arXiv:2208.11636v1 [cs.LG] 24 Aug 2022

IMITAL: LEARNED ACTIVE LEARNING STRATEGY ON
SYNTHETIC DATA

A PREPRINT
Julius Gonsior Maik Thiele
Technische Universitit Dresden Hochschule fiir Technik und Wirtschaft Dresden
Dresden, Germany Dresden, Germany
julius.gonsior@tu-dresden.de maik.thiele@htw-dresden.de
Wolfgang Lehner

Technische Universitit Dresden
Dresden, Germany
wolfgang.lehner@tu-dresden.de

August 24, 2022

ABSTRACT

Active Learning (AL) is a well-known standard method for efficiently obtaining annotated data by first
labeling the samples that contain the most information based on a query strategy. In the past, a large
variety of such query strategies has been proposed, with each generation of new strategies increasing
the runtime and adding more complexity. However, to the best of our our knowledge, none of these
strategies excels consistently over a large number of datasets from different application domains.
Basically, most of the the existing AL strategies are a combination of the two simple heuristics
informativeness and representativeness, and the big differences lie in the combination of the often
conflicting heuristics. Within this paper, we propose IMITAL, a domain-independent novel query
strategy, which encodes AL as a learning-to-rank problem and learns an optimal combination between
both heuristics. We train IMITAL on large-scale simulated AL runs on purely synthetic datasets.
To show that IMITAL was successfully trained, we perform an extensive evaluation comparing our
strategy on 13 different datasets, from a wide range of domains, with 7 other query strategies.

Keywords annotation - active learning - imitation learning - learning to rank

1 Introduction

Machine Learning (ML) has found applications across a wide range of domains and impacts (implicitly) nearly every
aspect of nowaday’s life. Still, one of the most limiting factors of successful application of ML is the absence of labels
for a training set. Usually, domain experts that are rare and costly are required to obtain a labeled dataset. Thus, to
improve the manual label task is a prime object to improve. For example, the average cost for the common label task of
segmenting a single image reliably is 6,40 USIiH

Reducing the amount of necessary human input into the process of generating labeled training sets is of utmost
importance to make ML projects possible and scalable. A standard approach to reduce the number of required labels
without compromising the quality of the trained ML model, is to exploit Active Learning (AL). The approach consists
of an iterative process of selecting exactly those unlabeled samples for labeling by the domain experts that benefit the
to-be trained model the most. Given a small initial labeled dataset £ = {(z;, y;)}?* of n samples z; with the respective
labels y; and a large unlabeled pool U = {x;},x; ¢ L, an ML model called learner 0 is trained on the labeled set. A
query strategy then subsequently chooses a batch of b unlabeled samples (2, which will be labeled by the human experts
and added to the set of labeled data £. This AL cycle repeats T times until a stopping criterion is met.

! According to scale.ai as of December 2021

https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://orcid.org/0000-0001-8107-2775

IMITAL A PREPRINT

1.) Synthetic Dataset Generation 2.) Optimal AL Simulation 3.) State-Action-Reward Set
Multiple (t) AL cycles (S) A) R)
= r ol .
\ il] st |ls? s
1 - . [Ha
rt ffr? r

Shuffle and
Flatten from
3Dto 1D

Different randomly)|
selected
parameters per
Synthetic Dataset

P o
o
D 1o U (unlabeled) ® £ (labeled) Q (AL Query)
®e o o Join training data
from all datasets
and timestamps

Figure 1: General overview on the training procedure of IMITAL

By continuously retraining the model on the growing labeled set, one can avoid labeling samples with redundant
information, which the model has already learned. The challenge of applying AL in this setting is the almost paradoxical
problem to be solved: how to decide, which samples are most beneficial to the ML model, without knowing the label of
the samples, since this is exactly the task to be learned by the to-be-trained ML model.

During the past years, many different AL query strategies have been proposed, but to our knowledge, none excels
consistently over a large number of datasets and from different application domains. For the popular application
domains, e. g. natural language processing Schroder and Niekler|[2020] and computer vision [Beck et al.| [2021]], it is
indeed actively being researched which strategies to use, but for niche-domains it is often unclear which AL strategy to
use. By deliberately focusing on domain-independent AL strategies we aim to shed some light onto this problem. Even
though various extensive general survey papers Settles|[2010], Ren et al.| [2021], Zhan et al.|[2021] exist, no clearly
superior AL strategy has been identified. The results of the individual evaluations in papers with newly proposed AL
strategies suggest that current AL strategies highly depend on the underlying dataset domain. Even more interestingly,
the naive baseline of randomly selecting samples often achieves surprisingly competitive results Konyushkova et al.
[2018]], Pang et al.| [2018]], Liu et al.| [2018]], Huang et al.|[2010]],[Hsu and Lin| [[2015]], Wang and Ye|[2015]].

At its core, the vast majority of AL strategies rely on the same set of two simple heuristics: informativeness and
representativeness. The first favors samples that foremost improve the classification model, whereas the latter favors
samples that represent the overall sample distribution in the feature vector space. Most recent AL strategies add more
layers of complexity on top of the two heuristics in their purest form, often resulting in excessive runtimes. This
renders many AL strategies unusable in large-scale and interactively operating labeling projects, which are exactly
those projects that would benefit the most from “optimal” learning strategies.

We are presenting IMITAL, a novel AL strategy, which at its core is an Neural Network (NN) trained on very large sim-
ulated AL episodes with the goal to optimally combine the basic AL heuristics informativeness and representativeness.
As it is not practically feasible to enumerate all possible real-world datasets as training data in the simulations, we are
approximating them by using synthetic datasets instead. The benefit of synthetic datasets is that we can leverage the
knowledge about all the labels to construct an optimal AL strategy, which then serves as training basis for IMITAL. The
learning procedure of IMITAL consists of Imitation Learning (IL), where the training target is to imitate a demonstrated
optimal strategy. Our work falls therefore under the category of “learning AL strategies”. According to our knowledge,
our approach is, in contrast to similar works [Konyushkova et al.|[2018]], |Pang et al.|[2018]], Liu et al.|[2018]], Hsu and
Lin| [[2015]], the first one to solely utilize purely synthetical data to train the strategy. We can present a pre-trained,
ready-to-apply AL strategy which can be applied without any further necessary transfer-learning or fine-tuning in any
domain. The final version of IMITAL is trained on 100,000 synthetic datasets with the respective true optimal AL
strategy simulations.

We start in Section [2]by presenting our synthetic datasets simulation process, followed by our IL procedure in Section [3]
In Section[d] we are comparing IMITAL with 7 common AL strategies on 13 real-world datasets. We are outperforming
them with statistical significance on various evaluation metrics. We present the related work in Section[5]and conclude
in Section

2 Simulating AL on Synthetic Training Data

For the IL training procedure of IMITAL we need an expert AL strategy, which the neural network behind IMITAL
can learn to imitate. In order to capture the characteristics of “all” possible datasets we pursue the idea by generating

IMITAL A PREPRINT

Parameter Distribution and range
#samples uniform(100, 5,000)
#features uniform(2, 100)
#classes uniform(2, 10)
#clusters per class uniform(1, 10)
%class weights per class dirichlet(0, 100)
% of random label noise pareto(0, 100)
class separability uniform(0,10)

Table 1: Generation parameters for synthetic datasets

nearly “infinite” synthetic datasets and computing an optimal AL strategy on them, leveraging the information about
the known full labels for the synthetic datasets.

2.1 Synthetic Datasets

To be widely usable, IMITAL should be applicable to every possible dataset and not be limited to a fixed domain or
specific dataset characteristics. Therefore, in an ideal setting, one would first enumerate all possible real-world datasets,
run optimal AL simulations on them, and train IMITAL on the thereby observed state of the AL problem. Since it is
practically and computationally not feasible to enumerate all real-world datasets, we make the assumption of being
able to approximate them with a large enough number of random and diverse synthetic datasets and eventually achieve
near-universal applicability of IMITAL. Obviously, the quality of IMITAL inherently depends on the “quality” of the
synthetic datasets; the more diverse and the more similar to real datasets the synthetic ones are, the more applicable
IMITAL will be in real-world usage scenarios. For generating the synthetic datasets we use the implementation of the
algorithm by Guyon| [[2003[] in scikit-learn Pedregosa et al.|[2011]], which is a runtime efficient method for creating
a diverse range of synthetic datasets of varying shape and resulting classification hardness. The general idea is to
first generate clusters and then fill the clusters randomly with samples. The clusters are assigned for target classes to
construct a supervised dataset. The clusters are placed either on the edges of a hypercube or a random polytope. Table/I]
lists the range of parameters and random distributions used while generating the synthetic datasets. The length of the
hypercube sides is 2¢/@s separability meaning larger values of class separability result in more spread out samples
and therefore harder classification tasks. The class weight parameter controls the ratio between the number of samples
between the classes. We explicitly decided to not only focus on binary classification problems but to set the number
of classes with a maximum of 10, as the more classes exist, the harder is the labeling process, and the more useful is
AL in general. Other parameter settings control the shape of the clusters, the distribution of the points in the clusters,
the closeness of the cluster centers, random noise, the number of dimensions of the vector space, and many more
characteristics. We also did not decide to create very large datasets with many samples as this would firstly, drastically
extend the training duration, and, secondly, AL strategies should be able to easily scale up from small to large datasets.

Some rare parameter combinations result in very long runtimes. We included a timeout, after which we discarded the
long-running parameter combination and tried out a different one. This synthetic datasets generation approach has
the benefit of being memory- and CPU efficient. A downside is that the implementation is limited to generate sample
clusters using normal distribution. But as this is true for the vast majority of real-world datasets, we can accept this
disadvantage.

2.2 Active Learning Simulation and State-Action-Reward Set

After a synthetic dataset has been generated, a simulation of the true optimal AL strategy is performed on the dataset. As
we know the true labels of all samples of the synthetic datasets in the AL simulation, we can leverage this information
to compute the true optimal AL strategy. We calculate the true optimal AL decision on-the-fly during the simulation
per AL cycle by a future peek: we compute for the current AL cycle the resulting accuracy of the possible queries of
unlabeled samples z, as if they each were added to the set of labeled samples £. We will call this future accuracy in the
following reward. We then choose the query () with the highest resulting future accuracy and extend £ by the newly
labeled samples. This cycle is performed 7-times, or until the set of unlabeled samples is empty.

As this process is computationally still quite heavy, we do not consider all possible batches, but perform a pre-selection
based on a heuristic, which selects a promising and diverse set of the top-k batches. Details of the pre-selection are
explained in Section

IMITAL A PREPRINT

The results of the AL simulation for each AL cycle ¢ for a specific synthetic dataset is a state-action-reward triple.
The state s is represented as a triple s = (!, L¢, 6%), consisting of the set of unlabeled samples ¢, the set of labeled
samples £?, and the state of the learner model #* trained on L. The corresponding actions a is a set of the pre-selected
queries x, whereas the respective rewards 7 for each of these actions is a set of rewards 7. The optimal choice Q?, € a
for the AL cycle ¢ can be easily computed from the given accuracies — the action with the highest future accuracy.
Even though in theory the optimal choice would be sufficient as AL strategy to learn from, the negative choices
are also beneficial for the training of IMITAL for practical reasons (Section [3). We therefore preserve all respective
rewards/accuracies in the state-action-reward triples.

This simulation is repeated a-times using different synthetic datasets. The accumulated state-action-reward pairs,
denoted as the triple (S, .4, R), reflect then the input for IL training procedure of the NN of IMITAL.

3 Training a Neural Network by Imitation Learning

The final step of IMITAL is to use the generated state-action-reward triples (S, .4, R) for training an NN as AL query
strategy. Therefore, we are deploying the ML technique IL Michie and Camacho|[[1994], where demonstrated expert
actions are being replicated by the ML model. The training task for IMITAL is to find patterns in the presented actions.
As NN perform best when the task at hand can be solved by pattern recognition, we use an NN as ML model for
IMITAL.

The resulting challenge is then to encode the state-action-reward triples into suitable input (state) and output (action)
pairs for the NN.

Subsequently (Section[3.T)) we will first redefine AL as a Markov Decision Problem (MDP) followed by the IL learning
process (Section[3.2)). Section[3.3]and Section [3.4] outline the policy network input and output encoding in detail.

3.1 Active Learning as Markov Decision Problem

In order to explain how to leverage IL for training an AL strategy, we are first redefining the AL query selection as a
Markov Decision Problem (MDP). An MDP is a set of states S, a set of actions a, and a real-valued reward function
r(s, x) for taking action = € a in state s. Additionally, the markov property must hold true, stating that the effects of
an action depend only on the current state, not on the history of prior states.

We define AL as an MDP problem, where the state space consists of the labeled set £, the unlabeled set I/, and the
currently trained learner model 6. The action space consists of all possible unlabeled samples = € . The optimization
goal of an MDP is to find a policy m : S — A selecting the best action for a given state. For the case of AL, that
selection is done by the query strategy. Instead of manually defining a policy we train an NN to function as the policy
for IMITAL. To construct a batch, one may select the top-b actions z to construct a query (). Basically, the NN trained
as AL strategy / policy solves therefore the ranking problem of selecting the batch @) of the b-best unlabeled samples
out of the set of unlabeled samples /. The input of the policy network will be the state and multiple actions, therefore,
representing multiple samples to label, and the output denotes which of the possible actions to take, or which samples
to label. The AL query strategy is implemented as an NN solving a listwise learning-to-rank |Cao et al.|[2007]] problem,
ranking the set of unlabeled samples U/ to select the most informative batch Q).

3.2 Imitation Learning

For training a policy in an MDP setting two widely used concepts exist. The first one is Reinforcement Learning (RL),
where the policy network takes an action on its own, receives a reward, gets retrained and the whole cycle repeats
itself. An alternative concept is IL, where an expert demonstrates an optimal policy, which the corresponding policy
network tries to replicate. For AL, it is very easy to demonstrate optimal policy actions, the state-action-reward triples,
representing the result of the simulated AL episodes as outlined previously. The advantage of IL over RL is that the
demonstrated policy can be gathered separately of the training step, which allows us to run the AL simulations in a
large-scale, highly parallelized cluster environment beforehand.

We use behavioral cloning Michie and Camacho|[[1994]] as a variant of IL , which reduces IL to a regular regression
ML problem. The desired outcome is a trained policy returning the optimal action for a given state. We use the
state-action-reward set (S, A, R) to extract an optimal policy 7, which we are then demonstrating to the to-be-trained
network:

#(s) = argmax (ry) (1)
TEQAs, T ETs

IMITAL A PREPRINT

a; A A a, State-Action-Reward Pair
State S Al AA%A A AA AZ a A A The b reward-highest
L A O AOA d A n r actions form the AL
ARS S RS § A A ¥ query Q -
®o oo *
O ol|lo o A A O U [EGas) Ty2
olg mig
— =~ o O
a1 - O g m- | oo » * O L Policy Neural Network
A
MAA || 2,5 A H @O O _e E(xz,5)
A A A A A A x
A 9 A 1 .
88 g 85 § IE' O 1 = .
o %00 o ®o ® (*]] O o | oee | :
Possible acti o .
ossible actions a 09g o0g () D D D Xy
— 940 Or—
X1 | Xk | @z IO 0O O a To1
Query Qs a Select randomly j subsets of U
subset of a elect randomly J su feio Select potentially good subset @ = a = {xy, ..., X;—¢} E(xg,s)
(@@ aa=) @l =k Using the heuristic PreSelectActions(ay, @, @, @;) Tok Tee

Figure 2: Pre-selection process and action meaning for IMITAL, example for j= 4, k=6, and b=3, and encoding of a
state-action-triple

For a given state s, the action set .4 contains all pre-selected actions a for this state; the reward set R contains the
respective rewards r4. As the optimal policy only contains the optimal actions, it can be used to construct the optimal
batch by taking the b-highest actions.

Unfortunately, just demonstrating the optimal actions from () based on the highest rewards requires a significant amount
of training data until convergence of the training process can be reached. Therefore not only utilize the optimal actions,
but also all the gathered rewards for all other actions as negative examples. In other words: we train a policy network
7 predicting for a given state s and a possible action x € a, — which equals labeling the sample represented by this
action — the reward r,, € 7,. In our case, the expected future accuracy by demonstrating the true reward 7 function
is:r*(s,) = r,. The learned reward can then easily be used to construct the learned policy, which is what we need for
IL. A common problem of the IL variant behavioural cloning is the so-called distribution mismatch that occurs when
the demonstrated distribution of the state space is far too different from the distribution of the state space encountered in
application, i.e. when the learned policy performs poorly in the beginning, and finds itself therefore in a previously not
observed state — because an optimal policy would never end up in that space — and has therefore no training experience
to rely on and has to guess the optimal action to take. But as we generated a very-large diverse state-action-reward
set based on datasets of varying difficulty, it can be safely assumed that nearly all possible states are included in our
training data.

3.3 Policy NN Input Encoding

Before using the state-action-reward set (S, .4, R) to train the policy network predicting the future accuracy, we first
transform it into a fixed sized vector representation using feature encoding. NN are limited by the number of the neurons
to either a fixed size input, or when using recurrent NN to circumvent this limitation, they often suffer from the case of
memory loss where the beginning of the input sequence is forgotten due to exploding or vanishing gradients [Hochreiter
et al. [2001]]. The last problem occurs more frequently the larger and more length-varying the input is, which is the case
for AL. The raw state S consists of triples (U, £, #). Therefore, the length of the input layer does not only depend on
the overall number of samples, but is also multiplied by the dimension of the feature space. We therefore transform the
state-action-reward set before the training into a fixed size representation, additionally making IMITAL dataset agnostic.
The raw actions set .A may then contain — depending on the number of unlabeled samples — many possible samples, or
just a few, varying again drastically. That underpins the already mentioned pre-selection method, reducing the number
of possible actions to a fixed size.

The transformation of the state-action-reward set into a suitable form for the policy network is called input and output
encoding. Figure [2]displays the general procedure of the encoding to the right. The input vector of the network is
defined by I, the output vector by Q. The policy network should learn to calculate the expected reward 7, for a given
state s and a possible action x. We chose a listwise input encoding, where we enter k possible actions x € as, |as| = k
at once into the network, in contrast to a pointwise encoding, where a single action is entered at a time. This has the
benefit of enabling the network to compare each possible action relatively to the others, enabling IMITAL therefore to
take batch-aware AL query decisions. The input of the policy network is defined by the vector Iy = {E(x, s)|z € as},

with F being the encoding of the action x. The output @ = (71, ..., %) of the network consists of exactly |r;| output
neurons, one for each of the predicted accuracies 7, for the respective possible actions . The amount of output neurons
equals therefore the amount of pre-selected actions: |r| = |as| = k.

IMITAL A PREPRINT

A single action represents an unlabeled sample 2z € U. The input encoding function F(z, s) defines on what basis the
policy can make the AL query strategy decision. We use the state s = (U, L, 6) to calculate the encoding, which is a
5-tuple consisting of multiple parts, the individual functions will be explained in the following paragraphs:

E(z,s) = (u1(z,0), uz(x,0),us(x,0),dl(z, L), du(x,U)) 2

The complete policy network input vector I consists then of 5-times k values, an encoded 5-tuple for each unlabeled
sample z out of the set of possible actions a:

I, = {E(z1,s),...,E(xy,s)},x € a, 3)

As mentioned in the beginning, a good AL query strategy takes informativeness as well as representativeness into
account. Informativeness is derived by u;(z, 8), a function computing the uncertainty of the learner 6 for the i-th most
probable class for the sample = € U, given the probability of the learner Py (y|x) in classifying 2 with the label y:

wi(z,0) = {Pe((argmaxyﬂ; Po(ylz)) ‘ g;>, ifi <C o

0, otherwise

argmax_ denotes the i-th maximum argument, and C' the number of classification classes.

For representativeness we compute dl(x, £) and du(x,U), the first denoting the average distance to all labeled samples,
the latter the average distance to all unlabeled samples:

dl(z, L) d(z,z;) u(z,U) d(z,), 5)
|£|Z ¥ IUIZ

€L T, ET

where d(x1, z2) is an arbitrary distance metric between the points x; and xo. We use the Euclidean distance for small
feature vector spaces, and recommend using the cosine distance for high-dimensional feature vector space.

3.4 Policy Neural Network Output Encoding

The output encoding of the final layer of the policy network defines which action to take. We use a final softmax layer
of k output neurons, each per possible action. The b highest output neurons indicate the samples for the unlabeled query

Q.

3.5 Pre-Selection

Instead of considering all possible actions, we pre-select promising actions, whose individual samples have the largest
diversity and whose individual samples are the furthest away from each other, similar to Kirsch et al.|[2019]. The
pre-selection fulfills two objectives: first and foremost, we can present a fixed amount of actions to the policy network,
and secondly it keeps the runtime of the simulations within a processable range. A positive side effect of the fixed-size
input of the policy network is the low and static runtime of IMITAL, which is almost independent of the size of the
dataset. The effect is especially apparent with very large datasets.

We start the pre-selection by drawing randomly j possible actions {a1, . .., a;}, with each @ being a subset of U/. After
that we use a heuristic to select the top-k most promising actions a out of the random ones. The pre-selection process is
illustrated in Figure 2] at the left side.

We are using a heuristic to filter out potentially uninteresting actions. By calculating the average distance to the already
labeled samples of all the samples in each possible action set a and select the action set a having the highest average
distance: @ = argmaxg . di(x, L’) where @ contains & unlabeled samples. Thus, we are ensuring that we sample
evenly distributed from each region in the sample vector space during the training process. We compute the heuristic

for j random possible batches, instead of all possible subsets of U/.

4 Evaluation

The goal of IMITAL is to learn a domain-independent AL strategy from synthetic datasets, which combines the strength
of both the basic informativeness and the representativeness heuristics. For evaluation, we are comparing IMITAL
therefore with 7 AL strategies on 13 real-world datasets from varying domains.

IMITAL A PREPRINT

1.) Single AL Learning curves 2.) F1-AUC

P

1.00 o

[~ i
0.75
(]
5]
@ 0.50
I — =0.41%
0.25 1
0.00 T T T T T T
0 5 10 15 20 25 — = 0.38%
% labelled data -

Figure 3: Converting learning curves into single numbers

4.1 Experiment Details

For evaluation we selected 13 datasets from the UCI ML Repository |Dua and Graff][2017] with varying sample size,
feature size, and application domain, similar to the evaluations of |[Pang et al.|[2018]], [Konyushkova et al.| [2018]], [Huang
et al.[[2010]], [Hsu and Lin|[2015]],[Wang and Ye|[2015]]. As an additional larger dataset the table classification dataset
DWTC |Eberius et al.|[2015]] was also included. For the experiments we started with a single random sample of each
class, and ran the AL loop with a batch size b of 5 for 25 cycles, or until all data was labeled. We repeated this for
1,000 times with varying initial labeled samples to generate statistically stable results. As learner model 6 a simple NN
with 2 hidden layers and 100 neurons each was used. The datasets were split randomly into a 50 % train and 50 % test
evaluation set.

As evaluation metric we decided against learning curve plots — a standard ML metric like accuracy or the F1-score
shown for every AL cycle — and decided to use the area-under-the-curve (AUC) of the learning curve instead, as has
been also done recently in the AL survey by Chan et. al.|[Zhan et al.|[2021]]. As we are repeating our experiments
1,000 times this decision makes it easier to compare many repeated experiments with each other. Similarly to Guyon
et al.[[2011]] we are further normalizing the AUC values by the maximum possible AUC value — a rectangle of 100%
F1-Scores for each time step — to additionally enable comparisons across datasets. As our evaluation datasets often
have more than two classes, we decided to use the F1-Score as basic metric and denote our normalized AUC values as
FI-AUC. Figure[3|displays our method for computing the metric F/-AUC.

The training of IMITAL is highly parallelizable, as the generation of the synthetic datasets and the respective AL
simulation may run completely in parallel. For a full training of IMITAL with the best parameters we needed 100,000
computation jobs, resulting in a set of 1,000,000 state-action pairs as training data. In total, ~1M CPU-hours were
needed for all experiments conducted for this paper, including testing out different NN and IL configurations, and
training the final version of IMITAL. For the final version of IMITAL we set the parameter of the simulated AL cycle 7
to 10, the pre-sampling parameter & to 20 and j to 10 during training, and 2 during application, as this suffices for a
trained IMITAL. The batch size was fixed to a standard value of 5 for the used UCI datasets.

4.2 Comparison with other Active Learning strategies

Our evaluation compares 7 AL strategies against our AL strategy, IMITAL. The results are shown in Table 2] Each
displayed value is the mean of F1-AUC values for the 1,000 repeated runs. As the percentages are often quite similar,
we additionally included the ranks. The displayed percentages are rounded, but the ranks are computed on the complete
numbers, which can lead to different ranks for otherwise equally rounded displayed percentages.

We included Uncertainty Least Confidence (LC) and Uncertainty Entropy (ENT)|Shannon|[[1948]], the two most common
and basic variants of the informativeness heuristic, where greedily the most uncertain samples based on the classification
probability of the learner model are selected for labeling. The Graph Density (GD) strategy [Ebert et al.|[2012] was
added as a pure representativeness heuristic-based strategy which solely focuses on sampling evenly from the vector
space. BatchBALD Kirsch et al.|[2019] is a popular AL strategy which works well for computer vision deep neural

IMITAL A PREPRINT

P
» %
e W
@3\

oy
N o = ® o

abalone 212(2) 193(5) 19.6(4) 17.8(6) 213(1) 156(7) 21.1(3) 11.2(8)
adult 545(1) 535(4) S541(2) 535(3) 51.8(5) 479(7) 51.3(6)

australian 83.9(1) 83.8(2) 83.8(3) 838(2) 83.0(5 83614 798(6) 71.5(7)
BREAST 940(3) 944(1) 944(2) 944(1) 928 91.6(5 909(6) 84.6(7)
DWTC 69.3(1) 653(5) 659(4) 634(6) 67.8(2) 528(7) 66.1(3) 50.1(8)
fertility 882(2) 87.8(3) 877(4) 87.8(3) 870(5 882(1) 868(6) 86.8(7)

flags 575(1) 555(6) 55.6(5) 547(7) 558(4) 56.6(2) 559(3) 43.7(8)
german 745(2) 742(4) 742(5) 7424 743(3) 755(1) 741(6) 71.5(7)
glass 689(1) 67.6(2) 674(3) 666(06) 6734 663(7) 67.1(5 40.6(8)
heart 79.0(1) 788(3) 788(5) 78.8(3) 78.8(4) 789(2) 783(6) 714(7)
ionos 889(1) 88.6(2) 885(3) 88.6(2) 88.0(5 882(4) 829(6) 535(7)
wine 952(1) 948(2) 94.6(4) 94.6(3) 944(5) 943(6) 935(7) 84.9(8)
700 93.7(1) 933(2) 929(6) 932(3) 93.1(4) 928(7) 93.1(5) 92.7(8)
mean % 7451) 73.6(3) 737(Q2) 732(5) 7354 T17(7) 724(6) 58.7(8)
mean (r) 138 3.15 3.85 3.77 3.92 4.62 5.23 7.54

Table 2: F1-AUC-scores (%) for different AL query strategies, mean for 1,000 repeated experiments each, including the
ranks and the ranked mean. Empty cells indicate no calculable results within the maximum runtime window of seven
days.

ImitAL

GD

Rand

Ent

LC
BatchBALD
QBC
QUIRE

100 1,000 10,000 100,000

Figure 4: Average runtime duration in seconds per complete AL experiment, with timeout duration for experiments
lasting longer than seven days

networks. Querying Informative and Representative Examples (QUIRE) [Huang et al.| [2010]] is a computationally
expensive combination of both heuristics, and Query-by-committee (QBC)|Seung et al.|[1992] a combination of the
uncertainty of multiple learner models|Lewis and Gale][[1994)P}

IMITAL learns a combination of the two heuristics informativeness and representativeness. For the datasets FERTILITY,
FLAG, GERMAN, and HEART GD is much better than LC. This is an indication that on these datasets a pure informativeness
heuristic is challenged the most, whereas for the other strategies LC still seems to be the safest bet as a general-purpose
AL strategy. IMITAL successfully learned to combine the best of both strategies, which can be especially seen by the
superior performance on the datasets, where GD is better than LC and IMITAL always managed to come close to the
results of GD. QBC achieved quite competitive results, but at the cost of almost twice as high running cost than IMITAL
due to the expensive retraining of multiple learner models instead of a single one. The good results from the original
QUIRE and BatchBALD paper could not be reproduced by us. Additionally, the runtime of QUIRE was so high that not
even one AL experiment finished within seven days. The pre-selection of IMITAL with our used parameters means that
IMITAL always considers a fixed amount of 40 unlabeled samples during each AL iteration, making it 10 times faster
than even the second fastest LC strategy, which has to consider all unlabeled samples, as shown in Figure d] The benefit
of IMITAL of a constant runtime complexity becomes especially clear for the larger datasets. The displayed mean of
the runtimes was calculated the same way as the F1-AUC-scores in Table[2] Complex AL strategies with high runtime

>We used for all strategies the implementations from the open-source AL framework ALiPy Tang et al.|[2019]

IMITAL A PREPRINT

Dataset vs. QBC vs. LC vs. Ent vs. GD vs. BatchBALD vs. Rand
BREAST 7 /43 /50 6 /46 /48 6 /46 /48 83/16/1 93/6/1 70/25/5
DWTC 72 124 /4 76 /21 /4 86 /14 /1 100/0 /0 68/26/6 52/36/11
abalone 61/22/17 65/13 /22 74 /22 /4 96 /4 /0 43 /26 /30 35/30/35
adult 39/20/41 41/22/38 42/19/39 70/19/11 59/20/21 53/23 /24
australian 18/62/20 20/58/21 20/58/21 34/50/16 82/16/2 46/43/11
fertility 8/84 /7 718617 7178617 11/80/9 19/74 /6 16 /78 /6
flags 28 /65 /7 29 /64 /8 39/55/6 22/63/15 26/63/12 28/61/11
german 33/38/28 32/40/28 32/40/28 22/38 /40 36/33/31 33/36/31
glass 28/63/8 25/65/11 39 /56 /5 49 /48 /4 40/53 77 36 /56 /8
heart 20/67/13 18/69/14 18/69 /14 24/55/21 35/49/16 26/54 /20
ionos 14/72 /14 10/72/18 10/72/18 48 /46 /6 88 /12 /1 48 /147 /6
wine 9/86/5 5/89 /6 10/85/5 30 /66 /4 47 /50 /3 30 /66 /4
Z00 5/94 /1 3/95/72 3/95/2 17 /80 /3 14 /81 /5 12 /84 /4
Total 24 /59 /17 23/60/17 26/58/16 43 /46 /11 51/40/9 38/50/12

Table 3: Win-Tie-Losses in percentages across the repeated experiments based on Wilcoxon signed-rank test of IMITAL
compared to the six evaluation strategies

are not practical in a real-world annotation scenario, as the annotation system can not afford to be unresponsive with
background AL calculations that take hours before the next sample can be labeled.

We also performed a significance test to prove that IMITAL is not only by chance but indeed statistically sound better
than the competitors. We used a Wilcoxon signed-rank test|Wilcoxon| [[1945]] with a confidence interval of 95% to
calculate the proportional win/tie/losses between IMITAL and each competing strategy. For each of the 1,000 starting
points, we took the F1-values of all the 25 AL iterations E] of the two strategies to compare. Our null hypothesis is that
the mean of both learning curves is identical. If the null hypothesis holds true we count this experiment repetition as a
tie, and otherwise as a win or loss depending on which strategy performed according to the better mean. The results are
displayed in Table[3] Overall, IMITAL won at least 35% more often (in comparison to LC) compared to each strategy
than lost against them. It also has to be noticed that the majority of the direct comparisons resulted in a tie.

5 Related Work

Besides traditional AL strategies like Lewis and Gale| [[1994], Scheffer et al.|[2001], Roy and Mccallum| [2001], |[Ebert;
et al.[[2012], Seung et al.|[1992], Wang and Ye|[2015]], Tang and Huang|[2019] the field of learning AL query strategies
has emerged in the past few years. Instead of relying on heuristics or solving optimization problems, they can learn new
strategies based on training on already labeled datasets.

ALBL |Hsu and Lin|[2015] encodes in a QB C-like approach the AL query strategy as a multi-armed bandit problem,
where they select between the four strategies Rand, LC, QUIRE, and a distance-based one. To function properly, a reward
for the given dataset is needed during the application of their approach as feedback. In|{Hsu and Lin|[2015] a dedicated
test set is used for feedback, which can in practice rarely be taken for granted. Their tests on computing the reward on
during AL acquired labels showed that a training bias can occur resulting in poor performance. This only works well,
when a separate test set is available, as the reward computed purely on the given labels during AL can perform poorly
because of training bias. LAL [Konyushkova et al.|[2017]] uses a random forest classifier as the learner, and statistics of
the state of the inner decision trees from the learner for the unlabeled samples as input for their learned model. Based
on this they predict the expected error reduction.

Most of the other methods rely on RL to train the AL query strategy. A general property that distinguishes the RL and
imitation learning-based methods is the type of their learning-to-rank approach. Woodward and Finn/[2017]], Fang et al.
[2017], Konyushkova et al.|[2018]], Liu et al.[[2018] all use a pointwise approach, where their strategy gets as input one
sample at a time. They all need to incorporate the current overall state of £ and I/ into their input encodings to make
the decision work on a per-sample basis. [Konyushkova et al.|[2017]],[Bachman et al.|[2017]], Pang et al.| [2018], as well
as IMITAL, use the listwise approach instead, where the strategy gets a list of unlabeled samples at once as input. This
also has the benefit of a batch-aware AL setting.

3 As the exact p-values of the Wilcoxon signed-rank test are only computed for a sample size of up to 25, and for greater values an
approximate — in our case not existent — normal distribution has to be assumed, we decided to stop our AL experiments after 25
iterations.

IMITAL A PREPRINT

The most distinctive characteristic of the RL and IL-based approaches is the input encoding. Bachman et al.|[2017]
uses the cosine similarities to £ and U as well as the uncertainty of the learner. |[Liu et al.|[2018]] incorporates directly
the feature vectors, the true labels for £, and the predicted label of the current pointwise sample. Both works also
use imitation learning instead of RL with the same future roll-out of the AL cycle as the expert as we propose for
IMITAL. |[Fang et al.|[2017] adds to their state additionally the uncertainty values for I/ and the feature vectors. This has
the limitation that the trained strategies only work on datasets having the same feature space as the datasets used in
training. [Pang et al.|[2018]] bypasses this restriction by using an extra NN which maps the feature space to a fixed size
embedding. Therefore they are, at the cost of complexity of an additional layer, independent of the feature space, but
can still use the feature vectors in their vector space. A big limitation is that their embedding currently only works
for binary classification. Additionally, they add distance and uncertainty information to their state. [Konyushkova et al.
[2018] does not add the vector space into their input encoding. To incorporate the current state for their pointwise
approach, they use the learners’ confidence on a fixed size set of unlabeled samples. Further, they use the average
distances to all samples from £ and U/ each as well as the predicted class to encode the pointwise action.

Our input encoding uses uncertainty and distance. Due to our listwise approach, we only need to add this information
for the to-rank samples to our state, and not £ or U{. We explicitly do not add the feature vectors, as this limits the
transferability of the trained strategy to new datasets, which contradicts our goal of a universal AL strategy.

Most of the works rely on training on domain-related datasets before using their strategy. This prevents an already
trained AL query strategy from being easily reusable on new domains. |[Konyushkova et al.|[2017] bypasses this
by training on simple synthetic datasets, but due to their simple nature, they still recommend training on real-world
datasets too. Our approach of using a large number of purely random and diverse synthetic datasets during training
gives IMITAL the benefit of not needing an explicit prior training phase on domain-related datasets. The necessary
pre-training of many related works as well as the often not publicly available code prevented them from being included
in our evaluation.

6 Conclusion

We presented a novel approach of training a universally applicable AL query strategy on purely synthetic datasets
by encoding AL as a listwise learning-to-rank problem. For training, we chose IL, as it is cheap to generate a huge
amount of training data when relying on synthetic datasets. Our evaluation showed that IMITAL successfully learned
to combine the two basic AL heuristics informativeness and representativeness by outperforming both heuristics and
other AL strategies over multiple datasets of varying domains. In the future, we want to include more requirements of
large ML projects into the state-encoding of IMITAL to make it more applicable. Large multi-label classification target
hierarchies are often very hard to label but propose new challenges for AL. Additionally, different label often have
varying costs and should be treated accordingly by the AL query strategy [Donmez et al.|[2009]]. On a similar note,
given many labels by multiple noisy sources like crowdsourcing relabeling using AL becomes important|Zhao et al.
[2011]] which will be part of our future research.

References

Christopher Schroder and Andreas Niekler. A survey of active learning for text classification using deep neural networks.
arXiv preprint arXiv:2008.07267, 2020.

Nathan Beck, Durga Sivasubramanian, Apurva Dani, Ganesh Ramakrishnan, and Rishabh Iyer. Effective evaluation of
deep active learning on image classification tasks. arXiv preprint arXiv:2106.15324, 2021.

Burr Settles. Active learning literature survey. Computer Sciences Technical Report 1648, 2010.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Brij B Gupta, Xiaojiang Chen, and Xin Wang. A
survey of deep active learning. ACM Computing Surveys (CSUR), 54(9):1-40, 2021.

Xueying Zhan, Huan Liu, Qing Li, and Antoni B. Chan. A comparative survey: Benchmarking for pool-based active
learning. IJCAI, pages 4679—4686, 8 2021. doi:10.24963/ijcai.2021/634. Survey Track.

Ksenia Konyushkova, Raphael Sznitman, and Pascal Fua. Discovering general-purpose active learning strategies. arXiv
preprint arXiv:1810.04114, 2018.

Kunkun Pang, Mingzhi Dong, Yang Wu, and Timothy Hospedales. Meta-learning transferable active learning policies
by deep reinforcement learning. arXiv preprint arXiv:1806.04798, 2018.

Ming Liu, Wray Buntine, and Gholamreza Haffari. Learning how to actively learn: A deep imitation learning
approach. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume

10

https://doi.org/10.24963/ijcai.2021/634

IMITAL A PREPRINT

1: Long Papers), pages 1874—1883, Melbourne, Australia, July 2018. Association for Computational Linguistics.
doil10.18653/v1/P18-1174.

Sheng-jun Huang, Rong Jin, and Zhi-Hua Zhou. Active learning by querying informative and representative examples.
In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, editors, Advances in Neural Information
Processing Systems, volume 23, pages 8§92-900. Curran Associates, Inc., 2010.

Wei-Ning Hsu and Hsuan-Tien Lin. Active learning by learning. In Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence, AAAT’ 15, page 2659-2665. AAAI Press, 2015. ISBN 0262511290.

Zheng Wang and Jieping Ye. Querying discriminative and representative samples for batch mode active learning. ACM
Trans. Knowl. Discov. Data, 9(3), February 2015. ISSN 1556-4681. doi:10.1145/2700408.

Isabelle Guyon. Design of experiments of the nips 2003 variable selection benchmark. In NIPS workshop on feature
extraction and feature selection, volume 253, 2003.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825-2830, 2011.

Donald Michie and Rui Camacho. Building symbolic representations of intuitive real-time skills from performance
data. In In Machine Intelligence 13, pages 385—418. Oxford University Press, 1994.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank: From pairwise approach to listwise
approach. In Proceedings of the 24th International Conference on Machine Learning, ICML °07, page 129—136, New
York, NY, USA, 2007. Association for Computing Machinery. ISBN 9781595937933. doi:10.1145/1273496.1273513.

Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jiirgen Schmidhuber, et al. Gradient flow in recurrent nets: the
difficulty of learning long-term dependencies, 2001.

A. Kirsch, J. v. Amersfoort, and Y. Gal. Batchbald: Efficient and diverse batch acquisition for deep bayesian active
learning. In NIPS, volume 32, pages 7026—7037. Curran Associates, Inc., 2019.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

Julian Eberius, Katrin Braunschweig, Markus Hentsch, Maik Thiele, Ahmad Ahmadov, and Wolfgang Lehner. Building
the dresden web table corpus: A classification approach. pages 41-50, Dec 2015. ISBN 978-0-7695-5696-3.

Isabelle Guyon, Gavin Cawley, Gideon Dror, and Vincent Lemaire. Results of the active learning challenge. Journal of
Machine Learning Research - Proceedings Track, 16:19-45, 01 2011.

Claude E. Shannon. A mathematical theory of communication. Bell Syst. Tech. J., 27(3):379-423, 1948.

S. Ebert, M. Fritz, and B. Schiele. Ralf: A reinforced active learning formulation for object class recog-
nition. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pages 3626-3633, 2012.
doif10.1109/CVPR.2012.6248108!

H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In Proceedings of the Fifth Annual Workshop on
Computational Learning Theory, COLT *92, page 287-294, New York, NY, USA, 1992. Association for Computing
Machinery. ISBN 089791497X. doi:10.1145/130385.130417.

David D. Lewis and William A. Gale. A sequential algorithm for training text classifiers. In SIGIR ’94, pages 3—12.
Springer London, 1994. ISBN 978-1-4471-2099-5.

Ying-Peng Tang, Guo-Xiang Li, and Sheng-Jun Huang. Alipy: Active learning in python. arXiv preprint
arXiv:1901.03802, 2019.

Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1(6):80-83, 1945. ISSN 00994987.

Tobias Scheffer, Christian Decomain, and Stefan Wrobel. Active hidden markov models for information extraction.
In Frank Hoffmann, David J. Hand, Niall Adams, Douglas Fisher, and Gabriela Guimaraes, editors, Advances in
Intelligent Data Analysis, pages 309-318. Springer Berlin Heidelberg, 2001. ISBN 978-3-540-44816-7.

Nicholas Roy and Andrew Mccallum. Toward optimal active learning through sampling estimation of error reduction.
In In Proc. 18th International Conf. on Machine Learning, pages 441-448. Morgan Kaufmann, 2001.

Ying-Peng Tang and Sheng-Jun Huang. Self-paced active learning: Query the right thing at the right time. Proceedings
of the AAAI Conference on Artificial Intelligence, 33(01):5117-5124, Jul. 2019. doi;10.1609/aaai.v33i01.33015117.

Ksenia Konyushkova, Raphael Sznitman, and Pascal Fua. Learning active learning from data. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 30, pages 4225-4235. Curran Associates, Inc., 2017.

Mark Woodward and Chelsea Finn. Active one-shot learning, 2017.

11

https://doi.org/10.18653/v1/P18-1174
https://doi.org/10.1145/2700408
https://doi.org/10.1145/1273496.1273513
https://doi.org/10.1109/CVPR.2012.6248108
https://doi.org/10.1145/130385.130417
https://doi.org/10.1609/aaai.v33i01.33015117

IMITAL A PREPRINT

Meng Fang, Yuan Li, and Trevor Cohn. Learning how to active learn: A deep reinforcement learning approach.
In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 595-605,
Copenhagen, Denmark, September 2017. Association for Computational Linguistics. doij10.18653/v1/D17-1063,

Philip Bachman, Alessandro Sordoni, and Adam Trischler. Learning algorithms for active learning. In Doina Precup
and Yee Whye Teh, editors, Proceedings of the 34th International Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pages 301-310, International Convention Centre, Sydney, Australia,
06-11 Aug 2017. PMLR.

Pinar Donmez, Jaime G. Carbonell, and Jeff Schneider. Efficiently learning the accuracy of labeling sources for
selective sampling. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD 09, page 259-268, New York, NY, USA, 2009. Association for Computing Machinery.
ISBN 9781605584959.

Liyue Zhao, Gita Sukthankar, and Rahul Sukthankar. Incremental relabeling for active learning with noisy crowdsourced
annotations. In 2011 IEEE third international conference on privacy, security, risk and trust and 2011 IEEE third
international conference on social computing, pages 728-733. IEEE, 2011.

12

https://doi.org/10.18653/v1/D17-1063

	1 Introduction
	2 Simulating AL on Synthetic Training Data
	2.1 Synthetic Datasets
	2.2 AL Simulation and State-Action-Reward Set

	3 Training a Neural Network by Imitation Learning
	3.1 AL as MDP
	3.2 Imitation Learning
	3.3 Policy NN Input Encoding
	3.4 Policy NN Output Encoding
	3.5 Pre-Selection

	4 Evaluation
	4.1 Experiment Details
	4.2 Comparison with other AL strategies

	5 Related Work
	6 Conclusion

