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Summary

Abstract

Scale symmetry usually is explicitly broken by quantum corrections due to the neces-
sity of Regularisation and Renormalisation of quantum corrections. However, this can
be avoided by using a manifestly scale invariant Regularisation where the Renormal-
isation scale is replaced by a dynamical Dilaton-dependent Renormalisation function,
i.e. µ −→ µ(σ). In this case, scale invariance is only broken spontaneously by the non-
vanishing VEV of the Dilaton and all scales, including the Renormalisation scale, are
generated dynamically via SSB. In this thesis, the concept and implications of spontan-
eously broken quantum scale invariance (QSI), realised via scale invariant dimensional
Regularisation (SIDReg), are discussed for different theories. The QSI 2 Scalar Model
is considered up to the 2-loop level. Moreover, it is also discussed in the framework of
gauge theories, with particular emphasis on a consistent formulation and the physically
relevant scattering process e− e+ −→ µ− µ+ at the 1-loop level. This scattering process
is especially analysed w.r.t. new finite and divergent quantum corrections due to spon-
taneously broken QSI and the IR-finiteness of the corresponding cross section. Finally,
a complete QSI Standard Model is presented as a potential candidate for BSM physics
and its effective potential is determined at the 1-loop level.

Kurzdarstellung

Skalensymmetrie wird für gewöhnlich durch Quantenkorrekturen explizit gebrochen, auf-
grund der Notwendigkeit zur Regularisierung und Renormierung dieser Quantenkorrek-
turen. Dies kann jedoch vermieden werden, indem eine manifest-skaleninvariante Reg-
ularisierung gewählt wird, bei welcher die Renormierungsskala durch eine dynamische
Dilaton-abhängige Renormierungsfunktion ersetzt wird, d.h. µ −→ µ(σ). In diesem
Fall wird Skalensymmetrie durch den nicht-verschwindenden VEV des Dilatons ledig-
lich spontan gebrochen und alle Skalen, einschließlich der Renormierungsskala, wer-
den dynamisch via SSB erzeugt. In dieser Masterarbeit werden das Konzept und die
Konsequenzen von spontan gebrochener Quantenskaleninvarianz (QSI), realisiert über
skaleninvariante dimensionale Regularisierung (SIDReg), für verschiedene Theorien disku-
tiert. Das QSI 2 Scalar Model wird bis auf 2-Schleifen Niveau betrachtet. Außerdem,
wird es auch im Rahmen von Eichtheorien besprochen. Besonders in Bezug auf eine
konsistente Formulierung und den physikalisch relevanten Streuprozess e− e+ −→ µ− µ+

auf 1-Schleifen Niveau. Dieser Streuprozess wird insbesondere bzgl. neuer endlicher
und divergenter Quantenkorrekturen aufgrund von spontan gebrochener QSI und der
IR-Endlichkeit des zugehörigen Streuquerschnitts untersucht. Abschließend wird ein
komplettes QSI Standardmodell als ein möglicher Kandidat für BSM Physik vorgestellt
und dessen effektives Potential wird auf 1-Schleifen Niveau bestimmt.
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1. Introduction
Scale symmetry is often used to address the hierarchy and the cosmological constant
problem. Additionally, it is also a key feature of universality. In particular, scale in-
variance plays an important role in the framework of statistical field theories in order
to describe phase transitions, and thus is not only of interest for particle physics but
also for condensed matter physics. Moreover, as a subset of conformal symmetry, it
also has a connection to conformal field theories, and thus AdS/CFT-correspondence.
However, quantum corrections usually spoil scale invariance. The reason for this are
divergences emerging in loop-calculations that need to be regularised and the fact that
every Regularisation introduces a dimensionful parameter, the Renormalisation scale.
In other words, quantum corrections require Regularisation and Renormalisation, and
thus break scale symmetry explicitly, due to the introduction of the Renormalisation
scale, which is referred to as anomalous breaking of scale symmetry.

The anomalous breaking of scale symmetry can be avoided by using a manifestly scale
invariant Regularisation, as originally proposed in [9], and discussed, inter alia, in [2,
11, 12, 13, 14, 17, 20, 21, 28, 34]. In this thesis a scale invariant version of dimensional
Regularisation (DReg) is defined as scale invariant dimensional Regularisation (SIDReg)
in section 2.1 and used throughout the thesis. In particular, this is achieved by replacing
the Renormalisation scale in DReg with a dynamical and Dilaton-dependent Renorm-
alisation function in SIDReg, i.e. µ −→ µ(σ). The "usual" Renormalisation scale as
well as all other mass scales in the theory, such as particle masses, are dynamically gen-
erated via spontaneous symmetry breaking (SSB) of scale symmetry with the Dilaton
σ as associated Goldstone boson. Thus, there is no initial mass scale in theory that
could explicitly break scale invariance implying the absence of anomalous scale sym-
metry breaking. In other words, a classically scale invariant theory regularised using
SIDReg admits spontaneously broken quantum scale symmetry.

The purpose of this thesis is to provide a self consistent introduction to spontaneously
broken quantum scale invariance (QSI), model building, i.e. providing several QSI the-
ories, and the calculation of Green functions with non-vanishing external momenta, such
as self energies and scattering amplitudes as well as a cross section as an actual physical
observable, in the context of QSI theories. In particular, a 2 Scalar Model, two different
variations of QSI Quantum Electrodynamics (QED) as well as a full QSI Standard Model
are discussed, and beside the calculation of the effective potential, the self-energies in
the QSI 2 Scalar Model are computed up to the 2-loop level. Furthermore, the scat-
tering process e− e+ −→ µ− µ+, including the associated cross section, is considered at
the 1-loop level in the framework of a QSI QED. Note that in this thesis global scale
symmetry is considered.

In chapter 2, the concept of quantum scale invariance (QSI), its realisation as well
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1. Introduction

as its implications are introduced and discussed. Particular emphasis is put on the 2
Scalar Model in the context of QSI, as it the simplest model for dynamical SSB of
quantum scale symmetry, and therefore is an excellent model to illustrate the concepts
of spontaneously broken QSI. Further, it is the major part of the Higgs sector in a full
QSI Standard Model, and thus is physically of particular relevance. In chapter 3, the
effective potential of the 2 Scalar Model is determined up to the 2-loop level and it is
shown that it is indeed manifestly quantum scale invariant as well as the corresponding
counterterms. Moreover, the self energies are evaluated at the 1-loop and the 2-loop
level, working in the broken phase of the theory, and it is shown that one still obtains
the same manifestly QSI counterterms, which has not been done in the literature so far.

Chapter 4 provides a detailed discussion w.r.t. the consistent formulation of Gauge
theories in the context of quantum scale symmetry. Furthermore, two variations of a
QSI QED are introduced as they are needed for the consideration of muon production in
the next chapter. In chapter 5, the well-known QED scattering process e− e+ −→ µ− µ+

is discussed at the 1-loop level in the framework of a quantum scale invariant QED,
which has not been done for QSI theories so far. In this context, a conjecture about
IR-divergences in the framework of spontaneously broken quantum scale symmetry, as
well as new quantum corrections arising from these IR-divergences and evanescent in-
teractions due to QSI, is formulated and exemplarily proven.

A full quantum scale invariant Standard Model is introduced in chapter 6. The Higgs
potential of a QSI Standard Model has already been discussed in [13], however, a com-
plete QSI Standard Model has not been provided to full extent in the literature so far.
Subsequently, the 1-loop effective potential is determined and discussed in chapter 7.
In contrast to [13], this is done in a more Feynman diagrammatic approach using the
background field method.

A concluding summary and outlook is to be found in the last chapter of this thesis.
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2. Quantum Scale Symmetry
In this chapter, the concept of Quantum Scale Invariance (QSI) and its realisation via
a manifestly scale invariant Regularisation, as originally proposed in [9], and discussed,
inter alia, in [2, 11, 12, 13, 14, 17, 20, 21, 28, 34] is introduced. Because scale symmetry
is not observed in the real world, i.e. scale symmetry is broken in the real world,
in this thesis only spontaneously broken (quantum) scale symmetry is considered. In
order to illustrate the realisation of spontaneously broken QSI and its implications, it
is exemplarily discussed for the 2 Scalar Model. This model has not only already been
discussed in the context of spontaneously broken QSI in [11, 14, 21] but is also of great
interest for physically relevant models of the real world since it is the major part of the
Higgs sector in a QSI Standard Model, as discussed in section 2.2, chapter 6 and [13].
Thus, a detailed discussion of the 2 Scalar Model (at tree-level) and its Renormalisation
in the framework of QSI is provided in this chapter. The purpose of this chapter is
to provide a more or less complete and self-consistent introduction to the theoretical
concepts of spontaneously broken quantum scale symmetry and its implications.

2.1. Quantum Scale Invariance
First, consider (global) scale symmetry transformations which are given by

xµ 7−→ x′µ = s xµ = e−λ xµ

φ(x) 7−→ φ′(x) = s−∆φ φ(s−1x) = eλ∆φ φ(eλx)
(2.1)

where φ is a scalar field.
A theory, given by an action S[φ], is said to be scale invariant iff S[φ] is invariant under
the above scaling transformations (2.1).

Let S be the action for a real scalar field φ, as discussed in [42], given by

S[φ] =

∫
dDx

(
1

2
∂µφ∂

µφ− 1

2
m2φ2 − λφ φp

)
(2.2)

Considering the kinetic term first in order to determine the scaling dimension ∆φ of
scalar fields φ, one obtains under scaling transformations (2.1)

∂φ(x)

∂xµ
7−→ ∂φ′(x)

∂xµ
= s−∆φ

∂φ(s−1x)

∂xµ
= s−∆φ−1 ∂φ(y)

∂yµ

=⇒
∫
dDx

1

2
∂µφ(x)∂

µφ(x) 7−→ sD−2
(
∆φ+1

) ∫
dDy

1

2
∂µφ(y)∂

µφ(y)

= sD−2
(
∆φ+1

) ∫
dDx

1

2
∂µφ(x)∂

µφ(x)

3



2. Quantum Scale Symmetry

where yµ := s−1 xµ and dDx = sD dDy.
Hence, the kinetic term of the action S is scale invariant iff

∆φ =
D − 2

2
−−−→
D→ 4

1 (2.3)

For the mass term, however, one obtains

−1

2

∫
dDx m2 φ2(x) 7−→ − 1

2
sD−2∆φ

∫
dDy m2 φ2(y)

=− 1

2
sD−2∆φ

∫
dDx m2 φ2(x)

=− 1

2
s2
∫
dDx m2 φ2(x)

where (2.3) has been used in the last equality. It can be seen that the mass term is
not scale invariant, and thus scale invariance requires m ≡ 0, which is not a surprising
result since a scale invariant theory must not contain any dimensionful quantities that
could serve as a scale. Without any mass terms or dimensionful quantities, however,
there is no (absolute) reference scale, and thus physics is equivalent on all scales, i.e.
scale invariant [8]. This can also be seen from the 4-divergence of the corresponding
Noether-current, as discussed in [8].

For the remaining interaction term in (2.2), one finds

−
∫
dDx λφ φ

p(x) 7−→ −sD−p∆φ

∫
dDy λφ φ

p(y) = −sD−p∆φ

∫
dDx λφ φ

p(x)

which is scale invariant iff p = D
∆φ

= 2D
D−2
−−−→
D→ 4

4.
However, in a reasonable 4 dimensional theory p is set to p = 4 and remains at this

value even when the theory is analytically continued to D = 4− 2ε dimensions in DReg.
Hence, for p = 4, one obtains

−
∫
dDx λφ φ

4(x) 7−→ −s4−D
∫
dDx λφ φ

4(x)

which is not scale invariant in D 6= 4 dimensions. The reason for this is that in D
dimensions the coupling constant λφ is not dimensionless anymore, but has (an anom-
alous) mass dimension [λφ] = 4−D. In DReg, a Renormalisation scale µ0 is introduced
as λφ −→ µ4−D

0 λφ in order to keep coupling constants dimensionless. This, however,
does not solve the problem since µ0 is a fixed (mass) scale that spoils scale symmetry.
Hence, the Renormalisation scale in DReg explicitly breaks scale invariance in D 6= 4
dimensions. Naively, one might think that this is not a problem since ultimately one goes
back to D = 4 dimensions after Renormalisation. However, scale invariance will still be
broken explicitly, even for D → 4, due to divergences emerging in loop-calculations that
need to be regularised and the fact that every Regularisation (not only DReg) needs a
dimensionful parameter. In [39] it has explicitly been shown for 2-point Green functions

4



2.1. Quantum Scale Invariance

at the 1-loop level in QED that scale invariance is explicitly broken ∀ Renormalisation
schemes. Thus, quantum corrections explicitly break scale symmetry which is called
anomalous breaking of scale symmetry because it is a symmetry of the classical theory /
action that is explicitly broken at the quantum level. How this problem can be resolved
will be discussed below in this section.

Before this is done, however, the Dilatation current, i.e. the Noether current associated
with scale symmetry is derived. Consider infinitesimal scaling transformations

s = e−λ = 1− λ+O
(
λ2
)
, where λ� 1 (2.4)

acting on scalar fields

φi(x) 7−→ φ′
i(x) = s−∆φ φi(s

−1x) = φi(x) + λ (∆φ + xµ∂µ)φi(x) +O
(
λ2
)

and on a generic Lagrangian L

L(x) 7−→ s−∆l L(s−1x) = L(x) + λ (∆l + xµ∂µ)L(x) +O
(
λ2
)

where ∆l is the scaling dimension of the Lagrangian which is determined by demanding∫
dDx L(x) 7−→ sD−∆l

∫
dDx L(x)

to be scale invariant, which leads to ∆l = D. Thus, one obtains

δφi = (∆φ + xµ∂µ)φi

δL = (D + xµ∂µ)L = ∂µ (x
µL)

(2.5)

The corresponding Noether current associated with scale symmetry, i.e. the Dilatation
current, is then given by

Dµ =
∂L

∂ (∂µφi)
(∆φ + xν∂ν)φi − xµL (2.6)

According to Noether’s theorem, the Dilatation current is conserved, i.e. ∂µDµ = 0, if the
theory is symmetric under scaling transformations, i.e. scale invariant. The divergence
of the Dilatation current is given by

∂µDµ = (1 + ∆φ) (∂µφi)
∂L

∂ (∂µφi)
+ ∆φ φi

∂L
∂φi
−DL (2.7)

For a Lagrangian of the form L = 1
2
(∂µφi) (∂

µφi) − V (φ1, . . . , φm) and ∆φ = D−2
2

, one
finds

∂µDµ = DV − D − 2

2
φi
∂V

∂φi
=

(
D −∆φ φi

∂

∂φi

)
V (2.8)

Hence, the potential V of the theory has to satisfy(
D −∆φ φi

∂

∂φi

)
V = 0 (2.9)

5



2. Quantum Scale Symmetry

in order to be scale invariant.
As discussed in the introduction, this thesis is about quantum scale invariance (QSI)

that is only broken spontaneously. Hence, the theory still has to be scale invariant at the
quantum level, or in other words, quantum corrections must not break scale invariance
explicitly as it is usually the case and as discussed above. However, the Dilatation current
in (2.6), and thus its derivative (2.8) have been derived from the classical Lagrangian
L, or equivalently the classical action S. For this reason, relation (2.9) is a classical
relation for the tree-level potential. In order to obtain an expression for scale invariance
that is valid at the quantum level, i.e. for quantum scale invariance, one should consider
the behaviour of N -point Green functions G(N)(x1, . . . , xN) under the action of scaling
transformations as it was done in [21, 39]. Recall that N -point Green functions are given
by

G(N)(x1, . . . , xN) = 〈Ω |T {φ(x1), . . . , φ(xN)}|Ω〉

=

∫
Dφ φ(x1) · · ·φ(xN) eiS[φ]∫

Dφ eiS[φ]
(2.10)

Generalised for m different kinds of scalar quantum fields {φi}mi=1

G(N1,...,Nm)(x
(1)
1 , . . . , x

(1)
N1
; . . . ;x

(m)
1 , . . . , x

(m)
Nm

)

=

∫
Dφ1 · · ·Dφm φ1(x

(1)
1 ) · · ·φ1(x

(1)
N1
) · · ·φm(x(m)

1 ) · · ·φm(x(m)
Nm

) eiS[φ1,...,φm]∫
Dφ1 · · ·Dφm eiS[φ1,...,φm]

(2.11)

Further, note that (infinitesimal) scaling transformations, as in (2.5), can be derived
from the action of the dilatation generator D̂, the Noether charge corresponding to
the dilatation current (2.6), e.g. δφj = i [D̂, φj] = i D̂ φj = (∆φ + xµ∂µ)φj. Massive
parameters, such as masses, are not charged under the action of D̂, i.e. do not transform
(non-trivially) under the action of D̂, such that δM = i [D̂,M ] = 0, for some generic
mass M . The dilatation generator can be used to extend the Poincare algebra, as
discussed in [21] and appendix A of this thesis.

In order to proceed with the investigation of quantum scale invariance, it is necessary
to explicitly define what is meant by QSI.

Definition 2.1 (Quantum Scale Invariance).
A theory described by the action S = S[φ1, . . . , φm], with field spectrum {φi}mi=1, is
quantum scale invariant (QSI) if its quantum effective action Γ = Γ[φ1, . . . , φm] is scale
invariant, i.e. invariant under the scale symmetry transformations (2.1), or equivalently
if the theory’s Green functions (2.11) are scale invariant, i.e. satisfy

0 = i [D̂,G(N1,...,Nm)]

= i D̂ G(N1,...,Nm)(x
(1)
1 , ..., x

(1)
N1
; ...;x

(m)
1 , ..., x

(m)
Nm

)

=
m∑
k=1

(
Nk∆φ +

Nk∑
j=1

x
(k),µ
j

∂

∂x
(k),µ
j

)
G(N1,...,Nm)(x

(1)
1 , ..., x

(1)
N1
; ...;x

(m)
1 , ..., x

(m)
Nm

)

(2.12)

exactly, where D̂ is the Dilatation generator (A.4).
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2.1. Quantum Scale Invariance

Now, this definition can be used to find a quantum generalisation of relation (2.9).

Proposition 2.1.
The effective potential Veff of a quantum scale invariant model satisfies(

D −∆φ φi
∂

∂φi

)
Veff = 0, (2.13)

which is the quantum generalisation of (2.9), and thus the QSI effective potential Veff
has to be a homogeneous function of the fields, i.e. has to satisfy

Veff(αφ1, . . . , α φm) = α
2D
D−2 Veff(φ1, . . . , φm) (2.14)

for some dimensionless parameter α.

Proof. (Sketch)
Starting with the definition of QSI via Green functions (2.12), this requirement can be
expressed in momentum space via Fourier transformation of (2.12) and can further equi-
valently be expressed via other types of Green functions, as stated in [19, 21]. Thus, given
(2.12), the 1PI connected amputated Green function Γ(N)(p1, . . . , pN) whose generating
functional is the quantum effective action Γ = Γ[φ] satisfies

0 =

(
D −N ∆φ −

N∑
j=1

pµj
∂

∂pµj

)
Γ(N)(p1, . . . , pN) (2.15)

as discussed in [19, 21].
Evaluating this at zero (external) momentum gives

0 = (D −N ∆φ) Γ
(N)
∣∣
p=0

=

(
D −∆φ φ

∂

∂φ

)
Γ(N)

∣∣
p=0

Noting that the effective potential Veff is given by the sum of all momentum-independent
1PI diagrams and generalising this to m different kinds of quantum fields {φi}mi=1, one
finds (

D −∆φ φi
∂

∂φi

)
Veff = 0

which is equation (2.13).
Now, using the homogeneity condition (2.14), differentiating this w.r.t. α and then
taking α→ 1, one obtains the relation

2D

D − 2
Veff = φi

∂Veff
∂φi

satisfied by the effective potential. Using the explicit expression for the scaling dimension
of scalar fields (2.3) it can be seen that this is exactly the relation (2.13). Conversely,
given a differentiable function Veff that satisfies the relation (2.13), one can define a func-
tion f(α) := Veff(αφ1, . . . , α φm) with initial condition f(1) = Veff(φ1, . . . , φm), which

7



2. Quantum Scale Symmetry

obeys a 1. order ODE in α due to relation (2.13). The solution of this ODE gives the
homogeneity condition (2.14), which is unique due to the theorem of Picard-Lindelöf.
Thus, the effective potential Veff of a quantum scale invariant model has to be a homo-
geneous function of the fields.

Note that relation (2.13) is an exact, i.e. non-perturbative, statement, and thus has
to be valid / fulfilled at all orders of perturbation theory in order for a theory to be
quantum scale invariant. The question, however, remains how scale invariance can be
realised at the quantum level, i.e. how the explicit breaking of scale symmetry by the
necessary Regularisation of divergences from loop-calculations can be avoided.

As originally proposed in [9] and used, inter alia, in [2, 11, 12, 13, 14, 17, 20, 21, 28,
34], this can be achieved, i.e. scale invariance can be maintained even at the quantum
level, if a Regularisation that respects scale symmetry, or in other words a manifestly
scale invariant Regularisation, is used. It has been shown that such a Regularisation
implies the absence of anomalous scale symmetry breaking. Thus, in order to obtain a
quantum scale invariant theory a

• classically scale invariant theory,

• and a manifestly scale invariant Regularisation

are required. As in the above mentioned articles, the scale invariant Regularisation used
in this thesis is a scale invariant version of DReg, i.e. SIDReg, which is defined as follows.

Definition 2.2 (Scale Invariant Dimensional Regularisation).
Scale Invariant Dimensional Regularisation (SIDReg) is analogously defined as (usual)
Dimensional Regularisation (DReg), with the difference that the usual Renormalisation
scale is replaced by a Dilaton-dependent Renormalisation function µ = µ(σ), i.e. µ −→
µ = µ(σ), which is charged under the transformation generated by D̂, i.e. transforms
non-trivially under dilatations, with scaling dimension ∆µ = 1, such that

δµ = i [D̂, µ(σ)] = i
∂µ

∂σ
[D̂, σ] = (∆µ + xµ∂µ)µ(σ) = (1 + xµ∂µ)µ(σ) (2.16)

in order to obtain a manifestly scale invariant Regularisation. The Dilaton σ is a dy-
namical scalar field with a non-vanishing vacuum expectation value (VEV) w := 〈σ〉.
The usual Renormalisation scale, henceforth denoted as µ0, is generated dynamically
after spontaneous symmetry breaking (SSB) of scale symmetry, such that µ0 = µ(〈σ〉).

Remark.

(i) Since the Renormalisation scale is replaced by a Renormalisation function µ =
µ(σ), no (fixed) mass scale enters the action that could spoil scale invariance (in
D = 4− 2ε or at the quantum level).

(ii) The Renormalisation function µ(σ) is defined such that it transforms non-trivially
under scaling transformations (2.16) with scaling dimension ∆µ = 1, which ensures
scale invariance in D = 4− 2ε and at the quantum level, i.e. QSI, as can be seen
below.

8



2.1. Quantum Scale Invariance

(iii) Scaling dimension ∆µ = 1 implies that the Renormalisation function µ(σ) has
mass dimension [µ(σ)] = 1 in every spacetime dimension, i.e. even in D = 4− 2ε
dimensions.

(iv) The Dilaton acquires a VEV, and thus scale symmetry is spontaneously broken
with the Dilaton σ as its associated Goldstone boson. This is not only intended as
scale symmetry has not been observed in the real world, as discussed above, but
also necessary, as discussed in [28].

• Mathematically, the Dilaton and µ(σ) can, otherwise, not be used for per-
turbative Renormalisation or computations, because µ(σ) does not have a
(polynomial) power series / Taylor expansion if σ does not have a VEV about
which can be expanded

• Physically, the VEV of the Dilaton is necessary to generate the massive
Renormalisation scale µ0 = µ(〈σ〉) after SSB of scale symmetry, needed to
reproduce the running of the couplings [11, 12, 14, 41]

(v) The Renormalisation function, and thus SIDReg requires a dynamical field, the
Dilaton σ. If the Dilaton is not initially part of the theory, the theory’s field
spectrum needs to be extended by the Dilaton, and therefore the theory acquires
an additional degree of freedom. Note that kinetic terms for the Dilaton are
required since σ is dynamical.

(vi) The exact value or the order of magnitude of the VEV of the Dilaton w = 〈σ〉
has not yet been determined. The Standard Model (SM) is just a low-energy
effective field theory (EFT) and "new physics" beyond the SM could arise at higher
energy scales (e.g. the Planck scale MPl), where it is generally expected that
there will be "new physics" until or at least at the Planck scale due to several
phenomena that cannot be explained by the SM. Hence, scale symmetry could
be spontaneously broken at such an higher energy scale which fixes the Dilaton’s
VEV. Further, in a theory that includes (conformal) gravity, e.g. Brans-Dicke-
Jordan gravity, the VEV is related to the Planck scale MPl [11, 13]. Thus, as
discussed in [11, 12, 13, 14], the VEV of the Dilaton 〈σ〉 is expected to be large
and of the order of the Planck scale, i.e. 〈σ〉 ∼ MPl. Assuming 〈σ〉 ∼ MPl is
further motivated by experimental observations and phenomenological reasons. In
a theory that contains a Higgs-like boson φ representing the "visible sector" and the
Dilaton σ representing the "hidden sector", such as the 2 Scalar Model (discussed
below), one can use a large Dilaton VEV with 〈φ〉 � 〈σ〉 to ensure a very weak
coupling between the visible and the hidden sector [13]. New corrections are then
suppressed by 〈σ〉 to negative powers which is necessary for the theory to be valid
with experiments.

(vii) In DReg and SIDReg, the theory is analytically continued toD = 4−2ε dimensions.
In SIDReg, the Renormalisation function µ(σ) is required to have scaling dimension
∆µ = 1, and thus mass dimension [µ(σ)] = 1, even in D = 4 − 2ε dimensions. In

9



2. Quantum Scale Symmetry

order to ensure this, the Dilaton σ, which has mass dimension [σ] = D−2
2

= 1− ε,
enters the Renormalisation function to the power of 2

D−2
= 1

1−ε . Further, the
Renormalisation function itself enters the Lagrangian to the power of nε, for some
n ∈ Z, as can be seen later in this thesis. This leads to the appearance of σ

n ε
1−ε .

Expanding the Lagrangian in ε leads to infinitely many new evanescent interaction
terms in the Lagrangian as defined in Def. 2.3.

Definition 2.3 (Evanescent Interactions).
Evanescent Interactions are interaction terms in the Lagrangian L proportional to εk,
for some k ∈ N.

There are 3 main consequences affecting physics that are introduced by the Dilaton-
dependent Renormalisation function µ(σ) in SIDReg:

Remark (3 main consequences of SIDReg).

(i) The Renormalisation scale µ0 and all other mass scales / massive parameters are
generated dynamically after SSB of scale symmetry.
⇒ there is no initial scale in the theory at all
⇒ there is no scale anomaly / anomalous breaking of scale symmetry anymore

(ii) New finite and divergent quantum corrections arising from evanescent interactions
∼ εk are generated by (quantum) scale invariance of the action in D = 4 − 2ε
dimensions due to µ(σ), i.e. µ = µ(σ) = µ0 (1 + Int.). This is possible due to
evanescent interactions ∼ εk multiplying with ε - poles of an appropriate power
emerging in loop-calculations, which leads to a cancellation of ε, and thus to new
finite or divergent contributions (depending on the powers of ε), even for ε→ 0.

(iii) Non-Renormalisability due to infinitely many new evanescent interactions intro-
duced by the Renormalisation function in a manifestly scale invariant Regular-
isation, which has been discussed in [11, 12, 14, 20, 21, 33]. Further, this is
exemplarily discussed in more detail for the 2 Scalar Model in section 2.3 and
chapter 3.

In SIDReg, a generic interaction term λφ φ
4(x), as discussed above, takes the form

λφ φ
4(x) −→ µ4−D(σ)λφ φ

4(x) if analytically continued to D = 4−2ε dimensions, where
the coupling constant λφ is kept dimensionless. Using the scaling properties of µ(σ),
as defined above, such an interaction term now transforms under dilatations, i.e. under
(2.1), as

−
∫
dDx µ4−D(σ(x))λφ φ

4(x) 7−→ − sD−4∆φ−(4−D)∆µ

∫
dDy µ4−D(σ(y))λφ φ

4(y)

=− sD−4 D−2
2

−(4−D)

∫
dDx µ4−D(σ(x))λφ φ

4(x)

=−
∫
dDx µ4−D(σ(x))λφ φ

4(x)

10



2.1. Quantum Scale Invariance

where the scaling dimension of scalar fields ∆φ =
D−2
2

and of the Renormalisation func-
tion ∆µ = 1 have been used. It can be seen that such interactions terms are now (mani-
festly) scale invariant, even in D = 4 − 2ε. Further, a potential V = V (φ1, . . . , φm, σ),
and analogously in D = 4−2ε dimensions Ṽ (φ1, . . . , φm, σ) = µ4−D(σ)V (φ1, . . . , φm, σ),
consisting of several such interactions terms now satisfies relation (2.9), and thus the
Noether current (2.6) is conversed, not only in 4 but also in D = 4− 2ε dimensions. In
contrast to this, the same potential regularised with conventional DReg satisfies (2.9)
only in 4 dimensions. Therefore, SIDReg indeed preserves scale symmetry in D = 4−2ε
dimensions. However, it still needs to be explicitly shown that SIDReg also preserves
scale symmetry at the quantum level as expected, which is done in chapter 3 for the 2
Scalar Model.

Now that SIDReg is defined and some technical details, as well as the major im-
plications have (shortly) been discussed, an Ansatz for an explicit expression of the
Dilaton-dependent Renormalisation function µ = µ(σ) is given.

Ansatz.
µ(σ) = z σ

2
D−2 = z σ

1
1−ε (2.17)

Remark.

(i) Using this Ansatz (2.17), the Renormalisation scale is given by µ0 = µ(〈σ〉) =

z 〈σ〉
1

1−ε ≡ z w
1

1−ε , generated dynamically after SSB of scale symmetry.

(ii) z is an arbitrary dimensionless parameter, the Renormalisation point parameter
or RG flow parameter, and the dependence of z is equivalent to the dependence
of the Renormalisation scale µ0 in conventional DReg. Note that in SIDReg the
Renormalisation scale µ0 is given by µ0 = µ(〈σ〉) = z 〈σ〉

1
1−ε ≡ z w

1
1−ε , as stated

above. Since w = 〈σ〉 is the VEV of the Dilaton, and thus a constant parameter of
the theory, the only "running object" in this Renormalisation scale is the parameter
z. Hence, z keeps track of the dependence of the Renormalisation scale µ0 and is
necessary in order to discuss Renormalisation Group Eqautions (RGEs) [20, 41].

(iii) A more general Renormalisation function, depending on other scalar fields has
already been ruled out, as discussed in [11]. For instance, in a 2 Scalar Model,
containing a Higgs-like boson φ and the Dilaton σ, one could think of a more
general Renormalisation function µ = µ(φ, σ) depending on both scalar fields,
instead of (2.17). However, this Ansatz for µ would introduce non-decoupling
quantum effects between the visible sector (φ) and the hidden sector (σ), even in
their classical decoupling limit, i.e. both sectors would still interact at the quantum
level even if they are classically decoupled. Moreover, this Ansatz would introduce
terms in Veff at the quantum level which are unbounded from below, leading to the
fact that the potential can be destabilised by small fluctuations about a critical
point. This can only be avoided if the Renormalisation function depends on the
Dilaton σ alone, i.e. µ ∼ σ. Hence, the Ansatz (2.17) will be used in this thesis.
For more details regarding this issue, the reader is referred to [11].

11



2. Quantum Scale Symmetry

Using Ansatz (2.17) and expanding about the Dilaton’s VEV, i.e. σ = σ̃+ 〈σ〉 ≡ D+w,
where w := 〈σ〉 is the VEV of the Dilaton, as defined before, and D := σ̃ are (small)
field fluctuations (about the vacuum), one obtains

µ(σ) = z σ
1

1−ε = z (w +D)
1

1−ε = z w
1

1−ε

(
1 +

D

w

) 1
1−ε

= µ0

(
1 +

D

w

) 1
1−ε

(2.18)

As can be seen, the Dilaton enters the Lagrangian to anomalous, i.e. non-integer, powers
due to the Renormalisation function. In order to derive Feynman rules the Lagrangian
needs to be expanded w.r.t. ε and D/w. Such expansions of the Renormalisation function
to some appropriate powers of ε, which will enter the Lagrangian, are to be found in
equations (B.2) in the appendix.

Actual calculations using SIDReg can be rather subtle and not as trivial as one might
expect. For this reason, it is useful to provide a prescription for the calculation of
Green functions in a theory with spontaneously broken quantum scale invariance using
SIDReg. This is in particular true for Green functions with non-zero external momenta,
i.e. calculations other than effective potential calculations.

Prescription (QSI Approach using SIDReg).

(1) Starting point is a classically scale invariant Lagrangian L in D = 4 dimensions.
Since SIDReg necessarily introduces a new field, the Dilaton σ, which needs to be
dynamical, and thus needs kinetic terms, it is already part of the field spectrum of
the theory from the beginning. Hence, the considered theory contains the Dilaton
as an additional degree of freedom.

(2) Analytically continue the theory to D = 4− 2ε dimensions using SIDReg.

(3) In order to keep the couplings dimensionless µ is introduced in the "usual" way,
this time, however, as a Dilaton-dependent Renormalisation function µ = µ(σ).
Let λi, gi and yi be scalar potential, gauge and Yukawa couplings, respectively.
Then, µ = µ(σ) enters the action as follows:

λi −→ µ4−D λi = µ2ε λi

gi −→ µ
4−D
2 gi = µε gi

yi −→ µ
4−D
2 yi = µε yi

which can be deduced by dimensional analysis, noting that, in D = 4− 2ε dimen-
sions, the mass dimensions of scalar fields φ, gauge fields Aµ and Dirac spinors ψ
are given by [φ] = 1− ε, [Aµ] = 1− ε and [ψ] = 3

2
− ε, respectively.

(4) Perform (multiplicative) Renormalisation, i.e. obtain S −→ S0 = Sren +Sct, using
the Lagrangian in the unbroken phase. Note that higher dimensional operators
might necessarily be introduced as counterterms depending on the loop-order due
to non-Renormalisability.

12



2.1. Quantum Scale Invariance

(5) Expand the Lagrangian about the scalar fields VEVs, ε, and the ratio D/w in order
to obtain a Lagrangian polynomial in fields, i.e. a Lagrangian that only contains
fields to integer powers, which is necessary to derive Feynman rules (in the usual
way). This Lagrangian then displays the theory in the broken phase. Note that
this expansion must not be truncated since this would violate scale invariance
explicitly. Further, note that the Renormalisation scale µnε0 , for some n ∈ Z and
generated dynamically after SSB, must not be expanded w.r.t. ε at the level of
the Lagrangian since it is used in loop-integrals as in conventional DReg.

(6) In a theory with Higgs sector, apply the minimalisation conditions of the Higgs
potential (optional).

(7) Transform to mass eigenstates (optional).

(8) Derive Feynman rules, including the new evanescent interactions.

(9) Use these Feynman rules to calculate Feynman diagrams, and thus Green func-
tions.

(10) Renormalise loop-divergences using counterterm diagrams. However, do not yet
go back to D → 4 dimensions. The reason for this is that, e.g. in a scattering
process, evanescent terms in the tree-level diagram can still "meet" an ε-pole when
interference terms between the tree-level and loop diagrams are calculated in order
to obtain the squared amplitude. Hence, the limit D → 4 ⇔ ε → 0 should be
taken only after it can be ensured that no evanescent term will be multiplied with
an ε-pole anymore.

Remark.

(i) In the case of the effective potential Veff , one wants to obtain an explicitly and
manifestly scale invariant potential which satisfies relation (2.13). Thus, one does
not work in the broken phase of the theory, i.e. the Lagrangian is not expanded
about the scalar fields VEVs. Instead, a field shift φk −→ φk + φk,0 is applied
to the scalar fields, where φk,0 are background fields. These background fields
φk,0 are charged under the transformation generated by D̂, i.e. transform non-
trivially under dilatations, and thus the resulting Lagrangian is still manifestly
scale invariant. Hence, scale invariance is maintained manifest at all steps of the
calculation. After the scale invariant effective potential is calculated, one can then
expand about the scalar fields VEVs and go to the broken phase of the theory. An
exemplary calculation of the effective potential up to 2-loop order in the 2 Scalar
Model is to be found in chapter 3.

(ii) Step (5), i.e. working in the broken phase of the theory does not spoil spontan-
eously broken QSI, i.e. does not explicitly break scale symmetry, as long as the
power series is not truncated and the Renormalisation transformation in step (4)
is performed before going to the broken phase of the theory. The reason for this
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2. Quantum Scale Symmetry

is that in general, if a symmetry is realised, it is realised independently of the co-
ordinates that are used. Here, the difference between the coordinates σ and D is
that the symmetry is manifest for σ, while it is non-linearly realised for D. Thus,
the Goldstone boson D does not transform multiplicatively, but rather shifts, i.e.
is associated with shift symmetries, as any other Goldstone boson under the action
of the corresponding symmetry [32]. Moreover, in [21] it has explicitly been shown
for a 2 Scalar Model, containing the fields {φ, σ}, that the fields VEVs 〈φ〉 and 〈σ〉
are spurious w.r.t. the fields φ and σ, respectively, and further that, using SIDReg,
the Renormalisation scale µ0 = µ(〈σ〉) is spurious w.r.t. σ as well. Where, in [21],
a dimensionful parameter was defined to be spurious if it is "absorbable in the
backgrounds", and thus "effectively vanishing from the functional" (meaning the
quantum effective action). In addition to that, in chapter 3, it is exemplarily shown
that the same scale invariant counterterms can be obtained from N -point Green
functions using the broken phase Lagrangian and following the prescription above
as from the manifestly scale invariant Lagrangian, i.e. the unbroken phase, and
the manifestly scale invariant effective potential. Therefore, working in the broken
phase of the theory does not explicitly, but only spontaneously, break quantum
scale symmetry and the correct scale invariant counterterms can be obtained from
the broken phase Lagrangian.

(iii) As mentioned in (ii), if the Lagrangian (including the Renormalisation function)
is expanded w.r.t. the scalar fields VEVs, ε, and the ratio D/w, i.e. working
in the broken phase of the theory, the power series must not be truncated since
this would otherwise break (quantum) scale invariance explicitly. However, in real
calculations, depending on the considered loop order and the number of external
particles, only terms of the power series in fields and ε that actually contribute
need to be considered. Hence, terms that will definitely not contribute (or will
lead only to evanescent corrections that vanish in the limit ε→ 0) can practically
be neglected.

(iv) As mentioned above, the Renormalisation scale µnε0 = zn ε 〈σ〉
n ε
1−ε , for some n ∈ Z,

is not expanded w.r.t. ε at the level of the Lagrangian since it is used in loop-
integrals as in conventional DReg, and thus will then (after having integrated over
the loop-momenta) be expanded, e.g. giving rise to terms such as ∼ log (m2/µ2

0).
However, there are more subtleties to this. In particular w.r.t. factors of µnε0 in
front of mass terms, dynamically generated by SSB. First, consider a generic mass
term of the form 1

2
m2 φ2. In D = 4 − 2ε dimensions the scalar field has mass

dimension [φ] = D−2
2

= 1 − ε, leading to the fact that the mass m itself always
has mass dimension [m] = 1 in order to ensure that the mass term has mass
dimension D. Now, consider a mass term 1

2
µ2ε
0 λφ c v

2 φ2 that was dynamically
generated by SSB, for some VEV v and some dimensionless constants c, λφ. Again,
in D = 4 − 2ε dimensions the scalar field and the VEV have the same mass
dimension, i.e. [v] = [φ] = D−2

2
= 1 − ε. Since c and λφ are dimensionless, one

finds [λφ c v2] = 2−2ε. Hence, the squared mass is identified to be m2 = µ2ε
0 λφ c v

2
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2.2. The 2 Scalar Model

in order to obtain a mass parameter m of mass dimension [m] = 1, meaning that
µ2ε
0 is part of the definition of the mass parameter m. The treatment of these

factors of µ0 in loop-momentum integrals is discussed in appendix D.

Note that beyond quantum scale invariance, one might also want to consider quantum
special conformal invariance, i.e. i [K̂µ, G

(N1,...,Nm)] = i K̂µG
(N1,...,Nm) = 0, where the

generators of special conformal transformations K̂µ are defined in appendix A. In [21]
it was shown that quantum special conformal invariance and quantum scale invariance
are concurrently realised due to the vanishing trace anomaly, i.e.

i [D̂,G(N1,...,Nm)] = 0 ⇐⇒ i [K̂µ, G
(N1,...,Nm)] = 0 (2.19)

In this thesis, however, solely quantum scale invariance is considered.

2.2. The 2 Scalar Model
The 2 Scalar Model is used to exemplarily illustrate the realisation of spontaneously
broken quantum scale invariance and its implications. Moreover, it is of great interest
for physically relevant models of the real world since it is the major part of the Higgs
sector in a quantum scale invariant Standard Model, as discussed later and in [13].

As the name suggests, the 2 Scalar Model consists of 2 real scalar fields {φ, σ}, where
φ denotes a Higgs-like boson and σ the Dilaton. Hence, the Lagrangian in D = 4
dimensions is given by

L =
1

2
∂µφ∂

µφ+
1

2
∂µσ∂

µσ − V (φ, σ) (2.20)

The theory is supposed to be scale invariant, and thus as discussed in the previous
section the potential has to be a homogeneous function, i.e. satisfies (2.9). Therefore,
the potential may be written as [11]

V (φ, σ) = σ4W (φ/σ) (2.21)

The extremum conditions for the potential V

∂V

∂φ
= 0,

∂V

∂σ
= 0 (2.22)

can then equivalently be expressed in terms of W (φ/σ)

W (χ) = 0, W ′(χ) = 0 (2.23)

if 〈φ〉, 〈σ〉 6= 0 is assumed, where

χ :=
φ

σ
, χ0 :=

〈φ〉
〈σ〉 (2.24)
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2. Quantum Scale Symmetry

as stated in [11, 13, 14, 20]. The assumption 〈φ〉, 〈σ〉 6= 0 is not only valid, but also
necessary for spontaneously broken QSI and the consistent usage of SIDReg for per-
turbative Renormalisation, as discussed in the previous section. The ratio of the VEVs
χ0 = 〈φ〉/〈σ〉 is fixed by one condition in (2.23), e.g. W ′(χ0) = 0, in terms of di-
mensionless coupling constants, whereas W (χ0) = 0 implies vanishing vacuum energy
V (〈φ〉, 〈σ〉) = 0, as stated in [14]. Given that χ0 = 〈φ〉/〈σ〉 is a solution to (2.23),
then 〈φ〉 ∼ 〈σ〉, and thus ∃ a flat direction in the theory, with φ/σ = χ0 in the (φ, σ) -
plane [11, 14]. This implies the existence of a Goldstone mode, leading to a (massless)
Goldstone boson in the theory, which turns out to be the Dilaton, as expected in the
case of a spontaneously broken symmetry.

An example for a scale invariant potential that satisfies (2.9) and further allows for
non-trivial solutions of (2.22) is given by

V (φ, σ) =
λφ
4!
φ4 +

λm
4
φ2 σ2 +

λσ
4!
σ4 (2.25)

For this particular choice of V , one obtains

W (χ) =
λφ
4!
χ4 +

λm
4
χ2 +

λσ
4!

The minimalisation conditions (2.22) for this potential (2.25) are then provided by

∂V

∂φ

∣∣∣∣φ=〈φ〉
σ=〈σ〉

= 0 ⇐⇒ 〈φ〉
(
λφ
6
〈φ〉2 + λm

2
〈σ〉2

)
= 0

∂V

∂σ

∣∣∣∣φ=〈φ〉
σ=〈σ〉

= 0 ⇐⇒ 〈σ〉
(
λm
2
〈φ〉2 + λσ

6
〈σ〉2

)
= 0

(2.26)

Solving these conditions, assuming 〈φ〉, 〈σ〉 6= 0, yields

χ2
0 =
〈φ〉2

〈σ〉2
= − 3

λm
λφ

> 0

λ2m =
1

9
λφ λσ ⇔ λσ = 9

λ2m
λφ

(2.27)

which implies λm < 0 and λσ > 0, if λφ is chosen to be λφ > 0. Using (2.27), all
couplings can be expressed in terms of λφ and χ0, thus

λm = − 1

3
λφ χ

2
0

λσ = λφ χ
4
0

(2.28)

Further, the potential (2.25) can then be written as

V (φ, σ) =
λφ
4!

(
φ2 − % σ2

)2 (2.29)

where % := χ2
0 = 〈φ〉2/〈σ〉2.
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2.2. The 2 Scalar Model

Now, before the theory is analytically extended to D = 4 − 2ε dimensions using
SIDReg, there are two aspects that should be discussed prior to that, the masses and
mass eigenstates of the particles, as well as the connection of this model to the Standard
Model Higgs sector. First, consider the expansion of the fields φ, σ about their VEVs

φ = φ̃+ 〈φ〉 ≡ h+ v

σ = σ̃ + 〈σ〉 ≡ D+ w
(2.30)

where h := φ̃ are (small) field fluctuations (about the vacuum) and v := 〈φ〉 is the VEV
of the Higgs-like boson, whereas D = σ̃ and w = 〈σ〉 for the Dilaton, as defined in the
previous section. Using (2.30), the mass terms of h and D, generated dynamically after
SSB, are then given by

V
∣∣∣
bilinear

=
1

2
(h, D)M2

φσ

(
h
D

)
=

1

2
(H, S) R>

βM2
φσRβ

(
H
S

)
=

1

2
(H, S)M2

Diag

(
H
S

) (2.31)

where in the second line the flavour eigenstates h,D have been transformed to the mass
eigenstates H,S using the rotation matrix Rβ, i.e.(

H
S

)
= R>

β

(
h
D

)
=

(
cβ h− sβ D
sβ h+ cβD

)
(
h
D

)
= Rβ

(
H
S

)
=

(
cβH + sβ S
−sβH + cβS

) (2.32)

with
Rβ :=

(
cβ sβ
−sβ cβ

)
(2.33)

For the given potential (2.25), the matrix of squared masses M2
φσ takes the form

M2
φσ =

(
λφ
2
v2 + λm

2
w2 λm v w

λm v w
λm
2
v2 + λσ

2
w2

)
=

1

3
λφ v

2

(
1 −χ0

−χ0 χ2
0

)
(2.34)

where the minimalisation conditions (2.28) have been used in the second step. Given
the explicit form of M2

φσ in (2.34), the mixing angle β is determined by

tβ ≡ tan(β) =
v

w
, sβ ≡ sin(β) =

v√
v2 + w2

, cβ ≡ cos(β) =
w√

v2 + w2
(2.35)

Note that the minimalisation conditions (2.28) have been assumed in (2.35). Otherwise,
the expressions would be more complicated. The diagonal matrix of the squared masses
M2

Diag containing the eigenvalues ofM2
φσ, and thus the squared masses of the particles

H and S, is given by

M2
Diag := R>

βM2
φσRβ =

(
M2

H 0
0 M2

S

)
=

(
1
3
λφ v

2 (1 + χ2
0) 0

0 0

)
(2.36)
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having used the minimalisation conditions (2.28). It can be seen that, after SSB, the
mass eigenstate of the Higgs-like boson H obtains a non-vanishing "Higgs mass" M2

H =
1
3
λφ v

2 (1 + χ2
0), whereas the mass eigenstate of the Dilaton S is massless, i.e. M2

S = 0,
and thus is the Goldstone boson associated to spontaneously broken scale symmetry, as
expected.

Next, the connection of the 2 Scalar Model to the Standard Model Higgs sector is
considered. The Standard Model Lagrangian is almost classically scale invariant. Only
the Higgs mass term L ⊃ −µ2Φ†Φ breaks scale symmetry explicitly. Therefore, as
discussed in [20], the Standard Model can be scale invariant if the Higgs mass term
emerges from spontaneous scale symmetry breaking at a higher energy scale (e.g. the
Planck scale MPl). Note that the Standard Model Higgs potential can be written as

V SM
Higgs(Φ) = λSM

(
Φ†Φ +

µ2

2λSM

)2

for µ2 < 0. This potential could be replaced as follows [20]

λSM

(
Φ†Φ +

µ2

2λSM

)2

−→ λφ
3!

(
Φ†Φ− %

2
σ2
)2

which is exactly the potential of the 2 Scalar Model in (2.29), i.e. already having used the
minimalisation conditions (2.28), with φ →

√
2Φ. The original Standard Model Higgs

potential can then be reproduced if the Dilaton is replaced by its VEV, i.e. σ → 〈σ〉,
and λφ → 6λSM. The reason for this is

µ2

2λSM
= −v

2

2
←→ −%

2
〈σ〉2 = −v

2

2

having used the well-known minimalisation condition for the Standard Model Higgs po-
tential µ2 = −λSM v2, as well as % = 〈φ〉2/〈σ〉2 ≡ v2/w2. Further, one might conclude
that spontaneous scale symmetry breaking implies spontaneous electroweak symmetry
breaking, with vanishing vacuum energy V (〈φ〉, 〈σ〉) = 0, and thus all scales are dy-
namically generated by 〈σ〉 [11, 13]. Note that it was assumed that v = 〈φ〉 is equal
to the Standard Model Higgs VEV, i.e. v = 〈φ〉 ∼ 102GeV. On the other hand side,
the exact value for the Dilaton VEV w = 〈σ〉 is unknown, but expected to be large
v � w, as motivated in the previous section. A further motivation for this is given
by the tree-level Higgs mass MH . In the Standard Model, the squared Higgs mass is
given by M2

H,SM = 2λSM v
2 at tree-level, whereas here in the 2 Scalar Model, the tree-

level squared Higgs mass is given by M2
H = 1

3
λφ v

2 (1 + χ2
0), as discussed above. Using

λφ = 6λSM and χ0 = v/w, one finds

M2
H =

1

3
λφ v

2

(
1 +

v2

w2

)
= 2λSM v

2

(
1 +

v2

w2

)
=⇒ δM2

H :=M2
H −M2

H,SM = 2λSM v
2 v

2

w2

(2.37)
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2.2. The 2 Scalar Model

which should better be a vanishingly small correction. Choosing the Dilaton VEV to
be of the order of the Planck scale, i.e. w = 〈σ〉 ∼ MPl ∼ 1018GeV, does not only
guarantee this, but also leads to a very weak coupling between the visible (φ) and the
hidden sector (σ) due to (2.28), c.f. previous section. Thus, choosing v = 〈φ〉 ∼ 102GeV
and w = 〈σ〉 ∼MPl ∼ 1018GeV leads to

χ0 =
v

w
∼ O(10−16)

% = χ2
0 =

v2

w2
∼ O(10−32)

δM2
H = 2λSM v

2 v
2

w2
∼ O

(
10−28GeV2

)
λφ = 6λSM ∼ O(1)

λm = − 1

3
λφ

v2

w2
∼ −O(10−32)

λσ = λφ
v4

w4
∼ O(10−64)

=⇒λσ � ‖λm‖ � λφ

(2.38)

Note that, as discussed in [11, 13, 34] and mentioned in [20], a classical hierarchy of
couplings at tree-level, as shown in (2.38), and thus a mass hierarchy with a light Higgs
mass MH ∼ 〈φ〉 ∼ O (102GeV)� 〈σ〉 is radiatively stable, i.e. stabel against quantum
corrections, in a theory with spontaneously broken QSI (at least at the 1-loop level). Due
to only spontaneously broken QSI, achieved by using a Regularisation that respects scale
symmetry (SIDReg), this is, however, expected to be true at all orders of perturbation
theory [13]. Therefore, no additional fine-tuning at the quantum level is necessary,
suggesting a possible solution to the hierarchy problem [11]. Moreover, given a Dilaton
VEV of the order of the Planck scale one obtains the following relations for the mixing
angle and the mass eigenstates

tβ =
v

w
∼ O(10−16)

sβ =
v√

v2 + w2
∼ O(10−16)

cβ =
w√

v2 + w2
∼ O(1)


=⇒ β ∼ O(10−16)

=⇒ H = cβ h− sβ D ≈ h, S = sβ h+ cβ D ≈ D

(2.39)

Thus, it can be seen that the particles h and D are then almost mass eigenstates.
Now, that the 2 Scalar Model was discussed sufficiently in D = 4 dimensions, the

analytical continuation of the theory to D = 4 − 2ε dimensions using SIDReg is con-
sidered. As explained in the previous section, in SIDReg, the scalar coupling constants
are rescaled as λj → µ2ε(σ)λj, and thus V (φ, σ) → Ṽ (φ, σ) = µ2ε(σ)V (φ, σ) for the
potential in D = 4− 2ε dimensions. Therefore, the Lagrangian of the 2 Scalar Model in
D = 4− 2ε dimensions then reads as

L =
1

2
∂µφ∂

µφ+
1

2
∂µσ∂

µσ − Ṽ (φ, σ) (2.40)
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2. Quantum Scale Symmetry

with potential

Ṽ (φ, σ) = µ2ε(σ)V (φ, σ) = µ2ε(σ)

(
λφ
4!
φ4 +

λm
4
φ2 σ2 +

λσ
4!
σ4

)
(2.41)

Using the expansion of the fields about their VEVs as shown in (2.30), and further
expanding w.r.t. ε and D/w, one obtains

Ṽ (h+ w,D+ w) = Ṽ (v, w) + T̃ϕi
ϕi +

1

2
M̃2

ij ϕi ϕj +
1

3!
Ṽijk ϕi ϕj ϕk

+
1

4!
Ṽijkl ϕi ϕj ϕk ϕl +

1

5!
Ṽijklm ϕi ϕj ϕk ϕl ϕm

+
1

6!
Ṽijklmn ϕi ϕj ϕk ϕl ϕm ϕn + . . .

(2.42)

where {ϕi}2i=1 = {h,D}. Further, the ellipsis in (2.42) denotes infinitely many terms
consisting of ≥ 7 scalar fields ϕi. These non-Renormalisable higher order terms are
introduced by the Renormalisation function µ2ε(σ) and the expansion w.r.t. ε and D/w
in order to obtain a Lagrangian consisting only of fields of integer powers, as mentioned
in the previous section. The tadpoles T̃ϕi

, the squared masses M̃2
ij and the coefficients

Ṽijk··· in (2.42) are given by

T̃ϕi
:=

∂Ṽ

∂ϕi

∣∣∣∣
ϕs=0, ∀ s

M̃2
ij :=

∂2Ṽ

∂ϕi∂ϕj

∣∣∣∣
ϕs=0, ∀ s

Ṽijk··· :=
∂aṼ

∂ϕi∂ϕj∂ϕk · · ·

∣∣∣∣
ϕs=0, ∀ s

(2.43)

where a is determined by the number of indices of Ṽijk···, i.e. a := length[(i, j, k, . . .)].
M̃2

ij and Ṽijk··· are symmetric under index exchange by definition. Explicit expressions
of the coefficients in (2.43) for the given potential (2.41) are to be found in appendix
C in equations (C.2) to (C.37). It can be seen that these coefficients (2.43) contain ε -
dependent, i.e. evanescent, terms due to µ2ε(σ), as discussed in the previous section. As
in 4 dimensions, the matrix of squared masses M̃2

φσ, given in (C.5), is a non-diagonal
matrix and so is the associated propagator for the fields h and D

D̃p = p2 − M̃2
φσ (2.44)

The inverse propagator is obtained by inverting (2.44) and can be written as

D̃−1
p =

Ã

p2 − M̃2
H

+
B̃

p2 − M̃2
S

(2.45)
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2.2. The 2 Scalar Model

where M̃2
H and M̃2

S are the eigenvalues of M̃2
φσ, given in (C.17) & (C.18). Further, Ã

and B̃ are symmetric matrices whose properties and explicit expressions are given in
(C.28) to (C.37).

The minimalisation conditions for the potential (2.41) in D = 4 − 2ε dimensions are
provided by

T̃h =
∂Ṽ

∂h

∣∣∣∣
h=0
D=0

≡ ∂Ṽ

∂φ

∣∣∣∣
φ=v
σ=w

= 0 ⇔ v

(
λφ
6
v2 +

λm
2
w2

)
= 0

T̃D =
∂Ṽ

∂D

∣∣∣∣
h=0
D=0

≡ ∂Ṽ

∂σ

∣∣∣∣
φ=v
σ=w

= 0 ⇔ w

1− ε

(
ε λφ
12

v4

w2
+
λm
2
v2 +

2− ε
12

λσ w
2

)
= 0

(2.46)

where the second relation has not been expanded w.r.t. ε, as it is done in (C.3). While
the first condition in (2.46) is the same as in the 4-dimensional case, it can be seen that
the second one in (2.46) is different compared to the 4-dimensional case in (2.26), i.e.
obtains ε - corrections in D = 4 − 2ε dimensions. Nonetheless, solving (2.46), provides
the same ε - independent minimalisation conditions for the coupling constants as in
(2.28), i.e.

λm = − 1

3
λφ

v2

w2

λσ = λφ
v4

w4

(2.47)

Using these conditions (2.47) yields not only vanishing tadpoles T̃ϕi
= 0 ∀ i, but also

a vanishing vacuum energy Ṽ (v, w) = 0, and further reduces M̃2
φσ, given in (C.5) &

(C.6), and its eigenvalues M̃2
H and M̃2

S, given in (C.17) & (C.18), to the same results
as in the 4-dimensional case in (2.34) and (2.36) multiplied by µ2ε

0 , respectively. Then,
this also leads to a reduction of the relations for the mixing angle β to the same as in 4
dimensions, i.e. to (2.35). Thus, even in D = 4 − 2ε dimensions one obtains the same
matrix of squared masses after applying (2.47)

M̃2
φσ −−−→

(2.47)
M̃2

φσ =M2
φσ =

1

3
µ2ε
0 λφ v

2

(
1 − v

w

− v
w

v2

w2

)
, (2.48)

as well as the same squared masses

M̃2
H −−−→

(2.47)
M̃2

H =M2
H =

1

3
µ2ε
0 λφ v

2

(
1 +

v2

w2

)
M̃2

S −−−→
(2.47)

M̃2
S =M2

S = 0
(2.49)

for the same mass eigenstates H and S with the same mixing angle β as in the 4-
dimensional case. The reason for this is that zero vacuum energy and tadpoles lead to
the fact that new evanescent corrections due to µ2ε(σ) = µ2ε

0 (1 + corrections) can then
only arise above the bilinear mass terms, i.e. at terms with 3 fields and more, since these
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2. Quantum Scale Symmetry

evanescent corrections are always accompanied by at least 1 additional power of the field
D, c.f. (B.2). Note that if one does not use the minimalisation conditions (2.47) the
relations for the mixing angle β would otherwise be far more complicated containing ε
- dependent corrections due to evanescent corrections in the mass terms (C.5) & (C.6),
and therefore would make the transition to mass eigenstates more complicated.

Now, using first the minimalisation conditions (2.47) and then transforming to mass
eigenstates H and S, using (2.32), the potential, given in (2.41) & (2.42), can be written
as

Ṽ (H,S) =
1

2
M̃2

H H
2 +

1

3!
λ̃ijk ρi ρj ρk +

1

4!
λ̃ijkl ρi ρj ρk ρl

+
1

5!
λ̃ijklm ρi ρj ρk ρl ρm +

1

6!
λ̃ijklmn ρi ρj ρk ρl ρm ρn + . . .

(2.50)

where {ρi}2i=1 = {H,S}. Again, the ellipsis denotes infinitely many terms with ≥ 7

scalar fields ρi and explicit expressions for the symmetric coefficients λ̃ijk··· are to be
found in appendix C in equations (C.40) to (C.48).

For further details regarding the 2 Scalar Model the reader is referred to [11, 13, 14,
20].

2.3. Renormalisation of the QSI 2 Scalar Model
In this section the Renormalisation of the QSI 2 Scalar Model (2.40), introduced in
the previous section, is discussed. As already mentioned in section 2.1 and discussed
in [11, 12, 14, 20, 21, 33], a quantum scale invariant theory is non-Renormalisable due
to the Renormalisation function µ(σ), which introduces infinitely many new evanescent
interactions to the action in D = 4 − 2ε dimensions. These evanescent interactions
can give rise to finite and divergent quantum corrections due to divergences in loop-
calculations (c.f. section 2.1), and thus higher dimensional non-polynomial operators of
the form

φ4+2 p

σ2 p
, p = 1, 2, 3, . . . (2.51)

emerge at loop-level, up to p ≤ L for L loops. This is explicitly shown in chapter 3 for
the QSI 2 Scalar Model.

For this reason, these higher order terms need to be included at least as counterterms
in order to renormalise the theory. Thus, one actually needs to consider the following
(more general) potential

V (φ, σ) =
λφ
4!
φ4 +

λm
4
φ2 σ2 +

λσ
4!
σ4 +

∞∑
n=1

λ4+2n

4 + 2n

φ4+2n

σ2n

Ṽ (φ, σ) = µ2ε(σ)V (φ, σ)

(2.52)

instead of (2.41). However, these higher order coupling constants λ4+2n can be set to
zero at tree-level, i.e.

λ4+2n ≡ 0 ∀n (2.53)
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2.3. Renormalisation of the QSI 2 Scalar Model

which is done in this thesis (except something else is stated), such that these higher
dimensional operators (2.51) only need to be included as counterterms and only up to
the corresponding loop-order that is considered.

Remark.

(i) At the 1-loop-level only new finite quantum corrections due to evanescent inter-
actions can emerge, because there are only simple ε - poles at the 1-loop-level.
Consequently, evanescent interactions ∼ εk, k ∈ N, can then only give rise to

• new finite quantum corrections, for k = 1

• still evanescent quantum corrections, for k ≥ 2

Note that evanescent corrections will ultimately not contribute as ε→ 0.
⇒ The divergence structure remain unchanged at the 1-loop-level, and thus 1-

loop counterterms in a QSI theory, i.e. a SIDReg-regularised theory, are the
same as in the usual DReg case.

⇒ There are no higher dimensional counterterms of the form (2.51) needed at
the 1-loop-level. This is explicitly shown in chapter 3. There it can bee seen
that a higher dimensional term of the form φ6/σ2 indeed emerges at the 1-
loop-level in the effective potential due to evanescent interactions, however,
it emerges as a finite quantum correction, and thus does not need to be
renormalised (with a counterterm).

(ii) At the 2-loop-level, however, there are not only new finite but also new divergent
quantum corrections due to evanescent interactions. The reason for this is that at
the 2-loop-level there are simple ε - poles and ε - poles of the order 2. Therefore,
evanescent interactions ∼ εk, k ∈ N, can then give rise to

• new finite quantum corrections, for k = 1 and k = 2 meeting a 1/ε - pole and
1/ε2 - pole, respectively

• new divergent quantum corrections, for k = 1 meeting a 1/ε2 - pole
• still evanescent quantum corrections, in the other cases

Again, evanescent corrections do ultimately not contribute as ε→ 0.
⇒ The divergence structure does change at the 2-loop-level in a QSI theory, and

thus the 2-loop counterterms are different in the SIDReg-regularised theory
compared to the usual DReg case.

⇒ Higher dimensional counterterms of the form (2.51) are needed at the 2-loop-
level, which is explicitly shown in chapter 3. There it can be seen that higher
dimensional terms of the form φ6/σ2 and φ8/σ4 emerge as divergent quantum
corrections at the 2-loop-level in the effective potential due to evanescent
interactions, i.e. with 1/ε - divergence, and thus need to be renormalised
with non-polynomial counterterms.
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2. Quantum Scale Symmetry

Moreover, note that non-Renormalisability due to quantum scale invariance is not neces-
sarily a problem, since gravity is non-renormalisable as well and every theory of nature
must ultimately contain gravity. Further, as discussed in [20], the usual renormalisable
theory is a low energy effective theory valid below the scale of spontaneous (quantum)
scale symmetry breaking 〈σ〉.

Now, consider the Renormalisation transformation for the QSI 2 Scalar Model (2.40)
S −→ S0 = Sren + Sct

L −→ L0 = Lren + Lct

φ −→ φ0 =
√
Zφ φ

σ −→ σ0 =
√
Zσ σ

λk −→ λk,B = µ2ε(σ)λk,0 = µ2ε(σ)Zλk λk

(2.54)

The counterterm Lagrangian is then given by

Lct = (Zφ − 1)
1

2
∂µφ∂

µφ+ (Zσ − 1)
1

2
∂µσ∂

µσ

− µ2ε(σ)

((
Zλφ Z

2
φ − 1

) λφ
4!
φ4 + (Zλm Zφ Zσ − 1)

λm
4
φ2 σ2

+
(
Zλσ Z

2
σ − 1

) λσ
4!
σ4 +

δλ
(2)
6

6

φ6

σ2
+
δλ

(2)
8

8

φ8

σ4
+ . . .

) (2.55)

including the non-polynomial 2-loop counterterms δλ(2)6 and δλ
(2)
8 which are necessary

for the Renormalisation of the theory at the 2-loop-level, as explained above. It is
convenient to further define

ZVφ := Zλφ Z
2
φ

ZVm := Zλm Zφ Zσ

ZVσ := Zλσ Z
2
σ

(2.56)

Expanding these counterterms up to O (~2) yields

ZVφ = 1 + δZ
(1)
Vφ

+ δZ
(2)
Vφ

+O
(
~3
)

ZVm = 1 + δZ
(1)
Vm

+ δZ
(2)
Vm

+O
(
~3
)

ZVσ = 1 + δZ
(1)
Vσ

+ δZ
(2)
Vσ

+O
(
~3
) (2.57)

with
δZ

(1)
Vφ

= δZ
(1)
λφ

+ 2 δZ
(1)
φ

δZ
(2)
Vφ

= δZ
(2)
λφ

+ 2 δZ
(2)
φ +

(
δZ

(1)
φ

)2
+ 2 δZ

(1)
λφ
δZ

(1)
φ

δZ
(1)
Vm

= δZ
(1)
λm

+ δZ
(1)
φ + δZ(1)

σ

δZ
(2)
Vm

= δZ
(2)
λm

+ δZ
(2)
φ + δZ(2)

σ + δZ
(1)
λm
δZ

(1)
φ + δZ

(1)
λm
δZ(1)

σ + δZ
(1)
φ δZ(1)

σ

δZ
(1)
Vσ

= δZ
(1)
λσ

+ 2 δZ(1)
σ

δZ
(2)
Vσ

= δZ
(2)
λσ

+ 2 δZ(2)
σ +

(
δZ(1)

σ

)2
+ 2 δZ

(1)
λσ
δZ(1)

σ

(2.58)
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Thus, the counterterm Lagrangian up to the 2-loop-level may be written as

Lct = Lct1 + Lct2 +O
(
~3
)

=
1

2
δZ

(1)
φ ∂µφ∂

µφ+
1

2
δZ(1)

σ ∂µσ∂
µσ

− µ2ε(σ)

(
δZ

(1)
Vφ

λφ
4!
φ4 + δZ

(1)
Vm

λm
4
φ2 σ2 + δZ

(1)
Vσ

λσ
4!
σ4

)
+

1

2
δZ

(2)
φ ∂µφ∂

µφ+
1

2
δZ(2)

σ ∂µσ∂
µσ

− µ2ε(σ)

(
δZ

(2)
Vφ

λφ
4!
φ4 + δZ

(2)
Vm

λm
4
φ2σ2 + δZ

(2)
Vσ

λσ
4!
σ4 +

δλ
(2)
6

6

φ6

σ2
+
δλ

(2)
8

8

φ8

σ4

)
+O

(
~3
)

(2.59)

Note that in (2.55) and (2.59) it has already been used that δλ(1)6 ≡ 0 and δλ
(1)
8 ≡ 0 at

the 1-loop-level, as discussed above.
For 1-loop calculations (e.g. for scattering processes or decays) it will be useful to

express the 1-loop counterterm Lagrangian Lct1 in terms of mass eigenstates H and S,
and with the minimalisation conditions (2.47) being used. Expanding about the fields
VEVs and w.r.t. ε, as well as using (2.47) and (2.32) the 1-loop counterterm Lagrangian
is then given by

Lct1 =
1

2
δZH ∂µH∂

µH +
1

2
δZS ∂µS∂

µS + δZHS ∂µH∂
µS

− µ2ε
0 δV0 − µ2ε

0 (δTH + ε δY1)H − µ2ε
0 (δTS + ε δY2)S

− 1

2
(δZH + δZMH

+ ε δY11) M
2
H H

2 − 1

2
µ2ε
0

(
δM2

S + ε δY22
)
S2

− 1

2
µ2ε
0

(
δM2

HS + ε δY12
)
H S − µ2ε

0 (δZ111 + ε δY111)
λφ
3!
v H3

− µ2ε
0 (δZ112 + ε δY112)

λφ
2
v H2 S − µ2ε

0 (δZ122 + ε δY122)
λφ
2
v H S2

− µ2ε
0 (δZ222 + ε δY222)

λφ
3!
v S3 − µ2ε

0 (δZ1111 + ε δY1111)
λφ
4!
H4

− µ2ε
0 (δZ1112 + ε δY1112)

λφ
3!
H3 S − µ2ε

0 (δZ1122 + ε δY1122)
λφ
4
H2 S2

− µ2ε
0 (δZ1222 + ε δY1222)

λφ
3!
H S3 − µ2ε

0 (δZ2222 + ε δY2222)
λφ
4!
S4 + · · ·

(2.60)

where the ellipsis denotes infinitely many terms of higher orders in the fields as well as
in ε and explicit expressions for the counterterms in (2.60) that are not multiplied by ε
are provided in (C.60) & (C.61).

Remark.

(i) Important for the Renormalisation transformation is that it makes the theory
finite, which is achieved by (2.54), as shown in chapter 3.
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2. Quantum Scale Symmetry

(ii) The coefficients of the expanded 1-loop counterterm Lagrangian Lct1 in terms of
flavour eigenstates {h,D} and in terms of mass eigenstates {H,S} are given in
appendix C.

(iii) Note that the factor of µ2ε
0 in the H2 mass term is implicitly contained in (2.60)

via the squared mass M2
H = 1

3
µ2ε
0 λφ v

2
(
1 + v2

w2

)
.

(iv) The counterterm superscripts "(k)" indicating the k-th counterterm order are sup-
pressed in (2.60) for simplicity since all counterterms in (2.60) are of 1-loop order.

(v) Note finite contributions in (2.60) from ε δYij···, as the 1-loop counterterms contain
1/ε - poles.

26



3. Scale Invariant Effective Potential
In this chapter the effective potential for the quantum scale invariant 2 Scalar Model
(2.40), discussed in section 2.2, is determined up to the 2-loop level. This is done in order
to show that there is indeed no anomalous breaking of scale symmetry due to quantum
corrections, i.e. that scale invariance is maintained at the quantum level, if SIDReg is
used to regularise the theory, and thus that the effective potential is a homogeneous
function satisfying (2.13). Moreover, it is shown that non-vanishing β-functions, and
thus running couplings are obtained despite quantum scale symmetry, as well as the
fact that the quantum scale invariant effective potential satisfies the Callan-Symanzik
equations. These evaluations have been done in [11, 13] at the 1-loop level and in [14]
at the 2-loop level. However, some typos have been spotted in the 2-loop results for the
finite contributions to the effective potential in [14]. Furthermore, the divergent parts of
the self energies for φ and σ in the QSI 2 Scalar Model are determined explicitly at the
2-loop level, which has not been done in the literature so far. In addition to that, in the
last section of this chapter it is shown that the same scale invariant counterterms are
obtained from N -point Green functions with non-vanishing external momenta using the
expanded Lagrangian of the broken phase of the theory compared to those counterterms
obtained from the manifestly scale invariant effective potential. This is done up to the
2-loop level as a consistency check that working in the broken phase of theory in the
context of quantum scale symmetry does not explicitly break scale symmetry, but leads
to the same scale invariant counterterms as in a manifestly (quantum) scale invariant
approach via the effective potential, and also has not yet been done explicitly in the
literature so far.

As mentioned above, the Lagrangian of the theory that is considered in this chapter
is given in (2.40). In this chapter (except for the last section) the Lagrangian is not
expanded about the fields VEVs, and thus the theory is considered in its unbroken and
not its broken phase. However, a field shift of the form

φ −→ φ+ φ0

σ −→ σ + σ0
(3.1)

where φ0 and σ0 are background fields, is applied in order to determine the effective
potential, as explained in [39, 43]. Due to this field shift (3.1), all quantities are derived
from the shifted Lagrangian L (φ+ φ0, σ + σ0), and thus all equations from (C.1) to
(C.38), as well as (C.49) to (C.58), can still be used if the replacement h→ φ, v → φ0,
D → σ and w → σ0 is made, with the difference that the masses and coefficients are
then field dependent quantities. Note that these background fields φ0 and σ0 are charged
under dilatations, such that the Lagrangian is still manifestly scale invariant, i.e. in the
unbroken phase of theory, as mentioned in the last remark of section 2.1.
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3. Scale Invariant Effective Potential

3.1. 1-Loop Effective Potential
The 1-loop contribution to the effective potential Veff is given by

V1L = − i
2

∫
dDk

(2 π)D
Tr
[
log
(
k2 − M̃2

φσ

)]
(3.2)

as stated in [11, 14]. However, this relation should be re-derived for the quantum scale
invariant case as a consistency check whether (3.2) still holds in a QSI theory regularised
using SIDReg with a dynamical Renormalisation function µ(σ). First, consider the
relevant Feynman rules for the QSI 2 Scalar Model

p

ϕi ϕj = i
(
D̃−1
p

)
ij

ϕi

ϕj

ϕk

= − i Ṽijk,

ϕi

ϕj ϕk

ϕl

= − i Ṽijkl
(3.3)

where {ϕi}2i=1 = {φ, σ}, derived from the Lagrangian (2.40) with the potential (2.41),
this time, however, with the field shift (3.1) being used, i.e. L (φ+ φ0, σ + σ0) and
Ṽ = Ṽ (φ + φ0, σ + σ0), such that the propagator and the coefficients Ṽijk··· in (3.3) are
field dependent, i.e. dependent on φ0 and σ0. Next, the following relations between
masses and interaction coefficients are necessary for the derivation of (3.2).

∂M̃2
11

∂φ0

= Ṽ111,
∂M̃2

11

∂σ0
= Ṽ112

∂M̃2
12

∂φ0

= Ṽ112,
∂M̃2

12

∂σ0
= Ṽ122

∂M̃2
22

∂φ0

= Ṽ122,
∂M̃2

22

∂σ0
= Ṽ222

(3.4)

∂M̃2
H

∂φ0

= Ṽ111 Ã11 + 2 Ṽ112 Ã12 + Ṽ122 Ã22

∂M̃2
S

∂φ0

= Ṽ111 B̃11 + 2 Ṽ112 B̃12 + Ṽ122 B̃22

∂M̃2
H

∂σ0
= Ṽ112 Ã11 + 2 Ṽ122 Ã12 + Ṽ222 Ã22

∂M̃2
S

∂σ0
= Ṽ112 B̃11 + 2 Ṽ122 B̃12 + Ṽ222 B̃22

(3.5)
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3.1. 1-Loop Effective Potential

These relations can be derived by direct calculation using (C.6) to (C.10), as well as
(C.17) and (C.29), with the replacement v → φ0 and w → σ0 being used.

As explained in [39], the derivative of the effective potential is given by the 1PI 1-point
Green function, calculated using the shifted Lagrangian L (φ+ φ0, σ + σ0), or in other
words the Feynman rules (3.3). Thus, at the 1-loop-level one obtains

− i ∂V1L
∂φ0

= i
δΓ1L

δφ

∣∣∣∣
φ=φ0
σ=σ0

= φ

φ

φ

+ φ

φ

σ

+ φ

σ

φ

+ φ

σ

σ

=
1

2

(
− i Ṽ1jk

) ∫ dDq

(2 π)D
i
(
D̃−1
q

)
jk

=
1

2

∫
dDq

(2 π)D

(
Ṽ111

(
D̃−1
q

)
11
+ 2 Ṽ112

(
D̃−1
q

)
12
+ Ṽ122

(
D̃−1
q

)
22

)
= − 1

2

∫
dDq

(2 π)D

(
1

q2 − M̃2
H

(
− ∂M̃

2
H

∂φ0

)
+

1

q2 − M̃2
S

(
− ∂M̃

2
S

∂φ0

))

= − 1

2

∫
dDq

(2 π)D
∂

∂φ0

(
log
(
q2 − M̃2

H

)
+ log

(
q2 − M̃2

S

))

(3.6)

− i ∂V1L
∂σ0

= i
δΓ1L

δσ

∣∣∣∣
φ=φ0
σ=σ0

= σ

φ

φ

+ σ

φ

σ

+ σ

σ

φ

+ σ

σ

σ

=
1

2

(
− i Ṽ2jk

) ∫ dDq

(2π)D
i
(
D̃−1
q

)
jk

=
1

2

∫
dDq

(2 π)D

(
Ṽ112

(
D̃−1
q

)
11
+ 2 Ṽ122

(
D̃−1
q

)
12
+ Ṽ222

(
D̃−1
q

)
22

)
= − 1

2

∫
dDq

(2 π)D

(
1

q2 − M̃2
H

(
− ∂M̃

2
H

∂σ0

)
+

1

q2 − M̃2
S

(
− ∂M̃

2
S

∂σ0

))

= − 1

2

∫
dDq

(2 π)D
∂

∂σ0

(
log
(
q2 − M̃2

H

)
+ log

(
q2 − M̃2

S

))

(3.7)

where in the penultimate step of (3.6) and (3.7) the relations (3.4) and (3.5) have been
used. Thus, from (3.6) and (3.7) it can be seen that the 1-loop effective potential is
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3. Scale Invariant Effective Potential

given by

V1L = − i

2

∫
dDk

(2 π)D

(
log
(
k2 − M̃2

H

)
+ log

(
k2 − M̃2

S

))
(3.8)

where the loop-momentum has been renamed q → k. Formula (3.8) agrees with (3.2),
given above, which can be seen by explicit calculation.

Tr
[
log
(
k2 − M̃2

φσ

)]
= log

(
det
(
k2 − M̃2

φσ

))
= log

((
k2 − M̃2

H

)(
k2 − M̃2

S

))
= log

(
k2 − M̃2

H

)
+ log

(
k2 − M̃2

S

) (3.9)

Using (D.4), the 1-loop effective potential is given by

V1L = − i

2

∫
dDk

(2 π)D
Tr
[
log
(
k2 − M̃2

φσ

)]
= − i

2

∫
dDk

(2 π)D

(
log
(
k2 − M̃2

H

)
+ log

(
k2 − M̃2

S

))
= − µ

2ε(σ0)

64π2

2∑
k=1

M̂4
ρk

[
1

ε
+

3

2
− log

(
M2

ρk

4π µ2(σ0)
eγE
)
+ 2 c(1)ρk

]
+O (ε)

= − µ
2ε(σ0)

64π2

2∑
k=1

M̂4
ρk

[
1

ε
+

3

2
− log

(
M2

ρk

4π µ2(σ0)
eγE
)]

+∆U1L +O (ε)

(3.10)

where {ρk}2k=1 = {H,S}.

Remark.

(i) Note that M̂2
ρk

:= µ−2ε(σ0)M
2
ρk

, as defined and explained in the appendix D.1.
Hence, M̂2

ρk
is an eigenvalue of M2

φσ without the factor µ2ε(σ0), c.f. (C.19). Con-
sequently, the mass dimensions are given by [M̂2

ρk
] = 2− 2ε and [M2

ρk
] = 2.

(ii) As explained in the appendix D.1, the expression (3.10) is consistent w.r.t. mass
dimensions, as [V1L] = D = 4− 2ε, [µ] = 1 and the masses as above.

(iii) In order to compare (3.10) with the result in [11, 14] the following definition need
to be made

Nij :=

[
µ

(
∂µ

∂ϕi

∂V

∂ϕj
+

∂µ

∂ϕj

∂V

∂ϕi

)
+

(
µ

∂2µ

∂ϕi ∂ϕj
− ∂µ

∂ϕi

∂µ

∂ϕj

)
V

]
φ=φ0
σ=σ0

(3.11)

where {ϕi}2i=1 = {φ, σ}, and thus

M̃2
ij =

∂2Ṽ

∂ϕi ∂ϕj

∣∣∣∣
φ=φ0
σ=σ0

=M2
ij + 2 ε µ2ε Nij

µ2
+ 4 ε2 µ2ε µ−2 ∂µ

∂ϕi

∂µ

∂ϕj
V

∣∣∣∣∣
φ=φ0
σ=σ0

=M2
ij + 2 ε µ2ε(σ0)

Nij

∣∣
ε=0

µ2(σ0)
+O

(
ε2
) (3.12)
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3.1. 1-Loop Effective Potential

Note that Nij needs to be evaluated at ε = 0 for a consistent power series in ε,
because Nij itself also depends on ε. The factor of µ2ε(σ0) is not expanded because
it is also contained in M̃2

ij and M2
ij as part of the definition of squared masses, c.f.

(C.6) and (C.8), respectively. In [11, 14] the factor µ2ε(σ0) is only contained in
M̃2

ij but not in M2
ij, which leads to a slightly different form of intermediate results

that, however, are ultimately equal.
Now, comparing (3.12) with (C.6) leads to

Nij

∣∣
ε=0

=
1

4
µ2(σ0)φ

2
0 u

(1)
ij ⇐⇒ u

(1)
ij = 4

Nij

∣∣
ε=0

µ2(σ0)φ2
0

(3.13)

Using (3.13) and (C.8), one obtains

4
Tr
(
M2

φσN
∣∣
ε=0

)
µ2(σ0)

= 4
M2

ij Nji

∣∣
ε=0

µ2(σ0)
=

1

2
µ2ε
0 (σ0)φ

4
0 uij u

(1)
ji

= µ2ε
0 (σ0) 2

(
M̂4

H c
(1)
H + M̂4

S c
(1)
S

)
= µ2ε

0 (σ0)
2∑

k=1

2 M̂4
ρk
c(1)ρk

(3.14)

Using (3.14), it can be seen that (3.10) is equal to the results in [11, 14].

(iv) Beside the usual Coleman-Weinberg contribution, a new finite quantum correction

∆U1L := − µ
2ε(σ0)

32π2

2∑
k=1

M̂4
ρk
c(1)ρk = − 1

16 π2

Tr
(
M2

φσN
∣∣
ε=0

)
µ2(σ0)

=
µ2ε(σ0)

64 π2

[
λφ λm
12

φ6
0

σ2
0

−
(
4

3
λφ λm +

3

2
λ2m −

λφ λσ
12

)
φ4
0

− λm
12

(48λm + 25λσ) φ
2
0 σ

2
0 −

7

12
λ2σ σ

4
0

] (3.15)

is obtained due to evanescent interactions, as discussed in chapter 2. It can be
seen that this new finite quantum correction indeed contains a non-polynomial
contribution of the form

∆U1L ⊃
λφ λm
12

φ6
0

σ2
0

(3.16)

as mentioned in section 2.3.

(v) The background fields {φ0, σ0} in (3.10) can be replaced by the fields {φ, σ} in order
to finally obtain the 1-loop contribution to the effective potential as a function of
the fields {φ, σ}, similar to the tree-level potential, i.e. µ = µ(σ), M2

ρk
=M2

ρk
(φ, σ),

c
(1)
ρk = c

(1)
ρk (φ, σ), and thus V1L = V1L(φ, σ).
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3. Scale Invariant Effective Potential

In order to renormalise the theory, and thus obtain a finite result, counterterms need
to be determined. For this reason, the 1-loop counterterm Lagrangian Lct1 in (2.59) is
used. The divergent part in (3.10) is given by

V1L
∣∣
div

= − µ
2ε(σ)

64π2

2∑
k=1

(
M̂2

ρk
(φ, σ)

)2 1

ε

= − µ
2ε(σ)

64π2

[(
M̂2

H(φ, σ)
)2

+
(
M̂2

S(φ, σ)
)2] 1

ε

= − µ
2ε(σ)

64π2

[
1

4

(
λ2φ + λ2m

)
φ4 +

1

2
λm (λφ + 4λm + λσ) φ

2 σ2

+
1

4

(
λ2m + λ2σ

)
σ4

]
1

ε

(3.17)

whereas the tree-level counterterm potential at the 1-loop order, c.f. (2.59), reads

Ṽtree,ct1 = µ2ε(σ)

(
δZ

(1)
Vφ

λφ
4!
φ4 + δZ

(1)
Vm

λm
4
φ2 σ2 + δZ

(1)
Vσ

λσ
4!
σ4

)
(3.18)

Hence, the 1-loop counterterms in the MS-scheme are given by

δZ
(1)
Vφ

=
3

32π2

λ2φ + λ2m
λφ

1

ε

δZ
(1)
Vm

=
1

32π2
(λφ + 4λm + λσ)

1

ε

δZ
(1)
Vσ

=
3

32π2

λ2m + λ2σ
λσ

1

ε

(3.19)

There are no higher dimensional non-polynomial operators in the divergent part of V1L,
c.f. (3.17). At the 1-loop-level, such higher order non-polynomial terms only emerge as
new finite quantum corrections, as shown in (3.15) and (3.16). Consequently, no higher
dimensional non-polynomial counterterms are necessary to renormalise the theory, i.e.
δλ

(1)
6 = · · · = 0, as already discussed in section 2.3. Now, the (1-loop) wave function

Renormalisation coefficients δZ(1)
φ and δZ(1)

σ need to be determined. For a purely scalar
theory, as considered here, the wave function Renormalisation coefficients are expected
to be zero at the 1-loop-level. In order to show this explicitly, the following counterterm
Feynman rules, again derived from the shifted Lagrangian L(φ+φ0, σ+σ0), are needed.

p
φ φ = i p2 δZ

(1)
φ − i µ

2ε(σ0)

(
λφ
2
δZ

(1)
Vφ
φ2
0 +

λm
2
δZ

(1)
Vm
σ2
0

)

p

σ σ = i p2 δZ(1)
σ − i µ2ε(σ0)

(
λm
2
δZ

(1)
Vm
φ2
0 +

λσ
2
δZ

(1)
Vσ
σ2
0

) (3.20)

Note that terms of the order O (ε0), i.e. evanescent interaction times counterterm, have
been neglected here, because such terms do not contribute to the MS-counterterms.
Moreover, the mass dimensions are [p2] = 2 and [φ2

0] = [σ2
0] = 2− 2ε.
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3.1. 1-Loop Effective Potential

Using (D.2) & (D.6), the (renormalised) self-energies of φ and σ are then provided by

−iΣ(1L)
ϕα,ren =

p

q − p

q

p

ϕα
ϕi

ϕk

ϕj

ϕl
ϕα + ϕα

ϕi ϕj

ϕα
p p

q

+
p

ϕα ϕα

=
1

2
Ṽαik Ṽαjl

∫
dDq

(2 π)D
(
D̃−1
q

)
ij

(
D̃−1
q−p
)
lk
+

1

2
Ṽααij

∫
dDq

(2π)D
(
D̃−1
q

)
ji

+ i p2 δZ(1)
ϕα
− i µ2ε(σ0)

(
λϕα

2
δZ

(1)
Vϕα

ϕ2
α,0 +

λm
2
δZ

(1)
Vm
ϕ2
β,0

)
=

i

32π2
µ−2ε(σ0) Ṽαik Ṽαjl

(
Ãij + B̃ij

)(
Ãlk + B̃lk

) 1

ε

+
i

32 π2
Ṽααij

(
Ãji M̂

2
H + B̃ji M̂

2
S

) 1

ε
+ · · ·

+ i p2 δZ(1)
ϕα
− i µ2ε(σ0)

(
λϕα

2
δZ

(1)
Vϕα

ϕ2
α,0 +

λm
2
δZ

(1)
Vm
ϕ2
β,0

)
=

i

32π2
µ2ε(σ0)

[
λ2ϕα

ϕ2
α,0 + λ2m

(
ϕ2
α,0 + 2ϕ2

β,0

)] 1

ε

+
i

64 π2
µ2ε(σ0)

[(
λ2ϕα

+ λ2m
)
ϕ2
α,0 + λm

(
λϕα + λϕβ

)
ϕ2
β,0

] 1

ε

+ i p2 δZ(1)
ϕα
− i µ2ε(σ0)

(
λϕα

2
δZ

(1)
Vϕα

ϕ2
α,0 +

λm
2
δZ

(1)
Vm
ϕ2
β,0

)
+O

(
ε0
)

!
= finite

(3.21)

where {ϕi}2i=1 = {φ, σ}, i, j, k, l, α, β ∈ {1, 2}, it is implicitly summed over the roman
indices {i, j, k, l}, but not over the greek indices {α, β}, which are fixed to be either 1

or 2, and further α 6= β, i.e. either (α, β) = (1, 2) for Σ
(1L)
φ, ren or (α, β) = (2, 1) for Σ

(1L)
σ, ren.

Using (3.19) completely cancels all divergencies in (3.21), and thus one obtains

δZ
(1)
φ = 0, δZ(1)

σ = 0 (3.22)

as expected.
Remark (MS to MS scheme).
The counterterms in (3.19) and (3.22) are given in the MS-scheme so far. However, all
results can (and will) be expressed in the MS-scheme by absorbing 4 π and eγE in µ, i.e.

µ2 −→ µ2 e
γE

4 π
(3.23)

which is especially useful for multi-loop calculations, as discussed in [39].
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3. Scale Invariant Effective Potential

Finally, after Renormalisation and then going back to 4 dimensions, i.e. ε → 0, the
result for the effective potential up to the 1-loop level is given by

Veff(φ, σ) = Vtree(φ, σ) + Vtree,ct1(φ, σ) + V1L(φ, σ) +O
(
~2
)

= Vtree(φ, σ) + V1L,reg(φ, σ) + ∆U1L(φ, σ) +O
(
~2
) (3.24)

with
Vtree(φ, σ) ≡ V (φ, σ) =

λφ
4!
φ4 +

λm
4
φ2 σ2 +

λσ
4!
σ4, (3.25)

and V1L,ren = Vtree,ct1 + V1L = V1L,reg +∆U1L, i.e. in the MS-scheme

V MS
1L,ren(φ, σ) =

1

64π2

2∑
k=1

(
M2

ρk
(φ, σ)

)2 [
log

(
M2

ρk
(φ, σ)

µ2(σ)

)
− 3

2
− 2 c(1)ρk (φ, σ)

]

=
1

64π2

2∑
k=1

(
M2

ρk
(φ, σ)

)2 [
log

(
M2

ρk
(φ, σ)

µ2(σ)

)
− 3

2

]
+∆U1L(φ, σ)

(3.26)

where {ρk}2k=1 = {H,S} and ∆U1L(φ, σ) defined in (3.15).
Remark.

(i) It has been used that in 4 dimensions, i.e. in the limit ε → 0, M̂2
ρk

is identical to
M2

ρk
. Explicit expressions for M2

ρk
and c

(1)
ρk are to be found in (C.19) and (C.20),

respectively, with the replacement v → φ, w → σ being used.

(ii) As already mentioned, it can be seen that, beside the regular Coleman-Weinberg
term V1L,reg, a new finite quantum correction ∆U1L is obtained due to evanes-
cent interactions introduced by the Renormalisation function, i.e. as a result of
QSI. This new quantum correction contains a higher dimensional non-polynomial
operator as shown in (3.15) and (3.16).

(iii) The 1-loop effective potential (3.24) with (3.25) and (3.26) is a homogeneous func-
tion of the fields, and thus satisfies (2.13). No massive parameters are introduced
at the quantum level due to the usage of SIDReg with a dynamical Renormalisa-
tion function µ(σ) instead of DReg. Hence, the theory indeed is scale invariant at
the quantum level (at least at the 1-loop-level), i.e. quantum scale invariant, as
intended.

(iv) The counterterms, given in (3.19) and (3.22), respect the symmetries of the theory,
especially scale symmetry. Moreover, the 1-loop counterterms are the same as for
the usual DReg case, i.e. they do not obtain corrections due to QSI. The reason for
this is that the divergence structure remain unchanged at the 1-loop-level, since
evanescent interactions can only lead to new finite quantum corrections at the
1-loop-level, as explained in section 2.3.

(v) The results in this section are in perfect agreement with the results presented in
[11, 14].

For more details w.r.t. to the 1-loop effective potential of the QSI 2 Scalar Model the
reader is referred to [11, 14, 20].
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3.2. 2-Loop Effective Potential

3.2. 2-Loop Effective Potential
The 2-loop contribution to the effective potential can be computed using the Feynman
rules (3.3) and is basically given by 2 different kinds of Feynman diagrams, the snowman
diagram and the sunset diagram given below. In addition to Lct2 with Vtree,ct2 given in
(2.59), 1-loop diagrams with counterterm insertions giving rise to V1L,ct1 are needed for
the Subrenormalisation of non-local divergences.

First, contributions from snowman diagrams are considered

V
(a)
2L = i

ϕi ϕk

ϕj ϕl

k

q

= − 1

8
Ṽijkl

∫
dDk

(2π)D

∫
dDq

(2 π)D
(
D̃−1
k

)
ij

(
D̃−1
q

)
kl

=
1

8

1

(16π2)2
µ2ε(σ0) V̂ijkl

[
Ãij Ãkl J

(
M̃2

H , M̃
2
H

)
+ Ãij B̃kl J

(
M̃2

H , M̃
2
S

)
+ B̃ij Ãkl J

(
M̃2

S, M̃
2
H

)
+ B̃ij B̃kl J

(
M̃2

S, M̃
2
S

)]
=: V

(a)

2L, 1/ε2 + V
(a)
2L, 1/ε +∆U

(a)
2L, 1/ε + V

(a)
2L, fin +∆U

(a)
2L, fin +O (ε)

(3.27)

where V̂ijkl is Ṽijkl without the factor of µ2ε(σ0) as shown in (C.11), the 2-loop function
J(x̃, ỹ) is given in (D.8) and explicit expressions for the quantities in the last line are
given below.

Contributions from sunset diagrams are given by

V
(b)
2L = i

ϕi
ϕj

ϕk ϕl
ϕm

ϕn

k

q

k − q

= − 1

12
Ṽijk Ṽlmn

∫
dDk

(2 π)D

∫
dDq

(2 π)D
(
D̃−1
k

)
il

(
D̃−1
q

)
jm

(
D̃−1
k−q
)
kn

= − µ
4ε(σ0) V̂ijk V̂lmn
12 (16 π2)2

[
Ãil Ãjm Ãkn IHHH + Ãil Ãjm B̃kn IHHS

+ Ãil B̃jm Ãkn IHSH + B̃il Ãjm Ãkn ISHH + Ãil B̃jm B̃kn IHSS

+ B̃il Ãjm B̃kn ISHS + B̃il B̃jm Ãkn ISSH + B̃il B̃jm B̃kn ISSS

]
=: V

(b)

2L, 1/ε2 + V
(b)
2L, 1/ε +∆U

(b)
2L, 1/ε + V

(b)
2L, fin +∆U

(b)
2L, fin +O (ε)

(3.28)
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where
Iαβγ := I

(
M̃2

α, M̃
2
β , M̃

2
γ

)
with α, β, γ ∈ {H,S}. Again, V̂ijk is Ṽijk without the factor of µ2ε(σ0) as shown in
(C.9), the 2-loop function I(x̃, ỹ, z̃) is given in (D.10) and explicit expressions for the
quantities in the last line are given below.

Finally, contributions from 1-loop diagrams with counterterm insertions are

V1L,ct1 = i

ϕi k

ϕj

=
i

2
δṼij

∫
dDk

(2 π)D
(
D̃−1
k

)
ij

= − 1

32π2
δṼij

(
Ãij A0

(
M̃2

H

)
+ B̃ij A0

(
M̃2

S

))
=: V

1/ε2

1L,ct1 + V
1/ε
1L,ct1 +∆U

1/ε
1L,ct1 + V fin

1L,ct1 +∆Ufin
1L,ct1 +O (ε)

(3.29)

where (3.22) has been used, δṼij is to be found in (C.62), the A0 - function is given in
(D.2) and explicit expressions for the quantities in the last line are given below.

Note that the ∆U - quantities are new divergent and finite quantum corrections due to
evanescent interactions, as discussed in section 2.3. Further, note that in the expressions
above the background fields {φ0, σ0} can again be replaced by the fields {φ, σ} in order
to finally obtain the 2-loop contribution to the effective potential as a function of the
fields {φ, σ}, as done in the previous section for the 1-loop case.

Now, the explicit results for the above expressions are given as follows. In particular,
poles of second order in ε are provided by

V
(a)

2L, 1/ε2 =
µ2ε(σ)

32 (16 π2)2

[ (
λ3φ + 2λφ λ

2
m + λ2m λσ

)
φ4 + 2λm (λ2φ + 9λ2m

+ λφ λσ + λ2σ)φ
2 σ2 +

(
λφ λ

2
m + 2λ2m λσ + λ3σ

)
σ4

]
1

ε2

(3.30)

V
(b)

2L, 1/ε2 =
µ2ε(σ)

16 (16 π2)2

[ (
λ3φ + λφ λ

2
m + 2λ3m

)
φ4 + λm (λ2φ + 6λφ λm + 10λ2m

+ 6λm λσ + λ2σ)φ
2 σ2 +

(
2λ3m + λ2m λσ + λ3σ

)
σ4

]
1

ε2

(3.31)

V
1/ε2

1L,ct1 =−
µ2ε(σ)

16 (16 π2)2

[ (
3λ3φ + 4λφ λ

2
m + 4λ3m + λ2m λσ

)
φ4

+ λm
(
4λ2φ + 12λφ λm + 2λφ λσ + 38λ2m + 12λm λσ + 4λ2σ

)
φ2 σ2

+
(
λφ λ

2
m + 4λ3m + 4λ2m λσ + 3λ3σ

)
σ4

]
1

ε2

(3.32)
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Hence, the subrenormalised sum of the 3 contributions to the pole of second order in ε
is then given by

V
1/ε2

2L,SR := V
(a)

2L, 1/ε2 + V
(b)

2L, 1/ε2 + V
1/ε2

1L,ct1

= − µ2ε(σ)

32 (16 π2)2

[ (
3λ3φ + 4λφ λ

2
m + 4λ3m + λ2m λσ

)
φ4

+ 2λm
(
2λ2φ + 6λφ λm + λφ λσ + 19λ2m + 6λm λσ + 2λ2σ

)
φ2 σ2

+
(
λφ λ

2
m + 4λ3m + 4λ2m λσ + 3λ3σ

)
σ4

]
1

ε2

(3.33)

The subrenormalised sum of the 3 contributions to the simple pole in ε that would also
be obtained in usual DReg is provided by

V
1/ε
2L,SR := V

(a)
2L, 1/ε + V

(b)
2L, 1/ε + V

1/ε
1L,ct1

=
µ2ε(σ)

16 (16 π2)2

[ (
λ3φ + λφ λ

2
m + 2λ3m

)
φ4

+ λm
(
λ2φ + 6λφ λm + 10λ2m + 6λm λσ + λ2σ

)
φ2 σ2

+
(
2λ3m + λ2m λσ + λ3σ

)
σ4

]
1

ε

(3.34)

whereas the subrenormalised sum of the 3 new contributions to the simple pole in ε due
to evanescent interactions, i.e. only in SIDReg, is

∆U
1/ε
2L,SR := ∆U

(a)
2L, 1/ε +∆U

(b)
2L, 1/ε +∆U

1/ε
1L,ct1

=
µ2ε(σ)

16 (16 π2)2

[(
20

3
λ2φ λm +

7

6
λφ λ

2
m − 2λ3m −

1

2
λ2φ λσ

+
1

4
λφ λ

2
σ −

4

3
λφ λm λσ +

7

12
λ2m λσ

)
φ4

+ λm

(
8λφλm + λφλσ +

41

2
λ2m +

43

3
λmλσ +

1

2
λ2σ

)
φ2σ2

+

(
4λ3m +

1

3
λ2m λσ +

7

4
λ3σ

)
σ4

− λm
(
7

6
λ2φ −

7

3
λφ λm +

1

6
λφ λσ

)
φ6

σ2
− 1

4
λφ λ

2
m

φ8

σ4

]
1

ε

(3.35)

Finally, the sum of the 3 regular contributions to the finite part that would also be
obtained in usual DReg reads as

V fin
2L,SR := V

(a)
2L,fin + V

(b)
2L,fin + V fin

1L,ct1 (3.36)
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with

V
(a)
2L, fin =

µ2ε(σ)

8 (16 π2)2
kijkl

{(
Aij M̂

2
H +Bij M̂

2
S

)(
Akl M̂

2
H +Bkl M̂

2
S

)(
1 +

π2

6

)
+ M̂2

H M̂
2
S Aij Bkl

(
log
(
M2

H

)
− log

(
M2

S

) )2
+ 2

[
Aij M̂

2
H

(
log
(
M2

H

)
− 1
)
+Bij M̂

2
S

(
log
(
M2

S

)
− 1
)]

×
[
Akl M̂

2
H

(
log
(
M2

H

)
− 1
)
+Bkl M̂

2
S

(
log
(
M2

S

)
− 1
)]}

(3.37)

V
(b)
2L,fin =

µ2ε(σ)

4 (16 π2)2
kijk klmn φ

2

×

{[
Ail M̂

2
H

(
log
(
M2

H

)
− 1
)
+Bil M̂

2
S

(
log
(
M2

S

)
− 1
)]

×
[
AjmAkn

(
log
(
M2

H

)
− 1
)
+BjmBkn

(
log
(
M2

S

)
− 1
)]

+ 2

[
Ail M̂

2
H

(
log
(
M2

H

)
− 1
)2

+Bil M̂
2
S

(
log
(
M2

S

)
− 1
)2]

AjmBkn

+
1

2

[
Bil M̂

2
H − Ail M̂2

S

][
log

2 (
M2

H

)
− log

2 (
M2

S

)
− 2
(
log
(
M2

H

)
− log

(
M2

S

) )]
AjmBkn

−
[
Ail M̂

2
H

(
log
(
M2

H

)
− 1
)
+Bil M̂

2
S

(
log
(
M2

S

)
− 1
)]

×
[
Ajm +Bjm

][
Akn +Bkn

]
+

[
Ail M̂

2
H +Bil M̂

2
S

]
(Ajm +Bjm) (Akn +Bkn)

(
3

2
+
π2

12

)
+

1

6
AilAjm

[
Akn ξ

(
M̂2

H , M̂
2
H , M̂

2
H

)
+Bkn

{
ξ
(
M̂2

H , M̂
2
H , M̂

2
S

)
+ ξ

(
M̂2

H , M̂
2
S, M̂

2
H

)
+ ξ

(
M̂2

S, M̂
2
H , M̂

2
H

)}]
+

1

6
BilBjm

[
Bkn ξ

(
M̂2

S, M̂
2
S, M̂

2
S

)
+ Akn

{
ξ
(
M̂2

H , M̂
2
S, M̂

2
S

)
+ ξ

(
M̂2

S, M̂
2
H , M̂

2
S

)
+ ξ

(
M̂2

S, M̂
2
S, M̂

2
H

)}]}

(3.38)
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and

V fin
1L,ct1 = −

µ2ε(σ)

4 (16 π2)2
δuij

{
Aij M̂

2
H

(
log

2 (
M2

H

)
− 2 log

(
M2

H

)
+ 2 +

π2

6

)

+Bij M̂
2
S

(
log

2 (
M2

S

)
− 2 log

(
M2

S

)
+ 2 +

π2

6

)} (3.39)

The sum of the 3 new contributions to the finite part due to evanescent interactions, i.e.
only in SIDReg, is

∆Ufin
2L,SR := ∆U

(a)
2L,fin +∆U

(b)
2L,fin +∆Ufin

1L,ct1 (3.40)

with

∆U
(a)
2L, fin =

µ2ε(σ)

8 (16 π2)2

{
k
(2)
ijkl

(
Aij M̂

2
H +Bij M̂

2
S

)(
Akl M̂

2
H +Bkl M̂

2
S

)
− 2 k

(1)
ijkl

[(
Aij M̂

2
H +Bij M̂

2
S

)
×
{
Akl M̂

2
H

(
log
(
M2

H

)
− 1
)
+Bkl M̂

2
S

(
log
(
M2

S

)
− 1
)

−
[ (
Akl c

(1)
H + A

(1)
kl

)
M̂2

H +
(
Bkl c

(1)
S +B

(1)
kl

)
M̂2

S

]}]
− 2 kijkl

{
2Aij

(
Akl c

(1)
H + A

(1)
kl

)
M̂4

H

(
log
(
M2

H

)
− 1
)

+ 2Bij

(
Bkl c

(1)
S +B

(1)
kl

)
M̂4

S

(
log
(
M2

S

)
− 1
)

+

[
Aij

(
Bkl c

(1)
S +B

(1)
kl

)
+Bij

(
Akl c

(1)
H + A

(1)
kl

)]
× M̂2

H M̂
2
S

(
log
(
M2

H

)
+ log

(
M2

S

)
− 2
)

−
(
Aij M̂

2
H +Bij M̂

2
S

)
×
[(

Akl

(
c
(2)
H − c

(1)
H

)
+ A

(1)
kl c

(1)
H + A

(2)
kl

)
M̂2

H

+
(
Bkl

(
c
(2)
S − c

(1)
S

)
+B

(1)
kl c

(1)
S +B

(2)
kl

)
M̂2

S

]
− 1

2

[(
Aij c

(1)
H + A

(1)
ij

)
M̂2

H +
(
Bij c

(1)
S +B

(1)
ij

)
M̂2

S

]
×
[(

Akl c
(1)
H + A

(1)
kl

)
M̂2

H +
(
Bkl c

(1)
S +B

(1)
kl

)
M̂2

S

]}}

(3.41)
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∆U
(b)
2L, fin =

µ2ε(σ)

4 (16 π2)2
φ2

{(
kijk k

(2)
lmn +

1

2
k
(1)
ijk k

(1)
lmn

)(
Ail M̂

2
H +Bil M̂

2
S

)
× (Ajm +Bjm) (Akn +Bkn)

+ kijk k
(1)
lmn

{[
M̂2

H

(
Ail

(
3− 2 log

(
M2

H

)
+ c

(1)
H

)
+ A

(1)
il

)
+ M̂2

S

(
Bil

(
3− 2 log

(
M2

S

)
+ c

(1)
S

)
+B

(1)
il

)]
(Ajm +Bjm)

+ 2
(
Ail M̂

2
H +Bil M̂

2
S

)(
A

(1)
jm +B

(1)
jm

)}
(Akn +Bkn)

+
1

2
kijk klmn

{[
M̂2

H

(
Ail

(
c
(2)
H − c

(1)
H

)
+ A

(1)
il c

(1)
H

− 2
(
log
(
M2

H

)
− 1
)(

Ail c
(1)
H + A

(1)
il

))
+ M̂2

S

(
Bil

(
c
(2)
S − c

(1)
S

)
+B

(1)
il c

(1)
S

− 2
(
log
(
M2

S

)
− 1
)(

Bil c
(1)
S +B

(1)
il

))]
(Ajm +Bjm)

+

[
M̂2

H Ail

(
c
(1)
H − 2 log

(
M2

H

)
+ 2
)

+ M̂2
S Bil

(
c
(1)
S − 2 log

(
M2

S

)
+ 2
)](

A
(1)
jm +B

(1)
jm

)}
× (Akn +Bkn)

+
1

2
kijk klmn

×
{
M̂2

H

[
Bil

(
2A

(1)
jmA

(1)
kn + A

(2)
jmBkn + A

(1)
jmBkn + 2A

(1)
jmB

(1)
kn

)
+ Ail

(
3A

(1)
jmA

(1)
kn + 4A

(2)
jmBkn + 2BjmB

(1)
kn

+ 4A
(1)
jm

(
Bkn +B

(1)
kn

)
+B

(1)
jmB

(1)
kn + 2BjmB

(2)
kn

)
+ AilAjm

(
3
(
A

(1)
kn + A

(2)
kn

)
+ 2

(
B

(1)
kn +B

(2)
kn

))]
+ M̂2

S

[
Ail

(
2B

(1)
jmB

(1)
kn +B

(2)
jmAkn +B

(1)
jmAkn + 2B

(1)
jmA

(1)
kn

)
+Bil

(
3B

(1)
jmB

(1)
kn + 4B

(2)
jmAkn + 2AjmA

(1)
kn

+ 4B
(1)
jm

(
Akn + A

(1)
kn

)
+ A

(1)
jmA

(1)
kn + 2AjmA

(2)
kn

)
+BilBjm

(
3
(
B

(1)
kn +B

(2)
kn

)
+ 2

(
A

(1)
kn + A

(2)
kn

))]}}

(3.42)
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and

∆Ufin
1L,ct1 =−

µ2ε(σ)

2 (16 π2)2

{
δu

(2)
ij

(
Aij M̂

2
H +Bij M̂

2
S

)
+ δu

(1)
ij

{
M̂2

H

[
Aij

(
c
(1)
H − log

(
M2

H

)
+ 1
)
+ A

(1)
ij

]
+ M̂2

S

[
Bij

(
c
(1)
S − log

(
M2

S

)
+ 1
)
+B

(1)
ij

]}
− δuij

{
M̂2

H

(
log
(
M2

H

)
− 1
)(

Aij c
(1)
H + A

(1)
ij

)
+ M̂2

S

(
log
(
M2

S

)
− 1
)(

Bij c
(1)
S +B

(1)
ij

)
− M̂2

H

[
Aij c

(2)
H +

(
A

(1)
ij − Aij

)
c
(1)
H + A

(2)
ij

]
− M̂2

S

[
Bij c

(2)
S +

(
B

(1)
ij −Bij

)
c
(1)
S +B

(2)
ij

]}}

(3.43)

where
log (x) := log

(
x

4 π µ2
0

eγE
)

(3.44)

In conclusion, the subrenormalised 2-loop contribution to the effective potential is then
given by

V2L,SR = V
(a)
2L + V

(b)
2L + V1L,ct1

= V
1/ε2

2L,SR + V
1/ε
2L,SR +∆U

1/ε
2L,SR + V fin

2L,SR +∆Ufin
2L,SR +O (ε)

(3.45)

with explicit expressions as given above and coefficients provided in appendix C, how-
ever, with the VEVs {v, w} being replaced by the fields {φ, σ}, as discussed above. In
order to completely renormalise the theory, and thus obtain a finite result, the 2-loop
counterterms need to be determined. For this reason, the 2-loop counterterm Lagrangian
Lct2 in (2.59) is used, i.e. Ṽtree,ct2 is needed,

Ṽtree,ct2 = µ2ε(σ)

(
δZ

(2)
Vφ

λφ
4!
φ4 + δZ

(2)
Vm

λm
4
φ2 σ2 + δZ

(2)
Vσ

λσ
4!
σ4

+
δλ

(2)
6

6

φ6

σ2
+
δλ

(2)
8

8

φ8

σ4

) (3.46)

In particular, the divergent contributions given in (3.33), (3.34) and (3.35) need to be
cancelled by the 2-loop counterterms. While the second order pole in ε is not corrected
by QSI, it can be seen that the simple pole in ε gets a correction in the form of ∆U1/ε

2L,SR

due to QSI. This represents a new divergent quantum correction due to evanescent
interactions, i.e. QSI, which changes the divergence structure, and thus leads to new
corrections in the 2-loop counterterms. Moreover, in (3.35) it can be seen that these
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new divergent quantum corrections contain higher dimensional operators of the form
(2.51), accompanied by a simple ε - pole, and thus introduce the necessity of appropriate
counterterms δλ(2)6 , δλ

(2)
8 , as discussed in section 2.3. This stands in contrast to the 1-

loop case where only new finite, but no new divergent quantum corrections arise due to
evanescent interactions.

The 2-loop counterterms in the MS-scheme may be written as

δZ
(2)
Vφ

=
1

(16 π2)2

(
δ
(2)
φ

ε2
+
δ
(1)
φ + ν

(1)
φ

ε

)

δZ
(2)
Vm

=
1

(16 π2)2

(
δ
(2)
m

ε2
+
δ
(1)
m + ν

(1)
m

ε

)

δZ
(2)
Vσ

=
1

(16 π2)2

(
δ
(2)
σ

ε2
+
δ
(1)
σ + ν

(1)
σ

ε

)

δλ
(2)
6 =

1

(16 π2)2
δν

(1)
6

ε

δλ
(2)
8 =

1

(16 π2)2
δν

(1)
8

ε

(3.47)

where the δ(2)i and δ
(1)
i , i ∈ {φ,m, σ}, cancel second order and simple poles in ε, re-

spectively, while the ν(1)j , i ∈ {φ,m, σ, 6, 8}, cancel the new simple poles in ε in (3.35),
introduced by QSI. Explicitly, these counterterms are given by

δ
(2)
φ =

3

4

[
3λ2φ + 4λ2m +

λ2m
λφ

(4λm + λσ)

]
δ
(1)
φ = − 3

2

[
λ2φ + λ2m + 2

λ3m
λφ

]
ν
(1)
φ =

1

8

[
λ2m
λφ

(24λm − 7λσ)−
(
14λ2m − 16λm λσ + 3λ2σ

)
− λφ (80λm − 6λσ)

] (3.48)

δ(2)m =
1

4

[
2λ2φ + 6λφ λm + λφ λσ + 19λ2m + 6λm λσ + 2λ2σ

]
δ(1)m = − 1

4

[
λ2φ + 6λφ λm + 10λ2m + 6λm λσ + λ2σ

]
ν(1)m = − 1

24

[
6λφ (8λm + λσ) + 123λ2m + 86λm λσ + 3λ2σ

] (3.49)

δ(2)σ =
3

4

[
λ2m
λσ

(λφ + 4λm) + 4λ2m + 3λ2σ

]
δ(1)σ = − 3

2

[
λ2σ + λ2m + 2

λ3m
λσ

]
ν(1)σ = − 1

8

[
48
λ3m
λσ

+ 4λ2m + 21λ2σ

] (3.50)
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and
δν

(1)
6 =

1

16
λφ λm (7λφ − 14λm + λσ) , δν

(1)
8 =

1

8
λφ λ

2
m (3.51)

Finally, after Renormalisation and then going back to 4 dimensions, i.e. ε → 0, the
result for the effective potential up to the 2-loop level is given by
Veff(φ, σ) = Vtree(φ, σ) + Vtree,ct1(φ, σ) + V1L(φ, σ)

+ Vtree,ct2(φ, σ) + V
(a)
2L (φ, σ) + V

(b)
2L (φ, σ) + V1L,ct1(φ, σ) +O

(
~3
)

= Vtree(φ, σ) + V1L,reg(φ, σ) + ∆U1L(φ, σ) + V2L, reg(φ, σ) + ∆U2L(φ, σ)

+O
(
~3
) (3.52)

where Vtree, Vtree,ct1, Vtree,ct2 and the sum of the regular 1-loop contribution V1L,reg and
the new finite 1-loop correction ∆U1L, i.e. V1L,ren = Vtree,ct1 + V1L = V1L,reg +∆U1L, are
given in (3.25), (3.18), (3.46) and (3.26), respectively, where ∆U1L is explicitly defined
in (3.15). The fully renormalised 2-loop contribution to Veff is provided by

V2L, ren(φ, σ) = Vtree,ct2(φ, σ) + V
(a)
2L (φ, σ) + V

(b)
2L (φ, σ) + V1L,ct1(φ, σ)

= V2L, reg(φ, σ) + ∆U2L(φ, σ)
(3.53)

where, in the MS-scheme, or in the MS-scheme if the replacement (3.23) is used,

V2L, reg(φ, σ) = lim
ε→0

V fin
2L,SR = lim

ε→0

(
V

(a)
2L, fin + V

(b)
2L, fin + V fin

1L,ct1

)
∆U2L(φ, σ) = lim

ε→0
∆Ufin

2L,SR = lim
ε→0

(
∆U

(a)
2L, fin +∆U

(b)
2L, fin +∆Ufin

1L,ct1

) (3.54)

with constituents on the RHS of (3.54) explicitly given in (3.37), (3.38), (3.39), (3.41),
(3.42) and (3.43), respectively.
Remark.

(i) Again it can be seen that, beside the regular 2-loop contribution V2L, reg, a new finite
quantum correction ∆U2L is obtained due to evanescent interactions introduced
by the Renormalisation function, i.e. as a result of QSI. These new quantum cor-
rections contain higher dimensional non-polynomial operators of the form (2.51).

(ii) This time, however, in contrast to the 1-loop case, there is also a new divergent
quantum correction ∆U

1/ε
2L,SR, given in (3.35). In particular, this is a correction to

the simple pole in ε. Thus, the 2-loop counterterms, given in (3.47) to (3.51), obtain
new corrections due to QSI as well, represented by νi. Moreover, new counterterms
δλ6 and δλ8 are necessary for the Renormalisation of the theory due to higher
dimensional non-polynomial operators of the form (2.51), here with p = 1 and
p = 2, that emerge as new divergent quantum corrections in ∆U

1/ε
2L,SR introduced

by evanescent interactions, i.e. as a result of QSI, indicating non-renormalisability,
as discussed in section 2.3. However, all counterterms still respect the symmetries
of the theory, in particular scale symmetry. Hence, the divergence structure is
changed at the 2-loop level and the 2-loop counterterms of the QSI theory are
distinguishable from the usual DReg - regularised theory.
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3. Scale Invariant Effective Potential

(iii) The 2-loop effective potential (3.52) is a homogeneous function of the fields, and
thus satisfies (2.13). No massive parameters are introduced at the quantum level
due to the usage of SIDReg with a dynamical Renormalisation function µ(σ) in-
stead of DReg. Hence, the theory indeed is scale invariant at the quantum level,
at least up to the 2-loop level, i.e. quantum scale invariant, as intended.

(iv) The results of this section agree with the results presented in [14]. However, some
typos w.r.t. the finite 2-loop contributions to Veff , in particular in equations (B-6)
and (B-11) of [14], as well as a global minus sign missing in (B-14) and (B-15),
have been spotted in [14]. For a comparison with [14], note the slightly different
notation in this thesis, especially w.r.t. the definition of log (x) given in (3.44).

Now, the 2-loop wave function Renormalisation coefficients δZ(2)
φ and δZ(2)

σ remain to be
determined. At the 2-loop level it is expected that they are non-vanishing. Analogous to
the 1-loop case, these wave function Renormalisation coefficients are obtained by renor-
malising the self energies of φ and σ. For the 2-loop calculation of these renormalised
self energies the following counterterm Feynman rules, again derived from the shifted
Lagrangian L(φ + φ0, σ + σ0), are necessary. First, 1-loop counterterm Feynman rules,
necessary for Subrenormalisation,

p

ϕi ϕj = i p2 δij δZ
(1)
ϕi
− i δṼij

ϕi

ϕj

ϕk

= − i δṼijk,

ϕi

ϕj ϕk

ϕl

= − i δṼijkl
(3.55)

with explicit expressions for δṼij··· given in the appendix C in (C.49) to (C.58), and
second, 2-loop counterterm Feynman rules (for propagators)

φ φ
p

= i p2 δZ
(2)
φ − i µ

2ε(σ0)

[
λφ
2
δZ

(2)
Vφ
φ2
0 +

λm
2
δZ

(2)
Vm
σ2
0

+ 5 δλ
(2)
6

φ4
0

σ2
0

+ 7 δλ
(2)
8

φ6
0

σ4
0

]

= i p2 δZ
(2)
φ −

i µ2ε(σ0)

(16 π2)2

[(
λφ
2
δ
(2)
φ φ2

0 +
λm
2
δ(2)m σ2

0

)
1

ε2

+

(
λφ
2
δ
(1)
φ φ2

0 +
λm
2
δ(1)m σ2

0

)
1

ε

+

(
λφ
2
ν
(1)
φ φ2

0 +
λm
2
ν(1)m σ2

0 + 5 δν
(1)
6

φ4
0

σ2
0

+ 7 δν
(1)
8

φ6
0

σ4
0

)
1

ε

]

(3.56)
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σ σ

p
= i p2 δZ(2)

σ − i µ2ε(σ0)

[
λσ
2
δZ

(2)
Vσ
σ2
0 +

λm
2
δZ

(2)
Vm
φ2
0

+ δλ
(2)
6

φ6
0

σ4
0

+
5

2
δλ

(2)
8

φ8
0

σ6
0

+ ε

(
7

12
λσ δZ

(2)
Vσ
σ2
0 +

3

2
λm δZ

(2)
Vm
φ2
0

− 1

12
λφ δZ

(2)
Vφ

φ4
0

σ2
0

− 5

3
δλ

(2)
6

φ6
0

σ4
0

− 9

4
δλ

(2)
8

φ8
0

σ6
0

)
+ . . .

]

= i p2 δZ(2)
σ −

i µ2ε(σ0)

(16π2)2

[(
λσ
2
δ(2)σ σ2

0 +
λm
2
δ(2)m φ2

0

)
1

ε2

+

(
λσ
2
δ(1)σ σ2

0 +
λm
2
δ(1)m φ2

0

)
1

ε

+

(
7

12
λσ δ

(2)
σ σ2

0 +
3

2
λm δ

(2)
m φ2

0 −
λφ
12
δ
(2)
φ

φ4
0

σ2
0

+
λσ
2
ν(1)σ σ2

0

+
λm
2
ν(1)m φ2

0 + δν
(1)
6

φ6
0

σ4
0

+
5

2
δν

(1)
8

φ8
0

σ6
0

)
1

ε
+O

(
ε0
) ]

(3.57)

where in the second equality in (3.56) and (3.57) relations (3.47) for the 2-loop coun-
terterms have been used. Note that the last term, i.e. the third term, of the second
equality in (3.56) and (3.57), respectively, is a new contribution due to QSI, and thus is
not present if the theory is regularised using usual DReg.

Using the above Feynman rules in (3.3), (3.55), (3.56) and (3.57), the renormalised 2-
loop contribution Σ

(2L)
ϕα, ren to the self energy of {ϕα}2α=1 = {φ, σ} is given by the Feynman

diagrams in (3.58). Again, as in the 1-loop case in the previous section, it is not summed
over the Greek index α, which is fixed to be either 1 (for φ) or 2 (for σ), but it is
implicitly summed over the Roman indices i, j, k, l,m, n, . . . ∈ {1, 2}. However, note
that this time the labels of the lines with fields ϕi with Roman indices, as well as the
momentum labels, are suppressed in (3.58) for readability. Nonetheless, they are still
present implicitly, and every Feynman diagram shown in (3.58) need to be understood
as a sum over all contributing diagrams of the respective kind consisting of internal lines
given by propagators of the form illustrated in (3.3), as in the 1-loop case.

Whereas the first nine Feynman diagrams in (3.58) are the usual 2-loop diagrams in
a scalar theory, the four diagrams 10 to 13 contain vertices with more than 4 particles,
and thus only emerge in the QSI theory (regularised using SIDReg). Therefore, these
four diagrams are purely evanescent and contribute solely as new divergent and finite
quantum corrections. In particular, diagrams 10 to 12 contain a 5-point vertex, while
diagram 13 contains a 6-point vertex, whose Feynman rules are analogously derived as
those in (3.3). Diagrams 14 to 18 are (the usual) 1-loop diagrams with 1-loop coun-
terterm insertions, necessary for the subrenormalisation, and the last diagram in (3.58)
is the 2-loop counterterm diagram.

Note that of course all diagrams in (3.58) contain evanescent terms, and thus contrib-
ute to the new divergent and finite quantum corrections.
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3. Scale Invariant Effective Potential

−iΣ(2L)
ϕα,ren = ϕα ϕα + ϕα ϕα

+ ϕα ϕα + ϕα ϕα

+ ϕα ϕα + ϕα ϕα

+ ϕα ϕα + ϕα ϕα

+ ϕα ϕα + ϕα ϕα

+ ϕα ϕα + ϕα ϕα

+ ϕα ϕα + ϕα ϕα

+ ϕα ϕα + ϕα ϕα

+ ϕα ϕα + ϕα ϕα

+ ϕα ϕα

(3.58)
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⇔ − iΣ(2L)
ϕα,ren

=
i

2
Ṽαij Ṽαkl Ṽmnrs

∫
dDl1
(2 π)D

∫
dDl2
(2 π)D

(
D̃−1
l1

)
kn

(
D̃−1
l1

)
im

(
D̃−1
l1−p
)
jl

(
D̃−1
l2

)
rs

+
i

2
Ṽαij Ṽαkl Ṽmnr Ṽqst

×
∫

dDl1
(2π)D

∫
dDl2
(2 π)D

(
D̃−1
l1

)
iq

(
D̃−1
l1

)
km

(
D̃−1
l1−p
)
jl

(
D̃−1
l2−l1

)
rs

(
D̃−1
l2

)
nt

+
i

2
Ṽαil Ṽmnr Ṽαjks

∫
dDl1
(2 π)D

∫
dDl2
(2 π)D

(
D̃−1
l1

)
im

(
D̃−1
l1−p
)
jl

(
D̃−1
l2−l1

)
kn

(
D̃−1
l2

)
rs

+
i

2
Ṽαij Ṽmns Ṽαklr

∫
dDl1
(2 π)D

∫
dDl2
(2 π)D

(
D̃−1
l1

)
im

(
D̃−1
l1−p
)
jl

(
D̃−1
l2−l1

)
kn

(
D̃−1
l2

)
rs

+
i

2
Ṽαij Ṽαkl Ṽmnr Ṽqst

×
∫

dDl1
(2π)D

∫
dDl2
(2 π)D

(
D̃−1
l1

)
ir

(
D̃−1
l1−p
)
jq

(
D̃−1
l2−l1

)
ms

(
D̃−1
l2

)
kn

(
D̃−1
l2−p
)
lt

+
i

6
Ṽαijk Ṽαlmn

∫
dDl1
(2 π)D

∫
dDl2
(2 π)D

(
D̃−1
l1−p
)
im

(
D̃−1
l2−l1

)
jn

(
D̃−1
l2

)
kl

+
i

4
Ṽααij Ṽklmn

∫
dDl1
(2 π)D

∫
dDl2
(2 π)D

(
D̃−1
l1

)
ik

(
D̃−1
l1

)
jl

(
D̃−1
l2

)
mn

+
i

4
Ṽαij Ṽαrs Ṽklmn

∫
dDl1
(2 π)D

∫
dDl2
(2 π)D

(
D̃−1
l1

)
jl

(
D̃−1
l1−p
)
ik

(
D̃−1
l2

)
ns

(
D̃−1
l2−p
)
mr

+
i

4
Ṽααij Ṽklm Ṽnrs

∫
dDl1
(2 π)D

∫
dDl2
(2 π)D

(
D̃−1
l1

)
is

(
D̃−1
l1

)
jk

(
D̃−1
l2−l1

)
mn

(
D̃−1
l2

)
lr

+
i

6
Ṽααijk Ṽlmn

∫
dDl1
(2 π)D

∫
dDl2
(2 π)D

(
D̃−1
l1

)
jl

(
D̃−1
l2−l1

)
kn

(
D̃−1
l2

)
im

+
i

4
Ṽαkl Ṽαijmn

∫
dDl1
(2 π)D

∫
dDl2
(2 π)D

(
D̃−1
l1

)
jl

(
D̃−1
l1−p
)
ik

(
D̃−1
l2

)
mn

+
i

4
Ṽαij Ṽαklmn

∫
dDl1
(2 π)D

∫
dDl2
(2 π)D

(
D̃−1
l1

)
jl

(
D̃−1
l1−p
)
ik

(
D̃−1
l2

)
mn

+
i

8
Ṽααijkl

∫
dDl1
(2 π)D

∫
dDl2
(2 π)D

(
D̃−1
l1

)
ij

(
D̃−1
l2

)
kl

− δṼmn Ṽαij Ṽαkl
∫

dDl1
(2 π)D

(
D̃−1
l1

)
jm

(
D̃−1
l1

)
kn

(
D̃−1
l1−p
)
il

+
1

2

(
δṼαij Ṽαkl + δṼαkl Ṽαij

) ∫ dDl1
(2π)D

(
D̃−1
l1

)
jl

(
D̃−1
l1−p
)
ik

+
1

2
δṼααij

∫
dDl1
(2π)D

(
D̃−1
l1

)
ij
+

1

2
δṼkl Ṽααij

∫
dDl1
(2 π)D

(
D̃−1
l1

)
il

(
D̃−1
l1

)
jk

+ ϕα ϕα
p

(3.59)
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3. Scale Invariant Effective Potential

where the 2-loop counterterm in the last line of (3.59) is explicitly given in (3.56) and
(3.57) for φ and σ, respectively.

In order the evaluate the 2-loop momentum integrals, in particular w.r.t. the IBP-
reduction to known scalar integrals, the results of [16] have been used. Further, similar
to the effective potential, the 2-loop contribution of the renormalised self energy Σ

(2L)
ϕα, ren

may be written as

−iΣ(2L)
ϕα,ren = −iΣ(2L,SR)

ϕα, 1/ε2
− iΣ(2L,SR)

ϕα, 1/ε
− i∆Σ

(2L,SR)
ϕα, 1/ε

+O(ε0) + ϕα ϕα
p

(3.60)

where ∆Σ
(2L, SR)
ϕα, 1/ε

denotes the new divergent quantum correction to the 1/ε - part of the
subrenormalised self energy.
The second order pole in ε of the subrenormalised self energy of φ and σ are given by

−iΣ(2L, SR)

φ, 1/ε2 =
i µ2ε(σ0)

8 (16 π2)2

{[
9λ3φ + 12λφ λ

2
m + 3λ2m λσ + 12λ3m

]
φ2
0

+ λm

[
2λ2φ + 6λφ λm + λφ λσ + 19λ2m + 6λm λσ + 2λ2σ

]
σ2
0

}
1

ε2

(3.61)

−iΣ(2L, SR)

σ, 1/ε2 =
i µ2ε(σ0)

8 (16 π2)2

{[
9λ3σ + 12λσ λ

2
m + 3λ2m λφ + 12λ3m

]
σ2
0

+ λm

[
2λ2σ + 6λσ λm + λσ λφ + 19λ2m + 6λm λφ + 2λ2φ

]
φ2
0

}
1

ε2

(3.62)

The contribution to the simple pole in ε of the subrenormalised self energy of φ and σ
that would also be obtained in usual DReg are provided by

−iΣ(2L,SR)
φ, 1/ε =

i

24 (16 π2)2
(
λ2φ + 3λ2m

)
p2

1

ε

− i µ2ε(σ0)

24 (16 π2)2

{[
18λ3φ + 18λφ λ

2
m + 36λ3m

]
φ2
0

+ 3λm

[
λ2φ + 6λφ λm + 10λ2m + 6λm λσ + λ2σ

]
σ2
0

}
1

ε

(3.63)

−iΣ(2L,SR)
σ, 1/ε =

i

24 (16 π2)2
(
λ2σ + 3λ2m

)
p2

1

ε

− i µ2ε(σ0)

24 (16 π2)2

{[
18λ3σ + 18λσ λ

2
m + 36λ3m

]
σ2
0

+ 3λm

[
λ2σ + 6λσ λm + 10λ2m + 6λm λφ + λ2φ

]
φ2
0

}
1

ε

(3.64)

whereas the new contribution to the simple pole in ε of the subrenormalised self energy
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of φ and σ due to evanescent interactions, i.e. only in SIDReg, are given by

−i∆Σ
(2L, SR)
φ, 1/ε = − i µ2ε(σ0)

48 (16 π2)2

{[
6λφ λm (40λφ + 7λm − 8λσ)

+ 9λφ λσ (λσ − 2λφ)− λ2m (72λm − 21λσ)
]
φ2
0

+ λm

[
6λφ (8λm + λσ) + 123λ2m + 86λm λσ + 3λ2σ

]
σ2
0

− 15λφ λm

[
7λφ − 14λm + λσ

] φ4
0

σ2
0

− 42λφ λ
2
m

φ6
0

σ4
0

}
1

ε

(3.65)

−i∆Σ
(2L,SR)
σ, 1/ε =

i µ2ε(σ0)

48 (16 π2)2

{[
12λφ λm (3λφ + 5λm + λσ)

+ λm
(
219λ2m + 22λm λσ + 33λ2σ

) ]
φ2
0

+ λ2m

[
21λφ − 60λm + 72λσ

]
σ2
0

−
[
3λφ

(
3λ2φ + 4λ2m

)
+ 3λ2m (4λm + λσ)

] φ4
0

σ2
0

+ 3λφ λm

[
7λφ − 14λm + λσ

] φ6
0

σ4
0

+ 15λφ λ
2
m

φ8
0

σ6

}
1

ε

(3.66)

In order for the self energy to be fully renormalised in the MS-scheme one needs to
demand

0
!
= −iΣ(2L, SR)

ϕα, 1/ε2
− iΣ(2L,SR)

ϕα, 1/ε
− i∆Σ

(2L, SR)
ϕα, 1/ε

+ ϕα ϕα
p

(3.67)

Using the explicit expression for the 2-loop counterterm for φ and σ in (3.56) and (3.57),
respectively, the following result is obtained for the wave function Renormalisation coef-
ficients at the 2-loop level

δZ
(2)
φ =

1

(16π2)2
ρ
(1)
φ

ε

δZ(2)
σ =

1

(16π2)2
ρ
(1)
σ

ε

(3.68)

with
ρ
(1)
φ = − 1

24

(
λ2φ + 3λ2m

)
ρ(1)σ = − 1

24

(
λ2σ + 3λ2m

) (3.69)

Furthermore, renormalising the 2-loop self energy for φ and σ also acts as a consistency
check for the other 2-loop counterterms in (3.47) to (3.51), which exactly cancel all other
divergences in (3.67).

49



3. Scale Invariant Effective Potential

3.3. β - Functions and Callan-Symanzik Equation for Veff
Before the β - functions of the 2 Scalar Model are determined up to the 2-loop level, all
counterterms (in MS-scheme) are summarised below in order to obtain an overview.

δZ
(1)
φ = 0 δλ

(1)
6 = 0

δZ(1)
σ = 0 δλ

(1)
8 = 0

δZ
(1)
Vφ

=
1

16π2

δ
(0)
φ

ε

δZ
(1)
Vm

=
1

16 π2

δ
(0)
m

ε

δZ
(1)
Vσ

=
1

16π2

δ
(0)
σ

ε

(3.70)

and

δZ
(2)
φ =

1

(16π2)2
ρ
(1)
φ

ε
δλ

(2)
6 =

1

(16 π2)2
δν

(1)
6

ε

δZ(2)
σ =

1

(16π2)2
ρ
(1)
σ

ε
δλ

(2)
8 =

1

(16 π2)2
δν

(1)
8

ε

δZ
(2)
Vφ

=
1

(16π2)2

(
δ
(2)
φ

ε2
+
δ
(1)
φ + ν

(1)
φ

ε

)

δZ
(2)
Vm

=
1

(16π2)2

(
δ
(2)
m

ε2
+
δ
(1)
m + ν

(1)
m

ε

)

δZ
(2)
Vσ

=
1

(16π2)2

(
δ
(2)
σ

ε2
+
δ
(1)
σ + ν

(1)
σ

ε

)

(3.71)

with
δ
(0)
φ =

3

2

λ2φ + λ2m
λφ

δ(0)m =
1

2
(λφ + 4λm + λσ)

δ(0)σ =
3

2

λ2m + λ2σ
λσ

(3.72)

and δ(2)i , δ(1)i , ν(1)i , δν(1)j , ρ(1)k , for i ∈ {φ,m, σ}, j ∈ {6, 8}, k ∈ {φ, σ}, respectively, given
in (3.48) to (3.51) and (3.69).

Further, recall the Renormalisation transformation for the coupling constants in (2.54).

λφ,B = µ2ε(σ)λφ,0 = µ2ε(σ)Zλφ λφ = µ2ε(σ)ZVφ Z
−2
φ λφ

λm,B = µ2ε(σ)λm,0 = µ2ε(σ)Zλm λm = µ2ε(σ)ZVm Z
−1
φ Z−1

σ λm

λσ,B = µ2ε(σ)λσ,0 = µ2ε(σ)Zλσ λσ = µ2ε(σ)ZVσ Z
−2
σ λσ

(3.73)
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For the β - functions of λ6 and λ8, which are set identical to zero at tree-level, it will be
assumed that these coupling constants are non-zero during the derivation process and
once the β - functions are derived the limit λ6, 8 → 0 is taken. Therefore, the following
Renormalisation transformations for λ6 and λ8 are considered

λ6,B = µ2ε(σ)λ6,0 = µ2ε(σ)Zλ6 λ6 = µ2ε(σ)ZV6 Z
−3
φ Zσ λ6

λ8,B = µ2ε(σ)λ8,0 = µ2ε(σ)Zλ8 λ8 = µ2ε(σ)ZV8 Z
−4
φ Z2

σ λ8
(3.74)

where δZ(i)
V6

:= δλ
(i)
6 /λ6 and δZ

(i)
V8

:= δλ
(i)
8 /λ8.

Taking the logarithm of (3.73) and (3.74), one obtains

log (λj, B) = 2 ε log (µ(σ)) + log (λj) + Θj (3.75)

with j ∈ {φ,m, σ, 6, 8} and

Θφ := log
(
ZVφ
)
− 2 log (Zφ)

= δZ
(1)
Vφ
− 1

2

(
δZ

(1)
Vφ

)2
+ δZ

(2)
Vφ
− 2 δZ

(2)
φ +O

(
~3
)

Θm := log (ZVm)− log (Zφ)− log (Zσ)

= δZ
(1)
Vm
− 1

2

(
δZ

(1)
Vm

)2
+ δZ

(2)
Vm
− δZ(2)

φ − δZ
(2)
σ +O

(
~3
)

Θσ := log (ZVσ)− 2 log (Zσ)

= δZ
(1)
Vσ
− 1

2

(
δZ

(1)
Vσ

)2
+ δZ

(2)
Vσ
− 2 δZ(2)

σ +O
(
~3
)

Θ6 := log (ZV6)− 3 log (Zφ) + log (Zσ)

= δZ
(2)
V6
− 3 δZ

(2)
φ + δZ(2)

σ +O
(
~3
)

Θ8 := log (ZV8)− 4 log (Zφ) + 2 log (Zσ)

= δZ
(2)
V8
− 4 δZ

(2)
φ + 2 δZ(2)

σ +O
(
~3
)

(3.76)

where it has already been used that δZ(1)
φ = δZ

(1)
σ = δZ

(1)
V6

= δZ
(1)
V8

= 0.
The β - function of a generic coupling λ is defined by

βλ :=
dλ

d log (z)
= z

dλ

dz
(3.77)

Further, physics, and thus the "bare" couplings λj, B, j ∈ {φ,m, σ, 6, 8} are independent
of the Renormalisation parameter z. For this reason, the derivative of equation (3.75)
w.r.t. log (z) is demanded to be zero, i.e.

0 =
d log (λj, B)

d log (z)
=

[
∂

∂ log (z)
+
∑
k

βλk
∂

∂λk

]
log (λj, B)

= 2 ε+

(
1

λj
+
∂Θj

∂λj

)
βλj +

∑
k 6=j

∂Θj

∂λk
βλk

(3.78)
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3. Scale Invariant Effective Potential

where the definition of a β - function (3.77) and (3.75) have been used and it is not
summed implicitly over j. The last line of (3.78) provides a system of implicit equations
for the different β - functions, which can be used to determine explicit expressions for
these β - functions. In general this system is a coupled system of implicit equations.
This is also the case here, however, it can be seen that the first three equations for j ∈
{φ,m, σ} decouple from the last two equations, because the corresponding counterterms,
and thus the corresponding Θj are independent of λ6 and λ8, as can be seen in (3.48) to
(3.50), (3.69) and (3.72). Therefore, the β - functions for λφ, λm, λσ can be determined
isolated from those of λ6, λ8, which is done in the following.

Analogous to previous results, β - functions are given in the following form

βλj = β
(1L)
λj

+ β
(2L)
λj

+∆β
(2L)
λj

+O
(
~3
)

(3.79)

After solving the first three equations of (3.78) for βλj , j ∈ {φ,m, σ}, and then taking
the limit ε→ 0, one obtains for the β - function of λφ

β
(1L)
λφ

=
3

16π2

[
λ2φ + λ2m

]
(3.80)

β
(2L)
λφ

= − 1

(16π2)2

[
17

3
λ3φ + 5λφ λ

2
m + 12λ3m

]
(3.81)

∆β
(2L)
λφ

= − 1

(16π2)2

[
8λφ λm (5λφ − λσ) +

3

2
λφ λσ (λσ − 2λφ)

+
7

2
λ2m (2λφ + λσ)− 12λ3m

] (3.82)

for the β - function of λm

β
(1L)
λm

=
1

16 π2
λm

[
λφ + 4λm + λσ

]
(3.83)

β
(2L)
λm

= − 1

(16π2)2
λm
6

[
5λ2φ + 36λφ λm + 54λ2m + 36λm λσ + 5λ2σ

]
(3.84)

∆β
(2L)
λm

= − 1

(16π2)2
λm
6

[
48λφ λm + 6λφ λσ + 123λ2m + 86λm λσ + 3λ2σ

]
(3.85)

and for the β - function of λσ

β
(1L)
λσ

=
3

16 π2

[
λ2σ + λ2m

]
(3.86)

β
(2L)
λσ

= − 1

(16π2)2

[
17

3
λ3σ + 5λσ λ

2
m + 12λ3m

]
(3.87)

∆β
(2L)
λσ

= − 1

(16 π2)2

[
21

2
λ3σ + 2λσ λ

2
m + 24λ3m

]
(3.88)
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Now, knowing the β - functions of λφ, λm, λσ, the β - functions of λ6, λ8 can separately
be determined by solving the last two equations of (3.78) for βλj , j ∈ {6, 8}, and then
taking the limit ε→ 0, as well as λ6, 8 → 0 (as discussed above). One obtains for the β
- function of λ6

β
(1L)
λ6

= 0, β
(2L)
λ6

= 0 (3.89)

∆β
(2L)
λ6

=
1

(16π2)2
λφ λm
4

[
7λφ − 14λm + λσ

]
(3.90)

and for the β - function of λ8

β
(1L)
λ8

= 0, β
(2L)
λ8

= 0 (3.91)

∆β
(2L)
λ8

=
1

(16π2)2
λφ λ

2
m

2
(3.92)

Remark.

(i) It can be seen that the 1-loop β - functions do not get new corrections due to QSI,
whereas the 2-loop β - functions do obtain new quantum corrections, represented
by ∆β

(2L)
λj

, due to QSI, i.e. due to evanescent interactions. This is not surprising
because there are no new divergent quantum corrections at the 1-loop level, but at
the 2-loop level, as discussed above. This can already be seen by the counterterms,
which do not obtain corrections at the 1-loop level, but at the 2-loop level. For
this reason, at the 1-loop level the β - functions of the QSI theory cannot be
distinguished from those of the theory regularised using usual DReg, i.e. they
are the same, however, at the 2-loop level the β - functions differ from those
of the DReg - regularised theory due to new quantum corrections introduced by
evanescent interactions, i.e. introduced by QSI. Thus, the 2-loop running of the
couplings of the QSI theory with (only) spontaneously broken scale invariance
(even at the quantum level) is different from the theory where scale symmetry is
explicitly broken by quantum corrections, which has also been discussed in [14],
and the origin of this difference are evanescent interactions, giving rise to new
quantum corrections, due to QSI.

(ii) In (3.89) to (3.92), it can be seen that the couplings λ6 and λ8 obtain a non-
vanishing running at the 2-loop level, even though these couplings are identically
zero at tree-level. Further, this running is solely restricted to the new corrections of
the β - functions, and thus is not present in the DReg - regularised theory. Again,
this is not a surprising result because the corresponding counterterms δλ6 and δλ8,
and thus the contributions to the corresponding β - functions, are only caused by
evanescent interactions, i.e. by QSI, and are not present in the DReg - regularised
theory, i.e. without QSI. This running of couplings of higher dimensional non-
polynomial terms shows again that the QSI theory, i.e. the SIDReg - regularised
theory, is non-renormalisable in contrast to the DReg - regularised theory due
to higher dimensional non-polynomial operators of the form (2.51) introduced by
evanescent interactions.
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3. Scale Invariant Effective Potential

(iii) The results of the β - functions for the 2 Scalar Model up to the 2-loop level
displayed above are in perfect agreement with those given in [14].

At this stage of this thesis it is worth drawing a first conclusion w.r.t. the vanishing
of the scale anomaly in a theory with spontaneously broken quantum scale symmetry,
regularised using SIDReg.

Remark.
As discussed in chapter 2, scale symmetry is broken explicitly by quantum corrections
in a classically scale invariant theory that is regularised using usual DReg (µ = const).
Thus, scale symmetry is lost in D dimensions, as well as at the quantum level and
remains only present at tree-level in 4 dimensions due to the massive Renormalisation
scale. This anomalous breaking of scale symmetry is often referred to as scale or trace
anomaly due to the fact that it manifests itself by a non-vanishing contribution to the
trace of the energy-momentum tensor T µµ ∼ βλj 6= 0 [8, 13, 21].

Using SIDReg to regularise a classically scale invariant theory ensures the absence of
the scale anomaly and provides a theory that is scale invariant even at the quantum
level, i.e. QSI, where scale symmetry is only broken spontaneously. Nonetheless, the
theory still admits non-zero β - functions, and thus a running of the couplings, as shown
above. Hence, the vanishing of the β - functions is not necessary for quantum scale
invariance, but the Regularisation of the theory, which has to respect scale symmetry,
is essential for QSI.

Now, the Callan-Symanzik equation for the (scale invariant) effective potential Veff is
derived [14, 41]. Analogous to the "bare" couplings, the effective potential Veff is inde-
pendent of the Renormalisation parameter z, and thus the Callan-Symanzik equation
for scale invariant theories [14, 41] is given by

0 =
dVeff

d log (z)

=

[
∂

∂ log (z)
+
∑
k

dλk
d log (z)

∂

∂λk
+
∑
i

dϕi
d log (z)

∂

∂ϕi

]
Veff

=

[
z
∂

∂z
+
∑
k

βλk
∂

∂λk
−
∑
i

γϕi
ϕi

∂

∂ϕi

]
Veff

(3.93)

where the definition of the β - functions (3.77), as well as

dϕi
d log (z)

=
d

d log (z)
Z−1/2
ϕi

ϕi, 0 = −
1

2

1

Zϕi

dZϕi

d log (z)
ϕi = − γϕi

ϕi (3.94)

where
γϕi

:=
1

2

1

Zϕi

dZϕi

d log (z)
(3.95)
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for {ϕi}2i=1 = {φ, σ}, have been used. For the (scale invariant) effective potential of the
2 Scalar Model this means

0 =

[
z
∂

∂z
+
∑
k

βλk
∂

∂λk
− γφ φ

∂

∂φ
− γσ σ

∂

∂σ

]
Veff (φ, σ) (3.96)

with
γφ = −

2

(16π2)2
ρ
(1)
φ +O

(
~3
)

γσ = − 2

(16π2)2
ρ(1)σ +O

(
~3
) (3.97)

and the β - functions given above. In the present case, all quantities have been de-
termined up to the 2-loop level, and thus the Callan-Symanzik equation for the scale
invariant effective potential up to the 2-loop level may then be written as

0 = z
∂Vtree
∂z

+ z
∂V1L,reg
∂z

+
∑
k

β
(1L)
λk

∂Vtree
∂λk

+ z
∂∆U1L

∂z

+ z
∂V2L,reg
∂z

+
∑
k

β
(1L)
λk

∂V1L,reg
∂λk

+

[∑
k

β
(2L)
λk

∂

∂λk
− γ(2L)φ φ

∂

∂φ
− γ(2L)σ σ

∂

∂σ

]
Vtree

+ z
∂∆U2L

∂z
+
∑
k

β
(1L)
λk

∂∆U1L

∂λk
+
∑
k

∆β
(2L)
λk

∂Vtree
∂λk

+O
(
~3
)

(3.98)

where the effective potential up to the 2-loop level is given in (3.52) and its constituents,
used in (3.98), are provided in the previous sections of this chapter. γ(2L)φ and γ

(2L)
σ are

only the 2-loop contribution of the quantities in (3.97). Every line on the RHS of (3.98)
is equal to zero by itself. The first line on the RHS of (3.98) is of the order O (~0), the
second and third lines are of the order O (~), and the last two lines are of the order
O (~2). Moreover, lines 1, 2 and 4 are the "usual" contributions, whereas lines 3 and 5
are new contributions due to evanescent interactions, i.e. as a result of QSI.

Hence, the Callan-Symanzik equations for the quantum scale invariant effective po-
tential of the 2 Scalar Model Veff = Veff(φ, σ) is verified up to the 2-loop level, which is
in agreement with [14].
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3. Scale Invariant Effective Potential

3.4. Working in the broken Phase of the Theory
In this section it is shown that the same scale invariant counterterms are obtained
from N -point Green functions with non-vanishing external momenta using the expanded
Lagrangian in the broken phase of the theory as those obtained from a manifestly scale
invariant approach using the scale invariant effective potential. As mentioned at the
beginning of this chapter, the field shift (3.1) is not used in this section. Instead, the
Lagrangian is expanded about the fields VEVs {v, w} and w.r.t. ε, as shown in (2.42).
In order to show the validity of working in the broken phase of theory in the context of
quantum scale symmetry, as proposed above and in the prescription in section 2.1, the
following steps are conducted as consistency check.

(a) At the 1-loop level, working with the Lagrangian (2.40), with expanded potential
(2.42), in flavour eigenstates {h,D}, it is shown that the same scale invariant 1-loop
counterterms are obtained from the 2-point Green function, i.e. the self-energy,
for h and D with external momentum p as those obtained from the manifestly
scale invariant effective potential above.

(b) The same is done at the 2-loop level, i.e. the 2-loop counterterms are determined
from the 2-loop self-energy for h and D with external momentum p.

(c) At the 1-loop level, it is shown that the scale invariant 1-loop counterterms de-
termined above also completely renormalise 1-, 2-, 3- and 4-point Green functions
with non-vanishing external momenta calculated using the Lagrangian in mass
eigenstates {H,S} and with the minimalisation condition (2.47) being used, with
potential (2.50).

(d) So far, the potential of the form (2.41) was considered. However, as mentioned
in section 2.3, one actually needs to consider the non-Renormalisable potential
(2.52) due to quantum scale symmetry. Hence, coupling constants of the form
λ4+2n for higher dimensional operators have been set to zero at tree-level so far.
Now, the Lagrangian is considered with potential (2.52) and non-zero λ6 at tree-
level, i.e. with λ6 6= 0 but still λ4+2n ≡ 0,∀n ≥ 2 at tree-level. In this theory,
the scale invariant effective potential is determined at the 1-loop level, and thus
the corresponding scale invariant 1-loop counterterms. Then it is checked that
the same scale invariant 1-loop counterterms are obtained from N -point Green
functions with non-vanishing external momenta computed using the expanded
Lagrangian in the broken phase of the theory in flavour eigenstates {h,D}, as well
as in mass eigenstates {H,S} and the minimalisation conditions (2.47) being used.

(a) The renormalised 1-loop self energies Σ
(1L)
h, ren and Σ

(1L)
D, ren for h and D, respectively,

computed in a theory with Lagrangian (2.40) and expanded potential (2.42) in flavour
eigenstates {h,D}, are given in (3.21) if the replacement φ → h, σ → D, φ0 → v
and σ0 → w is made. It can be seen that the scale invariant 1-loop counterterms
(3.19), obtained from the manifestly scale invariant effective potential, are sufficient to
completely renormalise these self energies, i.e. cancel all divergences of these self energies.
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3.4. Working in the broken Phase of the Theory

Hence, working in the broken phase of the theory with expanded Lagrangian one obtains
the same scale invariant counterterms from Green functions with non-vanishing external
momenta as from a manifestly scale invariant approach using Veff .

(b) As shown above, counterterms at the 1-loop level do not obtain corrections due
to QSI, and thus are equivalent to the counterterms of the DReg - regularised theory.
However, counterterms at the 2-loop level do obtain new corrections due to new divergent
quantum corrections introduced by evanescent interactions, i.e. as a result of QSI. For
this reason, the validity of working in the broken phase of the theory in the context of QSI
should also be checked at the 2-loop level, where the counterterms are distinguishable
between SIDReg - and DReg - regularised theories. The results for the renormalised 2-
loop self energies Σ(2L)

h, ren and Σ
(2L)
D, ren for h and D, respectively, computed in a theory with

Lagrangian (2.40) and expanded potential (2.42) in flavour eigenstates {h,D}, are given
in (3.58) to (3.66), again, if the replacement φ→ h, σ → D, φ0 → v and σ0 → w is made.
Similar to the 1-loop case, it can be seen that the scale invariant 2-loop counterterms
(3.47), obtained from the manifestly scale invariant effective potential, are sufficient
to completely cancel all p - independent divergencies of these self energies, where p is
the external momentum. Therefore, working in the broken phase of the theory with
expanded Lagrangian one obtains even at the 2-loop level, where counterterms obtain
new corrections due to QSI, the same scale invariant counterterms from Green functions
with non-vanishing external momenta as from a manifestly scale invariant approach
using Veff .

(c) Now, the Lagrangian (2.40) in mass eigenstates {H,S} and with the minimalisa-
tion condition (2.47) being used, i.e. with potential (2.50), is considered at the 1-loop
level. In this case, i.e. with the minimalisation condition (2.47) being used, the 1-loop
counterterms (3.19) are then provided by

δZ
(1)
Vφ
−−−→
(2.47)

δZ
(1)
Vφ

∣∣∣
min

=
1

16 π2

3

2
λφ

(
1 +

v4

9w4

)
1

ε

δZ
(1)
Vm
−−−→
(2.47)

δZ
(1)
Vm

∣∣∣
min

=
1

16π2

λφ
2

(
1− 4

3

v2

w2
+
v4

w4

)
1

ε

δZ
(1)
Vσ
−−−→
(2.47)

δZ
(1)
Vσ

∣∣∣
min

=
1

16 π2

λφ
6

(
1 + 9

v4

w4

)
1

ε

(3.99)

Note that these counterterms are still dimensionless because they only contain dimen-
sionless ratios of the VEVs {v, w} of the form χ0 = v/w, and thus are still scale in-
variant. It has been checked that these counterterms (3.99) completely renormalise all
1-, 2-, 3- and 4-point Green functions, as illustrated in (3.100), with non-vanishing ex-
ternal momenta, computed using the Lagrangian in mass eigenstates {H,S} and with
the minimalisation condition (2.47) being used, i.e. with potential (2.50). These calcula-
tions have been conducted using Mathematica and appropriate packages. All Feynman
diagrams have been generated using FeynArts [18], the FeynArts model files have been
generated using FeynRules [1, 4], and the generated Feynman diagrams and their amp-
litudes have been computed using FeynCalc [27, 36, 37] and Package-X [29], which has
been connected with FeynCalc using FeynHelpers [35]. The renormalised 1PI N -point

57
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Green functions, for N ∈ {1, 2, 3, 4}, are

iΓ(1L), ren
ρi

= ρi + ρi

iΓ(1L), ren
ρi ρj

= ρi ρj + ρi ρj

iΓ(1L), ren
ρi ρj ρk

= ρi

ρk

ρj

+ ρi

ρk

ρj

iΓ(1L), ren
ρi ρj ρk ρl

=

ρi

ρj ρk

ρl

+

ρi

ρj ρk

ρl

(3.100)

where the blobs represent all 1PI 1-loop diagrams with the corresponding number of
external legs and {ρi}2i=1 = {H,S}. Indeed it turns out that the counterterms (3.99)
completely renormalise all these 1PI N -point Green functions above. Hence, working
in the broken phase of the theory with expanded Lagrangian, transformed to mass
eigenstates and with the minimalisation condition (2.47) being used, one still obtains
the corresponding scale invariant counterterms from Green functions with non-vanishing
external momenta, of course only with the minimalisation condition (2.47) being applied.

(d) Considering the QSI 2 Scalar Model with non-zero λ6 at tree-level, i.e. considering
the non-Renormalisable potential (2.52) with λ6 6= 0 but still λ4+2n ≡ 0,∀n ≥ 2 at tree-
level, the 1-loop contribution to the effective potential is still given by (3.10), however,
with M2

ρk
and c

(1)
ρk , {ρk}2k=1 = {H,S}, being modified accordingly. Hence, the divergent

part of the 1-loop contribution to the effective potential in this scenario is provided by

V1L
∣∣
div

= − µ
2ε(σ)

64 π2

2∑
k=1

(
M̂2

ρk
(φ, σ)

)2 1

ε

= − µ
2ε(σ)

64 π2

[(
M̂2

H(φ, σ)
)2

+
(
M̂2

S(φ, σ)
)2] 1

ε

= − µ
2ε(σ)

64 π2

[
1

4

(
λ2φ + λ2m + 20λφ λ6

)
φ4 +

1

2
λm (λφ + 4λm + λσ) φ

2 σ2

+
1

4

(
λ2m + λ2σ

)
σ4 + λ6 (5λφ − 8λm + λσ)

φ6

σ2

+ λ6 (λm + 25λ6)
φ8

σ4
+ 8λ26

φ10

σ6
+ λ26

φ12

σ8

]
1

ε

(3.101)
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Subsequently, the 1-loop counterterm potential, necessary for the 1-loop Renormalisa-
tion, then reads

Ṽtree,ct1 = µ2ε(σ)

(
δZ

(1)
Vφ

λφ
4!
φ4 + δZ

(1)
Vm

λm
4
φ2 σ2 + δZ

(1)
Vσ

λσ
4!
σ4

+ δZ
(1)
V6

λ6
6

φ6

σ2
+
δλ

(1)
8

8

φ8

σ4
+
δλ

(1)
10

10

φ10

σ6
+
δλ

(1)
12

12

φ12

σ8

) (3.102)

with 1-loop counterterms in the MS-scheme explicitly given by

δZ
(1)
φ = 0 δZ(1)

σ = 0

δZ
(1)
Vφ

=
1

16 π2

3

2

λ2φ + λ2m + 20λm λ6

λφ

1

ε
δλ

(1)
8 =

1

16 π2
2λ6

(
λm + 25λ6

) 1

ε

δZ
(1)
Vm

=
1

16π2

1

2

(
λφ + 4λm + λσ

) 1

ε
δλ

(1)
10 =

1

16 π2
20λ26

1

ε

δZ
(1)
Vσ

=
1

16 π2

3

2

λ2σ + λ2m
λσ

1

ε
δλ

(1)
12 =

1

16 π2
3λ26

1

ε

δZ
(1)
V6

=
1

16 π2

3

2

(
5λφ − 8λm + λσ

) 1

ε

(3.103)

It can be seen that in this scenario, i.e. for λ6 6= 0 at tree-level, higher dimensional non-
polynomial operators of the form (2.51), for p ≤ 4, are necessary as counterterms already
at the 1-loop level. The 1-loop self energies Σ

(1L)
h, ren and Σ

(1L)
D, ren for h and D, respectively,

are calculated and renormalised analogously to (a) after expanding the Lagrangian with
λ6 6= 0 about the fields VEVs {v, w} and w.r.t. ε. In principle one can still use the
results in (3.21), however, with M̂2

ρk
, Ṽijk···, Ãij and B̃ij modified accordingly because

the same Feynman diagrams contribute. For the 1-loop self energy of h one obtains

−iΣ(1L)
h,ren =

1

2
Ṽ1ik Ṽ1jl

∫
dDq

(2π)D
(
D̃−1
q

)
ij

(
D̃−1
q−p
)
lk
+

1

2
Ṽ11ij

∫
dDq

(2 π)D
(
D̃−1
q

)
ji

+ i p2 δZ
(1)
φ − i µ

2ε
0

(
λφ
2
δZ

(1)
Vφ
v2 +

λm
2
δZ

(1)
Vm
w2 + 5λ6 δZ

(1)
V6

v4

w2

+ 7 δλ
(1)
8

v6

w4
+ 9 δλ

(1)
10

v8

w6
+ 11 δλ

(1)
12

v10

w8

)
=

i µ2ε
0

32π2

[
3

2

(
λ2φ + λ2m + 20λm λ6

)
v2 +

1

2
λm (λφ + 4λm + λσ) w

2

+ 15λ6 (5λφ − 8λm + λσ)
v4

w2
+ 28λ6 (λm + 25λ6)

v6

w4

+ 360λ26
v8

w6
+ 66λ26

v10

w8

]
1

ε
+O

(
ε0
)

+ i p2 δZ
(1)
φ − i µ

2ε
0

(
λφ
2
δZ

(1)
Vφ
v2 +

λm
2
δZ

(1)
Vm
w2 + 5λ6 δZ

(1)
V6

v4

w2

+ 7 δλ
(1)
8

v6

w4
+ 9 δλ

(1)
10

v8

w6
+ 11 δλ

(1)
12

v10

w8

)

(3.104)
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Whereas for the 1-loop self energy of D one obtains

−iΣ(1L)
D,ren =

1

2
Ṽ2ik Ṽ2jl
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+

1

2
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Again, one finds that the scale invariant 1-loop counterterms (3.103), obtained from the
manifestly scale invariant effective potential, exactly cancel all divergences of these 1-loop
self energies. Hence, the same scale invariant counterterms are obtained from 2-point
Green functions with non-zero external momentum p, computed using the Lagrangian
in the broken phase of the theory, as proposed above.

Analogous to (c) the Lagrangian is furthermore considered in mass eigenstates {H,S}
and with the minimalisation condition being used. The minimalisation condition for the
tree-level potential is also modified for λ6 6= 0 at tree-level and consequently given by

λm = −1

3
λφ

v2

w2
− 2λ6

v4

w4

λσ = λφ
v4

w4
+ 8λ6

v6

w6

(3.106)

Using these conditions, the 1-loop counterterms (3.103) may then be written as
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with χ0 = v/w. Again, the 1PI N -point Green functions for N ∈ {1, 2, 3, 4} and with
non-vanishing external momenta illustrated in (3.100) have been computed using the
Mathematica packages mentioned in (c) and it turned out that the counterterms (3.107)
and (3.108) completely renormalise all these 1PI N -point Green functions, as expected.
Therefore, once again the expected scale invariant counterterms, with the minimalisation
condition (3.106) being applied, are obtained even if one works in the broken phase of
the theory with expanded Lagrangian, transformed to mass eigenstates {H,S} and with
the minimalisation condition (3.106) being used.

Conclusion.
It has explicitly been shown that working in the broken phase of the theory with ex-
panded Lagrangian is valid even in the context of spontaneously broken quantum scale
symmetry. The reason for this has already been discussed in the last remark of section
2.1. In this section it has exemplarily been shown for different scenarios and even up to
the 2-loop level that indeed the same scale invariant counterterms are obtained. This is
an important consistency check because in QSI theories, i.e. theories regularised with
SIDReg, the Dilaton appears to an anomalous power in the Lagrangian, and thus it
is necessary to expand the Lagrangian in order to derive Feynman rules and perform
perturbative calculations, i.e. calculate N -point Green functions with non-vanishing
external momentum at a certain loop order.
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4. QSI Gauge Theories
In this chapter the concept of quantum scale invariance realised via SIDReg is discussed
in the context of gauge theories. QSI has shortly been introduced to gauge theories in
[2, 28], however, not in full detail. For this reason, a consistent formulation of a quantum
scale invariant gauge theory is provided in more detail in the first section of this chapter.
This is done by the example of a generic SU(N) gauge theory. In the second and third
section of this chapter a quantum scale invariant QED, i.e. a QSI U(1) gauge theory,
without and with a toy model Higgs sector, respectively, are introduced to illustrate the
concept of QSI gauge theories as well as to prepare and provide all necessary information
for the next chapter about muon production.

4.1. Consistent Formulation of a QSI Gauge Theory
Analytically continuing the Lagrangian of a gauge theory to D = 4− 2ε dimensions in a
quantum scale invariant way using SIDReg, i.e. g → µε(σ) g, where g is a generic gauge
coupling, breaks gauge invariance [28]. In the following, two different approaches are
discussed to avoid the SIDReg-induced breaking of gauge invariance, and thus obtain a
quantum scale invariant gauge theory in D = 4− 2ε dimensions. These are

(a) rescaling the gauge fields by absorbing the gauge coupling into the corresponding
gauge field, i.e. Ga

µ → Ĝa
µ = g Ga

µ, and then afterwards analytically continue the
theory to D = 4− 2ε dimensions in a quantum scale invariant way using SIDReg,

(b) analytically continue the "usual" Lagrangian of the gauge theory, i.e. without res-
caling the gauge fields, to D = 4 − 2ε dimensions using SIDReg and also take
corrections to the corresponding field strength tensor F a

µν as well as the corres-
ponding gauge transformations into account.

The Lagrangian of a generic scale invariant SU(N) gauge theory

LGauge = LGauge,cl + LGF + LGhost (4.1)

with classical Lagrangian

LGauge,cl =−
1

4
F a
µν F

a,µν + i ψi
(
δij /∂ − i g /G

a
T aij
)
ψj +

1

2
(∂µσ) (∂

µσ) (4.2)

where the Yukawa couplings as well as σ self interactions have been neglected, or equi-
valently, have been set identically to zero at tree-level as they do not contribute to the
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4.1. Consistent Formulation of a QSI Gauge Theory

following analysis of gauge invariance, gauge fixing Lagrangian

LGF = −Ba ∂µGa
µ +

ξ

2
BaBa (4.3)

where Ba are Nakanishi-Lautrup fields, and ghost Lagrangian
LGhost = ∂µcaDac

µ c
c (4.4)

with the ghosts and anti-ghosts ca and ca, respectively, is considered in this section.
Starting with the first approach

(a) Rescaling the Gauge Fields:

First, the gauge fields in 4 spacetime dimensions are rescaled as mentioned above, i.e.

Ga
µ −→ Ĝa

µ = g Ga
µ (4.5)

Since the gauge parameter βa also needs to be rescaled, cf. appendix E.2, the ghost
ca is analogously rescaled, as βa(x) = θ ca(x). Further, it is convenient to rescale the
anti-ghost ca as well, in order to obtain a ghost term similar to (4.4). Thus,

ca −→ ĉa = g ca, ca −→ ĉ
a
=

1

g
ca (4.6)

This leads to
LGauge =−

1

4 g2
F̂ a
µν F̂

a,µν + i ψ /̂D ψ +
1

2
(∂µσ) (∂

µσ)

− 1

g
Ba ∂µĜa

µ +
ξ

2
BaBa + ∂µĉ

a
D̂ac
µ ĉ

c

(4.7)

where
F̂ a
µν = ∂µĜ

a
ν − ∂νĜa

µ + fabc Ĝb
µ Ĝ

c
ν

D̂µ ψ =
(
∂µ − i Ĝa

µ T
a
)
ψ

D̂ac
µ ĉ

c =
(
δac ∂µ + fabc Ĝb

µ

)
ĉc

(4.8)

and gauge transformations provided in appendix E. Note that physical observables does
not change under field redefinitions, and consequently, rescaling the gauge fields and the
ghosts as in (4.5) and (4.6), respectively, does not change physics. Now, after having
rescaled the fields, the Lagrangian (4.7) can analytically be continued to D = 4 − 2ε
dimensions using SIDReg, and thus is then given by

L(D)
Gauge =−

1

4 g2
µ−2ε(σ) F̂ a

µν F̂
a,µν + i ψ /̂D ψ +

1

2
(∂µσ) (∂

µσ)

− 1

g
µ−ε(σ)Ba ∂µĜa

µ +
ξ

2
BaBa + ∂µĉ

a
D̂ac
µ ĉ

c

=− 1

4 g2
µ−2ε(σ) F̂ a

µν F̂
a,µν + i ψ /̂D ψ +

1

2
(∂µσ) (∂

µσ)

− 1

2 ξ g2
µ−2ε(σ)

(
∂µĜa

µ

)2
+ ∂µĉ

a
D̂ac
µ ĉ

c

(4.9)
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4. QSI Gauge Theories

where in the last line of (4.9) the equation of motion for the Nakanishi-Lautrup field
Ba, i.e. the gauge condition,

Ba =
1

ξ g
µ−ε(σ) ∂µĜa

µ (4.10)

has been used. From dimensional analysis follow the mass dimensions of the quantities
in (4.9) in D = 4− 2ε spacetime dimensions

[Ĝa
µ] = 1, [ψ] =

3

2
− ε, [σ] = 1− ε

[ĉa] = 0, [ĉ
a
] = 2− 2ε, [Ba] = 2− ε

[g] = [ξ] = 0

(4.11)

where it can be seen that the rescaled gauge field Ĝa
µ, defined in (4.5), always has mass

dimension 1, in contrast to the "usual" gauge field Ga
µ which has [Ga

µ] = 1 − ε. Now, it
remains to show whether the D-dimensional Lagrangian (4.9) indeed is BRST invariant,
and thus the approach was successful in formulating a quantum scale invariant gauge
theory consistently. The BRST transformations are given by

ψi 7−→ ψi + δψi ĉa 7−→ ĉa + δĉa

ψi 7−→ ψi + δψi ĉ
a 7−→ ĉ

a
+ δĉ

a

Ĝa
µ 7−→ Ĝa

µ + δĜa
µ σ 7−→ σ

Ba 7−→ Ba + δBa

(4.12)

where σ transforms trivially, and with
δψi = θQψi = i θ ĉa T aij ψj

δψi = θQψi = −i θ ĉa ψj T aji
δĜa

µ = θQĜa
µ = θD̂ac

µ ĉ
c = θ ∂µĉ

a + θ fabc Ĝb
µ ĉ

c

δĉa = θQĉa = −1

2
θ fabc ĉb ĉc

δĉ
a
= θQĉa = −θ

g
µ−ε(σ)Ba = − θ

ξ g2
µ−2ε(σ) ∂µĜa

µ

δBa = θQBa = 0

(4.13)

The first three BRST transformations in (4.13) are given by the gauge transformations
(E.12) using β̂a(x) = θ ĉa(x) for any Grassmann number θ. All BRST transformations
in (4.13), in particular the last three, are given in [30, 32] for 4 dimensions. It is straight-
forward to show that the BRST-operator Q that generates the BRST transformations
in (4.13) is nilpotent as it should be, i.e. Q2 = 0, by showing that it is nilpotent
when acting on the fields Ψ = (ψ, ψ, Ĝµ, c, c, B) as well as when acting on any operator
Ô = Ô (Ψ) constructed from those fields [40, 44]. From dimensional analysis and (4.11)
it follows that

[β̂a] = 0 ⇒ [θ ĉa] = 0 ⇒ [θ] = 0 (4.14)
Now it needs to be shown that (4.9) is invariant under (4.13).
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Proposition 4.1.
The D-dimensional Lagrangian (4.9) is BRST invariant, i.e. invariant under the BRST
transformations (4.13).

Proof.
First, note that the gauge fixing and ghost Lagrangian can be rewritten as a Q-exact
term

L(D)
GF+Ghost = L

(D)
GF + L(D)

Ghost

= Q
[
− g µε(σ) ĉa

(
ξ

2
Ba − 1

g
µ−ε(σ) ∂µĜa

µ

)]
=
ξ

2
BaBa − 1

g
µ−ε(σ)Ba ∂µĜa

µ − ĉ
a
∂µD̂ac

µ ĉ
c
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g
µ−ε(σ)Ba ∂µĜa

µ +
ξ

2
BaBa + ∂µĉ

a
D̂ac
µ ĉ

c

(4.15)

where in the third line (4.13) as well as the fact that Q is a fermionic operator have
been used and in the last line the ghost term has been integrated by parts. Now the full
Lagrangian (4.9) needs to be considered, and thus

δL(D)
Gauge = δL(D)

Gauge,cl + δL(D)
GF + δL(D)

Ghost

= θQ
[
− 1

4 g2
µ−2ε(σ) F̂ a
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a,µν + i ψ /̂D ψ +

1

2
(∂µσ) (∂
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]
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[
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(
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2
Ba − 1

g
µ−ε(σ) ∂µĜa

µ
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= − 1

2 g2
µ−2ε(σ) F̂ a,µν

[
−θfabcĉb

(
∂µĜ

c
ν − ∂νĜc

µ + f cde Ĝd
µ Ĝ

e
ν

)]
+ i (−i) θĉaψkT aki

(
δij /∂ − i /̂G

c
T cij

)
ψj + iψi

(
δij /∂ − i /̂G

c
T cij

)
iθĉaT ajkψk

+ ψi θ

(
/∂ĉa + fabc

ˆ
/G
b
ĉc
)
T aijψj

= − 1

2 g2
µ−2ε(σ) fabc θ ĉa F̂ b,µν F̂ c

µν

+ θĉaψkT
a
kj
/∂ψj − iθĉaψkT aki /̂G

c
T cijψj − θĉaψj /∂T ajkψk − ψjθ

(
/∂ĉa
)
T ajkψk

+ iψi /̂G
c
T cijθĉ

aT ajkψk + ψiθ
(
/∂ĉa
)
T aijψj + ψiθf

abc ˆ/G
b
ĉcT aijψj

= 0

(4.16)

where in the second line of (4.16) the gauge fixing and ghost Lagrangian have been
written as a Q-exact term and in the third line it has been used that Q is nilpotent.
Further, the explicit BRST transformations (4.13) as well as the Jacobi identity for the
structure constants fabc in δF̂ a

µν = θQF̂ a
µν have been used in the third line of (4.16).

In the last line of (4.16) it has been used that the structure constants fabc are totally
antisymmetric as well as the commutation relation [T a, T b] = ifabcT c. Hence, the D-
dimensional Lagrangian (4.9) is BRST invariant.
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Thus, one might conclude that this approach was successful in formulating a quantum
scale invariant gauge theory consistently. The D-dimensional Lagrangian for a generic
QSI SU(N) gauge theory is provided in (4.9).

Remark.
After the theory was analytically continued to D = 4 − 2ε dimensions, a second field
redefinition can be applied where solely the dimensionless gauge coupling g (and not the
Renormalisation function) is pulled out of the gauge field to obtain Ga

µ = µε(σ)Ga
µ, such

that
G
a

µ =
1

g
Ĝa
µ = µε(σ)Ga

µ

Ĝa
µ = g µε(σ)Ga

µ = g G
a

µ

(4.17)

The mass dimension of the gauge field is then still [Ga

µ] = 1 and the statements above
remain true. However, theD-dimensional Lagrangian in this approach looks more similar
to (4.1) w.r.t. the gauge couplings, which turns out to be useful in the presence of mixing
between the gauge fields as in the Standard Model. In the following, all gauge theories
are formulated in terms of the rescaled gauge fields Ga

µ, however, the "overbar" is always
dropped for simplicity.

Now, continuing with the second more "direct" approach

(b) Working with non-rescaled Gauge Fields:

Analytically continuing the theory to D dimensions, the covariant derivative changes as

Dµ −→ D̃µ = ∂µ − i g µε(σ)Ga
µ T

a, (4.18)

and thus the field strength tensor is then given by

F̃µν = F̃ a
µν T

a =
i

g µε(σ)

[
D̃µ, D̃ν

]
(4.19)

Evaluating the commutator leads to the following result for the field strength tensor

F̃ a
µν = ∂µG

a
ν − ∂νGa

µ + g µε(σ) fabcGb
µG

c
ν + ε µ−1(σ)

∂µ

∂σ

(
∂µσ G

a
ν − ∂νσ Ga

µ

)
(4.20)

where it can be seen that the field strength tensor obtains an evanescent correction. The
classical Lagrangian in D = 4− 2ε dimensions may then be written as

L(D)
Gauge,cl =−

1

4
F̃ a
µν F̃

a,µν + i ψi
(
δij /∂ − i g µε(σ) /G

a
T aij
)
ψj +

1

2
(∂µσ) (∂

µσ) (4.21)

with corresponding gauge transformations given in (E.19). Thus, using βa(x) = θ ca(x),
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one obtains the following BRST transformations for non-rescaled fields

δψi = θQψi = i θ g µε(σ) ca T aij ψj

δψi = θQψi = −i θ g µε(σ) ca ψj T aji

δGa
µ = θQGa

µ = θ D̃ac
µ c

c + ε θ µ−1(σ)
∂µ

∂σ
∂µσ c

a

= θ ∂µc
a + θ g µε(σ) fabcGb

µ c
c + ε θ µ−1(σ)

∂µ

∂σ
∂µσ c

a

δca = θQca = −1

2
θ g µε(σ) fabc cb cc

δca = θQca = −θ Ba

δBa = θQBa = 0

(4.22)

where
D̃ac
µ = δac ∂µ + g µε(σ) fabcGb

µ (4.23)
Due to the evanescent correction to the gauge field gauge transformation, cf. (E.19)
and (4.22), the chosen gauge fixing condition is corrected correspondingly, and thus the
Ansatz for the gauge fixing and ghost Lagrangian is as follows

L(D)
GF+Ghost = L

(D)
GF + L(D)

Ghost = Q
[
−ca

(
ξ

2
Ba − ∂µĜa

µ − ε µ−1(σ)
∂µ

∂σ
∂µσ G

a
µ

)]
=
ξ

2
BaBa −Ba ∂µGa

µ + ∂µca D̃ac
µ c

c

− ε µ−1(σ)
∂µ

∂σ
∂µσ

[
BaGa

µ + ca D̃ac
µ c

c − ∂µca ca
]

− ε2 µ−2(σ)

(
∂µ

∂σ

)2

∂µσ ∂µσ c
a ca

(4.24)

It can be seen that the gauge fixing and the ghost Lagrangian also obtain evanescent
corrections, analogously to the kinetic term of the gauge field, cf. (4.20). Consequently,
the D-dimensional Lagrangian of the considered SU(N) gauge theory is given by

L(D)
Gauge = L

(D)
Gauge,cl + L

(D)
GF + L(D)

Ghost (4.25)

with the corresponding Lagrangians provided in (4.21) and (4.24). Now, it remains to
show whether (4.25) is BRST invariant under (4.22) and is equivalent to the Lagrangian
of approach (a), i.e. (4.9).

Proposition 4.2.
The D-dimensional Lagrangian (4.25) is BRST invariant, i.e. invariant under the BRST
transformations (4.22).
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Proof.
The gauge fixing and the ghost Lagrangian can be written as a Q-exact term, as shown
in (4.24), and thus the BRST transformation of L(D)

GF and L(D)
Ghost vanishes trivially due

to nilpotence of the BRST operator Q. Hence,

δL(D)
Gauge = δL(D)

Gauge,cl

= −1

2
F̃ a,µν δF̃ a

µν + i δψi
(
δij /∂ − i g µε(σ) /G

a
T aij
)
ψj

+ i ψi
(
δij /∂ − i g µε(σ) /G

a
T aij
)
δψj + g µε(σ)ψi δ /G

a
T aij ψj

= −1

2
θ g µε(σ) fabc F̃ a,µν F̃ b

µν c
c

= 0

(4.26)

where in the first line of (4.26) it has been used that the BRST transformation of the
gauge fixing and ghost Lagrangian vanishes, as explained above, and in the second
line that the Dilaton transforms trivially under BRST. In the third line of (4.26), the
explicit BRST transformations (4.22) as well as the Jacobi identity for the structure
constants fabc in δF̃ a

µν = θQF̃ a
µν and the commutation relation [T a, T b] = ifabcT c have

been used. In the last line it has been used that the structure constants fabc are totally
antisymmetric. Hence, the D-dimensional Lagrangian (4.25) is BRST invariant.
Proposition 4.3.
The D-dimensional Lagrangian (4.9) is equivalent to the D-dimensional Lagrangian
(4.25), i.e. approach (a) and (b) are equivalent.

Proof.
Starting with Lagrangian (4.9), the gauge coupling g and the Renormalisation function
µε(σ) can be pulled out of the fields Ĝa

µ, ĉa and ĉ
a in D = 4− 2ε dimensions, i.e.

Ĝa
µ = g µε(σ)Ga

µ, ĉa = g µε(σ) ca, ĉ
a
=

1

g
µ−ε(σ) ĉ

a (4.27)

leading to the Lagrangian (4.25), which can be shown by direct calculation.
Conversely, starting with Lagrangian (4.25), the gauge coupling g and the Renorm-

alisation function µε(σ) can be absorbed into the fields Ga
µ, ca and ca. Then, additional

terms coming from commuting derivatives and the Renormalisation function need to be
taken into account by subtracting them, leading to the Lagrangian (4.9).

Moreover, note that the same holds true for the BRST transformations in (4.13) and
(4.22).
Remark.
It can be seen that Lagrangian (4.9) takes a more convenient form than Lagrangian
(4.25) due to the evanescent corrections to the kinetic term of the gauge field as well
as to the gauge fixing and ghost Lagrangian, cf. (4.20) and (4.24). For this reason, all
gauge theories are formulated in terms of rescaled gauge fields, i.e. in terms of approach
(a), in the following. However, they are formulated in terms of Ga

µ, defined in (4.17), as
mentioned in the remark above.
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4.2. Quantum Scale Invariant QED
In order to formulate a quantum scale invariant QED the Dilaton σ necessarily needs
to be included into the spectrum of the theory as discussed in section 2.1. Therefore, a
minimal QSI QED contains the fields {ψf , Aµ, σ}. Moreover, the theory is formulated in
terms of the rescaled gauge fields Aµ as introduced in (4.17), however, the "overbar" is
dropped for simplicity and convenience. Hence, the quantum scale invariant QED, with
Q = −1, is given by

LQSI
QED =− 1

4
µ−2ε(σ)Fµν F

µν + i ψf
(
/∂ + i e /A

)
ψf +

1

2
(∂µσ) (∂

µσ)

− yf µε(σ)σ ψf ψf −
λ

4!
µ2ε(σ)σ4 − 1

2 ξ
µ−2ε(σ) (∂µAµ)

2
(4.28)

where the ghost term has been neglected as the Faddeev-Popov ghosts in the case of
abelian gauge theories completely decouple from the rest of the theory. In the following,
λ is identically set to zero at tree-level because the theory should be as close as possible
to pure QED in the further analysis. Moreover, the Dilaton σ = D+w then is massless
(at tree-level) which is closer to the Standard Model case where the Dilaton is the
massless Goldstone boson of (quantum) scale symmetry. Hence, the Lagrangian that is
considered in the following, i.e. with λ ≡ 0 at tree-level, reads as

LQSI
QED =− 1

4
µ−2ε(σ)Fµν F

µν + i ψf
(
/∂ + i e /A

)
ψf +

1

2
(∂µσ) (∂

µσ)

− yf µε(σ)σ ψf ψf −
1

2 ξ
µ−2ε(σ) (∂µAµ)

2

=− 1

4
µ−2ε
0 Fµν F

µν + i ψf
(
/∂ + i e /A

)
ψf +

1

2
(∂µD) (∂µD)

− µε0 yf wψf ψf − µε0
(
1 + ε+ ε2 +O

(
ε3
))
yf Dψf ψf

− 1

2 ξ
µ−2ε
0 (∂µAµ)

2 − µε0
ε (1 + 2ε) +O (ε3)

2w
yf D

2 ψf ψf

+ µ−2ε
0

(
ε (1 + ε) +O

(
ε3
)) D
w

[
1

2
Fµν F

µν +
1

ξ
(∂µAµ)

2

]
+ · · ·

(4.29)

where the Lagrangian has been expanded about the Dilaton VEV w and w.r.t. ε in the
second line of (4.29), and the ellipsis denotes infinitely many terms of higher orders in
the fields. The fermion masses are given by m̃f = mf = µε0 yf w. The Renormalisation
transformations are provided by

A −→ A0 =
√
ZAA

ψf −→ ψf,0 =
√
Zψf

ψf

σ −→ σ0 =
√
Zσ σ

e −→ eB = µε(σ) e0 = µε(σ)Ze e

yf −→ yf,B = µε(σ) yf,0 = µε(σ)Zyf yf

λ −→ λB = µ2ε(σ)λ0 = µ2ε(σ)Zλ λ

(4.30)
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Hence, the 1-loop counterterm Lagrangian is given by

LQSI
QED,ct1 =−

1

4
δZA µ

−2ε(σ)Fµν F
µν + i δZψf

ψf /∂ ψf +
1

2
δZσ (∂µσ) (∂

µσ)

−
(
δZψf

+ δZyf +
1

2
δZσ

)
yf µ

ε(σ)σ ψf ψf

−
(
δZψf

+ δZe +
1

2
δZA

)
e ψf /Aψf − µ2ε(σ)

δλ

4!
σ4

(4.31)

where the counterterm δλ needs to be included although λ ≡ 0 at tree-level, and the
counterterm superscripts, indicating the loop-order, have been suppressed because this
theory is considered solely at the 1-loop level. Further, it has been used that the Renor-
malisation of the gauge fixing term does not need to be considered as Zξ = ZA due to
Ward identities [8, 35]. Expanding the 1-loop counterterm Lagrangian (4.31) about the
Dilaton VEV w and w.r.t. ε then gives

LQSI
QED,ct1 =− µ

−2ε
0

1

4
δZA Fµν F

µν + i δZψf
ψf /∂ ψf +

1

2
δZσ (∂µD) (∂µD)

− µε0
(
δZψf

+ δZyf +
1

2
δZσ

)
yf wψf ψf

− µε0
(
1 + ε+O

(
ε2
))(

δZψf
+ δZyf +

1

2
δZσ

)
yf Dψf ψf

−
(
δZψf

+ δZe +
1

2
δZA

)
e ψf /Aψf

− µ2ε
0

δλ

4!
w4 − µ2ε

0

(
1 +

ε

2
+O

(
ε2
)) δλ

6
w3D

− µ2ε
0

1

2

(
1 +

7

6
ε+O

(
ε2
)) δλ

2
w2D2

− µ2ε
0

(
1 +

13

6
ε+O

(
ε2
)) δλ

6
wD3

− µ2ε
0

(
1 +

25

6
ε+O

(
ε2
)) δλ

4!
D4 + · · ·

(4.32)

where the ellipsis again denotes infinitely many terms of higher orders in the fields.
Now, the 1-loop counterterms of this theory will be provided in the MS-scheme and

determined in Feynman gauge ξ = 1 for two different cases, i.e. for the most general
case yf 6= 0 and λ 6= 0 at tree-level

δZψf
= − 1

16π2

(
e2 +

yf
2

) 1

ε
δZyf =

1

16π2

[
3

2
y2f +

∑
l

y2l − 3 e2

]
1

ε

δZA = − 1

16π2

4Nf e
2

3

1

ε
δZe = −

1

2
δZA =

1

16 π2

2Nf e
2

3

1

ε

δZσ = − 1

16π2
2
∑
l

y2l
1

ε
δZλ =

1

16π2

[
3

2
λ+ 4

∑
l

(
y2l − 6

y4l
λ

)]
1

ε

(4.33)

70



4.3. QSI QED with Toy Model Higgs Sector

where δλ = λ (δZλ + 2 δZσ) and Nf is the number of fermions in the theory, and for the
case yf 6= 0 and λ ≡ 0 at tree-level, as discussed above,

δZψf
= − 1

16 π2

(
e2 +

yf
2

) 1

ε
δZyf =

1

16π2

[
3

2
y2f +

∑
l

y2l − 3 e2

]
1

ε

δZA = − 1

16 π2

4Nf e
2

3

1

ε
δZe = −

1

2
δZA =

1

16 π2

2Nf e
2

3

1

ε

δZσ = − 1

16 π2
2
∑
l

y2l
1

ε
δλ = − 1

16 π2
24
∑
l

y4l
1

ε

(4.34)

Note that it was assumed that all fermions are leptons, e.g. f, l ∈ {e−, µ−, τ−} for 3
lepton flavours. In the case of quarks one also needs to take the corresponding colour
factor Nc,f into account. The 1-loop counterterms for the case where yf ≡ 0 and λ ≡ 0
at tree-level, which will also be discussed in chapter 5, can be obtained from (4.34) by
yf → 0 and δyf = yf (δZψf

+ δZyf + δZσ/2) = 0.

4.3. QSI QED with Toy Model Higgs Sector
In this section a quantum scale invariant QED with a toy model Higgs sector is discussed.
The scalar potential in this theory contains the 2 Scalar Model as subset and admits
dynamical SSB of (quantum) scale symmetry with the Dilaton as associated Goldstone
boson. Consequently, the model in this section is closer to a more realistic quantum
theory of (quantum) scale invariant electromagnetism than the model in the previous
section. The field content of this theory is given by fermions ψf , the photon Aµ, a
Higgs-like boson φ = h+ v, the Dilaton σ = D+ w and an additional scalar field G. In
order to construct such a model with a massless photon the additional symmetry

ψL 7−→ ei α ψL Φ 7−→ ei αΦ

ψR 7−→ ψR σ 7−→ σ

A 7−→ A,

(4.35)

which distinguishes between left- and right-handed fermions, is imposed on the theory
beside the other symmetries, such as U(1) gauge symmetry and quantum scale symmetry.
Note that Φ is a complex scalar given by

Φ =
φ+ i G√

2
(4.36)

It will turn out that G is the Goldstone boson associated with the additional symmetry
(4.35). Again, the theory is formulated in terms of the rescaled gauge fields Aµ, with
mass dimension 1, as introduced in (4.17) with suppressed "overbar". The Lagrangian
of this model is provided by

LQSI
QED+Higgs = L

QSI
Fermion + L

QSI
Gauge + L

QSI
Higgs + L

QSI
Yukawa + L

QSI
GF (4.37)
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with fermion Lagrangian

LQSI
Fermion = i ψf,L /Dψf,L + i ψf,R /Dψf,R

= i ψf /Dψf = i ψf
(
/∂ + i e /A

)
ψf

(4.38)

where Q = −1 has been used, gauge Lagrangian

LQSI
Gauge = −

1

4
µ−2ε(σ)Fµν F

µν (4.39)

Higgs sector

LQSI
Higgs = (∂µΦ)† (∂µΦ) +

1

2
(∂µσ) (∂µσ)− µ2ε(σ)VQED,H (Φ, σ) (4.40)

Yukawa sector
LQSI

Yukawa = −µ
ε(σ) yf ψf,LΦψf,R − µε(σ) yf ψf,R Φ∗ ψf,L

= −µε(σ) yf√
2
φψf ψf − i µε(σ)

yf√
2
Gψf γ5 ψf

(4.41)

and the gauge fixing Lagrangian

LQSI
GF = − 1

2 ξ
µ−2ε(σ) (∂µAµ)

2 (4.42)

The scalar potential in (4.40) is explicitly given by

VQED,H (Φ, σ) =
λφ
3!

(
Φ†Φ

)2
+
λm
2

(
Φ†Φ

)
σ2 +

λσ
4!
σ4

=
λφ
4!
φ4 +

λm
4
φ2 σ2 +

λσ
4!
σ4

+
λφ
12

φ2G2 +
λm
4
σ2G2 +

λφ
4!
G4

≡ V2SM (φ, σ) + VQED,G (φ, σ,G)

(4.43)

Φ transforms trivially under U(1) gauge transformations which is necessary to have
Yukawa terms of the form (4.41) due to gauge invariance, and thus there is no covariant
derivative acting on Φ in (4.40) which ensures massless photons. Furthermore, note that
the additional symmetry (4.35) forbids Yukawa terms with σ.

Expanding the Lagrangian (4.37) about the fields VEVs {v, w} and w.r.t. ε, one
obtains

LQSI
Fermion = i ψf

(
/∂ + i e /A

)
ψf (4.44)

for the Fermion Lagrangian

LQSI
Gauge =− µ

−2ε
0

1

4
Fµν F

µν + µ−2ε
0

1

2
ε (1 + ε)

D

w
Fµν F

µν

− µ−2ε
0

1

4
ε (1 + 3 ε)

D2

w2
Fµν F

µν + µ−2ε
0

1

6
ε (1 + 4 ε)

D3

w3
Fµν F

µν

− µ−2ε
0

1

8
ε

(
1 +

14

3
ε

)
D4

w4
Fµν F

µν +O
(
(D/w)5 , ε3

) (4.45)

72



4.3. QSI QED with Toy Model Higgs Sector

for the gauge Lagrangian

LQSI
Yukawa =− µ

ε
0

yf√
2
v ψf ψf − µε0

yf√
2
hψf ψf − i µε0

yf√
2
Gψf γ5 ψf

− µε0 ε (1 + ε)
yf√
2

v

w
Dψf ψf − µε0 ε (1 + ε)

yf√
2

1

w
hDψf ψf

+ µε0 ε
yf

2
√
2

v

w2
D2 ψf ψf − i µε0 ε (1 + ε)

yf√
2

1

w
DGψf γ5 ψf + · · ·

(4.46)

for the Yukawa Lagrangian, where the ellipsis denotes infinitely many terms of higher
orders in the fields as well as in ε. The fermion masses in this model are provided by
m̃f = mf = µε0 yf v/

√
2. Further, for the gauge fixing Lagrangian one obtains

LQSI
GF =− µ−2ε

0

1

2 ξ
(∂µAµ)

2 + µ−2ε
0 ε (1 + ε)

1

ξ

D

w
(∂µAµ)

2

− µ−2ε
0 ε (1 + 3 ε)

1

2 ξ

D2

w2
(∂µAµ)

2 + µ−2ε
0 ε (1 + 4 ε)

1

3 ξ

D3

w3
(∂µAµ)

2

− µ−2ε
0 ε

(
1 +

14

3
ε

)
1

4 ξ

D4

w4
(∂µAµ)

2 +O
(
(D/w)5 , ε3

) (4.47)

Moreover, for the D-dimensional scalar potential ṼQED,H (Φ, σ) = µ2ε(σ)VQED,H (Φ, σ)

one obtains (C.1) for Ṽ2SM (φ, σ) = µ2ε(σ)V2SM (φ, σ) as well as

ṼQED,G (Φ, σ) = µ2ε(σ)

(
λφ
12

φ2G2 +
λm
4
σ2G2 +

λφ
4!
G4

)
=

1

2
M̃2

GG
2 +

1

2
c̃133 hG

2 +
1

2
c̃233DG2 +

1

4
c̃1133 h

2G2

+
1

2
c̃1233 hDG2 +

1

4
c̃2233D

2G2 +
1

4!
c̃3333G

4 + · · ·

(4.48)

where the ellipsis denotes infinitely many terms of higher orders in scalar fields and with

M̃2
G =M2

G = µ2ε
0

λφ
6
v2
(
1 + 3

λm
λφ

w2

v2

)
c̃133 = µ2ε

0

λφ
3
v

c̃233 = µ2ε
0

[
λmw + ε (1 + ε)

(
λmw +

λφ
3

v2

w

)
+O

(
ε3
)]

c̃1133 = µ2ε
0

λφ
3

c̃1233 = µ2ε
0

[
2

3
λφ

v

w
ε (1 + ε) +O

(
ε3
)]

c̃2233 = µ2ε
0

[
λm + ε

(
3λm −

λφ
3

v2

w2

)
+ ε2

(
5λm +

λφ
3

v2

w2

)
+O

(
ε3
)]

c̃3333 = µ2ε
0 λφ

(4.49)
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Note that the minimalisation condition of the full scalar potential ṼQED,H (Φ, σ) is the
same as for the 2 Scalar Model, i.e. (2.47). Furthermore, transforming the Higgs-like
boson h and the Dilaton D in the Lagrangian (4.37) to mass eigenstates {H,S} can be
done analogously to the 2 Scalar Model discussed in section 2.2, with mass eigenstates
given in (2.32) and mixing angle provided in (2.35), i.e.

H = cβ h− sβ D ⇔ h = cβH + sβ S

S = sβ h+ cβ D ⇔ D = −sβH + cβ S

The Ṽ2SM (H,S) part of the scalar potential in mass eigenstates and with the minimal-
isation condition being used is given in (C.39).

The Renormalisation transformations for this theory are provided by

A −→ A0 =
√
ZAA

ψf −→ ψf,0 =
√
Zψf

ψf

φ −→ φ0 =
√
Zφ φ

σ −→ σ0 =
√
Zσ σ

G −→ G0 =
√
ZGG

e −→ eB = µε(σ) e0 = µε(σ)Ze e

yf −→ yf,B = µε(σ) yf,0 = µε(σ)Zyf yf

λk −→ λk,B = µ2ε(σ)λk,0 = µ2ε(σ)Zλk λk

(4.50)

Where it has been used that in this model, at least at the 1-loop level, it is sufficient
to transform left- and right-handed fermions with the same Renormalisation coefficient
Zψf

. Thus, the 1-loop counterterm Lagrangian is given by

LQSI
Fermion,ct1 = i δZψf

ψf /∂ ψf −
(
δZψf

+ δZe +
1

2
δZA

)
e ψf /Aψf (4.51)

for the fermionic part

LQSI
Gauge,ct1 = −

1

4
µ−2ε(σ) δZA Fµν F

µν (4.52)

for the gauge part

LQSI
Yukawa,ct1 =− µ

ε(σ)

(
δZψf

+ δZyf +
1

2
δZφ

)
yf√
2
φψf ψf

− i µε(σ)
(
δZψf

+ δZyf +
1

2
δZG

)
yf√
2
Gψf γ5 ψf

(4.53)
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for the Yukawa sector, and

LQSI
Higgs,ct1 =

1

2
δZφ (∂

µφ) (∂µφ) +
1

2
δZσ (∂

µσ) (∂µσ) +
1

2
δZG (∂µG) (∂µG)

− µ2ε(σ)

(
δZVφ

λφ
4!
φ4 + δZVm

λm
4
φ2 σ2 + δZVσ

λσ
4!
σ4

)
− µ2ε(σ)

(
δZVGφ

λφ
12

φ2G2 + δZVGm

λm
4
σ2G2 + δZVG

λφ
4!
G4

) (4.54)

for the Higgs sector, where

δZVGφ
:= δZλφ + δZφ + δZG

δZVGm
:= δZλm + δZσ + δZG

δZVG := δZλφ + 2 δZG

(4.55)

and {δZVφ , δZVm , δZVσ} as in section 2.3. Again, the counterterm superscripts, indicating
the loop-order, have been suppressed because this theory is considered solely at the 1-
loop level, and it has been used that the Renormalisation of the gauge fixing term
does not need to be considered as Zξ = ZA due to Ward identities [8, 35]. The 1-loop
counterterms of this theory in the MS-scheme and determined in Feynman gauge ξ = 1
are then given by

δZψf
= − 1

16 π2

(
e2 +

yf
2

) 1

ε

δZA = −2 δZe = −
1

16 π2

4Nf e
2

3

1

ε

δZφ = −
1

16 π2

∑
l

y2l
1

ε

δZσ = 0

δZG = − 1

16 π2

∑
l

y2l
1

ε

δZyf =
1

16π2

1

2

[
y2f +

∑
l

y2l − 6 e2

]
1

ε

δZVφ = δZVGφ
= δZVG =

1

16π2

1

6λφ

[
10λ2φ + 9λ2m − 36

∑
l

y4l

]
1

ε

δZVm = δZVGm
=

1

16π2

1

6
[4λφ + 12λm + 3λσ]

1

ε

δZVσ =
1

16π2

3

2λσ

[
2λ2m + λ2σ

] 1
ε

(4.56)

where again Nf is the number of fermions in the theory and it was assumed that all
fermions are leptons, e.g. f, l ∈ {e−, µ−, τ−} for 3 lepton flavours, as in the previous
section.
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5. Muon Production
In this chapter, muon production is analysed in a quantum scale invariant QED. In
particular, the scattering process e− e+ −→ µ− µ+ is considered at the 1-loop level in
the framework of the theory discussed in section 4.2. Such scattering processes have not
yet been discussed in the framework of a theory with spontaneously broken quantum scale
invariance regularised using SIDReg. The first section illustrates the general structure
of the 1-loop scattering amplitude and its square of the absolute value in order to provide
a clear overview of the results discussed the following sections. In the second section,
explicit results for the above scattering process in the QSI QED (4.29) are presented
and discussed. New finite quantum corrections are expected to emerge at the 1-loop
level due to evanescent interactions, i.e. as a result of QSI, as explained in chapter
2. The last section is about IR-divergences occurring in such scattering processes and
their implications on QSI theories regularised with SIDReg which contain evanescent
interactions.

5.1. The Scattering Amplitude at 1-Loop
The amplitude of the scattering process e− e+ −→ µ− µ+ is given by

e+ µ+

e− µ−p1

p2 k2

k1

= iM
(
e− e+ −→ µ− µ+

)
(5.1)

where the above diagram with the grey blob represents all connected Feynman diagrams
with 4 external fermion legs, in particular with external electron and positron in the ini-
tial state as well as external muon and anti-muon in the final state. Thus, it contains all
possible tree-level, counterterm and loop diagrams contributing to the above scattering
process. At the 1-loop level the scattering amplitude may be written as

M =Mtree +M1L,ren +O
(
~2
)
=Mtree +M(1)

Res +M1L +Mct1 +O
(
~2
)

(5.2)

with M1L,ren =M(1)
Res +M1L +Mct1, where Mtree is the tree-level amplitude, M1L is

the contribution from the (amputated) 1-loop diagrams,Mct1 is the 1-loop counterterm
amplitude andM(1)

Res is the 1-loop contribution from the Residue of the external particles.
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5.1. The Scattering Amplitude at 1-Loop

According to the LSZ-formalism, S-matrix elements, i.e. scattering amplitudes, may
be calculated by considering only amputated (or truncated) Feynman diagrams and
multiplying by a factor of

√
R for every external particle, where R is the Residue of

the propagator of the corresponding external particle, as well as setting the external
momenta on the mass shell [8, 38, 40]. The Residue of an external fermion is given by

R−1 = 1−
dΣren

(
/p
)

d/p

∣∣∣∣
/p=mpol

(5.3)

where − iΣren

(
/p
)

is the renormalised fermion self energy and mpol is the pole mass which
is provided by

mpol = m+ Σren

(
/p = mpol

)
= m+ Σren

(
/p = m

)
+O

(
~2
)
, (5.4)

and thus
R−1 = 1−

dΣren

(
/p
)

d/p

∣∣∣∣
/p=m

+O
(
~2
)

(5.5)

Now, considering
R = 1 + δR(1) +O

(
~2
)

⇔R−1 = 1− δR(1) +O
(
~2
) (5.6)

and comparing this with (5.5), one obtains at the 1-loop level

δR(1) =
dΣren

(
/p
)

d/p

∣∣∣∣
/p=m

(5.7)

Hence, for the scattering process (5.1) the 1-loop contribution from the Residue of the
external particles is provided by

M(1)
Res =

(
δR(1)

e + δR(1)
µ

)
Mtree (5.8)

where δR(1)
e and δR

(1)
µ are the 1-loop contributions to the Residue of the propagator of

the electron and the muon, respectively.
Remark.
The Residue R depends on the Renormalisation scheme that is used, e.g.

• In the On-shell scheme: R = 1 ⇒ δR(1) = 0

• In the MS- or MS-scheme: δR(1) 6= 0

The following results will be given in the MS-scheme, and thus the Residue contribution
M(1)

Res needs to be taken into account.
In order to compute the cross section, the square of the absolute value of the scattering
amplitude (5.2) which is given by

|M|2 =M†
treeMtree +M†

treeM1L,ren +M†
1L,renMtree +O

(
~2
)

=M†
treeMtree + 2 Re

(
M†

treeM
(1)
Res +M

†
treeM1L +M†

treeMct1

)
+O

(
~2
) (5.9)

is needed.
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5. Muon Production

Moreover, it is averaged over the spins of initial particles and summed over the spins of
final particles. Therefore, in the scattering process (5.1) one needs to consider〈

|M|2
〉
=

1

4

∑
spins

|M|2 =
〈
|M|2

〉
tree

+
〈
|M|2

〉
1L

+O
(
~2
)

(5.10)

where〈
|M|2

〉
tree

:=
1

4

∑
spins

M†
treeMtree =

〈
M†

treeMtree

〉
〈
|M|2

〉
1L

:=
1

4

∑
spins

2 Re
(
M†

treeM
(1)
Res +M

†
treeM1L +M†

treeMct1

)
= 2 Re

(
1

4

∑
spins

M†
treeM1L,ren

)
= 2 Re

(〈
M†

treeM1L,ren

〉) (5.11)

Due toMct1, the expression (5.10) is UV-finite, however, it is known that such squared
scattering amplitudes are IR-divergent and that only the corresponding cross sections,
i.e. physical observables, are IR-finite [8, 32]. For more details w.r.t. this, the reader is
referred to [8, 32]. Moreover, new quantum corrections due to evanescent interactions,
i.e. as a result of QSI, are again expected to emerge at the quantum level. Hence, the
1-loop contribution to (5.10) admits the following general structure〈
M†

treeM1L,ren

〉
=
〈
M†

treeM1L,ren

〉
1/ε2IR

+
〈
M†

treeM1L,ren

〉
1/εIR

+∆IR

〈
M†

treeM1L,ren

〉
1/εIR

+
〈
M†

treeM1L,ren

〉
fin

+∆UV

〈
M†

treeM1L,ren

〉
fin

+∆IR

〈
M†

treeM1L,ren

〉
fin

+O (ε)

(5.12)

where ∆UV and ∆IR denote new quantum corrections arising from evanescent interactions
cancelling UV-divergences and IR-divergences, respectively. All results in section 5.2 will
be given in the form (5.12). Note that IR-divergences are regularised dimensionally and
not with a regulator mass due to fact that all theories in this thesis are regularised using
SIDReg in order to obtain a theory with spontaneously broken quantum scale invariance.

Additionally, the Mandelstam variables are defined as usual, i.e.

s = (p1 + p2)
2 = (k1 + k2)

2

t = (p1 − k1)2 = (p2 − k2)2

u = (p1 − k2)2 = (p2 − k1)2
(5.13)

5.2. Muon Production in QSI QED
The scattering process (5.1) is discussed in a QSI QED, as introduced in section 4.2,
with Lagrangian (4.29) and for 3 fermion flavours, i.e. f ∈ {e−, µ−, τ−} and Nf = 3. In
particular, the scattering process is considered for following two different scenarios
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5.2. Muon Production in QSI QED

(i) QSI QED with Lagrangian (4.29), however, with λ ≡ 0 and yf ≡ 0 at tree-level,
and not just λ ≡ 0. Thus, this theory is closest to "usual" massless QED because
the only new terms in the Lagrangian are the kinetic term of the Dilaton as
well as evanescent interactions introduced by the Renormalisation function µ(σ).
Moreover, this theory is purely massless even in the broken phase of the theory
(at least at tree-level) because the Yukawa terms are set to zero.

(ii) QSI QED with Lagrangian (4.29) where λ ≡ 0 but yf 6= 0 at tree-level. However,
the limit of vanishing fermion masses, i.e. the massless limit, is considered. Note
that both, the Yukawa couplings yf and the Dilaton VEV w remain non-zero, but
nonetheless the fermion masses mf = µε0 yf w are set to zero, which appears a bit
strange but is motivated by a very high process-energy in the scattering process. In
particular, in the case where the invariant mass s (or equivalently the total energy
in the C.o.M. frame

√
s) is much greater than the fermion masses, i.e. s � m2

f ,
fermion masses are negligible. The reason for this is that in the purely massless case
the IR-divergence structure is more interesting than in the massive case because
in the massless case there is not only a simple pole but also a pole of second order
in εIR. Therefore, not only new finite but also a new divergent quantum correction
can arise from evanescent interactions if a term ∼ ε "meets" a second order pole in
εIR. Practically, this scenario is realised by setting to zero the fermion masses mf

in the free Lagrangian, i.e. in the propagators, but keeping the Yukawa couplings
yf and the Dilaton VEV w non-zero in the interaction Lagrangian.

The results presented in this section have been calculated in Feynman gauge ξ = 1 and
are provided in the MS-scheme. All counterterms in section 4.2, given in the MS-scheme,
can still be used after applying (3.23). Further, note that again all Feynman diagrams
in this section have been generated using FeynArts [18], the FeynArts model files have
been generated using FeynRules [1, 4], and the generated Feynman diagrams and their
amplitudes have been computed using FeynCalc [27, 36, 37] and Package-X [29], which
has been connected with FeynCalc using FeynHelpers [35].

5.2.1. Muon Production in massless QSI QED with yf ≡ 0 and λ ≡ 0

Starting with the first scenario (i), the tree-level result (in 4 dimensions) is given by

〈
|M|2

〉
tree

= 2 e4
t2 + u2

s2
(5.14)

and the 1-loop results (in D = 4 − 2ε dimensions), provided in the form (5.12) and in
the MS-scheme, are given as follows:
For the IR-divergences, the second order pole in εIR is found to be〈

M†
treeM1L,ren

〉
1/ε2IR

= −µ4ε
0

e6

2π2

t2 + u2

s2
1

ε2IR
(5.15)
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whereas the simple pole in εIR reads as

〈
M†

treeM1L,ren

〉
1/εIR

= −µ4ε
0

e6

4π2

{
t2 − 4 t u+ u2

s2
− 2

t2 + u2

s2

[
log

(
− s

µ2
0

)

+ log

(
− t

µ2
0

)
− log

(
− u

µ2
0

)]}
1

εIR

(5.16)

and the new divergent quantum correction to the simple pole in εIR is given by

∆IR

〈
M†

treeM1L,ren

〉
1/εIR

= 0 (5.17)

The finite 1-loop result for the considered scattering process is provided by

〈
M†

treeM1L,ren

〉
fin

= µ4ε
0

e6

2π2

{
(7 π2 − 50) t2 + 36 t u− (5 π2 + 50)u2

12 s2

+
2 t2 − 2 t u+ u2

s2
log

(
− s

µ2
0

)
+

2 t+ u

2 s
log

(
− t

µ2
0

)
− t+ 2u

2 s
log

(
− u

µ2
0

)
− u2

s2
log2

(
− s

µ2
0

)
+
t2 − u2

4 s2
log2

(
− t

µ2
0

)
+
t2 − u2

4 s2
log2

(
− u

µ2
0

)
− 3 t2 + u2

2 s2
log

(
− s

µ2
0

)
log

(
− t

µ2
0

)
+
t2 + 3u2

2 s2
log

(
− s

µ2
0

)
log

(
− u

µ2
0

)}

(5.18)

whereas the new finite quantum correction emerging from UV-divergences is found to
be

∆UV

〈
M†

treeM1L,ren

〉
fin

= 0 (5.19)

and the new finite quantum correction arising from IR-divergences is given by

∆IR

〈
M†

treeM1L,ren

〉
fin

= 0 (5.20)

Remark.

(i) It can be seen that there are no new quantum corrections due to QSI at the 1-loop
level in the case of vanishing Yukawa and scalar couplings, i.e. yf ≡ 0 and λ ≡ 0
at tree-level.

(ii) The result for
〈
M†

treeM1L,ren

〉
given above in (5.15) to (5.20) agrees with the

1-loop result provided in [3]. In [3] regular massless QED and here, in the present
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case, QSI QED with vanishing Yukawa and scalar couplings, i.e. yf ≡ 0 and
λ ≡ 0 at tree-level, has been considered. These two theories only differ in the
kinetic term of the Dilaton and the Dilaton-dependent Renormalisation function
which are necessary in the QSI theory. Due to vanishing Yukawa couplings the
Dilaton does not couple to the fermions directly, but only to the photon via the
kinetic term of the photon, as can be seen in (4.29). However, such purely evan-
escent terms will ultimately not contribute to muon production at the 1-loop
level because there are only 2 new (and purely evanescent) diagrams contribut-
ing to this scattering process, one with a Dilaton loop starting and ending at
the same vertex at the photon propagator and one with a half Dilaton - half
photon loop in the photon propagator. The first of these new diagrams is pro-
portional to (ε + 3ε2 + O(ε3))A0(0) = 0 and the second one is proportional to
(ε2 + 2ε3 + O(ε4))B0(s, 0, 0) ∼ (ε2 + 2ε3 + O(ε4)) 1/εUV → 0, as ε → 0, and
thus non of the new diagrams give rise to a new quantum correction. Hence, new
quantum corrections due to QSI are not expected to arise at the 1-loop level in the
present case. For this reason, it is expected that both theories provide the same
result for muon production at the 1-loop level, and thus the agreement with the
results in [3] serves as a consistency check for the Mathematica algorithm used to
determine the amplitudes in this chapter.

(iii) The theory (4.28) with yf ≡ 0 and λ ≡ 0 at tree-level represents a minimal QSI
QED, and thus is indeed closest to a regular massless QED.

5.2.2. Muon Production in massless QSI QED with yf 6= 0 and λ ≡ 0

Continuing with the second scenario (ii), the tree-level result (in 4 dimensions) is given
by 〈

|M|2
〉
tree

= 2 e4
t2 + u2

s2
+ y2e y

2
µ

(5.21)

and the 1-loop results (in D = 4 − 2ε dimensions), provided in the form (5.12) and in
the MS-scheme, are given as follows:
For the IR-divergences, the second order pole in εIR is found to be〈

M†
treeM1L,ren

〉
1/ε2IR

= −µ4ε
0

e2

4π2

(
2 e4

t2 + u2

s2
+ y2e y

2
µ

)
1

ε2IR
(5.22)

whereas the simple pole in εIR reads as〈
M†

treeM1L,ren

〉
1/εIR

=− µ4ε
0

32π2

{
8 e6

t2 − 4 t u+ u2

s2
− 2 e4

(
y2e + y2µ

) t2 + u2

s2

+ 12 e2 y2e y
2
µ − y4e y2µ − y2e y4µ

− 8

(
2 e6

t2 + u2

s2
+ e2 y2e y

2
µ

)[
log

(
− s

µ2
0

)
+ log

(
− t

µ2
0

)
− log

(
− u

µ2
0

)]}
1

εIR

(5.23)
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and the new divergent quantum correction to the simple pole in εIR is given by

∆IR

〈
M†

treeM1L,ren

〉
1/εIR

= − µ
4ε
0

π2
e2 y2e y

2
µ

1

εIR
(5.24)

The finite 1-loop result for the considered scattering process is provided by

〈
M†

treeM1L,ren

〉
fin

=
µ4ε
0

24 π2

[
e6

(7 π2 − 50) t2 + 36 t u− (5π2 + 50)u2

s2

− 3 e4
(
y2e + y2µ

) t u
s2
− 12− π2

2
e2 y2e y

2
µ

− 3 y2e y
2
µ

(
3 y2e + 3 y2µ + 2 y2τ

) ]

+
µ4ε
0

16 π2

[
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s2
− e4

(
y2e + y2µ

) t2 + u2
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2
µ

t2 − u2

s2
+ y2e y

2
µ

(
3 y2e + 3 y2µ + 2 y2τ
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+
µ4ε
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s
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− e2 y2e y2µ

3 t+ u

s
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− u
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)

− µ4ε
0

8π2

[
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s2
+ e2 y2e y

2
µ

]
log2
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− s

µ2
0

)

+
µ4ε
0

32 π2

[
4 e6

t2 − u2

s2
− e2 y2e y2µ

]
log2

(
− t

µ2
0

)

+
µ4ε
0

32 π2

[
4 e6

t2 − u2

s2
+ e2 y2e y

2
µ

]
log2

(
− u

µ2
0

)

− µ4ε
0

16π2

[
4 e6

3 t2 + u2

s2
+ 3 e2 y2e y

2
µ

]
log

(
− s

µ2
0

)
log

(
− t

µ2
0

)

+
µ4ε
0

16 π2

[
4 e6

t2 + 3u2

s2
+ 3 e2 y2e y

2
µ
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log
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− s

µ2
0
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log
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− u

µ2
0
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(5.25)

whereas the new finite quantum correction emerging from UV-divergences is found to
be

∆UV

〈
M†

treeM1L,ren

〉
fin

= − µ4ε
0

16 π2
y2e y

2
µ

(
7 y2e + 7 y2µ + 4 y2τ

) (5.26)
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and the new finite quantum correction arising from IR-divergences is given by

∆IR

〈
M†

treeM1L,ren

〉
fin

=
µ4ε
0

16 π2

[
2 e4

(
y2e + y2µ

) t2 + u2

s2

− 24 e2 y2e y
2
µ + 3 y2e y

2
µ

(
y2e + y2µ

) ]

+
µ4ε
0

π2
e2 y2e y

2
µ

[
log

(
− s

µ2
0

)
+ log

(
− t
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0

)
− log

(
− u

µ2
0

)]
− µ4ε

0

5

2π2
e2 y2e y

2
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(5.27)

Remark.
(i) In the case of non-vanishing Yukawa couplings, i.e. yf 6= 0 and λ ≡ 0 at tree-level,

there are not only new finite but also new divergent quantum corrections due to
evanescent interactions, i.e. as a result of QSI, which can be seen in (5.24), (5.26)
and (5.27).

(ii) The new divergent quantum correction (5.24) arises from the second order pole
in εIR, i.e. from 1/ε2IR, and an evanescent term ∼ ε cancelling just one power of
εIR. This new quantum correction is particularly interesting as it changes the IR-
divergence structure of the scattering process by introducing a new IR-divergence
that ultimately needs to be cancelled at the level of cross sections. This will be
discussed in more detail in the last section of this chapter. The emergence of this
new divergent quantum correction in the QSI theory and its implications for the
IR-finiteness of cross sections was the main motivation for considering the massless
limit despite non-vanishing Yukawa couplings, as discussed at the beginning of this
section, as there is no 1/ε2IR divergence in the massive theory, and thus a new IR-
divergent quantum correction could not have emerged.

(iii) In (5.27), new finite quantum corrections arising from IR-divergences are presen-
ted. The first 3 lines of (5.27) are corrections that have emerged from the simple
IR-pole, i.e. from 1/εIR, and the last line in (5.27) has emerged from the second
order IR-pole, i.e. from 1/ε2IR. It can be seen that IR-divergences, appearing in
scattering processes or decays, can also lead to new (finite) quantum corrections.

(iv) The new finite quantum correction arising from the 1/εUV divergence is given in
(5.26). Such new quantum corrections emerging from UV-divergences are concep-
tually not new in QSI theories.

(v) All new quantum corrections, given in (5.24), (5.26) and (5.27), are suppressed by
very small Yukawa couplings. In particular, in the present theory one finds

yf =
mf

w
∼ mf

MPl

∼


10−22, f = e

10−19, f = µ

10−18, f = τ

(5.28)
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assuming w = 〈σ〉 ∼MPl ∼ 1018GeV. Hence, all new quantum corrections due to
QSI are (indirectly) suppressed by the VEV of the Dilaton.

(vi) The scattering amplitude has also been calculated in the massive theory, i.e. the
case where the masses have not been neglected. In this case there is indeed no
second order IR-pole, and thus there is no new divergent quantum correction due
to QSI, such as (5.24). For this reason, the massive case is less interesting for the
next section, and therefore has not been discussed in detail in this thesis.

(vii) The same scattering process has also been considered in the QSI QED with toy
model Higgs sector presented in section 4.3. There the scalar sector is similar to
that of the quantum scale invariant Standard Model provided in chapter 6 and the
Yukawa couplings are given by yf =

√
2mf/v. Thus, the Yukawa couplings have

the same values as in the "usual" Standard Model. However, it turned out that
again all new quantum corrections due to QSI are suppressed by the VEV of the
Dilaton. In particular, they are suppressed by positive powers of χ0 = v/w.

5.3. IR-Divergences
As mentioned in section 5.1 and explicitly shown in section 5.2, scattering amplitudes
are UV-finite after Renormalisation but still IR-divergent. These IR-divergences have to
cancel at the level of cross sections, i.e. physical observables must be UV- and IR-finite
[8, 32]. In particular, in a scattering process beyond tree-level, as considered above,
one also needs to consider real emission graphs, i.e. final (and sometimes initial) state
radiation, as discussed in [32]. According to the Bloch-Nordsieck and the Kinoshita-Lee-
Nauenberg theorem, all IR-divergences in the virtual and real corrections to the cross
section cancel each other at a given order of the perturbation theory when they are
summed over [8, 32], and thus one obtains an IR-finite result for the cross section.

In subsection 5.2.2, it has been shown that new IR-divergent quantum corrections
can emerge due to QSI, and thus change the IR-divergence structure of the scattering
amplitude. Therefore, the question arises whether such new IR-divergences also cancel
to ultimately give rise to finite cross sections. For this reason, a conjecture about new
finite and divergent quantum corrections arising from evanescent interactions cancelling
IR-divergences is provided in this section and afterwards exemplarily proven for muon
production at the 1-loop level in a massless QSI QED with yf 6= 0 and λ ≡ 0 at tree-level.

Conjecture 5.1 (IR-Divergences in the context of Quantum Scale Symmetry).
All new divergent and finite quantum corrections arising from IR-divergences and evan-
escent interactions, introduced by the dynamical Renormalisation function in a quantum
scale invariant theory, cancel together with the regular IR-divergences when summing
over virtual and real corrections to a cross section or decay width at a given order of the
perturbation theory.
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Remark.

(i) Conjecture 5.1 ensures that physical observables, such as cross sections, remain
finite in a quantum scale invariant theory even if the IR-divergence structure is
changed by new divergent quantum corrections emerging from IR-divergences and
evanescent interactions.

(ii) Moreover, also new finite quantum corrections arising from evanescent interactions
cancelling IR-divergences are ultimately cancelled at the level of cross sections.
Hence, only such new finite quantum corrections that emerge from UV-divergences
will finally contribute to physical observables, such as cross sections, as new correc-
tions introduced by the Renormalisation function in a theory with spontaneously
broken quantum scale symmetry.

(iii) The idea behind Conjecture 5.1 and the reason for considering it to be true is the
following: Contributions from real emission graphs have the same IR-divergences
but with opposite sign as the virtual contributions from the corresponding loop
diagrams in DReg-regularised theories at every order of the perturbation theory
leading to the cancellation of all IR-divergences at the level of cross sections, as
discussed above. In SIDReg-regularised theories, i.e. theories with spontaneously
broken QSI, new divergent and finite quantum corrections can arise from these
IR-divergences and evanescent interactions, as mentioned in Conjecture 5.1. If the
evanescent interactions in real emission graphs are the same as in the corresponding
loop diagrams, all of these new divergent and finite quantum corrections cancel
after summing over virtual and real contributions, as conjectured, because the
IR-divergences have opposite signs. There is no reason to think that evanescent
interactions in real emission graphs differ from those in the corresponding loop
diagrams as the same Feynman rules are used to derive the diagrams and the IR-
divergences are the same (with opposite sign), which means that it is reasonable
to think that the same interaction terms with the same evanescent corrections
contribute to the loop diagrams and the real emission graphs.

In the following, Conjecture 5.1 will exemplarily be proven. It is important to note
that this does not represent a rigorous prove that holds in a generic theory to all orders
of the perturbation theory, however, is sufficient to illustrate the idea of Conjecture 5.1
and show that it is true for the considered case.

First, Conjecture 5.1 is trivially satisfied for massless QSI QED with λ ≡ 0 and yf ≡ 0
at tree-level, i.e. scenario (i) in section 5.2. The reason for this is that in this case there
are no new quantum corrections at all, as shown in subsection 5.2.1.

Now, it will be shown that Conjecture 5.1 is also satisfied for massless QSI QED
with yf 6= 0 and λ ≡ 0 at tree-level, i.e. scenario (ii) in section 5.2. However, for
simplicity only the 1-loop muon vertex corrections contributing to the e− e+ −→ µ− µ+

scattering process are considered, as done in [32] for regular massless QED, and not
the full scattering amplitude. Therefore, only final state real emission needs to be
considered to cancel IR-divergences at the level of cross sections. Since considering
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only the 1-loop muon vertex corrections provides a scattering amplitude that admits
the same structure as the full scattering amplitude, i.e. with non-vanishing second
order and simple pole in εIR as well as new divergent and finite quantum corrections,
it is sufficient to restrict the following analysis to the 1-loop muon vertex corrections
in order to show the validity of Conjecture 5.1 in the present case. In particular, all
Feynman diagrams contributing to the e− e+ −→ µ− µ+ scattering process at tree-level
are provided in (F.1), whereas all considered 1-loop diagrams, i.e. diagrams with 1-loop
muon vertex corrections, are illustrated in (F.2) and (F.3) in section F.1 of the appendix.
In addition to these diagrams, one also needs to consider the muon Residue contribution,
i.e. M(1)

Res,µ = δR
(1)
µ Mtree, as well as the 1-loop counterterm diagrams containing the

γµµ - and the Dµµ - counterterm for the UV-Renormalisation. In order to cancel the
IR-divergences at the level of cross sections, the tree-level cross sections for the scattering
processes e− e+ −→ µ− µ+ γ and e− e+ −→ µ− µ+D, i.e. final state real emission graphs,
need to be considered, as mentioned above. The tree-level Feynman diagrams for the
scattering processes e− e+ −→ µ− µ+ γ are illustrated in (F.4) and (F.5), whereas the
tree-level Feynman diagrams for the scattering process e− e+ −→ µ− µ+D are shown
in (F.6) and (F.7) in section F.1 of the appendix. Further, note that in the following
Feynman gauge ξ = 1 is chosen.

Remark. In the following, during the derivation and in intermediate steps, factors of
µnε0 , for some n ∈ Z, are suppressed for readability but are implicitly still present and
will explicitly be shown only in the final results for the cross sections.

In order to calculate the cross sections for the above described scattering processes
e− e+ −→ χ∗ −→ X, where only virtual and real corrections to the muon are considered,
it is useful to note that these cross sections factorise into e− e+ −→ χ∗ and χ∗ −→ X,
where χ ∈ {γ,D} and X ∈ {µ− µ+, µ− µ+ γ, µ− µ+D}. This has already been shown
for regular massless QED in [32], however, it needs to be shown for the present case
with non-vanishing Yukawa couplings, i.e. with 2 mediator particles {γ,D}. The reason
for this is that in principle there are interference terms between photon and Dilaton
mediated diagrams. Hence, it is useful to consider the following Lemma first.

Lemma 5.1.
The spin-averaged interference between the electron current coupling to a photon Eµ

e :=
v(p2) γ

µ u(p1) and the electron current coupling to a Dilaton Ey := v(p2)u(p1) vanishes.

Proof.〈
Eµ
e E

†
y

〉
=

1

4

∑
spins

Eµ
e E

†
y =

1

4

∑
spins

v(p2) γ
µ u(p1)u(p1) v(p2) =

1

4
Tr
[
/p2 γ

µ
/p1

]
= 0

(5.29)

and analogously for
〈
E†
e,µEy

〉
= 0.

Now, consider the factorisation of the cross sections.
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Proposition 5.1 (Factorisation of the Cross Section).
Considering a quantum scale invariant QED with yf 6= 0 but λ ≡ 0 at tree-level with
Lagrangian (4.29). The cross section for the scattering process e− e+ −→ µ− µ+, at
tree-level and for 1-loop muon vertex corrections, factorises as described above, and thus
may be written as

σk (e e→ µµ)

= σk (e e→ γ∗ → µµ) + σk (e e→ D∗ → µµ)

=
e2

2Q3

D − 2

D − 1
Γk (γ

∗ → µµ) +
(
1 + ε+ ε2 +O

(
ε3
))2 y2e

2Q3
Γk (D

∗ → µµ)

(5.30)

where k ∈ {tree, 1Lµ}, Q =
√
s is the C.o.M. energy and Γk are the corresponding decay

widths. Further, the cross section for the scattering process e− e+ −→ µ− µ+ χ, where
χ ∈ {γ,D}, at tree-level factorises analogously, and thus may be written as

σtree (e e→ µµχ) = σtree (e e→ γ∗ → µµχ) + σtree (e e→ D∗ → µµχ)

=
e2

2Q3

D − 2

D − 1
Γtree (γ

∗ → µµχ)

+
(
1 + ε+ ε2 +O

(
ε3
))2 y2e

2Q3
Γtree (D

∗ → µµχ)

(5.31)

Proof.
Starting with the scattering process e− e+ −→ µ− µ+ χ and equation (5.31). The tree-
level scattering amplitude for e− e+ −→ µ− µ+ γ, with contributing Feynman diagrams
(F.4) and (F.5), is given by

iMtree

(
e− e+ → µ− µ+ γ

)
= i

e2

Q2
v(p2) γµ u(p1)u(k1)S

µν
e v(k2) ε

∗
ν

+ i
(
1 + ε+ ε2 +O

(
ε3
)) e ye

Q2
v(p2)u(p1)u(k1)S

ν
y v(k2) ε

∗
ν

(5.32)

with

Sµνe :=− e

[
γν

/k1 + /kF
(k1 + kF )

2 γ
µ − γµ

/k2 + /kF
(k2 + kF )

2 γ
ν

]

+ 2
(
ε+ 2 ε2 +O

(
ε3
)) yµ

e

ηµν kF · q + kνF q
µ − kµF qν

w (k1 + k2)
2

Sνy :=− 2
(
ε+ ε2 +O

(
ε3
))
γρ
ηνρ kF · (k1 + k2) + kνF (k1 + k2)

ρ − kρF (k1 + k2)
ν

w (k1 + k2)
2

+
(
1 + ε+ ε2 +O

(
ε3
))
yµ

[
γν

/k1 + /kF
(k1 + kF )

2 −
/k2 + /kF

(k2 + kF )
2 γ

ν

]
(5.33)

where the specific kinematic of such processes is provided in (F.8) to (F.12) in section
F.1 of the appendix. Hence, the tree-level cross section for e− e+ −→ µ− µ+ γ with
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scattering amplitude (5.32) is provided by

σtree
(
e−e+ → µ−µ+γ

)
=

1

2Q2

∫
dΦ3

〈∣∣Mtree

(
e− e+ → µ− µ+ γ

)∣∣2〉
=

e4

2Q6
Lµνe Xe,µν +

(
1 + ε+ ε2 +O

(
ε3
))2 e2 y2e

2Q6
LyXy

(5.34)

where interference terms between photon and Dilaton mediated contributions vanish due
to Lemma 5.1 and with

Lµνe :=
1

4

∑
spins

v(p2) γ
µ u(p1)u(p1) γ

ν v(p2) =
1

4
Tr
[
/p2 γ

µ
/p1 γ

ν
]

= pµ1 p
ν
2 + pν1 p

µ
2 −

1

2
Q2 ηµν

Xµν
e :=

∫
dΦ3

∑
r,s,t

ur(k1)S
µα
e vs(k2) vs(k2)S

νβ

e ur(k1) ε
∗
t,α εt,β

= −
∫
dΦ3 Tr

[
/k1 S

µα
e /k2 S

ν

e,α

]
(5.35)

where Se,µν := γ0 S
†
e,µν γ

0, and analogously for any other matrix, as well as

Ly :=
1

4

∑
spins

v(p2)u(p1)u(p1) v(p2) =
1

4
Tr
[
/p2 /p1

]
= p1 · p2 =

Q2

2

Xy :=

∫
dΦ3

∑
r,s,t

ur(k1)S
µ
y vs(k2) vs(k2)S

ν

y ur(k1) ε
∗
t,µ εt,ν

= −
∫
dΦ3 Tr

[
/k1 S

µ
y /k2 Sy,µ

]
(5.36)

Note further that qµXµν
e = 0 due to the Ward identity of the mediating photon and that

Xµν
e is a Lorentz-covariant function only of qµ as it is integrated over the other momenta

[32], and thus must have the form

Xµν
e =

(
qµ qν − q2 ηµν

)
Xe(q

2) (5.37)

Using (5.37) and the explicit form of Lµνe in (5.35), one obtains

Lµνe Xe,µν = −
1

2

D − 2

D − 1
Q2 ηµν Xe,µν (5.38)

Now, considering the decay γ∗ −→ µµ γ and its explicit amplitude

iMtree (γ
∗ → µµ γ) = −i e u(k1)Sµνe v(k2) ε

∗
ν εµ (5.39)

one finds

Γtree (γ
∗ → µµ γ) =

1

2Q

∫
dΦ3

∑
r,s,t1,t2

∣∣∣Mtree (γ
∗ → µµ γ)

∣∣∣2 = − e2

2Q
ηµν Xe,µν (5.40)

88



5.3. IR-Divergences

and analogously for D∗ −→ µµ γ

iMtree (D
∗ → µµ γ) = i e u(k1)S

µ
y v(k2) ε

∗
µ (5.41)

Γtree (D
∗ → µµ γ) =

1

2Q

∫
dΦ3

∑
r,s,t

∣∣∣Mtree (D
∗ → µµ γ)

∣∣∣2 = e2

2Q
Xy (5.42)

Hence, due to Lemma 5.1 the cross section for e− e+ −→ µ− µ+ γ can be partitioned into
one photon and one Dilaton mediated cross section, as shown in (5.34), and then due to
the results (5.35) to (5.42) these two cross sections can be factorised and expressed in
terms of the corresponding decay widths, i.e.

σtree (e e→ µµ γ) = σtree (e e → γ∗ → µµ γ) + σtree (e e→ D∗ → µµ γ)

=
e2

2Q3

D − 2

D − 1
Γtree (γ

∗ → µµ γ)

+
(
1 + ε+ ε2 +O

(
ε3
))2 y2e

2Q3
Γtree (D

∗ → µµ γ)

(5.43)

which is exactly (5.31) for χ = γ. Analogously, following the same steps as above one
finds that (5.31) also holds exactly for χ = D, i.e. the scattering process e−e+ → µ−µ+D
with contributing Feynman diagrams (F.6) and (F.7).

Continuing with the scattering process e− e+ −→ µ− µ+ and equation (5.30). At tree-
level the diagrams (F.1) contribute to this scattering process, and at the 1-loop level
only 1-loop muon vertex corrections are considered and provided in (F.2) for photon
mediated as well as in (F.3) for Dilaton mediated contributions. In both cases the
electron currents are exactly the same as before, and thus Lemma 5.1 can still be used
yielding

σtree
(
e−e+ → µ−µ+

)
=

1

2Q2

∫
dΦ2

〈∣∣Mtree

(
e− e+ → µ− µ+

)∣∣2〉
=

e4

2Q6
Lµνe Ye,µν +

(
1 + ε+ ε2 +O

(
ε3
))2 e2 y2e

2Q6
Ly Yy

(5.44)

σ1L,µ
(
e−e+ → µ−µ+

)
=

1

2Q2

∫
dΦ2

〈∣∣M (
e− e+ → µ− µ+

)∣∣2〉
1L,µ

=
e4

2Q6
Lµνe Ze,µν +

(
1 + ε+ ε2 +O

(
ε3
))2 e2 y2e

2Q6
Ly Zy

(5.45)

where
〈
|M|2

〉
1L,µ

as in (5.11) containing only 1-loop muon vertex corrections. Hence,
the cross section can again be partitioned into one photon and one Dilaton mediated
cross section. Now, following the same steps as above, one finds

Γtree (γ
∗ → µµ) = − e2

2Q
ηµν Ye,µν , Γtree (D

∗ → µµ) =
e2

2Q
Yy

Γ1L,µ (γ
∗ → µµ) = − e2

2Q
ηµν Ze,µν , Γ1L,µ (D

∗ → µµ) =
e2

2Q
Zy

(5.46)
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Noting that (5.37), and thus (5.38) analogously hold for Y µν
e and Zµν

e , one ultimately
arrives at (5.30) for σtree (e−e+ → µ−µ+) and σ1L,µ (e

−e+ → µ−µ+).
Remark.
Calculating the cross sections via the associated decay widths simplifies the evaluation
of the phase space integrals. In the case of e− e+ −→ µ− µ+ it is useful to note that there
is no angular dependence in the spin-summed γ∗ −→ µµ as well as the spin-summed
D∗ −→ µµ [32], and thus the 2 body phase space integral can trivially be evaluated as
in (F.13). Hence, for the considered 1-loop contributions

Γ1L,µ (γ
∗ → µµ) =

1

2Q

∫
dΦ2 2Re

(∑
r,s,t

M†
treeM1Lµ,ren (γ

∗ → µµ)

)

=
1

2Q

(
4 π

Q2

) 4−D
2 2−D
√
π Γ
(
D−1
2

) 2Re(∑
r,s,t

M†
treeM1Lµ,ren (γ

∗ → µµ)

) (5.47)

and similarly for Γ1L,µ (D
∗ → µµ) as well as the tree-level contributions.

Using s = Q2, the tree-level cross section, in 4 dimensions, is provided by

σtree (ee→ µµ) =
e4

12 π s
+
y2e y

2
µ

16 π s
(5.48)

For the considered 1-loop contributions to the cross section as well as for the 2 −→ 3
cross sections, the result will be given in a similar form as in (5.12), i.e.

σk = σ
1/ε2IR
k + σ

1/εIR
k +∆IR σ

1/εIR
k + σfin

k +∆UV σ
fin
k +∆IR σ

fin
k +O (ε) (5.49)

Thus, the 1-loop cross section for e− e+ −→ µ− µ+, containing only 1-loop muon vertex
corrections, in the MS-scheme, i.e. having used (3.23), may then be given as

σ
1/ε2IR
1L,µ (ee→ µµ) = − µ2ε

0

192 π3 s

(
4 e6 + 3 e2 y2e y

2
µ

) 1

ε2IR
(5.50)

σ
1/εIR
1L,µ (ee→ µµ) =− µ2ε

0

2304π3 s

[
104 e6 − 12 e4 y2µ + 126 e2 y2e y

2
µ − 9 y2e y

4
µ

− 24
(
4 e6 + 3 e2 y2e y

2
µ

)
log

(
s

µ2
0

)]
1

εIR

(5.51)

∆IR σ
1/εIR
1L,µ (ee→ µµ) =− µ2ε

0

16π3 s
e2 y2e y

2
µ

1

εIR
(5.52)

σfin
1L,µ (ee→ µµ) =

µ2ε
0

3456π3 s

[(
60π2 − 464

)
e6 + 30 e4 y2µ

+ 9
(
5 π2 − 48

)
e2 y2e y

2
µ − 27 y2e y

4
µ

]
+

µ2ε
0

2304π3 s

[
208 e6 − 24 e4 y2µ + 198 e2 y2e y

2
µ + 9 y2e y

4
µ

]
log

(
s

µ2
0

)
− µ2ε

0

96π3 s

[
4 e6 + 3 e2 y2e y

2
µ

]
log2

(
s

µ2
0

)
(5.53)
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∆UV σ
fin
1L,µ (ee→ µµ) =− 3µ2ε

0

128π3 s
y2e y

4
µ

(5.54)

∆IR σ
fin
1L,µ (ee→ µµ) =

µ2ε
0

384 π3 s

[
4 e4 y2µ − 84 e2 y2e y

2
µ + 9 y2e y

4
µ

]
+

µ2ε
0

8π3 s
e2 y2e y

2
µ log

(
s

µ2
0

)
− 5µ2ε

0

32 π3 s
e2 y2e y

2
µ

(5.55)

Since the 3 body phase space integral cannot be evaluated as trivial as the 2 body phase
space integral above, the spin-summed squared amplitudes for the decays γ∗ → µµχ
and D∗ → µµχ, where χ ∈ {γ,D}, are considered first. Using the definitions of energy
fractions xi, i ∈ {1, 2, F}, in the C.o.M. frame in (F.10), one finds

∑
r,s,t1,t2

∣∣Mtree (γ
∗ → µµγ)

∣∣2 = 4 e4 (D − 2)
x21 + x22 +

D−4
2
x2F

(1− x1) (1− x2)

+ 2
(
ε+ 2ε2 +O(ε3)

)2
y2µ
Q2

w2
(D − 2)

x2F
1− xF

(5.56)

∑
r,s,t

∣∣Mtree (D
∗ → µµγ)

∣∣2
= 2

(
1 + ε+ ε2 +O(ε3)

)2
e2 y2µ

(D − 2)x2F + 4 (1− xF )
(1− x1) (1− x2)

+ 2
(
ε+ ε2 +O(ε3)

)2
e2
Q2

w2

(D − 2)x2F + 4x22 − 4x2 (2− xF ) + 4 (1− xF )
1− xF

(5.57)

∑
r,s,t

∣∣Mtree (γ
∗ → µµD)

∣∣2
= 2

(
1 + ε+ ε2 +O(ε3)

)2
e2 y2µ

(D − 2)x2F
(1− x1) (1− x2)

+ 2
(
ε+ ε2 +O(ε3)

)2
e2
Q2

w2

D (2− xF )2 + 4x22 − 4x2 (2− xF )− 2 (2− 2xF + x2F )

1− xF
(5.58)∑

r,s

∣∣Mtree (D
∗ → µµD)

∣∣2 = 2
(
1 + 2ε+ 3ε2 +O(ε3)

)2
y4µ

(x1 − x2)2

(1− x1) (1− x2)

+ 2
(
ε+ 2ε2 +O(ε3)

)2
y2µ
Q2

w2
(1− xF )

(5.59)

All of the above expressions either are already in the form of one of the integrands
provided in (F.16) to (F.24) (without the factor (F.15) coming from the 3 body phase
space integral) or can be rewritten as a combination of these integrands using the relation
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(F.12), e.g.

(x1 − x2)2

(1− x1) (1− x2)
=

2

D − 2

x21 + x22 +
D−4
2
x2F

(1− x1) (1− x2)
− 4

D − 4

D − 2

1

1− x2

+ 2
D − 4

D − 2

x2 (2− x1)
(1− x1) (1− x2)

− 2
x1 x2

(1− x1) (1− x2)
(D − 2)x2F

(1− x1) (1− x2)
= 2

x21 + x22 +
D−4
2
x2F

(1− x1) (1− x2)
+ 8

1

1− x2
− 4

x2 (2− x1)
(1− x1) (1− x2)

(5.60)

and analogously for the other expressions. Using the integrals in (F.16) to (F.24), the
3 body phase space integral (F.14) over the spin-summed squared amplitudes (5.56) to
(5.59) can explicitly be evaluated to obtain the corresponding decay widths and using
(5.31) in Proposition 5.1 one ultimately obtains the tree-level cross sections for the
scattering processes e− e+ −→ µ− µ+ χ, where χ ∈ {γ,D}. Thus, the tree-level cross
section for e− e+ −→ µ− µ+ γ, written in the form (5.49), then reads as follows

σ
1/ε2IR
tree (ee→ µµγ) =

µ2ε
0

192 π3 s

(
4 e6 + 3 e2 y2e y

2
µ

) 1

ε2IR
(5.61)

σ
1/εIR
tree (ee→ µµγ) =

µ2ε
0

1152 π3 s

[
52 e6 + 63 e2 y2e y

2
µ

− 12
(
4 e6 + 3 e2 y2e y

2
µ

)
log

(
s

µ2
0

)]
1

εIR

(5.62)

∆IR σ
1/εIR
tree (ee→ µµγ) =

µ2ε
0

16π3 s
e2 y2e y

2
µ

1

εIR
(5.63)

σfin
tree (ee→ µµγ) =− µ2ε

0

6912π3 s

[
4
(
30 π2 − 259

)
e6 + 9

(
10π2 − 147

)
e2 y2e y

2
µ

]
− µ2ε

0

576 π3 s

[
52 e6 + 63 e2 y2e y

2
µ

]
log

(
s

µ2
0

)
+

µ2ε
0

96 π3 s

[
4 e6 + 3 e2 y2e y

2
µ

]
log2

(
s

µ2
0

) (5.64)

∆UV σ
fin
tree (ee→ µµγ) = 0 (5.65)

∆IR σ
fin
tree (ee→ µµγ) =

7µ2ε
0

32 π3 s
e2 y2e y

2
µ −

µ2ε
0

8 π3 s
e2 y2e y

2
µ log

(
s

µ2
0

)
+

5µ2ε
0

32π3 s
e2 y2e y

2
µ

(5.66)

Similarly, the tree-level cross section for e− e+ −→ µ− µ+ D is found to be

σ
1/ε2IR
tree (ee→ µµD) = 0 (5.67)

σ
1/εIR
tree (ee→ µµD) = − µ2ε

0

768π3 s

(
4 e4 y2µ + 3 y2e y

4
µ

) 1

εIR
(5.68)
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∆IR σ
1/εIR
tree (ee→ µµD) = 0 (5.69)

σfin
tree (ee→ µµD) =− µ2ε

0

4608π3 s

(
76 e4 y2µ + 117 y2e y

4
µ

)
+

µ2ε
0

384π3 s

[
4 e4 y2µ + 3 y2e y

4
µ

]
log

(
s

µ2
0

) (5.70)

∆UV σ
fin
tree (ee→ µµD) = 0 (5.71)

∆IR σ
fin
tree (ee→ µµD) = − µ2ε

0

384π3 s

(
4 e4 y2µ + 9 y2e y

4
µ

)
(5.72)

Finally, the total cross section is given by

σtotal,µ (ee→ µµ) = σtree (ee→ µµ) + σ1L,µ (ee→ µµ)

+ σtree (ee→ µµγ) + σtree (ee→ µµD) +O
(
α4
i

)
= σtree (ee→ µµ) + σtotal,1Lµ (ee→ µµ) +O

(
α4
i

) (5.73)

where αi are the finestructure constants for e and yi. The full tree-level cross section is
to be found in (5.48), whereas the considered 1-loop contribution in the MS-scheme and
in 4 dimensions is given by

σtotal,1Lµ (ee→ µµ) = σReg
total,1Lµ (ee→ µµ) + ∆UV σtotal,1Lµ (ee→ µµ) (5.74)

with the regular 1-loop contribution

σReg
total,1Lµ (ee→ µµ) =

1

512 π3 s

(
8 e6 − 4 e4 y2µ + 34 e2 y2e y

2
µ − 17 y2e y

4
µ

)
− 1

256π3 s

[
6 e2 y2e y

2
µ − 3 y2e y

4
µ

]
log

(
s

µ2
0

) (5.75)

and the new finite quantum correction that emerged from UV-divergences

∆UV σtotal,1Lµ (ee→ µµ) = − 3

128 π3 s
y2e y

4
µ (5.76)

Thus, the considered 1-loop contribution to cross section (5.74), containing virtual and
real corrections, is UV- and IR-finite, as proposed.

Remark.

(i) As proposed above, the 1-loop cross section for e− e+ −→ µ− µ+, containing only
1-loop muon vertex corrections, contains new finite and divergent quantum cor-
rections arising from IR-divergences as shown in (5.55) and (5.52), respectively.

(ii) The last term in (5.55) and (5.66) emerged from the second order IR-pole, i.e.
from 1/ε2IR, whereas the other terms in (5.55), (5.66) and (5.72) emerge from the
simple IR-pole, i.e. from 1/εIR.
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(iii) The result of the total 1-loop contribution to the cross section, i.e. the order α3
i

contributions containing virtual and real corrections, is partitioned into a regular
contribution (5.75) that also would have been obtained in the DReg-regularised
theory and a new finite contribution (5.76) due to evanescent interactions in the
QSI theory cancelling UV-divergences, i.e. that is only obtained in the SIDReg-
regularised theory. Moreover, the results in (5.75) and (5.76) are given in 4 di-
mensions as they are finite.

(iv) In (5.74) to (5.76) it can be seen that the considered 1-loop contribution to the cross
section of e− e+ −→ µ− µ+ scattering indeed is IR-finite after summing over the
contributing final state real emission contributions. Thus, all IR-divergences, even
the new IR-divergences, cf. (5.52), emerging as a result of evanescent interactions
due to QSI, cancel after summing over the virtual and real corrections to the cross
section. Moreover, all new finite quantum corrections to the cross section arising
from evanescent interactions cancelling IR-divergences, cf. (5.55), cancel as well.
Therefore, only new finite quantum corrections emerging from UV-divergences, cf.
(5.54), remain as new finite contributions to the cross section as shown in (5.76).
Thus, Conjecture 5.1 is true for the present case of QSI QED with non-vanishing
Yukawa couplings.

(v) The remaining new finite quantum correction to the cross section given in (5.76)
is suppressed by Yukawa couplings to the power of 6, and thus is suppressed by
the VEV of the Dilaton to the power of 6 as yf = mf/w in the present theory, cf.
(5.28).

(vi) Taking the limit of vanishing Yukawa couplings, i.e. yi → 0, one obtains

σtotal,µ (ee→ µµ)
∣∣∣
yi→0

=
e4

12 π s
+

e6

64 π3 s
+O

(
α4
)
, (5.77)

and thus exactly reproduces the result provided in [32], as expected.
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In this chapter a complete quantum scale invariant Standard Model is provided. In [13]
only the Higgs potential of a QSI Standard Model has been discussed. The purpose of
this chapter, however, is to discuss the complete Lagrangian of a QSI Standard Model
in full detail, which has not yet been done in the literature so far.

The Lagrangian is formulated in the way that the Renormalisation function µ(σ), but
not the dimensionless gauge coupling, is absorbed into the gauge fields, such that the
gauge fields always have mass dimension 1, as discussed in section 4.1. Hence, for a
generic gauge field Aaµ, one obtains

D = 4: Aaµ −→ Âaµ = g Aaµ = g A
a

µ ⇔ A
a

µ = Aaµ

D = 4− 2ε: Aaµ −→ Âaµ = g µε(σ)Aaµ = g A
a

µ ⇔ A
a

µ = µε(σ)Aaµ
(6.1)

with mass dimensions [Aaµ] = 1 − ε, [Âaµ] = 1 and [A
a

µ] = 1. The QSI Standard Model
Lagrangian is formulated in terms of Aaµ. However, the "overbar" is dropped in the
following for readability, i.e. Aaµ → Aaµ. Note that working with A

a

µ instead of Âaµ has
the advantage that the Lagrangian takes the usual form w.r.t. to the gauge couplings
while it is still BRST invariant, as discussed in chapter 4.

The Lagrangian of the complete QSI Standard Model consists in principle of 4 parts,
the gauge sector, the fermion sector, the Higgs sector and the Yukawa sector. In addition
to that, a gauge-fixing and a ghost sector need to be considered in the quantised theory.
Thus, the Lagrangian is given by

LQSISM,cl = LQSI
Gauge + L

QSI
Fermion + L

QSI
Higgs + L

QSI
Yukawa

LQSISM = LQSISM,cl + LQSI
GF + LQSI

Ghost

(6.2)

6.1. Gauge Field Lagrangian
The gauge field Lagrangian for the QSI Standard Model with rescaled gauge fields, i.e.
the Renormalisation function µ(σ) being absorbed into the gauge fields, may be written
in terms of the corresponding field strength tensors as

LQSI
Gauge = −

1

4
µ−2ε(σ)Ga

µν G
a,µν − 1

4
µ−2ε(σ)W a

µνW
a,µν − 1

4
µ−2ε(σ)Bµν B

µν (6.3)

These field strength tensors of the respective gauge groups of the Standard Model are
given by
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SU(3)c :

Ga
µν = ∂µG

a
ν − ∂ν Ga

µ + gs f
abcGb

µG
c
ν (6.4)

SU(2)L :

W a
µν = ∂µW

a
ν − ∂νW a

µ + gW εabcW b
µW

c
ν (6.5)

U(1)Y :

Bµν = ∂µBν − ∂ν Bµ (6.6)

Hence, the gauge field Lagrangian (6.3) of the QSI Standard Model is then provided by

LQSI
Gauge =−

1

4
µ−2ε(σ)

(
∂µG

a
ν − ∂ν Ga

µ

)2 − 1

4
µ−2ε(σ)

(
∂µW

a
ν − ∂νW a

µ

)2
− 1

4
µ−2ε(σ) (∂µBν − ∂ν Bµ)

2

− gs µ−2ε(σ) fabc ∂µG
a
ν G

b,µGc,ν − gW µ−2ε(σ) εabc ∂µW
a
ν W

b,µW c,ν

− 1

4
g2s µ

−2ε(σ) fabc fadeGb
µG

c
ν G

d,µGe,ν

− 1

4
g2W µ−2ε(σ) εabc εadeW b

µW
c
ν W

d,µW e,ν

(6.7)

Transforming the gauge fields to mass eigenstates

W+
µ =

1√
2

(
W 1
µ − iW 2

µ

)
, W 1

µ =
1√
2

(
W+
µ +W−

µ

)
W−
µ =

1√
2

(
W 1
µ + iW 2

µ

)
, W 2

µ =
i√
2

(
W+
µ −W−

µ

)
Zµ = cwW

3
µ − sw Bµ, W 3

µ = cw Zµ + sw Aµ

Aµ = swW
3
µ + cw Bµ, Bµ = −sw Zµ + cw Aµ

(6.8)

where
sw ≡ sin (ϑw) =

gY√
g2Y + g2W

cw ≡ cos (ϑw) =
gW√

g2Y + g2W

tw ≡ tan (ϑw) =
gY
gW

(6.9)

and
e = sw gW = cw gY =

gY gW√
g2Y + g2W

(6.10)
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the gauge field Lagrangian may finally be written as

LQSI
Gauge =−

1

4
µ−2ε(σ)

(
∂µG

a
ν − ∂ν Ga

µ

)2 − 1

4
µ−2ε(σ) (∂µAν − ∂ν Aµ)2

− 1

4
µ−2ε(σ) (∂µ Zν − ∂ν Zµ)2

− 1

2
µ−2ε(σ)

(
∂µW

+
ν − ∂νW+

µ

) (
∂µW

−
ν − ∂νW−

µ

)
− gs µ

−2ε(σ) fabc∂µG
a
ν G

b,µGc,ν

− i e µ−2ε(σ)
(
∂µAνW

+,νW−,µ − ∂µAνW+,µW−,ν

+ ∂µW
+
ν A

µW−,ν − ∂µW+
ν A

νW−,µ

+ ∂µW
−
ν A

νW+,µ − ∂µW−
ν A

µW+,ν
)

− i gW cw µ
−2ε(σ)

(
∂µ ZνW

+,νW−,µ − ∂µ ZνW+,µW−,ν

+ ∂µW
+
ν Z

µW−,ν − ∂µW+
ν Z

νW−,µ

+ ∂µW
−
ν Z

νW+,µ − ∂µW−
ν Z

µW+,ν
)

− 1

4
g2s µ

−2ε(σ) fabc fadeGb
µG

c
ν G

d,µGe,ν

+
1

2
g2W µ−2ε(σ)

(
W+
µ W

+,µW−
ν W

−,ν −W+
µ W

−,µW+
ν W

−,ν
)

− e2 µ−2ε(σ)
(
AµA

µW+
ν W

−,ν − AµAνW+,µW−,ν
)

− g2W c2w µ
−2ε(σ)

(
Zµ Z

µW+
ν W

−,ν − Zµ ZνW+,µW−,ν
)

+ e gW cw µ
−2ε(σ)

(
Aµ Z

νW+,µW−,ν + Aµ ZνW
+,νW−,µ

− 2Aµ Z
µW+

ν W
−,ν
)

(6.11)

6.2. Fermion Field Lagrangian

The fermion field Lagrangian for the QSI Standard Model is given by

LQSI
Fermion =

∑
ψL

i ψL /DψL +
∑
ψR

i ψR /DψR (6.12)

where
ψL ∈ {LL,j}3j=1 ∪ {QL,j}3j=1

ψR ∈ {νR,j}3j=1 ∪ {lR,j}3j=1 ∪ {uR,j}3j=1 ∪ {dR,j}3j=1

(6.13)
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The covariant derivative acts as follows on the different fermion fields

DµψL =

{(
∂µ − igY Y Bµ − igWW a

µ T
a
W

)
ψL, ψL ∈ {LL,j}3j=1(

∂µ − igY Y Bµ − igWW a
µ T

a
W − igsGa

µ T
a
s

)
ψL, ψL ∈ {QL,j}3j=1

DµψR =

{
(∂µ − igY Y Bµ)ψR, ψR ∈ {νR,j}3j=1 ∪ {lR,j}3j=1(
∂µ − igY Y Bµ − igsGa

µ T
a
s

)
ψR, ψR ∈ {uR,j}3j=1 ∪ {dR,j}3j=1

(6.14)

again with rescaled gauge fields of mass dimension 1 where the Renormalisation function
µε(σ) is absorbed into the gauge field.
Finally, this leads to the following fermion field Lagrangian

LQSI
Fermion =

∑
f

i ψf /∂ ψf

+
∑
f

Qf eAµ ψf γ
µ ψf

+
∑
q

gsG
a
µ ψq,i γ

µ T as,ij ψq,j

+
∑
f

gW
cw

Zµ ψf γ
µ
(
gfV − g

f
A γ5

)
ψf

+
∑
k

1√
2
gW

[
W+
µ νk γ

µ 1

2

(
1− γ5

)
lk +W−

µ lk γ
µ 1

2

(
1− γ5

)
νk

+W+
µ uk γ

µ 1

2

(
1− γ5

)
dk +W−

µ dk γ
µ 1

2

(
1− γ5

)
uk

]

(6.15)

where
f ∈

{
e−, µ−, τ−, νe, νµ, ντ , d, s, b, u, c, t

}
,

q ∈ {d, s, b, u, c, t} ,
k ∈ {1, 2, 3} generation index,

i, j ∈ {1, 2, 3} colour indices
and

gfV =
1

2
I3W,f −Qf s

2
w, gfA =

1

2
I3W,f

Qf =


0, f ∈ {νe, νµ, ντ}
−1, f ∈ {e−, µ−, τ−}
+2

3
, f ∈ {u, c, t}

−1
3
, f ∈ {d, s, b}

I3W,f =

{
−1

2
, f ∈ {e−, µ−, τ−, d, s, b}

+1
2
, f ∈ {νe, νµ, ντ , u, c, t}

Note the following relation between the hypercharge Y , the electric charge Q and T 3
W

Y = Q− T 3
W (6.16)
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6.3. The Higgs Lagrangian
The Higgs Lagrangian for the QSI Standard Model reads as follows

LQSI
Higgs = (DµΦ)

† (DµΦ) +
1

2
(∂µσ) (∂

µσ)− µ2ε(σ)VH (Φ, σ) (6.17)

where

Φ =

(
φ+

φ0

)
=

(
G+

φ+iG0
√
2

)
(6.18)

is the Higgs doublet, with hypercharge YΦ = 1/2, the Higgs-like boson φ = h + v and
the Dilaton σ = D+ w. The covariant derivative acts on the Higgs doublet as

DµΦ =
(
∂µ − igY Y Bµ − igWW a

µ T
a
W

)
Φ (6.19)

again with rescaled gauge fields of mass dimension 1 where the Renormalisation function
µε(σ) is absorbed into the gauge field. The Higgs potential VH is explicitly given by

VH (Φ, σ) =
λφ
3!

(
Φ†Φ

)2
+
λm
2

(
Φ†Φ

)
σ2 +

λσ
4!
σ4

=
λφ
4!
φ4 +

λm
4
φ2 σ2 +

λσ
4!
σ4

+
λφ
3!
φ2G+G− +

λφ
12
φ2
(
G0
)2

+
λm
2
σ2G+G− +

λm
4
σ2
(
G0
)2

+
λφ
3!

(
G+G−)2 + λφ

3!
G+G− (G0

)2
+
λφ
4!

(
G0
)4

≡ V2SM (φ, σ) + VG
(
φ, σ,G0, G±)

(6.20)

where
V2SM (φ, σ) :=

λφ
4!
φ4 +

λm
4
φ2 σ2 +

λσ
4!
σ4 (6.21)

is the potential of the 2 Scalar Model which has extensively been discussed in chapter 2
and appendix C, and

VG
(
φ, σ,G0, G±) := λφ

3!
φ2G+G− +

λφ
12
φ2
(
G0
)2

+
λm
2
σ2G+G− +

λm
4
σ2
(
G0
)2

+
λφ
3!

(
G+G−)2 + λφ

3!
G+G− (G0

)2
+
λφ
4!

(
G0
)4 (6.22)

is the part of the Higgs potential that contains the Goldstone bosons. Thus, as discussed
in section 2.2, the 2 Scalar Model is of great interest for a quantum scale invariant
Standard Model as it is a subset of the Higgs Lagrangian.
Expanding the Lagrangian about the fields VEVs {v, w} and w.r.t. ε, one obtains (C.1)
for Ṽ2SM (φ, σ) = µ2ε(σ)V2SM (φ, σ) as well as
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ṼG
(
φ, σ,G0, G±) = µ2ε(σ)VG

(
φ, σ,G0, G±)

=
1

2
M̃2

G

(
G0
)2

+ M̃2
GG

+G− +
1

2
Ṽ133 h

(
G0
)2

+ Ṽ145 hG+G−

+
1

2
Ṽ233D

(
G0
)2

+ Ṽ245DG+G− +
1

4
Ṽ1133 h2

(
G0
)2

+
1

2
Ṽ1145 h2G+G− +

1

2
Ṽ1233 hD

(
G0
)2

+ Ṽ1245 hDG+G−

+
1

4
Ṽ2233D2

(
G0
)2

+
1

2
Ṽ2245D2G+G− +

1

4!
Ṽ3333

(
G0
)4

+
1

2
Ṽ3345

(
G0
)2
G+G− +

1

4
Ṽ4455

(
G+G−)2 + · · ·

(6.23)

where the ellipsis denotes infinitely many terms of higher orders in scalar fields and with

M̃2
G =M2

G = µ2ε
0

λφ
6
v2
(
1 + 3

λm
λφ

w2

v2

)
Ṽ133 = Ṽ145 = µ2ε

0

λφ
3
v

Ṽ233 = Ṽ245 = µ2ε
0

[
λmw + ε (1 + ε)

(
λmw +

λφ
3

v2

w

)
+O

(
ε3
)]

Ṽ1133 = Ṽ1145 = Ṽ3345 = µ2ε
0

λφ
3

Ṽ1233 = Ṽ1245 = µ2ε
0

[
2

3
λφ

v

w
ε (1 + ε) +O

(
ε3
)]

Ṽ2233 = Ṽ2245 = µ2ε
0

[
λm + ε

(
3λm −

λφ
3

v2

w2

)
+ ε2

(
5λm +

λφ
3

v2

w2

)
+O

(
ε3
)]

Ṽ3333 = µ2ε
0 λφ

Ṽ4455 = µ2ε
0

2

3
λφ

(6.24)

Obviously, the Goldstone mass M̃2
G in (6.24) vanishes if the minimalisation condition

(2.47) of the Higgs potential is used, as expected. Note that the minimalisation condition
of the complete Higgs potential indeed is the same as for the 2 Scalar Model in (2.47).
Further, the Goldstone mass does not obtain ε - corrections, and thus M̃2

G =M2
G.

Hence, the complete Higgs potential in D = 4− 2ε dimensions may be written as

ṼH (Φ, σ) = µ2ε(σ)VH (Φ, σ)

= Ṽ2SM (φ, σ) + ṼG
(
φ, σ,G0, G±)

”= (C.1) + (6.23)”
(6.25)
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Using (6.19), the kinetic term of the Higgs Lagrangian is given by

LQSI
Higgs,kin = (DµΦ)

† (DµΦ) +
1

2
(∂µσ) (∂

µσ)

=
1

2
(∂µh) (∂

µh) +
1

2
(∂µD) (∂µD) +

1

2

(
∂µG

0
) (
∂µG0

)
+
(
∂µG

+
) (
∂µG−)

+
1

8

g2W
c2w

v2 Zµ Z
µ +

1

4
g2W v2W+

µ W
−,µ

+
i

2
gW vW−

µ ∂
µG+ − i

2
gW vW+

µ ∂
µG− +

1

2

gW
cw

v Zµ ∂
µG0

+
1

4

g2W
c2w

v hZµ Z
µ +

1

2
g2W v hW+

µ W
−,µ +

1

2
e gW v G+W−

µ A
µ

+
1

2
e gW v G−W+

µ A
µ − 1

2
e gW

sw
cw

v G+W−
µ Z

µ

− 1

2
e gW

sw
cw

v G−W+
µ Z

µ +
i

2
gW h ∂µG+W−

µ −
i

2
gW h ∂µG−W+

µ

− i

2
gW ∂µhG+W−

µ +
i

2
gW ∂µhG−W+

µ +
1

2

gW
cw

h ∂µG0 Zµ

− 1

2

gW
cw

∂µhG0 Zµ −
1

2
gW ∂µG0G+W−

µ −
1

2
gW ∂µG0G−W+

µ

+
1

2
gW G0 ∂µG+W−

µ +
1

2
gW G0 ∂µG−W+

µ −
i

2
gW

c2w
cw

G+ ∂µG− Zµ

+
i

2
gW

c2w
cw

G− ∂µG+ Zµ − i eG+ ∂µG−Aµ + i eG− ∂µG+Aµ

+
1

4
g2W h2W+

µ W
−,µ +

1

8

g2W
c2w

h2 Zµ Z
µ − 1

2
e gW tw hG

+W−
µ Z

µ

− 1

2
e gW tw hG

−W+
µ Z

µ +
1

2
e gW hG+W−

µ A
µ +

1

2
e gW hG−W+

µ A
µ

+
1

2
g2W G+G−W+

µ W
−,µ +

1

4
g2W

(
G0
)2
W+
µ W

−,µ

+
i

2
e gW twG

0G+W−
µ Z

µ − i

2
e gW twG

0G−W+
µ Z

µ

− i

2
e gW G0G+W−

µ A
µ +

i

2
e gW G0G−W+

µ A
µ +

1

8

g2W
c2w

(
G0
)2
Zµ Z

µ

+
1

4
g2W

c22w
c2w

G+G− Zµ Z
µ + e gW

c2w
cw

G+G− ZµA
µ + e2G+G−AµA

µ

(6.26)

Remark.

(i) The mass terms of the gauge fields are given in the third line after the second
equality in (6.26). Due to the fact that the Renormalisation function is absorbed
into the gauge fields there is no factor of µ2ε

0 in these mass terms. However, as
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discussed in chapter 2, the factor of µ2ε
0 is part of the squared mass definition, such

that the mass has mass dimension 1 even in D = 4− 2ε dimensions. This can be
solved by multiplying with 1 = µ−2ε

0 µ2ε
0 , i.e.

1

8

g2W
c2w

v2 Zµ Z
µ +

1

4
g2W v2W+

µ W
−,µ

= µ−2ε
0 µ2ε

0

1

8

g2W
c2w

v2 Zµ Z
µ + µ−2ε

0 µ2ε
0

1

4
g2W v2W+

µ W
−,µ

= µ−2ε
0

1

2
M̃2

Z Zµ Z
µ + µ−2ε

0 M̃2
W W+

µ W
−,µ

(6.27)

Hence, the squared masses of the gauge fields are

M̃2
Z =M2

Z = µ2ε
0

1

4

g2W
c2w

v2, M̃2
W =M2

W = µ2ε
0

1

4
g2W v2 (6.28)

where both masses have mass dimension [M̃Z ] = [M̃W ] = 1, as intended, and do
not obtain ε - corrections. The other gauge fields are massless.
Further, note that the prefactor µ−2ε

0 in front of the mass terms (6.27) is necessary
in order to be consistent with the kinetic terms of the gauge fields in (6.11) which
also obtain a prefactor of µ−2ε

0 after expanding the Lagrangian in (6.11) about the
VEV of the Dilaton and w.r.t. ε. Thus, the propagators of the gauge fields obtain a
global prefactor of µ−2ε

0 , which is due to the fact that the Renormalisation function
has been absorbed into the gauge fields. Consequently, the whole approach is
consistent w.r.t. the gauge fields, as well as their masses and dimensionality.

(ii) The fourth line after the second equality in (6.26) contains the usual bilinear
(or kinetic) mixing terms between the gauge fields and the associated Goldstone
bosons. Analogous to the usual Standard Model, these terms can be eliminated (at
tree-level) using appropriate gauge fixing conditions in the gauge fixing Lagrangian
as shown in section 6.5.

(iii) The Higgs potential in (6.20) to (6.22) is given in the unbroken phase of the theory,
i.e. in a manifestly scale invariant form. In (C.1) and (6.23), or equivalently in
(6.25), the Higgs potential is given in the broken phase of the theory. The kinetic
part of the Higgs Lagrangian is given in the broken phase of the theory in (6.26).
In order to obtain the kinetic part of the Higgs Lagrangian in a manifestly scale
invariant form, the Lagrangian (6.26) can be used with the replacement h → φ,
D→ σ and v → 0 being used.

(iv) The Higgs Lagrangian can be transformed to mass eigenstates {H,S} analogously
to the 2 Scalar Model discussed in section 2.2, with mass eigenstates given in (2.32)
and mixing angle provided in (2.35), i.e.

H = cβ h− sβ D ⇔ h = cβH + sβ S

S = sβ h+ cβ D ⇔ D = −sβH + cβ S
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6.4. The Yukawa Lagrangian
The Yukawa Lagrangian of the QSI Standard Model is provided by

LQSI
Yukawa = −

∑
i,j

(
µε(σ)Y ′

l,ij L
′
L,iΦ l

′
R,j + µε(σ)Y ′∗

l,ij l
′
R,j Φ

† L′
L,i

+µε(σ)Y ′
d,ij Q

′
L,iΦ d

′
R,j + µε(σ)Y ′∗

d,ij d
′
R,j Φ

†Q′
L,i

+µε(σ)Y ′
u,ij Q

′
L,i Φ̃u

′
R,j + µε(σ)Y ′∗

u,ij u
′
R,j Φ̃

†Q′
L,i

) (6.29)

where flavour eigenstates are marked by a prime, and related to mass eigenstates by the
following unitary transformation

f ′
L,k = U f ∗

L,ikfL,i

f ′
R,k = U f ∗

R,ikfR,i
(6.30)

Further, the Higgs doublet is given in (6.18) and

Φ̃ = i σ2Φ∗ =

(
φ−iG0
√
2

−G−

)
(6.31)

Transforming from flavour to mass eigenstates and using the explicit form of the Higgs
and fermion doublets leads to

LQSI
Yukawa = −

∑
f

(
1√
2
yf µ

ε(σ)φψf ψf − i
√
2 I3W,f yf µ

ε(σ)G0 ψf γ5 ψf

)
−
∑
i

yl,i µ
ε(σ)

(
G+ νi PR li +G− li PL νi

)
−
∑
i,j

[
µε(σ)VCKM,ij G

+ ui

(
yd,j PR − yu,i PL

)
dj

+ µε(σ)V ∗
CKM,ij G

− dj

(
yd,j PL − yu,i PR

)
ui

]
= −

∑
f

(
1√
2
yf µ

ε(σ) v ψf ψf +
1√
2
yf µ

ε(σ)hψf ψf

− i
√
2 I3W,f yf µ

ε(σ)G0 ψf γ5 ψf

)
−
∑
i

yl,i µ
ε(σ)

(
G+ νi PR li +G− li PL νi

)
−
∑
i,j

[
µε(σ)VCKM,ij G

+ ui

(
yd,j PR − yu,i PL

)
dj

+ µε(σ)V ∗
CKM,ij G

− dj

(
yd,j PL − yu,i PR

)
ui

]

(6.32)
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where VCKM = Uu
L

(
Ud
L

)† is the CKM matrix and the fermion masses are given by

m̃f = mf = µε0
1√
2
yf v (6.33)

with f ∈ {e−, µ−, τ−, d, s, b, u, c, t}. The fermion masses do not obtain ε - corrections,
i.e. m̃f = mf . Note that it has been assumed that neutrinos are massless.

6.5. The Gauge Fixing Lagrangian
In order to write down the gauge fixing Lagrangian, appropriate gauge fixing conditions
are needed. Recall that there are bilinear (or kinetic) mixing terms between the gauge
fields {Z,W±} and the Goldstone bosons {G0, G±} in (6.26). These bilinear mixing
terms can be removed (at tree-level) by choosing the following gauge fixing conditions
in D = 4− 2ε dimensions

G̃a
[
Ga
µ

]
= µ−ε(σ) ∂µGa

µ = 0

G̃A [Aµ] = µ−ε(σ) ∂µAµ = 0

G̃Z [Zµ] = µ−ε(σ) ∂µZµ −
1

2
ξZ
gW
cw

µε(σ) v G0 = 0

G̃± [W±
µ

]
= µ−ε(σ) ∂µW±

µ ∓
i

2
ξW gW µε(σ) v G± = 0

(6.34)

The gauge fixing Lagrangian in terms of Nakanishi-Lautrup fields {Ba
G, BA, BZ , B±}may

then be written as

LQSI
GF =

ξG
2
Ba
GB

a
G − µ−ε(σ)Ba

G ∂
µGa

µ

+
ξA
2
B2
A − µ−ε(σ)BA ∂

µAµ

+
ξZ
2
B2
Z − µ−ε(σ)BZ

(
∂µZµ −

1

2
ξZ
gW
cw

µ2ε(σ) v G0

)
+ ξW B+B− − µ−ε(σ)B+

(
∂µW−

µ +
i

2
ξW gW µ2ε(σ) v G−

)
− µ−ε(σ)B−

(
∂µW+

µ −
i

2
ξW gW µ2ε(σ) v G+

)
(6.35)

Obviously, the gauge fixing Lagrangian in this form is formulated in the broken phase
of the theory. Choosing Landau gauge ξG = ξA = ξZ = ξ± = 0, the Lagrangian is given
by

LQSI
GF =− µ−ε(σ)Ba

G ∂
µGa

µ − µ−ε(σ)BA ∂
µAµ − µ−ε(σ)BZ ∂

µZµ

− µ−ε(σ)B+ ∂
µW−

µ − µ−ε(σ)B− ∂
µW+

µ

(6.36)

which is manifestly scale invariant, i.e. in the unbroken phase of the theory.
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6.6. The Ghost Lagrangian

The equations of motion for the Nakanishi-Lautrup fields, derived from the Lagrangian
(6.35), are

Ba
G =

1

ξG
µ−ε(σ) ∂µGa

µ

BA =
1

ξA
µ−ε(σ) ∂µAµ

BZ =
1

ξZ
µ−ε(σ)

(
∂µZµ −

1

2
ξZ
gW
cw

µ2ε(σ) v G0

)
B± =

1

ξW
µ−ε(σ)

(
∂µW±

µ ∓
i

2
ξW gW µ2ε(σ) v G±

)
(6.37)

Using these eqautions of motions (6.37), the gauge fixing Lagrangian may be written as

LQSI
GF =− 1

2 ξG
µ−2ε(σ)F a

G F
a
G −

1

2 ξA
µ−2ε(σ)F 2

A

− 1

2 ξZ
µ−2ε(σ)F 2

Z −
1

ξW
µ−2ε(σ)F+ F−

=− 1

2 ξG
µ−2ε(σ)

(
∂µGa

µ

)2 − 1

2 ξA
µ−2ε(σ) (∂µAµ)

2

− 1

2 ξZ
µ−2ε(σ) (∂µZµ)

2 − 1

ξW
µ−2ε(σ)

(
∂µW+

µ

) (
∂νW−

ν

)
− 1

8
ξZ
g2W
c2w

µ2ε(σ) v2
(
G0
)2 − 1

4
ξW g2W µ2ε(σ) v2G+G−

− i

2
gW vW−

µ ∂
µG+ +

i

2
gW vW+

µ ∂
µG− − 1

2

gW
cw

v Zµ ∂
µG0

(6.38)

where the last 3 terms in the last line after the second equality in (6.38) have been
integrated by parts such that they exactly cancel the bilinear mixing terms in (6.26), as
proposed, and

F a
G = ∂µGa

µ

FA = ∂µAµ

FZ = ∂µZµ −
1

2
ξZ
gW
cw

µ2ε(σ) v G0

F± = ∂µW±
µ ∓

i

2
ξW gW µ2ε(σ) v G±

(6.39)

6.6. The Ghost Lagrangian
The ghost Lagrangian of the QSI Standard Model can be derived as follows, using (6.39),

LQSI
Ghost = −

∫
d4y ηB(x)

δFB(x)

δωC(y)
ηC(y) (6.40)

where it is implicitly summed over B and C, ηB are the ghosts {ca, bA, bZ , b±} and ωB

are the gauge fields {βa, αA, αZ , α±} in the corresponding gauge transformations.
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6. QSI Standard Model

Hence,

LQSI
Ghost = −

∫
d4y

{
8∑

a,c=1

ca (x)
δF a

G (x)

δβc (y)
cc (y)

+
4∑

a=1

(
bA (x)

δFA (x)

δαa (y)
+ bZ (x)

δFZ (x)

δαa (y)

+ b+ (x)
δF+ (x)

δαa (y)
+ b− (x)

δF− (x)

δαa (y)

)
ba (y)

} (6.41)

In order to find the variations δFB, infinitesimal gauge transformations need to be con-
sidered. The gauge transformations in the QSI Standard Model, i.e. for the gauge group
SU(3)c × SU(2)L × U(1)Y , are given by

USU(3)c = ei gs β
a Ta

s

USU(2)L = ei gW αa Ta
W

UU(1)Y = ei gY α4 Y

(6.42)

which lead to the following infinitesimal gauge transformations for the gauge fields

δGa
µ = ∂µβ

a + gs f
abcGb

µ β
c

δW a
µ = ∂µα

a + gW εabcW b
µ α

c

δBµ = ∂µα
4

(6.43)

Transforming to gauge field mass eigenstates and introducing

α± =
1√
2

(
α1 ∓ i α2

)
, α1 =

1√
2

(
α+ + α−)

αZ = cw α
3 − sw α4, α2 =

i√
2

(
α+ − α−)

αA = sw α
3 + cw α

4, α3 = cw αZ + sw αA

α4 = −sw αZ + cw αA

(6.44)

the following infinitesimal gauge transformations for the gauge fields in mass eigenstates
are obtained

δGa
µ = ∂µβ

a + gs f
abcGb

µ β
c

δW+
µ = ∂µα

+ − i gW
[(
cw Zµ + sw Aµ

)
α+ −

(
cw αZ + sw αA

)
W+
µ

]
δW−

µ = ∂µα
− + i gW

[(
cw Zµ + sw Aµ

)
α− −

(
cw αZ + sw αA

)
W−
µ

]
δZµ = ∂µαZ + i gW cw

(
α+W−

µ − α−W+
µ

)
δAµ = ∂µαA + i e

(
α+W−

µ − α−W+
µ

)
(6.45)
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6.6. The Ghost Lagrangian

Using that the Higgs doublet (6.18) transforms non-trivially under SU(2)L × U(1)Y , as
well as the relations

G± = φ±, G0 =
i√
2

( (
φ0
)∗ − φ0

)
(6.46)

the infinitesimal gauge transformations of the Goldstone bosons are found to be

δG± = ± i
2
gW
(
φ± i G0

)
α± ± i

(
e αA +

gW
2

c2w
cw

αZ

)
G±

δG0 =
1

2
gW
(
α+G− + α−G+

)
− 1

2

gW
cw

αZ φ

(6.47)

Therefore, the variations δFB are explicitly given by
δF a

G = ∂µδGa
µ

δFA = ∂µδAµ

δFZ = ∂µδZµ −
1

2
ξZ
gW
cw

µ2ε(σ) v δG0

δF± = ∂µδW±
µ ∓

i

2
ξW gW µ2ε(σ) v δG±

(6.48)

Finally, after performing the variations and integrating over y as well as integrating by
parts w.r.t. x in (6.41), the ghost Lagrangian is found to be

LQSI
Ghost = ∂µcaDac

µ c
c + ∂µbA ∂µbA + ∂µbZ ∂µbZ −

1

4
ξZ
g2W
c2w

µ2ε(σ) v2 bZ bZ

+ ∂µb+ ∂µb+ −
1

4
ξW g2W µ2ε(σ) v2 b+ b+

+ ∂µb− ∂µb− −
1

4
ξW g2W µ2ε(σ) v2 b− b−

− 1

4
ξW g2W µ2ε(σ) v h b+ b+ −

1

4
ξW g2W µ2ε(σ) v h b− b−

− i

4
ξW g2W µ2ε(σ) v G0 b+ b+ +

i

4
ξW g2W µ2ε(σ) v G0 b− b−

− 1

4
ξZ
g2W
c2w

µ2ε(σ) v h bZ bZ

− 1

4
ξW g2W

c2w
cw

µ2ε(σ) v G+ b+ bZ −
1

4
ξW g2W

c2w
cw

µ2ε(σ) v G− b− bZ

− 1

4
ξZ
g2W
cw

µ2ε(σ) v G− bZ b+ −
1

4
ξZ
g2W
cw

µ2ε(σ) v G+ bZ b−

− 1

4
ξW e gW µ2ε(σ) v G+ b+ bA −

1

4
ξW e gW µ2ε(σ) v G− b− bA

− i eAµ ∂µb+ b+ + i eAµ ∂
µb− b− − i gW cw Zµ ∂

µb+ b+

+ i gW cw Zµ ∂
µb− b− + i gW cwW

+
µ ∂

µb+ bZ − i gW cwW
−
µ ∂

µb− bZ

+ i gW cwW
−
µ ∂

µbZ b+ − i gW cwW
+
µ ∂

µbZ b− + i eW+
µ ∂

µb+ bA

− i eW−
µ ∂

µb− bA + i eW−
µ ∂

µbA b+ − i eW+
µ ∂

µbA b−

(6.49)
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6. QSI Standard Model

where
Dac
µ = δac ∂µ + gs f

abcGb
µ (6.50)

Obviously, the ghost Lagrangian in (6.49) is formulated in the broken phase of the theory.
Choosing Landau gauge ξG = ξA = ξZ = ξ± = 0, the Lagrangian is given by

LQSI
Ghost = ∂µcaDac

µ c
c + ∂µbA ∂µbA + ∂µbZ ∂µbZ + ∂µb+ ∂µb+ + ∂µb− ∂µb−

− i eAµ ∂µb+ b+ + i eAµ ∂
µb− b− − i gW cw Zµ ∂

µb+ b+

+ i gW cw Zµ ∂
µb− b− + i gW cwW

+
µ ∂

µb+ bZ − i gW cwW
−
µ ∂

µb− bZ

+ i gW cwW
−
µ ∂

µbZ b+ − i gW cwW
+
µ ∂

µbZ b− + i eW+
µ ∂

µb+ bA

− i eW−
µ ∂

µb− bA + i eW−
µ ∂

µbA b+ − i eW+
µ ∂

µbA b−

(6.51)

which is manifestly scale invariant, i.e. in the unbroken phase of the theory.
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7. QSI SM Effective Potential
In this chapter the effective potential for the complete quantum scale invariant Standard
Model, discussed in chapter 6, is determined at the 1-loop level. It is shown that this
effective potential indeed is quantum scale invariant, similar to the 2 Scalar Model in
chapter 3. The effective potential in the QSI Standard Model at the 1-loop level has
been determined in [13] for a Higgs potential containing λ6 6= 0 at tree-level. In this
thesis, the effective potential is determined in a more Feynman diagrammatic approach
than in [13] using the full QSI SM Lagrangian (6.2) and for the Higgs potential (6.20),
i.e. with λ4+2n ≡ 0,∀n, especially λ6 ≡ 0, at tree-level.

Analogous to chapter 3, the Lagrangian is not expanded about the fields VEVs, and
thus the theory is considered in a manifestly scale invariant form, however, a field shift
is applied to the Lagrangian. Due to gauge invariance it is sufficient to perform the field
shift on only one of the four scalar fields in the Higgs doublet (6.18) [10]. Thus, the field
shift is given by

Φ −→ Φ +

(
0

1√
2
φ0

)
=

(
G+

φ+φ0+iG0
√
2

)
σ −→ σ + σ0

(7.1)

where φ0 and σ0 are background fields. Furthermore, it is chosen to work in Landau
gauge, i.e.

ξ = ξG = ξA = ξZ = ξW = 0 (7.2)
due to the following reasons

• the propagators of the gauge fields {Ga, A, Z,W±} are transverse [10]

• the associated ghosts are massless and couple only to the gauge fields [10], i.e. the
ghosts decouple from the Higgs and Goldstone bosons

• Landau gauge ensures that the Lagrangian is manifestly scale invariant, as dis-
cussed in chapter 6.

The field dependent masses are given in (C.6) for M̃2
ij and in (C.17, C.18) for M̃2

H & M̃2
S

if the VEVs {v, w} are replaced by the background fields {φ0, σ0} as well as given by

M̃2
G =M2

G = µ2ε(σ0)
λφ
6
φ2
0

(
1 + 3

λm
λφ

σ2
0

φ2
0

)
M̃2

Z =M2
Z = µ2ε(σ0)

1

4

g2W
c2w

φ2
0, M̃2

W =M2
W = µ2ε(σ0)

1

4
g2W φ2

0

m̃f = mf = µε(σ0)
1√
2
yf φ0

(7.3)

109



7. QSI SM Effective Potential

Analogous to chapter 3, the interaction coefficients Ṽijk··· are also field dependent and
the relations (3.4) and (3.5) as well as

∂M̃2
G

∂φ0

= Ṽ133 = Ṽ145,
∂M̃2

G

∂σ0
= Ṽ233 = Ṽ245

∂M̃2
Z

∂φ0

= 2
M̃2

Z

φ0

,
∂M̃2

Z

∂σ0
= 2 ε (1 + ε)

M̃2
Z

σ0
+O

(
ε3
)

∂M̃2
W

∂φ0

= 2
M̃2

W

φ0

,
∂M̃2

W

∂σ0
= 2 ε (1 + ε)

M̃2
W

σ0
+O

(
ε3
)

∂m̃f

∂φ0

=
m̃f

φ0

,
∂m̃f

∂σ0
= ε (1 + ε)

m̃f

σ0
+O

(
ε3
)

(7.4)

are necessary for the derivation of the effective potential in a diagrammatic approach.
Moreover, the necessary Feynman rules, here in a general gauge, are provided by the
propagators

p

ϕi ϕj
= i

(
D̃−1
p

)
ij

p

G0

=
i

p2 −
(
M̃2

G + ξZ M̃2
Z

)

p

G±
=

i

p2 −
(
M̃2

G + ξW M̃2
W

)

p

ψl
=

i
(
/p+ m̃l

)
p2 − m̃2

l

p

ψqi j
=

i
(
/p+ m̃q

)
p2 − m̃2

q

δij

p

Zµ ν
= µ2ε(σ0)

− i
p2 − M̃2

Z

(
ηµν − (1− ξZ)

pµ pν

p2 − ξZ M̃2
Z

)

p

W±µ ν
= µ2ε(σ0)

− i
p2 − M̃2

W

(
ηµν − (1− ξW )

pµ pν

p2 − ξW M̃2
W

)

(7.5)
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the scalar 3-interactions

ϕi

ϕj

ϕk

= − i Ṽijk

ϕk

G0

G0

= − i Ṽk33, ϕk

G±

G∓

= − i Ṽk45

(7.6)

where i, j, k ∈ {1, 2}, the Yukawa interactions

φ

ψf

ψf

= −µε(σ0)
i√
2
yf

σ

ψf

ψf

= −µε(σ0) ε (1 + ε)
i√
2
yf
φ0

σ0
+O

(
ε3
)

(7.7)

and the scalar - gauge boson interactions

φ

Z

Z

=
i

2

g2W
c2w

φ0 η
µν

σ

Z

Z

= µ−2ε(σ0)
i 2ε (1 + ε)

σ0

[
(p1 · p2) ηµν −

(
1− 1

ξZ

)
pµ1 p

ν
2

]
+O

(
ε3
)

(7.8)
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7. QSI SM Effective Potential

φ

W±

W∓

=
i

2
g2W φ0 η

µν

σ

W±

W∓

= µ−2ε(σ0)
i 2ε (1 + ε)

σ0

[
(p1 · p2) ηµν −

(
1− 1

ξW

)
pµ1 p

ν
2

]

+O
(
ε3
)

(7.9)

The reason for providing the Feynman rules in a general gauge becomes obvious in (7.8)
and (7.9) for the Feynman rules of σ with the corresponding gauge fields. It can be seen
that these two Feynman rules contain 1/ξi, and thus would diverge for ξi → 0, which is
due to the prefactor of µ−2ε(σ) in the gauge fixing Lagrangian, as shown in section 6.5.
In order to obtain results in Landau gauge (7.2), the limit ξi → 0 needs to be taken after
evaluating the corresponding Feynman diagrams in a general gauge, which is shown in
the following for the tadpole diagram with external σ-leg and Z-loop. Hence, in Landau
gauge this tadpole diagram evaluates as

σ Z

l

= lim
ξZ→0

1

2

∫
dDl

(2 π)D

{
µ−2ε(σ0)

i 2ε (1 + ε)

σ0

[
l2 ηµν −

(
1− 1

ξZ

)
lµ lν

]

× µ2ε(σ0)
− i

l2 − M̃2
Z

(
ηµν − (1− ξZ)

lµ lν

l2 − ξZ M̃2
Z

)
+O

(
ε3
)}

= lim
ξZ→0

∫
dDl

(2 π)D

{
ε (1 + ε)

σ0

1

l2 − M̃2
Z

[
D l2 +

(
1− 1

ξZ

)(
l4

l2 − ξZ M̃2
Z

− l2
)]

+O
(
ε3
)}

=

∫
dDl

(2 π)D
ε (1 + ε) +O (ε3)

σ0

D l2 − M̃2
Z

l2 − M̃2
Z

(7.10)

where in the last line the limit ξZ → 0 has been taken explicitly. Now, the two parts of
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the final integral in (7.10) are considered separately, starting with∫
dDl

(2 π)D
ε (1 + ε) +O (ε3)

σ0

D l2

l2 − M̃2
Z

=
iD

(4 π)D/2
ε (1 + ε) +O (ε3)

σ0

Γ (1 +D/2) Γ (−D/2)
Γ (D/2)

(
M̃2

Z

)2−ε
=

i

(4 π)D/2
Γ (1 +D/2) Γ (−D/2)

Γ (D/2)

∂

∂σ0

(
M̃2

Z

)2−ε
=

∂

∂σ0

i

(16π)2
µ2ε(σ0)

D

2
Γ (ε− 2)

(
M̂2

Z

)2(4 π µ2(σ0)

M̃2
Z

)ε

= − D
2

∂

∂σ0

∫
dDl

(2 π)D
log
(
l2 − M̃2

Z

)

(7.11)

where the momentum integral was evaluated explicitly in the first line, the correspond-
ing relation for M̃2

Z in (7.4) has been used in the second line, M̂2
Z = µ−2ε(σ0) M̃

2
Z =

g2W/ (4 c
2
w) φ

2
0 has been used in the third line, i.e. µ2ε(σ0) has been pulled out of M̃2

Z ,
and (D.4) has been used in the last line. The second part of the final integral in (7.10)
evaluates as∫

dDl

(2 π)D
ε (1 + ε) +O (ε3)

σ0

− M̃2
Z

l2 − M̃2
Z

=
1

2

∂

∂σ0

∫
dDl

(2 π)D
log
(
l2 − M̃2

Z

)
(7.12)

where the corresponding relation for M̃2
Z in (7.4) has been used. Hence, in Landau gauge

the tadpole diagram in (7.10) is given by

σ Z

l

=
1−D

2

∂

∂σ0

∫
dDl

(2 π)D
log
(
l2 − M̃2

Z

)
(7.13)

Analogously, the tadpole diagram with external σ-leg and W -loop in Landau gauge is
provided by

σ W

l

= (1−D)
∂

∂σ0

∫
dDl

(2 π)D
log
(
l2 − M̃2

W

)
(7.14)

which does not have a symmetry factor of 1/2 due to the W -loop. The other tadpole
diagrams with external σ-leg, i.e. with scalar and fermion loops, and all contribut-
ing tadpole diagrams with external φ-leg can be evaluated more straightforward and
analogous to section 3.1. Hence, at the 1-loop level one obtains
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7. QSI SM Effective Potential

− i ∂V1L
∂φ0

= i
δΓ1L

δφ

∣∣∣∣
φ=φ0
σ=σ0

= φ

ϕj

ϕk

+ φ G0 + φ G±

+ φ ψf + φ Z + φ W

=
1

2

∫
dDl

(2π)D
Ṽ1jk

(
D̃−1
l

)
jk
+

1

2

∫
dDl

(2π)D
Ṽ133

l2 − M̃2
G

+

∫
dDl

(2π)D
Ṽ145

l2 − M̃2
G

−
∑
f

Nc,f Tr

∫
dDl

(2π)D
m̃f

φ0

/l + m̃f

l2 − m̃2
f

+

∫
dDl

(2 π)D
M̃2

Z

φ0

D − 1

l2 − M̃2
Z

+

∫
dDl

(2 π)D
2 M̃2

W

φ0

D − 1

l2 − M̃2
W

= − 1

2

∂

∂φ0

∫
dDl

(2 π)D

[
log
(
l2 − M̃2

H

)
+ log

(
l2 − M̃2

S

)
+ 3 log

(
l2 − M̃2

G

)]
+
∑
f

2Nc,f
∂

∂φ0

∫
dDl

(2 π)D
log
(
l2 − m̃2

f

)
+

∂

∂φ0

∫
dDl

(2 π)D

[
1−D

2
log
(
l2 − M̃2

Z

)
+ (1−D) log

(
l2 − M̃2

W

)]
− i ∂V1L

∂σ0
= i

δΓ1L

δσ

∣∣∣∣
φ=φ0
σ=σ0

= σ

ϕj

ϕk

+ σ G0 + σ G±

+ σ ψf + σ Z + σ W

= − 1

2

∂

∂σ0

∫
dDl

(2 π)D

[
log
(
l2 − M̃2

H

)
+ log

(
l2 − M̃2

S

)
+ 3 log

(
l2 − M̃2

G

)]
+
∑
f

2Nc,f
∂

∂σ0

∫
dDl

(2 π)D
log
(
l2 − m̃2

f

)
+

∂

∂σ0

∫
dDl

(2 π)D

[
1−D

2
log
(
l2 − M̃2

Z

)
+ (1−D) log

(
l2 − M̃2

W

)]

(7.15)
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where in (7.15) relations (3.4), (3.5) as well as (7.4), and in particular for ∂V1L/∂σ0
(7.10) to (7.14) have been used. Further, it is summed implicitly over j, k ∈ {1, 2} as
well as explicitly summed over f ∈ {e−, µ−, τ−, d, s, b, u, c, t} and the colour factor Nc,f

is provided by

Nc,f =

{
1, f ∈ {e−, µ−, τ−}
3, f ∈ {d, s, b, u, c, t}

(7.16)

Thus, from (7.15) it can be seen that the 1-loop contribution to the effective potential
in the QSI Standard Model is given by

V1L = − i
∫

dDl

(2 π)D

{
1

2

[
log
(
l2 − M̃2

H

)
+ log

(
l2 − M̃2

S

)]
+

3

2
log
(
l2 − M̃2

G

)
−
∑
f

2Nc,f log
(
l2 − m̃2

f

)
− 1−D

2
log
(
l2 − M̃2

Z

)
− (1−D) log

(
l2 − M̃2

W

)}
(7.17)

Evaluating the momentum integral in (7.17) using (D.4) and replacing the background
fields {φ0, σ0} by the fields {φ, σ}, analogous to chapter 3, in order to finally obtain the
1-loop contribution of the effective potential in terms of the fields, one obtains

V1L (φ, σ) = −
µ2ε(σ)

16 π2

{
2∑

k=1

M̂4
ρk
(φ, σ)

4

[
1

ε
+

3

2
− log

(
M2

ρk
(φ, σ)

4 π µ2(σ)
eγE
)]

+
3

4
M̂4

G (φ, σ)

[
1

ε
+

3

2
− log

(
M2

G (φ, σ)

4π µ2(σ)
eγE
)]

−
∑
f

Nc,f m̂
4
f (φ)

[
1

ε
+

3

2
− log

(
m2
f (φ, σ)

4 π µ2(σ)
eγE
)]

+
3

4
M̂4

Z (φ)

[
1

ε
+

5

6
− log

(
M2

Z (φ, σ)

4π µ2(σ)
eγE
)]

+
3

2
M̂4

W (φ)

[
1

ε
+

5

6
− log

(
M2

W (φ, σ)

4π µ2(σ)
eγE
)]

+∆U1L (φ, σ)

}
+O (ε)

(7.18)

where {ρk}2k=1 = {H,S} and

∆U1L (φ, σ) := −
µ2ε(σ)

32π2

2∑
k=1

M̂4
ρk
(φ, σ) c(1)ρk (φ, σ) (7.19)

115



7. QSI SM Effective Potential

is exactly the same new finite quantum correction as for the 2 Scalar Model in chapter
3. In order to renormalise the 1-loop contribution to the effective potential in the MS-
scheme, the counterterm potential Ṽtree,ct1 need to exactly cancel the divergent part of
(7.18), i.e.

V1L
∣∣
div

+ Ṽtree,ct1

= − µ
2ε(σ)

16 π2

{
2∑

k=1

M̂4
ρk
(φ, σ)

4
+

3

4
M̂4

G (φ, σ)

−
∑
f

Nc,f m̂
4
f (φ) +

3

4
M̂4

Z (φ) +
3

2
M̂4

W (φ)

}
1

ε

+ µ2ε(σ)

(
δZ

(1)
Vφ

λφ
4!
φ4 + δZ

(1)
Vm

λm
4
φ2 σ2 + δZ

(1)
Vσ

λσ
4!
σ4

)
!
= 0

(7.20)

Hence, the 1-loop counterterms in the MS-scheme are given by

δZ
(1)
Vφ

=
1

16 π2

3

2λφ

[
4

3
λ2φ + λ2m −

∑
f

4Nc,f y
4
f +

3

2
g4W +

3

4

g4W
c4w

]
1

ε

δZ
(1)
Vm

=
1

16 π2

2λφ + 4λm + λσ
2

1

ε

δZ
(1)
Vσ

=
1

16 π2

3

2

λ2σ + 4λ2m
λσ

1

ε

(7.21)

Finally, after Renormalisation and then going back to 4 dimensions, i.e. ε → 0, the
result for the effective potential in the QSI Standard Model up to the 1-loop level is
given by

Veff(Φ, σ) = VH(Φ, σ) + V1L,reg(φ, σ) + ∆U1L(φ, σ) +O
(
~2
)

(7.22)
where VH and ∆U1L (φ, σ) are to be found in (6.20) and (7.19), respectively, and V1L,reg
in the MS-scheme is provided by

V MS
1L,reg (φ, σ) =

1

16π2

{
2∑

k=1

M4
ρk
(φ, σ)

4

[
log

(
M2

ρk
(φ, σ)

µ2(σ)

)
− 3

2

]

+
3

4
M4

G (φ, σ)

[
log

(
M2

G (φ, σ)

µ2(σ)

)
− 3

2

]

−
∑
f

Nc,f m
4
f (φ)

[
log

(
m2
f (φ)

µ2(σ)

)
− 3

2

]

+
3

4
M4

Z (φ)

[
log

(
M2

Z (φ)

µ2(σ)

)
− 5

6

]

+
3

2
M4

W (φ)

[
log

(
M2

W (φ)

µ2(σ)

)
− 5

6

]}

(7.23)
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Remark.

(i) Again, it has been used that in 4 dimensions, M̂2
i is identical to M2

i . Furthermore,
in (7.18), (7.20) and (7.23) it has been used that in D = 4 − 2ε dimensions the
masses mf , MZ and MW depend on σ only via the factor µε(σ), as can be seen in
(7.3), and thus these masses do not depend on σ in 4 dimensions and if they are
labelled with a "hat", as M̂i are the masses without factors of µε(σ).

(ii) As in the case of the 2 Scalar Model discussed in chapter 3, it can be seen that
beside the regular Coleman-Weinberg term V1L,reg, given in (7.23), a new finite
quantum correction ∆U1L, provided in (7.19), is obtained due to evanescent inter-
actions introduced by the Renormalisation function, i.e. as a result of QSI. Again,
this new quantum correction contains a higher dimensional non-polynomial oper-
ator of the form φ6/σ2.

(iii) It is important to note that this new finite quantum correction is exactly the same
as in the 2 Scalar Model in (3.15). Hence, in the QSI Standard Model there are
no additional new finite quantum corrections at the 1-loop level compared to the
2 Scalar Model. The reason for this that, in contrast to M̃2

H and M̃2
S, the masses

M̃2
G, m̃f , M̃2

Z and M̃2
W do not obtain evanescent corrections, as can be seen in

(7.3). However, additional new quantum corrections are expected to emerge at
the 2-loop level because at the 2-loop level not only the masses, cf. (7.17), but
also the coupling constants contribute to the effective potential and due to the
fact that there are more coupling constants obtaining evanescent corrections in
the QSI Standard Model than in the 2 Scalar Model.

(iv) Again, the 1-loop effective potential (7.22) is a homogeneous function of the fields,
and thus satisfies (2.13). No massive parameters are introduced at the quantum
level due to the usage of SIDReg with a dynamical Renormalisation function µ(σ)
instead of DReg. Hence, the QSI Standard Model indeed is scale invariant at
the quantum level (at least at the 1-loop-level), i.e. quantum scale invariant, as
intended.

(v) The results in this chapter are in perfect agreement with [13] for λ6 ≡ 0. This
confirms once again that using a Feynman diagrammatic approach with an expan-
ded Lagrangian provides the same manifestly scale invariant effective potential as
working directly with equation (15) in [13]. Moreover, said equation in [13] has
been derived from a Feynman diagrammatic approach in this chapter as shown in
(7.15) and (7.17).

(vi) The result of the effective potential (7.22), which agrees with the literature [13],
also works as a consistency check of the QSI Standard Model provided in chapter
6 formulated in terms of rescaled gauge fields with absorbed gauge couplings.
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8. Summary and Outlook
The concept of spontaneously broken quantum scale symmetry as well as its realisation
via SIDReg and its implications have extensively been discussed. In this context, the 2
Scalar Model has been introduced in detail, similarly to [11, 14]. The QSI 2 Scalar Model
is the simplest model with dynamical SSB of quantum scale symmetry, but nonetheless
physically relevant due to its connection to the QSI Standard Model Higgs sector. There-
fore, it is an excellent model to illustrate the concepts of QSI. The effective potential
of the 2 Scalar Model has been determined at the 2-loop level and compared to the
results in the literature [14]. This 2-loop effective potential is not only manifestly scale
invariant but also obtains new finite and divergent quantum corrections that emerge
from evanescent interactions cancelling UV-divergences. These evanescent interactions
are introduced to the theory by the Dilaton-dependent Renormalisation function, and
thus are a consequence of spontaneously broken QSI. The new divergent quantum cor-
rections are of particular interest, as they do not only change the divergence structure
of the theory at the 2-loop level, and consequently change the 2-loop counterterms, but
also introduce higher dimensional non-polynomial operators that need to be renormal-
ised implying non-Renormalisability of the theory. Furthermore, the β - functions of the
QSI 2 Scalar Model have been determined at the 2-loop level and compared with the
literature [14] as well. It has been shown that at the 1-loop level they are the same as
in the DReg-regularised theory, however, at the 2-loop level one obtains new corrections
to the β - functions, and thus the 2-loop running of the couplings in the QSI theory
is different from the usual DReg-regularised theory. The reason for this are the new
divergent quantum corrections, mentioned above, leading to corrections of the 2-loop
counterterms. Particularly interesting is that a theory that is regularised using SIDReg
is scale invariant even at the quantum level, where scale invariance is only broken spon-
taneously, but nonetheless admits non-zero β - functions, and thus a running of the
couplings, implying the vanishing of the β - functions is not necessary for QSI.

One might draw the conclusion that there are 3 main consequences of spontaneously
broken quantum scale symmetry, realised via SIDReg, that affect physics. First, all
scales, including the Renormalisation scale, are generated dynamically via SSB of scale
symmetry implying the absence of anomalous breaking of scale symmetry as there is no
initial scale in the theory. Second, new finite and divergent quantum corrections arising
from evanescent interactions generated by the Dilaton-dependent Renormalisation func-
tion. Third, non-Renormalisability due to an infinite amount of those evanescent inter-
actions.

Moreover, it has explicitly been shown that working in the broken phase of the theory
with expanded Lagrangian is valid even in the context of spontaneously broken quantum
scale symmetry. In particular, it has been shown in the QSI 2 Scalar Model that the
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same scale invariant counterterms, even at the 2-loop level with new divergent quantum
corrections, are obtained from Green-functions with non-vanishing external momenta
computed from a Lagrangian in the broken phase of the theory. At the 2-loop level,
this has been done using the corresponding 2-loop self energies. This is an important
consistency check, which has not been done to this extend in the literature so far,
because in QSI theories, i.e. theories regularised with SIDReg, the Dilaton appears to
an anomalous power in the Lagrangian, and thus it is necessary to expand the Lagrangian
in order to derive Feynman rules and perform perturbative calculations.

The concept of spontaneously broken quantum scale symmetry in the context of gauge
theories has been discussed in more detail than in the literature so far. The consistent
formulation of a QSI gauge theory has been presented by the example of a generic SU(N)
gauge theory using two approaches, one with rescaled and the other one with non-
rescaled fields. Furthermore, the physically relevant scattering process e− e+ −→ µ− µ+

has been considered at the 1-loop level in the context of spontaneously broken quantum
scale symmetry, which has not been done before. It has been shown that new finite
and divergent quantum corrections can arise due to evanescent interactions not only by
cancelling UV- but also by cancelling IR-divergences. New IR-divergences due to QSI
are of particular interest, as they also need to be cancelled by real emission corrections at
the level of the cross section at every order in the perturbation theory. In this context, it
has been conjectured and exemplarily proven that such new quantum corrections arising
from IR-divergences cancel together with the regular IR-divergences leaving an UV-
and IR-finite result, containing only the regular result and possible new finite quantum
corrections emerging from UV-divergences. This is an important result to ensure the
finiteness of physical observables in theories with spontaneously broken quantum scale
symmetry.

Finally, a complete quantum scale invariant Standard Model has been formulated,
which has not been done to this extend in the literature so far. In the framework of
this QSI Standard Model the 1-loop effective potential has been determined using a
Feynman diagrammatic appraoch and the background field shifted Lagrangian. It has
been shown that this 1-loop effective potential is manifestly scale invariant and it has
been compared with the literature [13] as a consistency check. At the 1-loop level, the
QSI Standard Model effective potential also obtains a new finite quantum correction
arising from evanescent interactions cancelling UV-divergences, which is exactly the
same as that of the QSI 2 Scalar Model.

Spontaneously broken quantum scale symmetry realised via a manifestly scale invari-
ant Regularisation provides several aspects that are not only conceptually interesting
but also from a phenomenological point of view, especially w.r.t. new quantum correc-
tions emerging as a result of evanescent interactions. In future studies, the following
aspects and problems in the context of spontaneously broken quantum scale symmetry
could be analysed

• Further investigations of Conjecture 5.1, e.g. in other theories, for different pro-
cesses or in more generality.

• Determining the effective potential of the quantum scale invariant Standard Model
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8. Summary and Outlook

at the 2-loop level, which has not been done in the literature so far.

• Implications of spontaneously broken quantum scale symmetry to vacuum stabil-
ity, inflation and the Higgs mass using the 2-loop effective potential of the QSI
Standard Model.

• Further phenomenological analyses, e.g. in the full QSI Standard Model presented
in chapter 6. Since the Higgs sector obtains the most modifications compared to
the "usual" Standard Model, one could focus these investigations on Higgs physics.
Especially, Higgs decays such as H −→ b b and H −→ τ− τ+ as well as Dilaton-
Higgs scattering are of particular interest and could be used to determine a lower
bound on the Dilaton VEV 〈σ〉.

• Implications of spontaneously broken quantum scale symmetry in Cosmology and
in QFT in curved spacetime.

• In contrast to this thesis where global quantum scale symmetry has been con-
sidered, one could conduct further investigations of local, i.e. gauged, quantum
scale symmetry (which has already been done in the literature).

• Although quantum scale invariance has been introduced to provide an alternative
to Supersymmetry as BSM physics, one could nonetheless introduce spontaneously
broken quantum scale symmetry to a supersymmetric theory. If this theory is also
invariant under special conformal transformations one obtains a quantum super-
conformal field theory. In supersymmetric theories, one needs to use a manifestly
scale invariant version of dimensional reduction (DRed), i.e. SIDRed instead of
SIDReg.

• In such a supersymmetric theory one could analyse whether it is possible to con-
struct a dynamical Renormalisation function containing a nilpotent Grassmann
number. In this case, the Renormalisation function admits a finite power series,
and thus only a finite number of new evanescent interactions are introduced to
theory.
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A. Conformal Group
The conformal symmetry group of spacetime is an extension of the Poincare group
and consists of the Poincare transformations, special conformal transformations and
dilatations (i.e. scaling transformations). In D = 3 + 1 dimensions, the conformal
symmetry has 15 degrees of freedom, namely, 10 for the Poincare group, 4 for special
conformal transformations and 1 for dilatations. The 15 generators of the conformal
group are given by the 4 generators of translations P̂µ, the 6 Lorentz generators M̂µν ,
the dilatation generator D̂ and the 4 generators of special conformal transformations
K̂µ. Accordingly, the conformal algebra {P̂µ, M̂µν , D̂, K̂µ} is an extension of the Poincare
algebra by the dilatation and the special conformal generators D̂ and K̂µ, respectively,
and is given by the commutation relations

[P̂µ, P̂ν ] = 0

[P̂µ, M̂ρσ] = i
(
ηµρP̂σ − ηµσP̂ρ

)
[M̂µν , M̂ρσ] = i

(
ηνρM̂µσ + ηµσM̂νρ − ηµρM̂νσ − ηνσM̂µρ

)
[D̂, P̂µ] = iP̂µ

[D̂, M̂µν ] = 0

[D̂, D̂] = 0

[D̂, K̂µ] = −iK̂µ

[K̂µ, P̂ν ] = 2i
(
ηµνD̂ − M̂µν

)
[K̂µ, M̂ρσ] = i

(
ηµρK̂σ − ηµσK̂ρ

)
[K̂µ, K̂ν ] = 0

(A.1)

Note that, without special conformal transformations, the (closed) algebra {P̂µ, M̂µν , D̂}
is also an extension of the Poincare algebra by only the dilatation generator D̂ and given
by the commutation relations

[P̂µ, P̂ν ] = 0, [D̂, M̂µν ] = 0, [D̂, D̂] = 0

[P̂µ, M̂ρσ] = i
(
ηµρP̂σ − ηµσP̂ρ

)
[M̂µν , M̂ρσ] = i

(
ηνρM̂µσ + ηµσM̂νρ − ηµρM̂νσ − ηνσM̂µρ

)
[D̂, P̂µ] = iP̂µ

(A.2)
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A. Conformal Group

A particular representation for the generators of the conformal group is given by the
following set of differential operators acting on a scalar field φ(x) with scaling dimension
∆φ

P̂µ = −i ∂µ
M̂µν = i (xµ ∂ν − xν ∂µ)
D̂ = −i (∆φ + xµ ∂µ)

K̂µ = −i
(
2xµ x

ν ∂ν − x2 ∂µ + 2∆φ xµ
) (A.3)

and, analogously, acting on N -point Green functions G(N)(x1, . . . , xN) constructed from
scalar fields φj(x) with scaling dimension ∆φ

P̂µ = −i
N∑
j=1

∂

∂xµj

M̂µν = i
N∑
j=1

(
xj,µ

∂

∂xνj
− xj,ν

∂

∂xµj

)

D̂ = −i

(
N ∆φ +

N∑
j=1

xµj
∂

∂xµj

)

K̂µ = −i
N∑
j=1

[(
2xj,µ xj,ν − ηµν x2j

) ∂

∂xj,ν
+ 2∆φ xj,µ

]
(A.4)

For more details, the reader is referred to [21, 31]. Note, however, the different sign
convention for the generators P̂µ, D̂ and K̂µ (compared with [21]) in order to be consistent
with [31, 39, 40, 42], which also affects the signs in the commutator relations above.
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B. Renormalisation Function
In this chapter of the appendix, power series of the Renormalisation function

µ(σ) = z σ
2

D−2 = z σ
1

1−ε , (B.1)

expanded w.r.t. ε and D/w, with three different exponents that usually appear in the
Lagrangian are provided.

µε(σ) = µε0

(
1 +

D

w
ε (1 + ε)− 1

2

D2

w2
ε+

1

3

D3

w3
ε

(
1− 1

2
ε

)
− 1

4

D4

w4
ε

(
1− 5

6
ε

)
+O

(
(D/w)5 , ε3

)) (B.2a)

µ2ε(σ) = µ2ε
0

(
1 + 2

D

w
ε (1 + ε)− D2

w2
ε (1− ε) + 2

3

D3

w3
ε (1− 2ε)

− 1

2

D4

w4
ε

(
1− 8

3
ε

)
+O

(
(D/w)5 , ε3

)) (B.2b)

µ−2ε(σ) = µ−2ε
0

(
1− 2

D

w
ε (1 + ε) +

D2

w2
ε (1 + 3ε)− 2

3

D3

w3
ε (1 + 4ε)

+
1

2

D4

w4
ε

(
1 +

14

3
ε

)
+O

(
(D/w)5 , ε3

)) (B.2c)

where σ = D+ w and µ0 = µ(〈σ〉) = z 〈σ〉
1

1−ε ≡ z w
1

1−ε .
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C. The 2 Scalar Model
In this chapter of the appendix explicit expressions for the coefficients of the 2 Scalar po-
tential and other expressions in the 2 Scalar Model, such as counterterms, are provided.

C.1. The 2 Scalar Potential
First, the coefficients of the potential of the 2 Scalar Model (2.41)

Ṽ (h+ w,D+ w) = Ṽ (v, w) + T̃ϕi
ϕi +

1

2
M̃2

ij ϕi ϕj +
1

3!
Ṽijk ϕi ϕj ϕk

+
1

4!
Ṽijkl ϕi ϕj ϕk ϕl +

1

5!
Ṽijklm ϕi ϕj ϕk ϕl ϕm

+
1

6!
Ṽijklmn ϕi ϕj ϕk ϕl ϕm ϕn + . . .

(C.1)

where {ϕi}2i=1 = {h,D}, are considered.

Ṽ (v, w) = µ2ε
0

(
λφ
4!
v4 +

λm
4
v2w2 +

λσ
4!
w4

)
(C.2)

The tadpoles are given by

T̃ϕi
= µ2ε

0

v3

6

(
tϕi

+ ε t(1)ϕi
+ ε2 t(2)ϕi

+O
(
ε3
)) (C.3)

with

th = λφ + 3λm
w2

v2

t
(1)
h = t

(2)
h = 0

(C.4a)

tD = 3λm
w

v
+ λσ

w3

v3

t
(1)
D = t

(2)
D =

1

2
λφ

v

w
+ 3λm

w

v
+

1

2
λσ

w3

v3

(C.4b)

The matrix of the squared masses is provided by

M̃2
φσ =

(
M̃2

11 M̃2
12

M̃2
21 M̃2

22

)
, where M̃2

12 = M̃2
21 (C.5)
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C.1. The 2 Scalar Potential

where

M̃2
ij = µ2ε

0

v2

2

(
uij + ε u

(1)
ij + ε2 u

(2)
ij +O

(
ε3
)) (C.6)

with

u11 = λφ + λm
w2

v2

u
(1)
11 = u

(2)
11 = 0

u12 = 2λm
w

v

u
(1)
12 = u

(2)
12 =

2

3
λφ

v

w
+ 2λm

w

v

u22 = λm + λσ
w2

v2

u
(1)
22 = −1

6
λφ

v2

w2
+ 3λm +

7

6
λσ

w2

v2

u
(2)
22 =

1

6
λφ

v2

w2
+ 5λm +

3

2
λσ

w2

v2

(C.7)

Note that uij, u(1)ij and u(2)ij are symmetric. Then, the squared masses without evanescent
corrections, c.f. (2.34), are given by

M2
ij = µ2ε

0

v2

2
uij (C.8)

The interaction coefficients are given by the following expressions, for the 3-interactions

Ṽijk = µ2ε
0 V̂ijk = µ2ε

0 v
(
kijk + ε k

(1)
ijk + ε2 k

(2)
ijk +O

(
ε3
))

(C.9)

with

k111 = λφ k112 = λm
w

v

k
(1)
111 = k

(2)
111 = 0 k

(1)
112 = k

(2)
112 = λφ

v

w
+ λm

w

v

k122 = λm k222 = λσ
w

v

k
(1)
122 = −

1

3
λφ

v2

w2
+ 3λm k

(1)
222 =

1

6
λφ

v3

w3
+ λm

v

w
+

13

6
λσ

w

v

k
(2)
122 =

1

3
λφ

v2

w2
+ 5λm k

(2)
222 = −

1

3
λφ

v3

w3
+ 4λm

v

w
+

11

3
λσ

w

v

(C.10)

the 4-interactions

Ṽijkl = µ2ε
0 V̂ijkl = µ2ε

0

(
kijkl + ε k

(1)
ijkl + ε2 k

(2)
ijkl +O

(
ε3
))

(C.11)
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C. The 2 Scalar Model

with

k1111 = λφ k1112 = 0

k
(1)
1111 = k

(2)
1111 = 0 k

(1)
1112 = k

(2)
1112 = 2λφ

v

w
k1122 = λm k1222 = 0

k
(1)
1122 = −λφ

v2

w2
+ 3λm k

(1)
1222 =

2

3
λφ

v3

w3
+ 2λm

v

w

k
(2)
1122 = λφ

v2

w2
+ 5λm k

(2)
1222 = −

4

3
λφ

v3

w3
+ 8λm

v

w
k2222 = λσ

k
(1)
2222 = −

1

2
λφ

v4

w4
− λm

v2

w2
+

25

6
λσ

k
(2)
2222 =

4

3
λφ

v4

w4
− 2λm

v2

w2
+ 10λσ

(C.12)

the 5-interactions

Ṽijklm = µ2ε
0 V̂ijklm = µ2ε

0

1

v

(
kijklm + ε k

(1)
ijklm + ε2 k

(2)
ijklm +O

(
ε3
))

(C.13)

with

k11111 = 0 k11112 = 0

k
(1)
11111 = k

(2)
11111 = 0 k

(1)
11112 = k

(2)
11112 = 2λφ

v

w
k11122 = 0 k11222 = 0

k
(1)
11122 = −2λφ

v2

w2
k
(1)
11222 = 2λφ

v3

w3
+ 2λm

v

w
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and for the 6-interactions
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(C.15)
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with
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(C.16)

The coefficients Ṽijk···, and thus kijk··· and k
(s)
ijk···,∀ s are symmetric.

The eigenvalues of the matrix of the squared masses (C.5) are generically given by

M̃2
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1

2

(
M̃2

11 + M̃2
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12

)2)
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√(
M̃2
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)2
+ 4

(
M̃2

12

)2) (C.17)

and may be written as

M̃2
H =M2
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)
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(1)
S + ε2m
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(C.18)
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where

M2
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0
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4
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)
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)
(C.19)

and for the evanescent corrections
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1
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(C.20)

and

m
(2)
H =M2

H c
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u
(2)
11 + u

(2)
22 +
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2
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(C.21)
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m
(2)
S =M2
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u
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)((

u
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u
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u
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2w2 + 9λσ w
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(C.22)

where the square of Λm in (C.19) is defined by

Λ2
m :=

1

4

[
(λφ − λm)2 v4 + 2 (λφ λm − λφ λσ

+7λ2m + λm λσ) v
2w2 + (λm − λσ)2 w4

] (C.23)

and the parameters Ω1 and Ω2 in (C.20) and (C.21, C.22), respectively, are given by

Ω1 :=
1

2Λm

[
λφ (λφ − λm) v6 +

(
15λφ λm + 18λ2m − λφ λσ

)
v4w2

+
(
78λ2m − 7λφ λσ + 25λm λσ
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] (C.24)

Ω2 :=
1

24w2 Λ3
m
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2
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v10w2
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3
m
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2
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+
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2
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+
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2
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]

(C.25)

The propagator for the 2 particles h and D with squared-mass matrix (C.5) reads

D̃p = p2 − M̃2
φσ, or

(
D̃p

)
ij
= p2 δij − M̃2

ij (C.26)
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and thus the inverse propagator can be written as

D̃−1
p =

Ã

p2 − M̃2
H

+
B̃

p2 − M̃2
S

(C.27)

for symmetric matrices Ã and B̃ that satisfy

B̃ij = δij − Ãij ⇔ Ãij = δij − B̃ij (C.28)

and are given by

Ã11 = 1− B̃11 = B̃22 = 1− Ã22 =
M̃2

H − M̃2
22

M̃2
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S
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S

(C.29)

Again, these matrix elements may be written in terms of an ε - expansion as follows

Ãij = Aij + εA
(1)
ij + ε2A

(2)
ij +O

(
ε3
)

B̃ij = Bij + εB
(1)
ij + ε2B

(2)
ij +O

(
ε3
) (C.30)

which, due to (C.28), obey

Aij = δij −Bij ⇔ Bij = δij − Aij
B

(1)
ij = −A(1)

ij

B
(2)
ij = −A(2)

ij

(C.31)

Explicit expressions for the coefficients in (C.30) are given by

A11 = 1−B11 = B22 = 1− A22

=
1

2
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2
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=
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) (C.32)

A12 = A21 = −B12 = −B21

=
u12√

(u11 − u22)2 + 4u212

=
λm v w

Λm

(C.33)
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and finally
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(C.36)
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where
Nu :=

√
(u11 − u22)2 + 4u212
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(
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(C.38)

In mass eigenstates H and S, as well as having used the minimalisation conditions (2.47),
the 2 Scalar potential may be written as

Ṽ (H,S) =
1

2
M̃2

H H
2 +

1

3!
λ̃ijk ρi ρj ρk +

1

4!
λ̃ijkl ρi ρj ρk ρl

+
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5!
λ̃ijklm ρi ρj ρk ρl ρm +

1
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λ̃ijklmn ρi ρj ρk ρl ρm ρn + . . .

(C.39)
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where {ρi}2i=1 = {H,S}.
The squared masses are then provided by
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The interaction coefficients are given by the following expressions, for the 3-interactions
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the 4-interactions
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the 5-interactions
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and for the 6-interactions
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The coefficients λ̃ijk···, and thus gijk··· and g
(s)
ijk···,∀ s are symmetric.

C.2. Counterterms

Expanding the 1-loop counterterm Lagrangian in (2.59) about the fields VEVs and w.r.t.
ε one obtains
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1

2
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δṼijkl ϕi ϕj ϕk ϕl + . . .

(C.49)

where {ϕi}2i=1 = {h,D}. The counterterm coefficients of Lct1 are, for the constant term

δṼ0 = µ2ε
0

(
δZ

(1)
Vφ
λφ

4!
v4 +

δZ
(1)
Vm
λm

4
v2w2 +

δZ
(1)
Vσ
λσ

4!
w4

)
(C.50)

for the tadpole counterterms

δT̃ϕi
= µ2ε

0

v3

6

(
δtϕi

+ ε δt(1)ϕi
+O (ε)

) (C.51)

with

δth = δZ
(1)
Vφ
λφ + 3 δZ

(1)
Vm
λm

w2

v2

δt
(1)
h = 0

(C.52a)

δtD = 3 δZ
(1)
Vm
λm

w

v
+ δZ

(1)
Vσ
λσ

w3

v3

δt
(1)
D =

1

2
δZ

(1)
Vφ
λφ

v

w
+ 3 δZ

(1)
Vm
λm

w

v
+

1

2
δZ

(1)
Vσ
λσ

w3

v3

(C.52b)

for the mass counterterms

δṼij = µ2ε
0

v2

2

(
δkij + ε δk

(1)
ij +O (ε)

)
(C.53)
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with

δk11 = δZ
(1)
Vφ
λφ + δZ

(1)
Vm
λm

w2

v2

δk
(1)
11 = 0

δk12 = 2 δZ
(1)
Vm
λm

w

v

δk
(1)
12 =

2

3
δZ

(1)
Vφ
λφ

v

w
+ 2 δZ

(1)
Vm
λm

w

v

δk22 = δZ
(1)
Vm
λm + δZ

(1)
Vσ
λσ

w2

v2

δk
(1)
22 = −1

6
δZ

(1)
Vφ
λφ

v2

w2
+ 3 δZ

(1)
Vm
λm +

7

6
δZ

(1)
Vσ
λσ

w2

v2

(C.54)

for the 3-interaction counterterms

δṼijk = µ2ε
0 v

(
δkijk + ε δk

(1)
ijk +O (ε)

)
(C.55)

with

δk111 = δZ
(1)
Vφ
λφ

δk
(1)
111 = 0

δk112 = δZ
(1)
Vm
λm

w

v

δk
(1)
112 = δZ

(1)
Vφ
λφ

v

w
+ δZ

(1)
Vm
λm

w

v

δk122 = δZ
(1)
Vm
λm

δk
(1)
122 = −

1

3
δZ

(1)
Vφ
λφ

v2

w2
+ 3 δZ

(1)
Vm
λm

δk222 = δZ
(1)
Vσ
λσ

w

v

δk
(1)
222 =

1

6
δZ

(1)
Vφ
λφ

v3

w3
+ δZ

(1)
Vm
λm

v

w
+

13

6
δZ

(1)
Vσ
λσ

w

v

(C.56)

for the 4-interaction counterterms

δṼijkl = µ2ε
0

(
δkijkl + ε δk

(1)
ijkl +O (ε)

)
(C.57)
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with
δk1111 = δZ

(1)
Vφ
λφ

δk
(1)
1111 = 0

δk1112 = 0

δk
(1)
1112 = 2 δZ

(1)
Vφ
λφ

v

w

δk1122 = δZ
(1)
Vm
λm

δk
(1)
1122 = −δZ

(1)
Vφ
λφ

v2

w2
+ 3 δZ

(1)
Vm
λm

δk1222 = 0

δk
(1)
1222 =

2

3
δZ

(1)
Vφ
λφ

v3

w3
+ 2 δZ

(1)
Vm
λm

v

w

δk2222 = δZ
(1)
Vσ
λσ

δk
(1)
2222 = −

1

2
δZ

(1)
Vφ
λφ

v4

w4
− δZ(1)

Vm
λm

v2

w2
+

25

6
δZ

(1)
Vσ
λσ

(C.58)

Note that the power series in (C.51), (C.53), (C.55) and (C.57) are indeed only shown
up to the order of O (ε0), due to the fact that 1-loop counterterms contain 1/ε poles.
In terms of mass eigenstates H and S, and with the minimalisation conditions (2.47)
being used, the 1-loop counterterm Lagrangian (2.60) is given by

Lct1 =
1

2
δZH ∂µH∂

µH +
1

2
δZS ∂µS∂

µS + δZHS ∂µH∂
µS

− µ2ε
0 δV0 − µ2ε

0 (δTH + ε δY1)H − µ2ε
0 (δTS + ε δY2)S

− 1

2
(δZH + δZMH

+ ε δY11) M
2
H H

2 − 1

2
µ2ε
0

(
δM2

S + ε δY22
)
S2

− 1

2
µ2ε
0

(
δM2

HS + ε δY12
)
H S − µ2ε

0 (δZ111 + ε δY111)
λφ
3!
v H3

− µ2ε
0 (δZ112 + ε δY112)

λφ
2
v H2 S − µ2ε

0 (δZ122 + ε δY122)
λφ
2
v H S2

− µ2ε
0 (δZ222 + ε δY222)

λφ
3!
v S3 − µ2ε

0 (δZ1111 + ε δY1111)
λφ
4!
H4

− µ2ε
0 (δZ1112 + ε δY1112)

λφ
3!
H3 S − µ2ε

0 (δZ1122 + ε δY1122)
λφ
4
H2 S2

− µ2ε
0 (δZ1222 + ε δY1222)

λφ
3!
H S3 − µ2ε

0 (δZ2222 + ε δY2222)
λφ
4!
S4 + · · ·

(C.59)

The counterterms in (C.59) that are not multiplied by ε are defined by

δZH =
w2

v2 + w2
δZφ +

v2

v2 + w2
δZσ

δZS =
w2

v2 + w2
δZσ +

v2

v2 + w2
δZφ

δZHS =
v w

v2 + w2
δZφ −

v w

v2 + w2
δZσ

(C.60)

137



C. The 2 Scalar Model

δV0 =
λφ
4!
v4
(
δZVφ + δZVσ − 2 δZVm

)
δTH =

λφ
6
v3
v2 (δZVm − δZVσ) + w2

(
δZVφ − δZVm

)
w
√
v2 + w2

δTS =
λφ
6

v4√
v2 + w2

(
δZVφ + δZVσ − 2 δZVm

)
δZH + δZMH

=
v4 (3 δZVσ − δZVm) + 4 v2w2 δZVm + w4

(
3 δZVφ − δZVm

)
2 (v2 + w2)2

δZMH
=

1

2 (v2 + w2)2

[
v4 (3 δZVσ − δZVm − 2 δZσ) + 2 v2w2 (2 δZVm

− δZφ − δZσ) + w4
(
3 δZVφ − δZVm − 2 δZφ

) ]
δM2

S =
λφ
2

v4

v2 + w2

(
δZVφ + δZVσ − 2 δZVm

)
δM2

HS = λφ
v3

w (v2 + w2)

(
v2 (δZVm − δZVσ) + w2

(
δZVφ − δZVm

))
δZ111 =

w6 δZVφ + δZVm (v2w4 − v4w2)− v6 δZVσ
w3 (v2 + w2)3/2

δZ112 =
v w4

(
3 δZVφ − δZVm

)
+ 4 v3w2 δZVm + v5 (3 δZVσ − δZVm)

3w2 (v2 + w2)3/2

δZ122 =
v2
(
v2 (δZVm − δZVσ) + w2

(
δZVφ − δZVm

))
w (v2 + w2)3/2

δZ222 =
v3
(
δZVφ − 2 δZVm + δZVσ

)
(v2 + w2)3/2

δZ1111 =
w8δZVφ − 2 v4w4 δZVm + v8 δZVσ

w4 (v2 + w2)2

δZ1112 =
v w6 δZVφ + (v3w4 − v5w2) δZVm − v7 δZVσ

w3 (v2 + w2)2

δZ1122 =
v2
(
w4
(
3 δZVφ − δZVm

)
+ 4 v2w2 δZVm + v4 (3 δZVσ − δZVm)

)
3w2 (v2 + w2)2

δZ1222 =
v3
(
w2
(
δZVφ − δZVm

)
+ v2 (δZVm − δZVσ)

)
w (v2 + w2)2

δZ2222 =
v4
(
δZVφ − 2 δZVm + δZVσ

)
(v2 + w2)2

(C.61)

and similar expressions for the δYij···.
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C.2. Counterterms

For the calculation of the 2-loop effective potential, the mass counterterms at the 1-loop
level, given by the 2nd derivatives of Ṽtree,ct1, are needed up the order of O (ε).

δṼij(φ0, σ0) =
∂2Ṽtree,ct1
∂ϕi∂ϕj

∣∣∣∣
φ=φ0
σ=σ0

=
µ2ε(σ0)

16 π2

(
δuij + ε δu

(1)
ij + ε2 δu

(2)
ij

) 1

ε
(C.62)

with
δu11 =

3

4

(
λ2φ + λ2m

)
φ2
0 +

λm
4

(λφ + 4λm + λσ) σ
2
0

δu
(1)
11 = δu

(2)
11 = 0

(C.63)

δu12 =
λm
2

(λφ + 4λm + λσ) φ0 σ0

δu
(1)
12 = δu

(2)
12 =

λm
2

(λφ + 4λm + λσ) φ0 σ0 +
1

2

(
λ2φ + λ2m

) φ3
0

σ0

(C.64)

and

δu22 =
λm
4

(λφ + 4λm + λσ) φ
2
0 +

3

4

(
λ2m + λ2σ

)
σ2
0

δu
(1)
22 =

3

4
λm (λφ + 4λm + λσ) φ

2
0 +

7

8

(
λ2m + λ2σ

)
σ2
0 −

1

8

(
λ2φ + λ2m

) φ4
0

σ2
0

δu
(2)
22 =

5

4
λm (λφ + 4λm + λσ) φ

2
0 +

9

8

(
λ2m + λ2σ

)
σ2
0 +

1

8

(
λ2φ + λ2m

) φ4
0

σ2
0

(C.65)

where the explicit expressions (3.19) for the 1-loop counterterms in the MS-scheme have
been used. Note that δṼij(φ0, σ0) in (C.62) is the same as in (C.53) this time, however,
with the VEVs {v, w} being replaced by the field shifts {φ0, σ0} and in a notation similar
to [14].
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D. Loop Functions
In this chapter of the appendix, some loop-functions at the 1-loop and the 2-loop order
are provided which are used in this thesis. Particular attention is paid to the specifics of
quantum scale invariance introduced by the Renormalisation function µ(σ) in SIDReg.
This is especially important w.r.t. the treatment of factors of µ0, where

• µ0 = µ(w) = z w
1

1−ε , in the usual case

• µ0 = µ(σ0) = z σ
1

1−ε

0 , in the case of the shifted Lagrangian used for computing Veff

Before the loop functions are discussed, however, some particular ε - expansions are
provided.

Γ(ε) =
1

ε
− γE + ε

(
1

2
γ2E +

π2

12

)
+O

(
ε2
)

Γ(ε− 1) = − 1

ε
+ γE − 1 + ε

(
γE − 1− 1

2
γ2E −

π2

12

)
+O

(
ε2
)

Γ(ε− 2) =
1

2

[
1

ε
+

3

2
− γE + ε

(
21

12
− 3

2
γE +

1

2
γ2E +

π2

12

)]
+O

(
ε2
)

Xε = 1 + ε log (X) +
1

2
ε2 log2 (X) +O

(
ε3
)

(D.1)

D.1. 1-Loop-Functions
The well-known A0 - function in a QSI theory, using SIDReg, is given by

i

16π2
A0

(
M̃2

ρ

)
=

∫
dDk

(2 π)D
1

k2 − M̃2
ρ

= − i

(4 π)D/2
Γ

(
1− D

2

) (
M̃2

ρ

)D
2
−1

= − i

(4 π)2
M̃2

ρ Γ (ε− 1)

(
4 π

M̃2
ρ

)ε

= − i

(4 π)2

(
µ−2ε
0 M̃2

ρ

)
Γ (ε− 1)

(
4 π µ2

0

M̃2
ρ

)ε

=
i

(4 π)2
M̂2

ρ

[
1

ε
+ 1− log

(
M2

ρ

4π µ2
0

eγE
)
+ c(1)ρ + ε

Ãε0
(
M2

ρ

)
M2

ρ

]
+O

(
ε2
)

(D.2)
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D.1. 1-Loop-Functions

where ρ ∈ {H,S}, M̂2
ρ := µ−2ε

0 M2
ρ and

Ãε0
(
M2

ρ

)
:=

M2
ρ

2

[
log2

(
M2

ρ

4π µ2
0

eγE
)
− 2 log

(
M2

ρ

4π µ2
0

eγE
)
+ 2 +

π2

6

− 2 c(1)ρ log

(
M2

ρ

4π µ2
0

eγE
)
+ 2 c(2)ρ

] (D.3)

Further∫
dDk

(2 π)D
log
(
k2 − M̃2

ρ

)
=

i

(4 π)D/2
2

D
Γ

(
1− D

2

) (
M̃2

ρ

)D/2
= − i

(4 π)D/2
Γ

(
− D

2

) (
M̃2

ρ

)D/2
= − i

(4 π)2

(
M̃2

ρ

)2
Γ (ε− 2)

(
4π

M̃2
ρ

)ε

= − i

(4 π)2
µ2ε
0

(
µ−2ε
0 M̃2

ρ

)2
Γ (ε− 2)

(
4π µ2

0

M̃2
ρ

)ε

= − i

(4 π)2
µ2ε
0

(
M̂2

ρ

)2
2

[
1

ε
+

3

2
− log

(
M2

ρ

4π µ2
0

eγE
)

+ 2 c(1)ρ + ε
Q̃ε

0

(
M2

ρ

)
M2

ρ

]
+O

(
ε2
)

(D.4)

where ρ ∈ {H,S}, M̂2
ρ = µ−2ε

0 M2
ρ , as before, and

Q̃ε
0

(
M2

ρ

)
:=

M2
ρ

2

[
log2

(
M2

ρ

4 π µ2
0

eγE
)
− 3 log

(
M2

ρ

4 π µ2
0

eγE
)
+

21

6
+
π2

6

+ 4 c(1)ρ

(
1 +

1

2
c(1)ρ − log

(
M2

ρ

4 π µ2
0

eγE
))

+ 4 c(2)ρ

] (D.5)

Remark.
(i) M2

ρ and M̃2
ρ , ρ ∈ {H,S}, are the squared mass eigenvalues of M2

φσ and M̃2
φσ,

given in (C.19) and (C.17) & (C.18), respectively, with mass dimension [M2
ρ ] = 2

and [M̃2
ρ ] = 2, even in D = 4 − 2ε dimensions. As discussed in chapter 2 and

visible in (C.19) squared masses always have mass dimension 2 in every spacetime
dimension, and contain a factor of µ2ε

0 which ensures this. The reason for this is
that there are actually no mass terms in scale invariant theories, however, masses
arise either after SSB or due to the field shift (3.1), and thus dependent on either
the VEVs or the background fields, respectively. Hence, masses consist of VEVs
or background fields with mass dimension 1− ε and come with an factor of µε0 to
an appropriate power to ultimately give rise to a mass of mass dimension 1.
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(ii) The A0 - function in (D.2) has mass dimension 2 − 2ε, as can be seen from the
corresponding momentum integral expression. Hence, the last line in (D.2) must
also have mass dimension 2− 2ε.

(iii) The LHS of (D.4) has mass dimension D = 4 − 2ε, which can also be seen in
equation (3.8) since the effective potential has mass dimension D = 4− 2ε. Thus,
the RHS of (D.4) must also have mass dimension D = 4− 2ε.

(iv) In the penultimate step of (D.2) and (D.4) the factor of µ2ε
0 is pulled out of the first

squared mass. This is done in order to obtain an appropriate factor of µ0 in the
logarithms, because the arguments in the logarithms have to have mass dimension
0. Then, M̂2

ρ := µ−2ε
0 M2

ρ is defined for convenience, which has mass dimension
[M̂2

ρ ] = 2− 2 ε, and thus is the squared mass without the factor of µ2ε
0 .

(v) From the penultimate to the last step in (D.2) and (D.4), the ε-expansion for M̃2
ρ

in (C.18) has been used and then M̃2
ρ , Γ(ε− 1) and Γ(ε− 2), respectively, as well

as (.)ε have been expanded w.r.t. ε.

(vi) Finally, an expression of mass dimension 2−2ε and D = 4−2ε in (D.2) and (D.4),
respectively, each with dimensionless arguments in the logarithms is obtained,
since [M̂2

ρ ] = 2− 2ε, [M2
ρ ] = 2 and [µ2

0] = 2, as expected.

(vii) After Renormalisation, in the limit ε→ 0, M̂2
ρ will be identical to M2

ρ .

Beside the above two loop-integrals, the divergent part of the B0 - function in QSI
theories is needed for the computation of 1-loop counterterms in MS or MS scheme.

i

16π2
B0

(
p, M̃1, M̃2

)
=

∫
dDk

(2π)D
1

k2 − M̃2
1

1

(k − p)2 − M̃2
2

=
i

16π2
µ−2ε
0

∫ 1

0

dx (4 π)ε Γ (ε)

(
µ2
0

Q̃B(x)

)ε

=
i

16π2
µ−2ε
0

1

ε
+O

(
ε0
)

(D.6)

where M̃2
i is a generic squared mass in a QSI theory, such as e.g. (C.17) & (C.18), and

Q̃B(x) := p2 (1− x)2 + M̃2
1 x−

(
p2 − M̃2

2

)
(1− x) (D.7)

Note that the same technical details, especially w.r.t. factors of µ0, apply as in the
loop-integrals above.

D.2. 2-Loop-Functions
The 2-loop functions considered in this section are discussed and provided in [5, 6, 7,
10, 15, 22, 23, 24, 25, 26].
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J (x̃, ỹ) = −
(
16π2

)2 ∫ dDk

(2 π)D

∫
dDl

(2 π)D
1

k2 − x̃
1

l2 − ỹ

= µ−4ε
0

{
x̃ ỹ

ε2
− x̃ ỹ

ε

(
log

(
x̃

4π µ2
0

eγE
)
+ log

(
ỹ

4π µ2
0

eγE
)
− 2

)
− x̃ ỹ

[
2 log

(
x̃

4 π µ2
0

eγE
)
+ 2 log

(
ỹ

4 π µ2
0

eγE
)

− 1

2
log2

(
x̃

4 π µ2
0

eγE
ỹ

4 π µ2
0

eγE
)
−
(
3 +

π2

6

)]}
+O (ε)

=
x̂ ŷ

ε2
− x̂ ŷ

ε

(
log

(
x

4π µ2
0

eγE
)
+ log

(
y

4π µ2
0

eγE
)
− c(1)x − c(1)y − 2

)
− x̂ ŷ

[ (
2 + c(1)x + c(1)y

)
log

(
x

4π µ2
0

eγE
)
+
(
2 + c(1)x + c(1)y

)
log

(
y

4 π µ2
0

eγE
)

− 1

2
log2

(
x

4 π µ2
0

eγE
y

4 π µ2
0

eγE
)
−
(
3 +

π2

6

)
−
(
c(1)x + c(1)y

)
−
(
c(2)x + c(2)y + c(1)x c(1)y

) ]
+O (ε)

(D.8)

where
x̃i = xi

(
1 + ε c(1)xi + ε2 c(2)xi +O

(
ε3
))

(D.9)

and x̂i := µ−2ε
0 xi, with {xi}3i=1 = {x, y, z}.

Remark.

(i) The same technical details, especially w.r.t. factors of µ0, apply as discussed in
the previous section for the 1-loop functions.

(ii) The mass dimensions, in D = 4 − 2ε spacetime dimensions, are given by [x̃] = 2,
[x] = 2 and [x̂] = 2− 2ε, meaning that the factor of µ2ε

0 is implicitly contained in
x̃ and x, whereas x̂ does not contain µ2ε

0 .

(iii) In 4 dimensions, i.e. in the limit ε→ 0, x̂ is identical to x.

(iv) As a starting point the definition of J in [6] was used. The arguments x̃ and ỹ
have then been expanded w.r.t. ε.
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I (x̃, ỹ, z̃) =
(
16π2

)2 ∫ dDk

(2 π)D

∫
dDl

(2 π)D
1

k2 − x̃
1

l2 − ỹ
1

(k − l)2 − z̃

= µ−4ε
0

{
− x̃+ ỹ + z̃

2 ε2
+

1

ε

[
x̃ log (x̃) + ỹ log (ỹ) + z̃ log (z̃)− 3

2
(x̃+ ỹ + z̃)

]
+

1

2

[
x̃ log (ỹ) log (z̃) + ỹ log (x̃) log (z̃) + z̃ log (x̃) log (ỹ)

]
− x̃+ ỹ + z̃

2

(
7 +

π2

6

)
− 1

2

[
x̃ log (x̃) + ỹ log (ỹ) + z̃ log (z̃)

] [
log (x̃) + log (ỹ) + log (z̃)− 6

]
− ∆(x̃, ỹ, z̃)

2 z̃
Φ (x̃, ỹ, z̃)

}
+O (ε)

= µ−2ε
0

{
− x̂+ ŷ + ẑ

2 ε2
+

1

ε

[
x̂ log (x) + ŷ log (y) + ẑ log (z)− 3

2
(x̂+ ŷ + ẑ)

− 1

2

(
x̂ c(1)x + ŷ c(1)y + ẑ c(1)z

) ]
− x̂+ ŷ + ẑ

2

(
7 +

π2

6

)
+

1

2

[
x̂ log (y) log (z) + ŷ log (x) log (z) + ẑ log (x) log (y)

]
− 1

2

[
x̂ log (x) + ŷ log (y) + ẑ log (z)

] [
log (x) + log (y) + log (z)− 6

]
+ x̂ c(1)x log (x) + ŷ c(1)y log (y) + ẑ c(1)z log (z)

− 1

2
x̂
(
c(1)x + c(2)x

)
− 1

2
ŷ
(
c(1)y + c(2)y

)
− 1

2
ẑ
(
c(1)z + c(2)z

)
− ∆(x̂, ŷ, ẑ)

2 ẑ
Φ (x, y, z)

}
+O (ε)

= µ−2ε
0

{
− x̂+ ŷ + ẑ

2 ε2
+

1

ε

[
x̂ log (x) + ŷ log (y) + ẑ log (z)− 3

2
(x̂+ ŷ + ẑ)

− 1

2

(
x̂ c(1)x + ŷ c(1)y + ẑ c(1)z

) ]
− 1

2

[
x̂ log

2
(x) + ŷ log

2
(y) + ẑ log

2
(z)

]
+ x̂

(
1 + c(1)x

)
log (x) + ŷ

(
1 + c(1)y

)
log (y) + ẑ

(
1 + c(1)z

)
log (z)

−

(
1 +

π2

12
+
c
(1)
x

2
+
c
(2)
x

2

)
x̂−

(
1 +

π2

12
+
c
(1)
y

2
+
c
(2)
y

2

)
ŷ

−

(
1 +

π2

12
+
c
(1)
z

2
+
c
(2)
z

2

)
ẑ

}
+ ISM (x, y, z) +O (ε)

(D.10)
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where
log (x) := log

(
x

4 π µ2
0

eγE
)

(D.11)

and, defined according to [7, 15, 23],

ISM (x, y, z) := µ−4ε
0

{
1

2
(x− y − z) log (y) log (z) + 1

2
(y − x− z) log (x) log (z)

+
1

2
(z − x− y) log (x) log (y) + 2 x log (x) + 2 y log (y)

+ 2 z log (z)− 5

2
(x+ y + z)− 1

2
ξ(x, y, z)

} (D.12)

with, for x, y ≤ z,

ξ(x, y, z) :=
∆ (x, y, z)

z
Φ (x, y, z)

= R

[
2 log

(
z + x− y −R

2 z

)
log

(
z + y − x−R

2 z

)
− log

(x
z

)
log
(y
z

)
− 2 Li2

(
z + x− y −R

2 z

)
− 2 Li2

(
z + y − x−R

2 z

)
+
π2

3

] (D.13)

R :=
√
x2 + y2 + z2 − 2x y − 2x z − 2 y z (D.14)

Further, this can be expressed in terms of ∆ and Φ, as done in [6], with

∆(x, y, z) := x2 + y2 + z2 − 2 (x y + x z + y z) (D.15)

Φ (x, y, z) :=
1

λ

[
2 log (x+) log (x−)− log (u) log (v)

− 2 (Li2 (x+) + Li2 (x−)) +
π2

3

] (D.16)

with
Li2 (s) := −

∫ s

0

dt
log (1− t)

t
, the dilogarithm

u :=
x

z
, v :=

y

z

λ :=

√
(1− u− v)2 − 4u v =

1

z
R

x± :=
1

2
(1± (u− v)− λ)

(D.17)

Note that the definition of Φ (x, y, z) is valid for

u =
x

z
≤ 1 and v =

y

z
≤ 1
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The other branches of Φ (x, y, z) can be obtained using the symmetry properties [6]

Φ (x, y, z) = Φ (y, x, z) , xΦ (x, y, z) = zΦ (z, y, x)

The derivatives of Φ (x, y, z) can be obtained via the following recursive relation, given
in [6],

∆(x, y, z)
∂Φ (x, y, z)

∂x
= (y + z − x) Φ (x, y, z)

+
z

x

[
(y − z) log

(
z

y

)
+ x

(
log

(
x

y

)
+ log

(x
z

))] (D.18)

Derivatives of Φ w.r.t. y and z can be obtained by using the recursive relation and the
symmetry properties above.
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E. Gauge Theories
In this chapter of the appendix gauge transformations for a generic SU(N) gauge theory
in 4 and D = 4−2ε spacetime dimensions as well as for rescaled and non-rescaled gauge
fields with mass dimensions [Ĝa

µ] = 1 and [Ga
µ] = 1− ε, respectively, are displayed.

E.1. Gauge Transformations in 4 Dimensions
(a) For rescaled gauge fields Ga

µ → Ĝa
µ = g Ga

µ one obtains the following relation for the
gauge transformed gauge field Ĝ′a

µ [32](
∂µ − i Ĝ′a

µ T
a
)
U Ψ = U

(
∂µ − i Ĝa

µ T
a
)
Ψ

=⇒ Ĝ′a
µ T

a = U Ĝa
µ T

a U−1 − i (∂µU)U−1

= Ĝa
µ T

a + ∂µβ̂
a T a + fabc Ĝb

µ β̂
c T a

(E.1)

for
U = ei β̂

a Ta (E.2)

and with mass dimensions (in 4 spacetime dimensions)

[Ĝa
µ] = 1, [β̂a] = 0, [g] = 0 (E.3)

Thus, the infinitesimal gauge transformations are given by

ψi 7−→ ψi + i β̂a T aij ψj

ψi 7−→ ψi − i β̂a ψj T aji
Ĝa
µ 7−→ Ĝa

µ + ∂µβ̂
a + fabc Ĝb

µ β̂
c

(E.4)

(b) For non-rescaled gauge fields Ga
µ one obtains the following relation for the gauge

transformed gauge field G′a
µ [32](
∂µ − i g G′a

µ T
a
)
U Ψ = U

(
∂µ − i g Ga

µ T
a
)
Ψ

=⇒ G′a
µ T

a = U Ga
µ T

a U−1 − i

g
(∂µU)U

−1

= Ga
µ T

a + ∂µβ
a T a + g fabcGb

µ β
c T a

(E.5)
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for
U = ei g β

a Ta (E.6)
and with mass dimensions (in 4 spacetime dimensions)

[Ga
µ] = 1, [βa] = 0, [g] = 0 (E.7)

Thus, the infinitesimal gauge transformations are given by

ψi 7−→ ψi + i g βa T aij ψj

ψi 7−→ ψi − i g βa ψj T aji
Ga
µ 7−→ Ga

µ + ∂µβ
a + g fabcGb

µ β
c

(E.8)

E.2. Gauge Transformations in D = 4− 2ε Dimensions
(a) In the case where the gauge fields are rescaled and then the theory is analytically
extended to D = 4−2ε dimensions, i.e. Ga

µ → Ĝa
µ = g µε(σ)Ga

µ, one obtains the following
relation for the gauge transformed gauge field Ĝ′a

µ(
∂µ − i Ĝ′a

µ T
a
)
U Ψ = U

(
∂µ − i Ĝa

µ T
a
)
Ψ

=⇒ Ĝ′a
µ T

a = U Ĝa
µ T

a U−1 − i (∂µU)U−1

= Ĝa
µ T

a + ∂µβ̂
a T a + fabc Ĝb

µ β̂
c T a

(E.9)

for
U = ei β̂

a Ta (E.10)
and with mass dimensions (in D = 4− 2ε spacetime dimensions)

[Ĝa
µ] = 1, [β̂a] = 0, [g] = 0 (E.11)

Thus, the infinitesimal gauge transformations are given by

ψi 7−→ ψi + i β̂a T aij ψj

ψi 7−→ ψi − i β̂a ψj T aji
Ĝa
µ 7−→ Ĝa

µ + ∂µβ̂
a + fabc Ĝb

µ β̂
c

(E.12)

It can be seen that these gauge transformations are equivalent to those in 4 dimensions.
Note that, after the theory was analytically continued to D = 4 − 2ε dimensions,

solely the dimensionless gauge coupling g (and not the Renormalisation function) can
be pulled out of the gauge field to obtain G

a

µ = µε(σ)Ga
µ, such that

G
a

µ =
1

g
Ĝa
µ = µε(σ)Ga

µ

Ĝa
µ = g µε(σ)Ga

µ = g G
a

µ

(E.13)
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E.2. Gauge Transformations in D = 4− 2ε Dimensions

and analogous for βa. In this case the infinitesimal gauge transformations are then
provided by

ψi 7−→ ψi + i g β
a
T aij ψj

ψi 7−→ ψi − i g β
a
ψj T

a
ji

G
a

µ 7−→ G
a

µ + ∂µβ
a
+ g fabcG

b

µ β
c

(E.14)

which look exactly like the "usual" gauge transformations in 4 dimensions (cf. case (b)
in section E.1). The mass dimensions are still the same as in (E.11), i.e.

[G
a

µ] = 1, [β
a
] = 0, [g] = 0 (E.15)

(b) For non-rescaled gauge fields Ga
µ one obtains the following relation for the gauge

transformed gauge field G′a
µ(

∂µ − i g µε(σ)G′a
µ T

a
)
U Ψ = U

(
∂µ − i g µε(σ)Ga

µ T
a
)
Ψ

=⇒ G′a
µ T

a = U Ga
µ T

a U−1 − i

g
µ−ε(σ) (∂µU)U

−1

= Ga
µ T

a + ∂µβ
a T a + g µε(σ) fabcGb

µ β
c T a + ε µ−1(σ)

∂µ

∂σ
∂µσ β

a T a

(E.16)

for
U = ei g µ

ε(σ)βa Ta (E.17)
and with mass dimensions (in D = 4− 2ε spacetime dimensions)

[Ga
µ] = 1− ε, [βa] = −ε, [g] = 0 (E.18)

Thus, the infinitesimal gauge transformations are given by

ψi 7−→ ψi + i g µε(σ) βa T aij ψj

ψi 7−→ ψi − i g µε(σ) βa ψj T aji

Ga
µ 7−→ Ga

µ + ∂µβ
a + g µε(σ) fabcGb

µ β
c + ε µ−1(σ)

∂µ

∂σ
∂µσ β

a

(E.19)

It can be seen that the gauge transformation of the gauge field obtains a non-trivial
evanescent correction due to the Renormalisation function.
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F. Muon Production

The Feynman diagrams of the considered process in section 5.3, i.e. muon production
at the 1-loop level, considering only the 1-loop muon vertex corrections, in massless QSI
QED with yf 6= 0 and λ ≡ 0 and Lagrangian (4.29), are provided in the first section
of this chapter of the appendix. Moreover, the 3 body phase space integral and some
solutions for specific kinematics which are necessary for the real emission graphs in the
above mentioned process are given in the second section.

F.1. Feynman Diagrams

In the considered theory (4.29), there are 2 Feynman diagrams contributing to the
scattering process e− e+ −→ µ− µ+ at tree-level, which are

iMtree =

p2

p1

q

γ

k2

k1

e+

e−

µ+

µ−

+

p2

p1

q

D

k2

k1

e+

e−

µ+

µ−

(F.1)

At the 1-loop level, there are 10 Feynman diagrams containing a 1-loop muon vertex
correction, 4 of them with a photon mediator as illustrated in (F.2)

e−

e+

µ−

µ+

γ
γ +

e−

e+

µ−

µ+

γ
D

+

e−

e+

µ−

µ+

γ

γ

D
µ +

e−

e+

µ−

µ+

γ

D

γ
µ

(F.2)
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and the other 6 with a Dilaton mediator as shown below in (F.3).

e−

e+

µ−

µ+

D γ +

e−

e+

µ−

µ+

D
D

+

e−

e+

µ−

µ+

D

γ

γ
µ +

e−

e+

µ−

µ+

D

D

+

e−

e+

µ−

µ+

D

D

+

e−

e+

µ−

µ+

D

D

(F.3)

Moreover, for the scattering process e− e+ −→ µ− µ+ γ, i.e. final state real photon
emission graphs, there are 6 tree-level Feynman diagrams, where 3 of them are photon
mediated as provided in (F.4)

e−

e+

µ−

µ+

γ
γ

+

e−

e+

µ−

µ+

γ
γ

+

e−

e+

µ−

γ

µ+
γ D

(F.4)
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and the other 3 of them are Dilaton mediated as illustrated in (F.5).

e−

e+

µ−

µ+

γD
+

e−

e+

µ−

µ+

γD

+

e−

e+

µ−

γ

µ+D
γ

(F.5)

Additionally, for the scattering process e− e+ −→ µ− µ+D, i.e. final state real Dilaton
emission graphs, there are 6 tree-level Feynman diagrams, where 3 of them are photon
mediated as given in (F.6)

e−

e+

µ−

µ+

D
γ

+

e−

e+

µ−

µ+

D
γ

+

e−

e+

µ−

D

µ+
γ

γ

(F.6)

and the other 3 of them are Dilaton mediated, provided below in (F.7).

e−

e+

µ−

µ+

D
D

+

e−

e+

µ−

µ+

D
D

+

e−

e+

µ−

µ+

D
D

(F.7)
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F.2. 3 Body Phase Space Integral

The kinematic of the 2 −→ 3 scattering processes is given by p1, p2, k1 and k2 for
the electron, positron, muon and antimuon, respectively, as well as kF for either the
final state photon or the final state Dilaton, depending on the considered process. This
labelling of the momenta is exemplarily illustrated for one of the e− e+ −→ µ− µ+ γ
diagrams in (F.8).

e−

e+

µ−

µ+

γ

p1

p2

q

γ

k2

k1

kF
(F.8)

In the present case of massless QSI QED with yf 6= 0 and λ ≡ 0 the squared momenta
evaluate as follows

p21 = p22 = k21 = k22 = k2F = 0

q2 = (p1 + p2)
2 = (k1 + k2 + kF )

2 =: Q2
(F.9)

where Q =
√
s is the center-of-mass energy. Defining the energy fractions xi, i ∈

{1, 2, F}, in the C.o.M. frame analogous to [32] as

xi :=
2 ki · q
Q2

(F.10)

the kinematic can further be specified by

(k1 + k2)
2 = 2 k1 k2 = Q2 (1− xF )

(k1 + kF )
2 = 2 k1 kF = Q2 (1− x2)

(k2 + kF )
2 = 2 k2 kF = Q2 (1− x1)

(F.11)

with relation
x1 + x2 + xF = 2 (F.12)

F.2. 3 Body Phase Space Integral
First, consider the 2 body phase space integral in D = 4− 2ε dimensions over 1, as it is
also needed in section 5.3, which is given by [32]

∫
dΦ2 =

(
4 π

Q2

) 4−D
2 2−D
√
π Γ
(
D−1
2

) (F.13)
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F. Muon Production

Now, consider the 3 body phase space integral in D = 4 − 2ε dimensions over some
function f = f(k1, k2, kF ) which may be written as [32]∫

dΦ3 f (k1, k2, kF ) =

(
4π

Q2

)4−D
Q2

128π3 Γ (D − 2)

×
∫ 1

0

dx1

∫ 1

1−x1
dx2

f(x1, x2, xF )[
(1− x1) (1− x2) (1− xF )

] 4−D
2

∣∣∣∣∣
xF=2−x1−x2

(F.14)

in terms of the energy fractions in the C.o.M. frame xi, i ∈ {1, 2, F}, defined in (F.10).
In the following, the 3 body phase space integral is explicitly evaluated for some

specific integrands which are necessary for the 2 −→ 3 scattering processes considered
in section 5.3. Note that the integrals over x1 and x2 have been performed exactly
and then afterwards the result has been expanded w.r.t. ε. This is important as the
expansion in ε does not commute with the phase space integration in general. Before
the results are presented it is convenient to define

∆Φ (x1, x2, xF ) :=
1[

(1− x1) (1− x2) (1− xF )
] 4−D

2
(F.15)

Now, explicit results are provided for the following integrals:

I1 :=

∫ 1

0

dx1

∫ 1

1−x1
dx2

x21 + x22 +
D−4
2
x2F

(1− x1) (1− x2)
∆Φ (x1, x2, xF )

∣∣∣∣∣
xF=2−x1−x2

=
2

ε2
+

3

ε
+

19

2
− π2 +O (ε)

(F.16)

I2 :=

∫ 1

0

dx1

∫ 1

1−x1
dx2

x2F
1− xF

∆Φ (x1, x2, xF )

∣∣∣∣∣
xF=2−x1−x2

= −1

ε
− 23

6
+O (ε) (F.17)

I3 :=

∫ 1

0

dx1

∫ 1

1−x1
dx2 ∆Φ (x1, x2, xF )

∣∣∣∣∣
xF=2−x1−x2

=
1

2
+O (ε) (F.18)

I4 :=

∫ 1

0

dx1

∫ 1

1−x1
dx2

x21 + x22 +
D−4
2
x2F

1− xF
∆Φ (x1, x2, xF )

∣∣∣∣∣
xF=2−x1−x2

= − 2

3 ε
− 2

3
+O (ε)

(F.19)

I5 :=

∫ 1

0

dx1

∫ 1

1−x1
dx2

x1 x2
1− xF

∆Φ (x1, x2, xF )

∣∣∣∣∣
xF=2−x1−x2

= − 1

6 ε
− 1

12
+O (ε)

(F.20)

I6 :=

∫ 1

0

dx1

∫ 1

1−x1
dx2

1

1− x2
∆Φ (x1, x2, xF )

∣∣∣∣∣
xF=2−x1−x2

= −1

ε
− 3 +O (ε) (F.21)
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I7 :=

∫ 1

0

dx1

∫ 1

1−x1
dx2

x2 (2− x1)
(1− x1) (1− x2)

∆Φ (x1, x2, xF )

∣∣∣∣∣
xF=2−x1−x2

=
1

ε2
− π2

2
− 1

2
+O (ε)

(F.22)

I8 :=

∫ 1

0

dx1

∫ 1

1−x1
dx2

x1 x2
(1− x1) (1− x2)

∆Φ (x1, x2, xF )

∣∣∣∣∣
xF=2−x1−x2

=
1

ε2
+

2

ε
+

13

2
− π2

2
+O (ε)

(F.23)

I9 :=

∫ 1

0

dx1

∫ 1

1−x1
dx2 (1− xF ) ∆Φ (x1, x2, xF )

∣∣∣∣∣
xF=2−x1−x2

=
1

6
+O (ε) (F.24)

Furthermore, note the following relation

I2 =
1

D − 2

(
2 I4 − 8 I3 + 4 I5

)
(F.25)
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