 defined in the synthesis), the L2-norm still holds and the robustness and performance is guaranteed.

The single LPV controller approach is validated in this work on a transition between an acquisition and fine-pointing
mode of a flexible spacecraft. The performance is measured by the time it takes for the attitude of the spacecraft to
converge to within the pointing mode requirements. Actuator saturation limits must also be respected. The performance
and robustness are demonstrated through a Monte-Carlo campaign and analytical robustness margin calculations.

II. BACKGROUND

A. Induced L2-norm Controller Synthesis for Linear Parameter-Varying Systems
LPV systems are a type of systems whose state-space matrices depend continuously on a time-varying parameter vector

𝜌 : R→ P, where P ∈ R𝑛𝜌 is a compact subset chosen based on physical considerations. In addition, the parameter rates
of variation ¤𝜌 are assumed to lie within a hyper-rectangle ¤P defined by ¤P = { ¤𝜌(𝑡) ∈ R𝑛𝜌 | |𝜌𝑖 (𝑡) | ≤ 𝜈𝑖 , 𝑖 = 1, . . . , 𝑛𝜌}.
Hence, the set of all admissible trajectories is T = {𝜌 : R→ P| 𝜌 ∈ C1, 𝜌(𝑡) ∈ P and ¤𝜌(𝑡) ∈ ¤P ∀𝑡 ≥ 0}.

An LPV system 𝑃𝜌 can be represented in the state-space formulation where each matrix is a function of the parameter
vector, i.e., 𝐴 : P → R𝑛𝑥×𝑛𝑥 , 𝐵 : P → R𝑛𝑥×𝑛𝑢 , 𝐶 : P → R𝑛𝑦×𝑛𝑥 , and 𝐷 : P → R𝑛𝑦×𝑛𝑢 . An 𝑛th

𝑥 -order LPV system
𝑃𝜌 is defined by

𝑃𝜌 :

[
¤𝑥(𝑡)
𝑦(𝑡)

]
=

[
𝐴(𝜌(𝑡)) 𝐵(𝜌(𝑡))
𝐶 (𝜌(𝑡)) 𝐷 (𝜌(𝑡))

] [
𝑥(𝑡)
𝑢(𝑡)

]
, (1)

where 𝑥(𝑡) ∈ R𝑛𝑥 is the state vector, 𝑢(𝑡) ∈ R𝑛𝑢 the input vector, and 𝑦(𝑡) ∈ R𝑛𝑦 the output vector. The dependence on
𝑡 is often omitted from the notation for clarity.

The performance of an LPV system can be specified in terms of its induced L2-norm𝑃𝜌 = sup
𝑢∈L2\{0},𝜌∈T ,𝑥 (0)=0

∥𝑦∥2
∥𝑢∥2

. (2)

A generalisation of the Bounded Real Lemma [14] provides a sufficient condition to upper bound the norm of a system𝑃𝜌.
Theorem 1 [14]: 𝑃𝜌 is exponentially stable and

𝑃𝜌 ≤ 𝛾 if there exists a continuously differentiable symmetric
matrix function 𝑋 : P → R𝑛𝑥×𝑛𝑥 such that 𝑋 (𝑝) ≥ 0 and[

𝑋𝐴 + 𝐴𝑇𝑋 + 𝜕𝑋 𝑋𝐵

𝐵𝑇𝑋 −𝐼

]
+ 1
𝛾2

[
𝐶𝑇

𝐷𝑇

] [
𝐶 𝐷

]
≤ 0 (3)

hold for all 𝑝 ∈ P and 𝑞 ∈ ¤P, where 𝜕𝑋 is defined as 𝜕𝑋 (𝑝, 𝑞) = ∑𝑛𝜌

𝑖=1
𝜕𝑋
𝜕𝜌𝑖

(𝑝)𝑞𝑖 . In (3), the dependence of the matrices
on 𝑝 and 𝑞 has been omitted to shorten the notation.

This theorem extends to the induced L2-norm controller synthesis in [14]. Consider an open-loop LPV system
𝐺𝜌 with the state-space formulation as in (1) with inputs denoted [𝑤𝑇 , 𝑢𝑇 ]𝑇 and outputs [𝑧𝑇 , 𝑦𝑇 ]𝑇 , where 𝑤 and 𝑧 are
measures of performance. The objective is to synthesise a controller 𝐾𝜌,

𝐾𝜌 :

[
¤𝑥𝐾
𝑢

]
=

[
𝐴𝐾 (𝜌) 𝐵𝐾 (𝜌)
𝐶𝐾 (𝜌) 𝐷𝐾 (𝜌)

] [
𝑥𝐾

𝑦

]
, (4)
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such that the induced 𝐿2-gain of the closed-loop interconnection of 𝐺𝜌 and 𝐾𝜌, denoted by the lower fractional
transformation 𝐹𝑙 (𝐺𝜌, 𝐾𝜌), is minimised.

min
𝐾𝜌

𝐹𝑙 (𝐺𝜌, 𝐾𝜌) . (5)

Thus, the optimisation of the performance of the closed-loop system can be solved via parametrised LMI conditions; see
[14] for details. This synthesis problem involves an infinite collection of LMI constraints parametrised by (𝑝, 𝑞) ∈ P× ¤P.
A remedy to this infinite dimensionality is to approximate the constraints with finite-dimensional LMIs evaluated on a
gridded domain of 𝑝 and 𝑞. Tools to solve the synthesis problem are readily available; LPVTools [15] is used in this
paper.

B. Linear Parameter-Varying Mixed-Sensitivity Design Architecture
It is common practice to design induced L2-norm optimal controllers by mixed-sensitivity loopshaping; see, e.g.,

[16, 17]. Thus, the theory extends to optimal LPV controllers [14], as demonstrated in [9]. Consider the closed-loop
feedback system between a plant 𝑃 and controller 𝐾𝜌 (4). Desired closed-loop behaviour can be enforced by minimising
the induced L2-norm of the interconnection between the controller and a weighted, generalised plant 𝐺𝜌 (1) constructed
from 𝑃 and some weights. The weights are responsible for defining the additional performance in/outputs 𝑤 and 𝑧.
The proposed weighting scheme applied in this paper uses a minimal number of physically interpretable LPV weights
that are derived from the robustness and performance requirements of the closed-loop with respect to the scheduling
parameter 𝜌. The scheme is shown in Fig. 1. It is adapted from a recently proposed scheme presented for an LTI case in
[6]. Note that the subscript 𝜌 indicates a system’s dependence on the scheduling parameter 𝜌. Throughout this paper, the
plant 𝑃 is assumed to be linear time-invariant (LTI) as only the performance weights change during the mode transition.
The theory presented in this paper also extends to LPV synthesis when the plant is parameter-varying, i.e., 𝑃𝜌.

𝑃

𝑊𝑢,𝜌

𝐾𝜌

𝑊𝑒,𝜌𝑅
−1
𝑒𝑢,𝜌𝑅𝑒𝑢,𝜌 𝑅𝑑𝑢,𝜌

𝑟

𝑤1 𝑤2𝑧1 𝑧2

𝑒 𝑢
𝑑

−

Fig. 1 LPV weighted four-block mixed-sensitivity problem.

Defining the output sensitivity function 𝑆𝜌 = (𝐼 + 𝑃𝐾𝜌)−1, the generalised closed-loop 𝐹𝑙 (𝐺𝜌, 𝐾𝜌) of the weighted
mixed-sensitivity problem is then[

𝑧1

𝑧2

]
=

[
𝑊𝑒,𝜌𝑅

−1
𝑒𝑢,𝜌 0

0 𝑊𝑢,𝜌

] [
𝑆𝜌 −𝑆𝜌𝑃
𝐾𝜌𝑆𝜌 −𝐾𝜌𝑆𝜌𝑃

] [
𝑅𝑒𝑢,𝜌 0

0 𝑅𝑑𝑢,𝜌

] [
𝑤1

𝑤2

]
(6)

where𝑊𝑒,𝜌 and𝑊𝑢,𝜌 denote dynamic parameter-varying weights and 𝑅𝑒𝑢,𝜌, and 𝑅𝑑𝑢,𝜌 parameter-dependent scaling
factors. The central block is referred to as the four-block problem and defines four unique closed-loop mappings that are
shaped by the designed weights. These four blocks fully describe the performance and robustness of the controlled
system. A high magnitude in𝑊𝑒,𝜌 reduces 𝑆𝜌 leading to better tracking and disturbance rejection capabilities. A high
magnitude in𝑊𝑢,𝜌 reduces the control effort 𝐾𝜌𝑆𝜌. Hence,𝑊𝑢,𝜌 can enforce controller roll-off at high frequencies, e.g.,
to avoid excitation of flexible modes in a system. The scaling factors are used as the main tuning knobs and are mutually
dependent. 𝑅𝑒𝑢 tunes the desired relationship between command signal 𝑢 and error 𝑒. A good initial value is the ratio
of allowable pointing error to maximum actuator command, implying that the synthesised controller will command its
maximum capacity when the pointing error is about to be violated. Similarly 𝑅𝑑𝑢 defines the relationship between
expected disturbance 𝑑 and actuator response 𝑢. As a result, a third relationship must be considered 𝑅𝑑𝑒 = 𝑅𝑑𝑢𝑅−1

𝑒𝑢

which tunes the error 𝑒 relative to the expected disturbance; in other words, the disturbance rejection performance.
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III. LPV Control for Satellite Mode Transition
This paper applies LPV controller synthesis to combine the traditionally separate modes of a spacecraft attitude

reorientation controller, as described in Section I. The controller generates torque commands 𝜏𝑐𝑚𝑑 about the body-frame
to establish tracking of the satellite attitude 𝜃 to the guidance (GUI) reference signal 𝜃𝑟 , respecting the actuators’
limitations. It is imperative to recognise the differing requirements and desired response characteristics for the target
acquisition phase (denoted 𝑎)compared to the pointing phase (denoted 𝑝). A mixed-sensitivity weighting scheme can
be easily formulated for each phase individually. Thus, an LPV mixed-sensitivity weighting scheme that respects the
requirements of each phase at each end of the domain is feasible. Consider the profile (𝜃𝑟 ) is generated as a slew in a
given time-frame from the initial 𝜃0 to the desired attitude 𝜃𝑟 (𝑡 → ∞). As in Fig. 2 initially the error from attitude
to desired final attitude is large. As the spacecraft slews and the attitude converges to pointing, the error decreases.
Therefore, the chosen scheduling parameter is 𝜌 = |𝜃 − 𝜃𝑟 (𝑡 → ∞)| as it quantitavely represents the transition from
acquisition slew to target pointing. The scheduling parameter is defined within a range 𝜌𝑝 < 𝜌 < 𝜌𝑎, where the bounds
are chosen as reasonable limits with respect to the two modes. In terms of implementation, for any value of 𝜌 where
𝜌 < 𝜌𝑝 or 𝜌 > 𝜌𝑎 the controller will behave as an LTI controller. This is of particular use for fine pointing since the
scheduling parameter is a quasi-state of the controller; LTI behaviour when 𝜌 < 𝜌𝑝 guarantees the best stability for
fine-pointing.

Consider first the pointing mode, the task of the controller is to maintain the attitude of the spacecraft with a
steady-state error less than a given value 𝜖𝑝. Hence, as depicted in Fig. 3, the shape of 𝑊𝑒 ensures the sensitivity
function 𝑆 is pushed below 𝜖𝑝 at low frequency. Given that the satellite has integral dynamics, there will in reality
be no steady-state error. Therefore, the main driver in the pointing performance is the disturbance rejection; the
parameter 𝜖𝑝𝑅𝑑𝑢𝑅−1

𝑒𝑢 describes the steady-state error response to a disturbance input. The tracking bandwidth 𝜔𝑒,𝑝,
also impacts the disturbance rejection performance so it must be higher than the frequency range of expected low
frequency disturbance. The weight𝑊𝑢 defines the shape of the actuator response to reference (𝐾𝑆) and disturbance
signals (−𝐾𝑆𝑃). Hence it is a first order weighting function with a high pass shape, enforcing that the actuator response
rolls off at a given frequency 𝜔𝑢,𝑝. This frequency reflects the available bandwidth in the system and ensures the
controller rolls off to prevent the excitation of flexible modes or unmodelled high frequency dynamics. To maximise the
tracking and disturbance rejection capabilities, 𝜔𝑒,𝑝 can be further increased so long as the sensitivity peak |𝑆𝑚𝑎𝑥 |
remains low and the frequency separation between 𝜔𝑒,𝑝 and 𝜔𝑢 is enough to provide sufficient phase margin (PM).

In comparison, the task of the acquisition mode is to track a slew guidance profile. So that the controller design can
be posed as an LPV problem, the tunable design parameters for the acquisition mode are the same as for the pointing
mode. The main differences in the design are that the steady-state error 𝜖𝑎 in this phase does not need to be as low as for
the pointing phase. Additionally, there is more emphasis on tracking bandwidth 𝜔𝑒,𝑎, the controller response should be
faster as the spacecraft is performing a manoeuvre. The acquisition mode typically uses thrusters to produce torque,
which have a considerably higher torque capacity than RW. However, given that this paper considers a fine-pointing
scenario, the allowable error will be orders of magnitude higher for the acquisition mode than the pointing mode. Thus
the main influence on 𝑅𝑒𝑢 are the pointing requirements, hence 𝑅𝑒𝑢,𝑝 < 𝑅𝑒𝑢,𝑎. Similarly 𝑅𝑑𝑢,𝑎 is greater to account for
larger torque disturbances relative to the actuator capabilities during the manoeuvre.

The focus of this work is on the controller algorithm and smoothing the command and error signal. Therefore,
implementing realistic actuator dynamics are outside of the scope of this paper. However, it is important to note that
there exist torque allocation algorithms that would enable the combined use of thrusters and reaction wheels (RW). An
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example of such an algorithm is [18].
Now the two design points can be reformulated as an LPV induced L2-norm synthesis problem. The plant

dynamics are considered unchanging during the manoeuvre, so the plant 𝑃 is linear time-invariant (LTI). The two
mixed-sensitivity weighting schemes are interpolated across the domain with respect to a chosen function shape (e.g.
linear, quadratic, hyperbolic). Thus, the problem is formulated as a grid-based LPV mixed-sensitivity controller
synthesis with parameter-varying performance weights. The parameter-varying generalised plant 𝐺𝜌 takes the form in
(1). Then the controller, as in (4), is found by solving the optimisation problem in (5). In the present paper, the controller
design is formulated as a quadratic function of 𝜌. A quadratic rather than a linear function was chosen so that the rate of
change in the controller begins low while the spacecraft is slewing, and then increases when the spacecraft gets closer
to pointing - when tracking errors are lower. This was the simplest, low order, rational domain shape that produced
good results. Linear, inverse and hyperbolic funcions were also investigated. For the linear function, performance was
not satisfactory due to the constant rate of change. For the inverse and hyperbolic functions, the performance showed
no improvement but the synthesis time was significantly longer and the problem definition became overly complex.
An example for the definition of 𝑅𝑒𝑢 is provided below in (7). The equation ensures the end points of the function
correspond to the pointing and acquisition design points.

𝑅𝑒𝑢 (𝜌) =𝑅𝑒𝑢,𝑎 + 𝛼𝑒𝑢 (𝜌 − 𝜌𝑎)2 (7a)

𝛼𝑒𝑢 =
𝑅𝑒𝑢,𝑝 − 𝑅𝑒𝑢,𝑎
(𝜌𝑝 − 𝜌𝑎)2 (7b)

IV. APPLICATION: Target Acquisition and Fine Pointing of a Flexible Satellite

Fig. 4 Diagram of satellite model characteristics.

The proposed LPV controller design is demonstrated on a simulation of a flexible satellite. The satellite in question
is a large observation satellite (similar to Chandra X-Ray NASA, or Athena ESA), weighing 6000 kg. It was modelled
using the Satellite Dynamics Toolbox [19–23]. As depicted in Fig. 4, the satellite has two flexible solar arrays which are
able to rotate in unison. Also, it has a moveable observation module (weighing an additional 1000 kg) positioned at the
opposite end to the solar arrays. The spacecraft manoeuvres by generating torques about the body frame in order to align
its 𝑧-axis in the body frame 𝑧CB to the target. The attitude controller must satisfy certain requirements in the frequency
and time domain, representative of typical industry requirements. First, the dynamics of the flexible appendages should
not be excited. Then, for additional robustness, the open-loop system must have gain and phase margins of at least
6 dB and 35◦, respectively. Finally, the system must have a modulus margin of at least 0.5, which is equivalent to the
magnitude of the output sensitivity function remaining below 6 dB.

In terms of time domain performance, the tracking and pointing performance is measured by the absolute performance
error (APE). In other words, it is the error between the reference attitude 𝜃𝑟 and true attitude 𝜃. In addition, the actuator
commands must remain within provided actuator bounds 𝜏𝑚𝑎𝑥 . This bound corresponds to thruster torque authority
during the acquisition phase. Then actuator commands must converge to below the reaction wheel saturation limits
during pointing phase. Time domain requirements and limitations are summarised in Table 1.

The central body of the satellite is modelled as a cylinder and is described by the linear Newton-Euler equations (8)
with mass 𝑚CB and inertia 𝐽CB.
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Table 1 System requirements and limitations.

Acquisition Pointing
APE [𝑥, 𝑦, 𝑧] [rad] [0.026, 0.026, 0.026] [7.3 × 10−6, 7.3 × 10−6, 0.175]
𝜏𝑚𝑎𝑥 [𝑥, 𝑦, 𝑧] [Nm] [50, 25, 20] [0.27, 0.14, 0.15]

Table 2 System parameters modelled with uncertainty.

Parameter Nominal Range

Central body (CB) Mass 𝑚CB [kg] 6000 ±5%
Distance from origin 𝑂 𝑂𝐺𝑥 [m] 0 ±0.15
to CoG position 𝐺 𝑂𝐺𝑦 [m] 0 ±0.15

𝑂𝐺𝑧 [m] 7.5 ±5%
Measurement Module (MM) Mass 𝑚MM [kg] 1000 ±5%

Rotation-𝑥MM [◦] 0 ±0.5
Rotation-𝑦MM [◦] 0 ±5
Rotation-𝑧MM [◦] 0 ±0.5

Solar Arrays (SA) Rotation 𝜃SA [◦] 0 ±180

(
Σ 𝑓ext

Σ𝜏ext

)
=

[
𝑚CB𝐼3×3 03×3

03×3 𝐽CB

] (
¥𝑟
¥𝜃

)
(8)

The sum of external forces 𝑓ext and torques 𝜏ext acting on the spacecraft result in a translational and rotational
acceleration (¥𝑟 and ¥𝜃 respectively). The solar arrays (SA) are each modelled as a cantilever beam connected to the
central body at a hinge point 𝑃.(

𝑓 𝑃

𝜏𝑃

)
=

[
𝑚SA𝐼3×3 03×3

03×3 𝐽SA

] (
¥𝑟SA
¥𝜃SA

)
+ 𝐿𝑇

𝑃
¥𝜂

−𝐿𝑃

(
¥𝑟SA
¥𝜃SA

)
= ¥𝜂 + 𝑑𝑖𝑎𝑔{2𝜁𝑖𝜔𝑖}𝑘𝑖=1 ¤𝜂 + 𝑑𝑖𝑎𝑔{𝜔

2
𝑖
}𝑘
𝑖=1𝜂

(9)

𝐿𝑃 describes the modal contributions of the solar arrays. Each second-order mode (denoted by subscript 𝑖) has damping
𝜁𝑖 and natural frequency 𝜔𝑖 . The solar arrays in the model include the first and second bending modes and a torsional
mode with natural frequencies [5.6, 35.0, 19.3] rad/s respectively. The moveable observation module is modelled as a
smaller rigid cylinder connected to the central body at point 𝑃 by rotational transformations. As with the rotation of
the solar arrays, these rotational transformations are included as uncertainties in the design, this ensures the controller
achieves performance for all solar array and observation module positions. All uncertainties in the model are summarised
in Table 2.

Some approximate disturbance and sensor noise models are introduced in order to test the robustness of the
controller against external factors. The expected disturbance, namely disturbance torque from the space environment, is
approximated as white noise passed through a low pass filter. The navigation algorithm is not a focus of this paper, so it
is assumed that the satellite navigates with sensor fusion. This results in a white noise introduced to the output channel,
the magnitude of which corresponds to the typical temporal error in a star tracker. The considered slew manoeuvre
GUI profile is defined by a constant acceleration towards the target attitude followed by a constant deceleration such
that the final attitude is reached with no residual angular rate. Various slew sizes were considered, with a change in
attitude ranging from 20◦ to 180◦. All slews were generated such that the GUI profile reaches the final attitude in 700s.
Given that the spacecraft model has higher torque capacity about the x-axis, this is the preferred direction of rotation for
performing a larger slew.
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Fig. 5 Tuning parameters over the domain and corresponding closed-loop properties.

A. Controller Design
The controller synthesis used the nominal rigid body dynamics of the satellite derived in (8) and (9), removing the

flexible modes of the appendages. This minimised the number of states in the full-order controller and the design allows
enough frequency separation that it does not excite the flexible modes in the full order plant. All weights in the design
are diagonal, corresponding to the three axes of the system. All tuned parameters are interpolated between the end
points using the quadratic function (7). To encompass a full range of slew manoeuvres and ensure the controller only
converges to LTI once fine-pointing is sustained: 𝜌𝑝 = 0.01◦ (1.75 × 10−4 rad) and 𝜌𝑎 = 180◦ (𝜋 rad).

The shapes of𝑊𝑒 and𝑊𝑢 are designed as in Fig. 3. Across the domain,𝑊𝑒 is set to−6 dB at high frequency to limit the
peak of the sensitivity function to 2. The magnitude of𝑊𝑢 increases by 40 dB after the crossover frequency𝜔𝑢 = 2.5 rad/s
which is chosen as half of the frequency of the first flexible mode. This ensures sufficient roll-off in the controller so
that the commands are lower within the frequency range of the solar array flexible modes. Since the required roll-off is
unchanging,𝑊𝑢 is not parameter-varying. The steady-state tracking error 𝜖 changes from 𝜖𝑎 = [0.013, 0.013, 0.013]
to 𝜖𝑝 = [7.3 × 10−6, 7.3 × 10−6, 0.0175]. For pointing 𝜖𝑝 is equal to the APE requirement (see Table 1), whereas for
acquisition 𝜖𝑎 is half the corresponding APE requirement to improve the tracking performance for this mode. It is very
important that the RW do not saturate. For this reason, the ratio 𝑅𝑒𝑢 was tuned such that, for pointing, the controller will
saturate the RW only if the error reaches two times APE𝑝; 𝑅𝑒𝑢,𝑝 = (2×APE𝑝)/(𝜏𝑚𝑎𝑥,𝑝) = [5.3×10−5, 10×10−5, 0.24].
On the other hand, for acquisition, fast tracking is the priority, so 𝑅𝑒𝑢 corresponds to an actuator saturating at half
APE𝑎. In other words 𝑅𝑒𝑢,𝑎 = (0.5 × APE𝑎)/(𝜏𝑚𝑎𝑥,𝑎) = [0.26, 0.52, 0.65] × 10−3. Similarly, the ratio 𝑅𝑑𝑢 is tuned
for pointing so that the RW will not saturate for the expected disturbance 𝑅𝑑𝑢,𝑝 = [3.7, 7.1, 6.8] × 10−3. The ratio
is low, meaning the actautors can be more responsive to small disturbances. For acquisition, this ratio is increased
to 𝑅𝑑𝑢,𝑎 = [0.1, 0.1, 0.1]. The ratio 𝑅𝑒𝑑 = 𝑅𝑒𝑢𝑅

−1
𝑑𝑢

results from the other tuned parameters, but it is still important
to check that the result is realistic as this directly relates to the disturbance rejection capabilities of the system. As
described in Section III, 𝜖𝑅𝑒𝑑 corresponds to the amplification of low frequency disturbance in the attitude error. The
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Fig. 6 Frequency response of closed-loop transfer functions across the gridded domain 𝑲𝑺 (left) and −𝑲𝑺𝑷
(right) for each axis.

resulting disturbance rejection is 𝜖𝑝𝑅𝑒𝑑,𝑝 = [1.06 × 10−7, 1.06 × 10−7, 0.61]. For the x- and y-axes this is equivalent to
a steady-state error of approximately 1% of the APE requirement resulting from an input disturbance of 1 Nm. For
the z-axis, the disturbance rejection is relaxed as the requirements are much less stringent but the level of disturbance
is the same. Above 10−4 rad/s it is possible that disturbances will be amplified, but given the relative size between
expected disturbance and allowable error, and the frequency range this occurs, it is deemed acceptable. For acquisition,
the amplification is of similar magnitude across the axes 𝜖𝑎𝑅𝑒𝑑,𝑎 = [3.4, 6.9, 8.6] × 10−5. Note that the expected
disturbance is higher during acquisition so its important that all three axes have sufficiently small values. The final
parameter to tune was the tracking bandwidth 𝜔𝑒. This was iteratively pushed up to maximise the achievable tracking
and disturbance rejection performance of each mode while keeping enough frequency separation to meet robustness
margin requirements. The final tunings are 𝜔𝑒,𝑝 = [8, 4, 4] × 10−3 rad/s and 𝜔𝑒,𝑎 = [1.5, 0.3, 0.3] × 10−2 rad/s. It is not
imperative that the tuning occurs in this order, however it is important that all tuning parameters and their corresponding
physical constraints on the system are carefully considered.

For synthesis, the LPV mixed-sensitivity weights were interpolated across the domain on a grid of 18 points such
that the synthesis problem was a finite selection of LMIs. The resulting parameter tunings are plotted in Fig. 5 together
with the resulting controller and closed-loop characteristics they influence. It is clear from Fig. 5 that the design drivers
are the disturbance rejection limit (𝜖𝑅𝑒𝑑) and the relationship between actuator commands and tracking error (𝑅−1

𝑒𝑢 ).
The controller was synthesised using LPVTools [15]. The trajectory of 𝜌 in the parameter dependent storage functions
was chosen as 𝑝0 + 𝑝1𝜌

2 + 𝑝2𝜌
4, where 𝑝 are coefficients solved in the optimisation. The rate-bounds of ¤𝜌 were chosen

corresponding to the largest expected slew rate, [−8.7 8.7] × 10−3 rad, which comes from the GUI profile definition.
Fig. 6 shows the resulting closed-loop transfer functions with the LPV controller compared to the weighting scheme
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Table 3 Monte-Carlo distribution parameters. Normal distributions N(𝜇, 𝜎) with mean 𝜇 and standard
deviation 𝜎. Uniform distributions U(𝜇 + range)

Parameter Distribution

Central Body (CB)
Mass 𝑚CB [kg] N(6000, 1.7%)
𝑂𝐺𝑥 [m] N(0, 0.05)
𝑂𝐺𝑦 [m] N(0, 0.05)
𝑂𝐺𝑧 [m] N(7.5, 0.13)

Measurement Module (MM) Mass 𝑚MM [kg] N(1000, 1.7%)
Rotation-𝑥MM [◦] U(0 ± 0.5)
Rotation-𝑦MM [◦] U(0 ± 5)
Rotation-𝑧MM [◦] U(0 ± 0.5)

Solar Arrays (SA) Rotation 𝜃SA [◦] U(0 ± 180)
Initial error |𝜃𝑟 ,𝑥 (0) | [◦] U(20 + 160)

|𝜃𝑟 ,𝑦 (0) | [◦] U(20 + 70)

at the two end points, as described by the four-block-problem. It is clear from the plot that the synthesised LPV controller
closely follows the dynamics imposed by the design process. It also demonstrates that the synthesis was able to achieve
higher frequency tracking and disturbance rejection bandwidths than tuned.

B. Evaluation
The evaluation and simulations were conducted with the full-order plant, including flexible modes. The worst

stability margins of the LPV design were calculated by taking a random sample of 100 LTI plants over all uncertainties
in Table 2. The results are plotted in Fig. 7 with respect to the scheduling parameter. All margin requirements are met.
Generally, the gain and phase margins (GM and PM) show an upward trend as the system converges to pointing, which
is desirable as the system is more robust when performance is more critical to the mission. On the other hand, the delay
margin (DM) reduces for the x- and y-axes to 6.3s and 9.4s respectively.

The proposed LPV controller was assessed through a Monte-Carlo campaign with 10,000 samples. The flexible
satellite model was implemented in Simulink and simulated with a distribution of initial attitude errors and plant
uncertainties, as summarised in Table 3. The modelled low frequency input disturbance and white noise had unique
noise generation seeds for each simulation. As the goal of the design was to achieve fine pointing of a target as fast as
possible after completing a slew, the measure of performance was the time to converge to within the pointing requirement
bound |𝜃𝑒 | ≤ APE given in Table 1. The results in Fig. 8 show that, for every case, the torque command 𝜏 converges to
below the RW limits before the attitude error |𝜃𝑒 | reaches fine-pointing requirements. This reflects the current industry
practice of switching to RW before converging to fine-pointing. The majority of cases converge to torque commands
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Fig. 9 Time response of the LPV controller across the MC campaign ( ), with a nominal case ( ). Showing
fine-pointing is achieved smoothly with respect to requirements ( ).

below RW command limits within 750 s, less than a minute after the slew is complete. The remaining cases exhibit a
larger overshoot in the 𝑦-axis command, and so converge in the next oscillation. Fine-pointing convergence shows a
smooth distribution with the fastest convergence time at ≈ 1335 s; which is ≈ 635 s (under 11 minutes) after the GUI
profile converges to steady-state. The slowest case takes ≈ 955 s (under 16 minutes) to converge to fine-pointing after
the GUI profile is complete. Fig. 9 further shows that as the attitude and torque commands converge, the signals are
smooth and there are no undesireable jumps in the torque command, as would occur in a discrete switch implementation.
Similar behaviour is seen for the 𝑦-axis, and the 𝑧-axis states remain withing pointing requirements throughout the
simulations. Fig. 10 shows that, with the exception of 𝜃𝑒,𝑦 , all limitations and requirements during the slew are met
over the Monte-Carlo campaign. This requirement is only not met briefly, for cases where the initial 𝜃𝑥 is towards the
maximum limit and 𝜃𝑦 is at its minimum limit.

V. CONCLUSION
An LPV controller design scheduled with attitude error was proposed for the combined control and smooth mode

transition between an acquisition and pointing mode of a spacecraft mission. The LPV approach leads to a single
controller with guaranteed performance bounds across the domain with respect to the tuning. Moreover, the dynamics of
the controller are known over the transition period and stability margins can easily be computed over the domain. The
design used a mixed-sensitivity control scheme with parameter-varying weights that are derived from the performance
and robustness requirements and system limitations. The design was implemented on a spacecraft with a moveable
measurement module, flexible solar arrays, sensor noise, and external torque disturbances. The use-case was acquiring
and achieving fine-pointing of a target within given requirements. The results of a Monte-Carlo campaign confirmed
that the LPV controller converged to pointing smoothly with a range of initial attitudes and system states (with respect
to uncertainties) and was able to successfully bring the actuator commands within the reaction wheel saturation limits.
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