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ABSTRACT

We present a data-driven framework for the multiscale modeling of anisotropic finite strain elasticity
based on physics-augmented neural networks (PANNs). Our approach allows the efficient simulation
of materials with complex underlying microstructures which reveal an overall anisotropic and
nonlinear behavior on the macroscale. By using a set of invariants as input, an energy-type output
and by adding several correction terms to the overall energy density functional, the model fulfills
multiple physical principles by construction. The invariants are formed from the right Cauchy-Green
deformation tensor and fully symmetric 2nd, 4th or 6th order structure tensors which enables to
describe a wide range of symmetry groups. Besides the network parameters, the structure tensors
are simultaneously calibrated during training so that the underlying anisotropy of the material is
reproduced most accurately. In addition, sparsity of the model with respect to the number of invariants
is enforced by adding a trainable gate layer and using ℓ𝑝 regularization. Our approach works for
data containing tuples of deformation, stress and material tangent, but also for data consisting only
of tuples of deformation and stress, as is the case in real experiments. The developed approach is
exemplarily applied to several representative examples, where necessary data for the training of the
PANN surrogate model are collected via computational homogenization. We show that the proposed
model achieves excellent interpolation and extrapolation behaviors. In addition, the approach is
benchmarked against an NN model based on the components of the right Cauchy-Green deformation
tensor.

∗Corresponding author, email: markus.kaestner@tu-dresden.de.
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1 Introduction

One of the cornerstones of continuum solid mechanics are constitutive models which allow to mathematically describe
the behavior of a variety of materials such as metals, elastomers or even active materials and even non-Newtonian
fluids. During the last century, considerable efforts have been made to understand the mathematical and physical
requirements that a constitutive model should fulfill [1, 2]. Based on this knowledge, numerous models, referred to as
classical constitutive models in the following, have been formulated and parameterized using data from experiments
or simulations at lower scales. However, especially for composite materials, which often show an extremely complex
anisotropic and nonlinear behavior, these classical models are often not flexible and sufficiently accurate enough.
For this reason, alternatives based on machine learning and in particular the use of neural networks (NNs) have
recently become increasingly popular in constitutive modeling [3, 4]. Approaches of this kind indicate the potential of
data-driven constitutive modeling, i.e., without having to decide on a specific model, it is possible to learn complex
material behavior.

1.1 Application of neural networks in constitutive modeling

In the pioneering work of Ghaboussi et al. [5] from the early 1990s, NNs, in particular feedforward neural networks
(FNNs), were used for the first time to predict hysteresis in uniaxial and multiaxial stress states. To allow the FNN to
learn history-dependent behavior, information from several prior time steps are used as input. After a brief period in the
1990s, the approach of using NNs for constitutive modeling has not been significantly pursued for the time being. With
the increasing popularity of machine learning and the associated rapid advances in efficiency and accessibility, many
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different data-driven methods2 have emerged in mechanics in a very short time in recent years, see the review articles
[3, 4, 15, 16, 17].

A rather important development in NN-based constitutive modeling and generally in scientific machine learning is to
include fundamental physical knowledge, which is denoted as physics-informed [18, 19, 20, 21], mechanics-informed
[22], physics-augmented [23, 24], physics-constrained [25], or thermodynamics-based [26]. This may be accomplished
in two ways: either strongly, as in the case of adapted network architectures [27, 28], or weakly, as in the case of
problem-specific loss terms for training, see [29, 30, 31]. As shown in [24, 26, 32, 33], these models enable the usage
of sparse training data and a significant improvement of the model’s extrapolation capability. In the following, we
will give a brief overview on NN-based constitutive modeling which is mainly limited on elasticity, i.e., perfectly
path-independent behavior.

There are numerous works that model elasticity with NNs in this sense, e.g., in the initial works [34, 35] from the 2000s,
the elastic potential of isotropic materials is approximated by using an FNN with three deformation-type invariants
as input, which leads to the fulfillment of several requirements by construction, e.g., thermodynamic consistency,
objectivity, or material symmetry. However, instead of calibrating the model with stress data, the strain energy density
data were used directly to train these models. Meanwhile, approaches based on architectures that use the hyperelastic
potential as output and invariants as input are very common, e.g. [24, 27, 28, 36, 37, 38, 39, 40, 41, 42]. Thereby, a
special training method allows direct calibration of the NN using stress and strain tuples. In particular, the loss function
involves the derivation of the energy with respect to the deformation, a technique known as Sobolev training [43, 44].
If also a loss term for the elasticity tensor is added, which requires to calculate the second derivative of the potential
with respect to the deformation, it is called higher-order Sobolev training [45, 46]. Other models formulate NN-based
potentials directly in terms of the components of the strain or deformation tensor [22, 44, 47], which offers more
flexibility in cases of anisotropy. However, this has the disadvantage that the network design no longer enforces the
material symmetry by construction. For finite symmetry groups, this problem can be overcome by group symmetrization,
see [36, 48]. As shown in [49], it is also possible to use tensor feature equivariant neural networks to enforce material
symmetry.

In addition, polyconvex NNs are used in several works [36, 39, 40, 50, 51, 52], which can be favorable in finite element
(FE) simulations, improves the extrapolation capability [24, 46] and guarantees rank-one convexity and thus ellipticity
[53, 54]. Various techniques are used for incorporating this condition, with the most widely spread being the application
of fully input convex neural networks (FICNNs) introduced by Amos et al. [55]. Recently, Linden et al. [24] presented an
approach based on FICNNs that fulfills all usual conditions of (an)isotropic compressible hyperelasticity by construction,
i.e., thermodynamic consistency, symmetry of stress, objectivity, material symmetry, polyconvexity and thus ellipticity,
volumetric growth condition, as well a stress- and energy-free undeformed state.

In the context of multiscale problems, NN-based approaches can be used as surrogate models which replace the
computationally expensive simulation of representative volume elements (RVEs) and thus enable a significant speed
up [25, 56]. Due to the high flexibility and simultaneously excellent prediction quality, NNs enriched with physical
knowledge are excellently suited as surrogate models [16, 23, 25, 36, 45, 46, 57, 58, 59, 60, 61, 62]. In principle, the
rule can be established that NNs with as much physics incorporated by design as possible are to be preferred, as these
have a significantly better extrapolation behavior and thus less time-consuming RVE simulations have to be carried out
[25].

1.2 Objectives and contributions of this work

As discussed in the literature overview given above, numerous very sophisticated approaches for constitutive modeling
exist that combine modern machine learning methods with a reasonable physical basis. Restricting to elasticity, a
description of the elastic potential by an NN with invariants as input is favorable if the underlying anisotropy can be
described. However, most models formulated in this way are either limited to isotropy or assume that the symmetry
group and the associated preferred directions are known in advance.

2It should be noted that in addition to NNs, there are several other machine learning/data-driven techniques for constitutive
modeling. E.g., Gaussian process regression as applied in [6, 7, 8] also enables to model elasticity. As shown in [9], it is also useful
to use splines to formulate the elastic energy density defined on a discretized invariant space. Other approaches based on sparse
or symbolic regression allow an automated discovery of constitutive models [10, 11, 12, 13, 14], i.e., instead of only identifying
the parameters of a predefined model, the algorithm selects a model from a large set of candidates. This offers the advantage of
interpretability.
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To the author’s knowledge, there are only a few works that deal with the problem of anisotropy detection combined
with NN-based constitutive modeling in the finite strain regime.3 In Linka et al. [28], a structure learning block based
on a set of 2nd order structure tensors built as vector dyads 𝒍 𝑖 ⊗ 𝒍 𝑖 with 𝒍 𝑖 being a preferred direction is presented.
Besides the NN weights and biases, the preferred directions are determined during training to determine the material’s
anisotropy. In the same line, Thakolkaran et al. [37] detect the fiber orientation for transverse isotropy within the
framework NN-EUCLID. Finally, Fuhg et al. [38] have proposed so called tensor-basis NNs which allow to discover
both the type and orientation of the anisotropy. To do so, structure tensors and invariants for isotropy, transverse isotropy
and orthotropy are used. The three papers mentioned above already allow the detection of anisotropy for several classes
of materials without the need for prior knowledge. However, in all works a restriction to one 2nd order structure tensor
or a combination of several 2nd order structure tensors has been made. For the generation of complete invariant sets,
however, structure tensors of a higher order are necessary for numerous symmetry groups [53, 65, 66]. For example,
a 4th order structure tensor is required for the cubic group and even a 6th order structure tensor for the hexagonal
anisotropy class.

Thus, within this contribution, we present an invariant-based NN approach, where generalized structure tensors [67] up
to 6th order are used for the generation of the invariant set. Simultaneous training of structure tensors and NN weights
allows the identification of anisotropy. To do so, parameterized versions of generalized structure tensors fulfilling
important properties are used. In addition, we introduce trainable gates in combination with a 𝑝-norm type penalty
loss which allows us to remove unnecessary invariants from the model, which is also denoted as ℓ𝑝 regularization
[10, 68]. To allow for maximum accuracy in energy, stress and elasticity tensor, a higher-order Sobolev training is
applied. Following the idea of physics-augmented neural networks (PANNs) [23, 24, 46, 69], the proposed model is
formulated such that as many conditions as possible are fulfilled by construction. These are thermodynamic consistency,
compatibility with the balance of angular momentum, objectivity, material symmetry, volumetric growth condition, as
well as energy- and stress-free undeformed state. The performance of our approach is demonstrated for five different
RVEs, where interpolation as well as extrapolation are considered. In addition, a comparison to a model based on the
coordinates of the right Cauchy-Green deformation tensor is shown. The comprehensive RVE databases are generated
by a computational homogenization approach.

The organization of the paper is as follows: In Sect. 2, the fundamentals of finite strain continuum mechanics, basic
principles of hyperelasticity, a scale transition scheme and the theory of generalized structure tensors are summarized.
After this, PANNs based on generalized structure tensors and a training which enables anisotropy detection are
introduced in Sect. 4. The developed approach is exemplarily shown Sect. 5. After a discussion of the results, the paper
is closed by concluding remarks and an outlook to necessary future work in Sect. 6.

Notation Within this work, tensors of rank one and two are given by boldface italic letters, i.e., 𝑨, 𝑩 ∈ L1 or
𝑪, 𝑫 ∈ L2, where L𝑛 denotes the space of tensors with rank 𝑛 ∈ N with N being the set of natural numbers without
zero. Tensors with rank four and six are marked by blackboard symbols and bold upright sans serif letters, i.e., A ∈ L4
and A ∈ L6, respectively. Single and double contractions of two tensors are given by 𝑪 · 𝑫 = 𝐶𝑘𝑙𝐷𝑙𝑖𝒆𝑘 ⊗ 𝒆𝑖
and 𝑪 : 𝑫 = 𝐶𝑘𝑙𝐷𝑘𝑙 , respectively. Therein, 𝒆𝑘 ∈ L1 and ⊗ denote a Cartesian basis vector and the dyadic
product, where the Einstein summation convention is used. The cross product of two rank one tensors is given
by 𝑨 × 𝑩 = 𝑒𝑖 𝑗𝑘𝐴 𝑗𝐵𝑘𝒆𝑖 , with 𝑒𝑖 𝑗𝑘 being the antisymmetric Levi-Civita symbol. Transpose and inverse of a second
order tensor 𝑪 are given by 𝑪𝑇 and 𝑪−1, respectively. Additionally, tr𝑪, det𝑪, cof 𝑪 := det(𝑪)𝑪−𝑇 are used to
indicate trace, determinant as well as cofactor, respectively. The Hadamard product of tensors, vectors or matrices,
i.e., the element-wise product, is given by the symbol ⊙. The space of unit vectors is given by N := {𝒏 ∈ L1 | 𝒏 ·
𝒏 = 1}. The sets 𝒮𝓎𝓂 :=

{
𝑨 ∈ L2 | 𝑨 = 𝑨𝑇

}
, 𝒮𝓎𝓂4 :=

{
A ∈ L4 | 𝐴𝑖 𝑗𝑘𝑙 = 𝐴 𝑗𝑖𝑘𝑙 = 𝐴𝑖 𝑗𝑙𝑘 = 𝐴𝑘𝑙𝑖 𝑗 = 𝐴𝑘 𝑗𝑖𝑙 = . . .

}
and

𝒮𝓎𝓂6 equivalently defined, denote the spaces of fully symmetric 2nd, 4th and 6th order tensors, i.e., with full
symmetry. The space of 4th order tensors which only have major and minor symmetry, e.g., the elasticity tensor, is
given by the set 𝒮𝓎𝓂4 :=

{
A ∈ L4 | 𝐴𝑖 𝑗𝑘𝑙 = 𝐴 𝑗𝑖𝑘𝑙 = 𝐴𝑖 𝑗𝑙𝑘 = 𝐴𝑘𝑙𝑖 𝑗

}
. Furthermore, the orthogonal group and special

orthogonal group in the Euclidean vector space R3 are given by 𝒪(3) :=
{
𝑨 ∈ L2 | 𝑨𝑇 · 𝑨 = 1

}
and 𝒮𝒪(3) :={

𝑨 ∈ L2 | 𝑨𝑇 · 𝑨 = 1, det 𝑨 = 1
}
, respectively, while GL+ (3) := {𝑨 ∈ L2 | det 𝑨 > 0} is the set of invertible second

order tensors with positive determinant. Therein, 1 := 𝛿𝑖 𝑗 𝒆𝑖 ⊗ 𝒆 𝑗 ∈ L2 is the second order identity tensor, where
𝛿𝑖 𝑗 denotes the Kronecker delta. Norms of rank one and two tensors or matrices are given by |𝑨| :=

√
𝐴𝑖𝐴𝑖 and

∥𝑪∥ :=
√︁
𝐶𝑖 𝑗𝐶𝑖 𝑗 , respectively.

3For linear elasticity, the approaches developed by Cowin and Mehrabadi [63] or Moahker and Norris [64] can be used to identify
the anisotropy class and orientation in the linear-elastic range. However, to apply these techniques, prior knowledge of the elasticity
tensor is necessary. Furthermore, it is not possible to find out from the linear elastic regime alone to which anisotropy class the
material belongs, since some classes coincide in the linear elastic limiting case, e.g. transverse isotropy and hexagonal anisotropy.
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For reasons of readability, the arguments of functions are usually omitted within this work. However, energy functions
are given with their arguments to show the dependencies, except when derivatives are written. Furthermore, in the
following the symbol of a function is identical with the symbol of the function value itself.

2 Fundamentals

In this section, we introduce kinematics and stress measures common in finite strain continuum mechanics. Based
on this, general principles of anisotropic finite strain hyperelasticity are summarized. Additionally, the concept of
generalized structure tensors and isotropic tensor functions are introduced. Finally, to link the micro- and macroscale,
we introduce an appropriate homogenization scheme.

2.1 Kinematics and stress measures

Let us consider the motion of a material body with reference configuration B0 ⊂ R3 at time 𝑡0 ∈ R≥0 and current
configuration B ⊂ R3 at time 𝑡 ∈ T := {𝜏 ∈ R | 𝜏 ≥ 𝑡0}. To describe the body’s motion, we introduce a smooth bijective
mapping 𝝋 : B0 × T → B, mapping material points 𝑿 ∈ B0 to 𝒙 = 𝝋 (𝑿, 𝑡) ∈ B. The displacement 𝒖 ∈ L1 of
each material point is given by 𝒖(𝑿, 𝑡) := 𝝋(𝑿, 𝑡) − 𝑿. As further kinematic quantities, the deformation gradient
𝑭 := (∇𝑿𝝋)𝑇 ∈ GL+ (3) and its determinant 𝐽 := det 𝑭 ∈ R>0 are defined. Finally, we introduce the right Cauchy-Green
deformation tensor 𝑪 := 𝑭𝑇 · 𝑭 ∈ 𝒮𝓎𝓂 and the Green-Lagrange strain tensor 𝑬 := 1

2 (𝑪 − 1) ∈ 𝒮𝓎𝓂 as kinematic
quantities which are invariant to rigid body motions.

Within finite strain continuum solid mechanics, various stress measures can be defined. In this work, we make use of
the Cauchy stress tensor 𝝈 ∈ 𝒮𝓎𝓂, which is symmetric and is also known as true stress, as well as the 1st and 2nd
Piola-Kirchhoff stress tensors 𝑷 ∈ L2 and 𝑻 ∈ 𝒮𝓎𝓂. The latter two stress tensors are linked to the Cauchy stress by
the pullback operations 𝑷 := 𝐽𝝈 · 𝑭−𝑇 and 𝑻 := 𝐽𝑭−1 · 𝝈 · 𝑭−𝑇 , respectively.

For more details on basic principles in continuum solid mechanics the reader is referred to the textbooks of Haupt [1] or
Holzapfel [2].

2.2 Physical conditions for anisotropic finite strain hyperelasticity

An elastic constitutive model relates deformation gradient to stress induced at a material point. In hyperelasticity, this
mapping is not defined directly, but via an elastic potential, i.e.,

𝜓 : GL+ (3) → R≥0, 𝑭 ↦→ 𝜓(𝑭) and 𝑷 =
𝜕𝜓

𝜕𝑭
. (1)

Relation (1)2 implies energy conservation and path-independency. The model is thus a priori thermodynamically
consistent, i.e., in accordance with the second law of thermodynamics [24, 27].

A mapping between the rates of 1st Piola-Kirchhoff stress ¤𝑷 and deformation gradient ¤𝑭 follows by the material time
derivative ¤(·) of Eq. (1)2 and by introducing the material tangent A ∈ L4, i.e.,

¤𝑷 = A : ¤𝑭 with A :=
𝜕2𝜓

𝜕𝑭𝜕𝑭
∈ L4 . (2)

For the other stress measures introduced in Sect. 2.1, the equivalent relationships
◦
𝝈 = c : 𝒅 and ¤𝑻 = C : ¤𝑬 can be

found. Thereby, 𝒅 := sym( 𝒍) ∈ 𝒮𝓎𝓂 is the rate of deformation tensor, which is the symmetric part of the velocity
gradient 𝒍 = ¤𝑭 · 𝑭−1, and

◦
𝝈 = ¤𝝈 − 𝒍 · 𝝈 − 𝝈 · 𝒍𝑇 + 𝝈 tr 𝒍 is the Truesdell rate of 𝝈. Relations of the introduced

material tangents c ∈ 𝒮𝓎𝓂4 and C ∈ 𝒮𝓎𝓂4 to A can be determined through some tensor calculations and follow to
𝑐𝑖 𝑗𝑘𝑙 = 𝐽−1𝐴𝑖𝐽𝑘𝐿𝐹𝑗 𝐽𝐹𝑙𝐿 − 𝛿𝑖𝑘𝜎𝑗𝑙 as well as 𝐶𝐼 𝐽𝐾𝐿 = (𝐴𝑖𝐽𝑘𝐿 − 𝛿𝑖𝑘𝑇𝐽𝐿) 𝐹−1

𝐼𝑖 𝐹
−1
𝐾𝑘 , respectively. Note that both C and c

have a minor and a major symmetry, but are not completely symmetrical.

There are additional mathematical and physical requirements for the hyperelastic potential [1, 2]. The most common
ones are briefly summarized below. For more details, please refer to the textbooks given above or the recent work
Linden et al. [24]

In order to guarantee symmetric Cauchy and 2nd Piola-Kirchhoff stress tensors, which follow from the balance of
angular momentum, 𝜓(𝑭) has to be formulated such that the following condition holds:

𝜕𝜓

𝜕𝑭
· 𝑭𝑇 = 𝑭 · 𝜕𝜓

𝜕𝑭𝑇
. (3)

5



Neural networks meet anisotropic hyperelasticity A PREPRINT

The principle of material objectivity states that the behavior of the material must not change with any rigid body motion.
Furthermore, the potential should also account for the material’s anisotropy, which is termed material symmetry. These
two principles are given as

𝜓(𝑭) = 𝜓(𝑸 · 𝑭) ∀𝑭 ∈ GL+ (3), 𝑸 ∈ 𝒮𝒪(3) and (4)

𝜓(𝑭) = 𝜓(𝑭 · 𝑸𝑇 ) ∀𝑭 ∈ GL+ (3), 𝑸 ∈ G ⊆ 𝒪(3) , (5)

respectively. In Eq. (5), G denotes the symmetry group of the material under consideration. There are 11 crystal
symmetries following from 32 point groups with finite order. As the numbering of the groups is not uniform in the
literature, we use the Schoenflies notation in addition to the group number. The symmetry groups are named triclinic
G1 (C𝑖), monoclinic G2 (C2ℎ), rhombic or orthotropic G3 (D2ℎ), tetragonal G4 (C4ℎ) and G5 (D4ℎ), cubic G6 (Tℎ) and
G7 (Oℎ), trigonal G8 (S6) and G9 (D3𝑑), and hexagonal G10 (C6ℎ) and G11 (D6ℎ), see [53, 66] for more details. Three
additional symmetry groups follow by also considering the continuous cylindrical and spherical groups, which are not
finite. These groups are denoted as transversely isotropic G12 (C∞ℎ) and G13 (D∞ℎ) and isotropic G14 (Kℎ = O(3)).
Various coercivity conditions can also be taken into account for hyperelasticity, whereby the volumetric growth condition
is the most widely used [2, 24]. It is given by 𝜓(𝑭) → ∞ as

(
𝐽 → 0+ ∨ 𝐽 → ∞)

and states that a material cannot be
compressed to a volume of zero or extended to an infinite volume, requiring an increase in energy toward infinity.

Furthermore, the undeformed configuration of the material should be energy- and stress-free, i.e., 𝜓(𝑭 = 1) = 0 and
𝑷(𝑭 = 1) = 0 should hold. It is also expected that the stored energy always increases, i.e., it is non-negative, if a
deformation 𝑭 is applied, thus 𝜓(𝑭) ≥ 0 ∀𝑭 ∈ GL+ (3).
Finally, we will also briefly discuss the concept of ellipticity which ensures traveling waves with real-valued and
non-negative wave speeds [53, 54, 70]. In its local form, i.e., for a specific state 𝑭 ∈ GL+ (3), (strict) ellipticity requires

∀𝒂, 𝑵 ∈ N : (𝒂 ⊗ 𝑵) : A(𝑭) : (𝒂 ⊗ 𝑵) (>) ≥ 0 . (6)

If the above condition (6) applies to all permissible deformation states, we speak of (strict) global ellipticity, i.e.,
∀𝑭 ∈ GL+ (3) : ∀𝒂, 𝑵 ∈ N : (𝒂 ⊗ 𝑵) : A(𝑭) : (𝒂 ⊗ 𝑵) (>) ≥ 0. Note that global ellipticity of twice differentiable
and smooth energy functions as typically considered in hyperelasticity is equivalent to rank-one convexity. Instead of
enforcing global ellipticity directly, the mathematical concept of polyconvexity, which was introduced by Ball [71, 72],
is often used in constitutive modeling[24, 36, 53, 54, 73].4 However, it should be noted that polyconvexity can be too
restrictive, especially for multiscale modeling [46, 74, 75]

2.3 Concept of structure tensors and isotropic tensor functions

In order to describe anisotropic constitutive behavior, the concept of structure tensors can be used [1, 2, 53, 66].
Depending on the considered symmetry group, i.e., G1 – G14, these tensors are of orders up to six, where also odd tensor
ranks or antisymmetric tensors are possible, see Xiao [65]. Within this work, we restrict ourselves to fully symmetric
tensors of order two 𝑮1,𝑮2, . . . ,𝑮𝑛2 ∈ 𝒮𝓎𝓂, four G1,G2, . . . ,G𝑛4 ∈ 𝒮𝓎𝓂4 and six G1,G2, . . . ,G𝑛6 ∈ 𝒮𝓎𝓂6. The
structure tensors reflect the material’s anisotropy and are thus invariant with respect to the symmetry transformations,
i.e.,

𝑮𝛼 = 𝑸 · 𝑮𝛼 · 𝑸𝑇 , G𝛽 = 𝑸 ∗ G𝛽 , G𝛾 = 𝑸 ★G𝛾 ∀𝑸 ∈ G , (7)

where (𝑸 ∗G𝛽)𝐼 𝐽𝐾𝐿 = 𝑄𝐼𝑀𝑄𝐽𝑁𝑄𝐾𝑃𝑄𝐿𝑄𝐺
𝛽
𝑀𝑁𝑃𝑄 and (𝑸★G𝛾)𝐼 𝐽𝐾𝐿𝑀𝑁 = 𝑄𝐼𝑂𝑄𝐽𝑃𝑄𝐾𝑄𝑄𝐿𝑅𝑄𝑀𝑆𝑄𝑁𝑇𝐺

𝛾
𝑂𝑃𝑄𝑅𝑆𝑇 .

If the structure tensors are appended to the list of arguments of 𝜓(𝑭), the energy is an isotropic tensor function [76]
even if the material is anisotropic which means that

𝜓(𝑭,S2,S4,S6) = 𝜓(𝑭 · 𝑸𝑇 ,𝑸 · S2 · 𝑸𝑇 ,𝑸 ∗ S4,𝑸 ★S6) ∀𝑸 ∈ 𝒪(3) , (8)

whereby the sets S2 := {𝑮1,𝑮2, . . . ,𝑮𝑛2 }, S4 := {G1,G2, . . . ,G𝑛4 } and S6 := {G1,G2, . . . ,G𝑛6 } have been used to
abbreviate the notation. In the following, for brevity, we summarize all structure tensors in the set S.

The introduced concept of structure tensors can be used to fulfill numerous of the principles given in Sect. 2.2 by
construction. To this end, the potential is formulated in terms of invariants from the right Cauchy-Green deformation

4A potential 𝜓(𝑭) is polyconvex if and only if there is a function such that 𝜓(𝑭) = P(𝑭, cof 𝑭, det 𝑭), with P(𝑭, cof 𝑭, det 𝑭)
convex with respect to its arguments. Polyconvexity is sufficient for quasi-convexity, which ensures rank-one convexity and thus
global ellipticity [53, 54]. Furthermore, sequential weak lower semi-continuity (s.w.l.s.) is guaranteed by polyconvexity. It is
sufficient for the existence of minimizers if coercivity is also guaranteed [53, 54]. The above implications do not apply in reverse.
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tensor 𝑪 and a set of structure tensors S, i.e., 𝜓(I) with I := (𝐼1, 𝐼2, . . . , 𝐼𝑛) ∈ R𝑛. Thus, the constitutive relations
according to Eqs. (1)2 and (2)2 follow then to

𝑷 =
𝑛∑︁
𝛼=1

𝜕𝜓

𝜕𝐼𝛼

𝜕𝐼𝛼
𝜕𝑭

and A =
𝑛∑︁
𝛼=1

𝑛∑︁
𝛽=1

𝜕2𝜓

𝜕𝐼𝛼𝜕𝐼𝛽

𝜕𝐼𝛼
𝜕𝑭

⊗ 𝜕𝐼𝛽

𝜕𝑭
+

𝑛∑︁
𝛼=1

𝜕𝜓

𝜕𝐼𝛼

𝜕2𝐼𝛼
𝜕𝑭𝜕𝑭

, (9)

respectively. The partial derivatives of the invariants with respect to 𝑭 are also referred to as tensor generators [27].
With that, thermodynamic consistency, symmetry of the Cauchy stress, material objectivity and material symmetry are
automatically fulfilled [24].
Remark 1. Note that it is not possible to build invariant sets for all introduced symmetry groups G1 – G14 with two
fully symmetric 2nd order structure tensors or one fully symmetric 4th or 6th order structure tensor each, as done here,
see Xiao [65]. However, a wide range of groups can be described with theses structure tensors, cf. A.

2.4 Scale transition scheme

In the following, we distinguish between two different scales, the microscale and the macroscale with characteristic
lengths ℓ ∈ R≥0 and ℓ̄ ∈ R≥0, respectively. The microscale is represented by a heterogeneous structure consisting of
matrix and inhomogeneities, while the macroscale is considered to be homogeneous. For the characteristic lengths of
both scales, the relationship ℓ ≪ ℓ̄ known as scale separation should hold [77]. To label macroscopic quantities, they
are marked by an overline in the following, i.e., ¯(·).
In order to connect microscopic and macroscopic quantities, a computational homogenization scheme is applied.
Consequently, each macroscopic point �̄� ∈ B̄0 gets assigned properties resulting from the behavior of the microscale
which is represented by an RVE with domain BRVE

0 in the vicinity of �̄� on the microscale. An effective macroscopic
quantity can be determined by the volume average

⟨(·)⟩ :=
1

𝑉RVE

∫
BRVE

0

(·) d𝑉 , (10)

where 𝑉RVE ∈ R≥0 is the RVE’s volume. With that, macroscopic deformation gradient and 1st Piola-Kirchhoff stress
tensor are defined by �̄� := ⟨𝑭⟩ and �̄� := ⟨𝑷⟩, respectively [25, 77]. Boundary conditions (BCs) for the microscopic
BVP, which must be solved before volume averaging, can be derived from the Hill-Mandel condition. For the finite
strain setting under consideration, it is given by the well known equation ⟨𝑷 : ¤𝑭⟩ = �̄� : ¤̄𝑭 [77]. Herein, we use periodic
BCs to guarantee the fulfillment of this relation [25]. Within FE simulations, we realize the periodic BCs via the concept
of master nodes, see Haasemann et al. [78]. This also allows the algorithmically consistent tangent modulus of the RVE
to be calculated in a straightforward manner, which corresponds to the macroscopic material tangent, i.e., Ā = Āalgo.

For the hyperelastic case considered here, the Hill-Mandel condition represents the equality of the rates of the averaged
microscopic and macroscopic energies, allowing to calculate the effective potential by volume averaging, i.e. �̄� = ⟨𝜓⟩.
Thus, the application of the computational homogenization approach allows us to determine the mapping

H : GL+ (3) → R × L2 × L4, �̄� ↦→ (�̄�, �̄�, Ā) . (11)

The Cauchy stress and the corresponding elasticity tensor can be calculated by applying push forward operations. This
allows us to get PF : GL+ (3) × L2 × L4 → 𝒮𝓎𝓂 × L4, (�̄�, �̄�, Ā) ↦→ (�̄�, c̄). All FE simulations in this work were
carried out using an in-house code based on Matlab. To close the brief introduction on computational homogenization
we want note that all of the definitions given in Sects. 2.1 and 2.2 are valid on the microscopic as well as the macroscopic
scales.

3 Macroscale modeling with generalized structure tensors

As already mentioned in Sect. 2.3, it is favorable to formulate the elastic potential in terms of invariants from �̄� and a
set of structure tensors S. In the following, we introduce the concept of generalized structure tensors [67, 79] and give
related sets of invariants.

For the isotropic case, i.e., the group G14, S = {1}, so that a complete and irreducible [80] set of invariants is given by
the well known set

𝐼1 := tr �̄� , 𝐼2 := tr(cof �̄�) and 𝐼3 := det �̄� . (12)

In order to model complex anisotropic behavior on the macroscale, generalized structure tensors can be used. Originally,
this concept has been introduced to model materials which are characterized by fibers oriented in different directions
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on the microscale, e.g., biological tissues or fiber reinforced composites [67]. As already mentioned, we restrict
ourselves to fully symmetric structure tensors of 2nd, 4th and 6th order. These tensors and the related invariant basis are
introduced in the following. Since these tensors correspond to the macroscale as introduced in Sect. 2.4, we mark them
as macroscopic quantities in the following.

3.1 2nd order generalized structure tensor

A second order generalized structure tensor is defined by

�̄� :=
∫
Ω
𝜌(𝜃, 𝜑)𝑵(𝜃, 𝜑) ⊗ 𝑵(𝜃, 𝜑) d𝐴 ∈ 𝒮𝓎𝓂 with

∫
Ω
𝜌(𝜃, 𝜑) dΩ = 1 , (13)

where 𝑵(𝜃, 𝜑) ∈ N is a fiber orientation vector and 𝜌(𝜃, 𝜑) ∈ R≥0 is is a probability density function describing the
orientation of the fibers on the microscale [67].5 The tensor �̄� is symmetric, positive semi-definite and has a trace of
one, i.e., �̄�𝑇 = �̄�, 𝑨 · �̄� · 𝑨 ≥ 0 ∀𝑨 ∈ L1 and tr �̄� = 1. Following Boehler [81], with S := {�̄�}, four additional mixed
invariants follow:

�̄�4 := �̄� : �̄� , �̄�5 := �̄�
2 : �̄� , �̄�6 := �̄� : �̄�2

, �̄�7 := �̄�
2 : �̄�2

. (14)

The set of invariants is thus given by Ī�̄� := (𝐼1, 𝐼2, 𝐼3, �̄�4, �̄�5, �̄�6, �̄�7) ∈ R7. The structure tensor �̄� can also be given
by its eigenvalues 𝜆𝛼 ∈ R≥0 and the corresponding projection tensors 𝑷𝛼 ∈ 𝒮𝓎𝓂:

�̄� =
𝑛𝐺∑︁
𝛼=1

𝜆𝛼𝑷𝛼 with 𝑷𝛼 · 𝑷𝛽 = 𝛿𝛼𝛽𝑷 (𝛽) ,
𝑛𝐺∑︁
𝛼=1

𝑷𝛼 = 1 , (15)

where 𝑛𝐺 ∈ {1, 2, 3} is the number of non-equal eigenvalues. For 𝑛𝐺 = 1 the tensor �̄� describes the isotropic group
G14, whereas for 𝑛𝐺 = 2 and 𝑛𝐺 = 3 the material is transversely isotropic (G13) and orthotropic (G3), respectively [82].
Note that �̄�6 and �̄�7 would be omitted if �̄� has only two different eigenvalues, i.e., for transverse isotropy, see A.8.
Remark 2. Note that orthotropy is typically modeled with two 2nd order structure tensors given by �̄�1 := 𝒂1 ⊗ 𝒂1 ∈
𝒮𝓎𝓂 and �̄�2 := 𝒂2 ⊗ 𝒂2 ∈ 𝒮𝓎𝓂 with 𝒂𝛼 · 𝒂𝛽 = 𝛿𝛼𝛽 [2]. However, as shown in A.4, the invariant set following from

�̄�, �̄�1 and �̄�2 can be expressed by Ī�̄� if �̄� has 3 non-equal eigenvalues and two eigenvectors which are (anti)parallel
with 𝒂1 and 𝒂2, respectively.

3.2 4th order generalized structure tensor

In order to model more complex anisotropic behavior, we introduce an extension of Eq. (13) to a 4th order generalized
structure tensor given by

Ḡ :=
∫
Ω
𝜌(𝜃, 𝜑)𝑵(𝜃, 𝜑) ⊗ 𝑵(𝜃, 𝜑) ⊗ 𝑵(𝜃, 𝜑) ⊗ 𝑵(𝜃, 𝜑) d𝐴 ∈ 𝒮𝓎𝓂4 , (16)

see also [83, 84], where a similar quantity is introduced as fiber orientation tensor.6 The 4th order structure tensor
given in Eq. (16) is fully symmetric, positive semi-definite with respect to vector dyads as well as symmetric 2nd order
tensors and has a generalized trace of one:

�̄�𝐾𝐿𝑀𝑁 = �̄�𝐿𝐾𝑀𝑁 = �̄�𝐾𝐿𝑁𝑀 = · · · , 𝑺 : Ḡ : 𝑺 ≥ 0 ∀𝑺 ∈ 𝒮𝓎𝓂 and �̄�𝐾𝐾𝐿𝐿 = �̄�𝐾𝐿𝐾𝐿 = �̄�𝐾𝐿𝐿𝐾 = 1 . (17)

In order to identify a corresponding set of invariants for the case S := {Ḡ}, we follow the procedure of Xiao [65].
Thus, we build a set of 2nd order tensors from Ḡ and �̄� by polynomials. Due to the fact that Ḡ is constant and due the
Cayley-Hamilton theorem applied for �̄�, we get

�̄�1 := Ḡ : �̄� and �̄�2 := Ḡ : �̄�2
. (18)

According to Boehler [81] we can build a total of 21 invariants from �̄�, �̄�1 and �̄�2. This set is complete but not
irreducible in general, i.e., for specific cases some invariants can be expressed by others or are even redundant. However,

5Note that the introduced parameterized forms of the generalized structure tensors as introduced in Sect. 4.1.1 also allow an
application to materials with microstructures that are not characterized by a distribution of fibers. This will be demonstrated in the
examples part 5 of this paper.

6Note that Fiber orientation tensors are defined in exactly the same way as generalized structure tensors. Fiber orientation tensors
of order 𝑛 ∈ N can be used for the characterization of fiber reinforced composites, generation of RVEs [85] or for mean-field
homogenization [86].
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in order to reduce the number of invariants for the generalized structure tensor of order four, only invariants up to
an order less than or equal to 3 in �̄� are taken into account, i.e., �̄�𝑛 with 𝑛 ≤ 3. This leads to a set comprising the
invariants given in Eq. (12) and the additional invariants

�̄�4 := tr �̄�1 , �̄�5 := tr �̄�2
1 , �̄�6 := tr �̄�3

1 , �̄�7 := tr �̄�2 , �̄�8 := tr(�̄�1 · �̄�) ,
�̄�9 := tr(�̄�2 · �̄�) , �̄�10 := tr(�̄�1 · �̄�2) , �̄�11 := tr(�̄�2

1 · �̄�) .
(19)

The invariant set is thus given by ĪḠ := (𝐼1, 𝐼2, 𝐼3, �̄�4, �̄�5, . . . , �̄�11) ∈ R11.

The formulation based on the generalized structure tensor Ḡ includes the tetragonal group G5 and the cubic group G7
up to invariants of order 3 in �̄�, cf. A.5 and A.6. Note that it is also possible to describe further anisotropy classes with
Ḡ. However, this is not discussed here. The reader is referred to [87] for a discussion on fully symmetric and traceless
4th order structure tensors.

3.3 6th order generalized structure tensor

Furthermore, to enable the description of anisotropy classes that require structure tensors of orders higher than 4, we
introduce a generalized 6th order structure tensor defined as

Ḡ :=
∫
Ω
𝜌(𝜃, 𝜑)𝑵(𝜃, 𝜑) ⊗ 𝑵(𝜃, 𝜑) ⊗ 𝑵(𝜃, 𝜑) ⊗ 𝑵(𝜃, 𝜑) ⊗ 𝑵(𝜃, 𝜑) ⊗ 𝑵(𝜃, 𝜑) d𝐴 ∈ 𝒮𝓎𝓂6 . (20)

Again, similar to �̄� ∈ 𝒮𝓎𝓂 and Ḡ ∈ 𝒮𝓎𝓂4, this tensor is fully symmetric, positive semi-definite with respect to
𝑺 ⊗ 𝑨 ∈ L3 and has a generalized trace of one:

�̄� 𝐼 𝐽𝐾𝐿𝑀𝑁 = �̄�𝐽𝐼𝐾𝐿𝑀𝑁 = �̄� 𝐼 𝐽𝐿𝐾𝑀𝑁 = �̄� 𝐼𝐾𝐽𝐿𝑀𝑁 = · · · , (21)

𝑆𝐼 𝐽 𝐴𝐾 �̄� 𝐼 𝐽𝐾𝐿𝑀𝑁 𝑆𝐿𝑀𝐴𝑁 ≥ 0 ∀𝑺 ∈ 𝒮𝓎𝓂, 𝑨 ∈ L1 and (22)

�̄�𝐾𝐾𝐿𝐿𝑀𝑀 = 1 . (23)

To build an invariant basis, we adapt again the technique from Xiao [65], i.e., we build �̄�1 := 1 : Ḡ : �̄�, �̄�2 := �̄� : Ḡ : �̄�,
�̄�3 := 1 : Ḡ : �̄�2, �̄�4 := �̄� : Ḡ : �̄�2, and �̄�5 := �̄�

2 : Ḡ : �̄�2 and use the rules given in Boehler [81]. With that, one
gets a total of 98 invariants, which can be reduced to 13 if only invariants with orders up to �̄�

3 are used and redundant

invariants are neglected. This leads to the set ĪḠ := (𝐼1, 𝐼2, 𝐼3, �̄�4, �̄�5, . . . , �̄�13) ∈ R13 comprising the invariants given
in Eq. (12) and the additional invariants

�̄�4 := tr �̄�1 , �̄�5 := tr �̄�2
1 , �̄�6 := tr �̄�3

1 , �̄�7 := tr �̄�2 , �̄�8 := tr �̄�3 , �̄�9 := tr �̄�4 ,

�̄�10 := tr(�̄� · �̄�2
1) , �̄�11 := tr(�̄� · �̄�2) , �̄�12 := tr(�̄�1 · �̄�2) , �̄�13 := tr(�̄�1 · �̄�3) .

(24)

The formulation based on the generalized structure tensor Ḡ includes the hexagonal group G11 up to invariants of order
3 in �̄�, see A.7.

3.4 Two 2nd order generalized structure tensors

Finally, several generalized structure tensors can also be used to extend the symmetry groups that can be described
using the structure tensors introduced so far. By using a set given by two 2nd order structure tensors, i.e., S = {�̄�1, �̄�2},
we get 12 invariants according to Boehler [81]: 3 of �̄� as defined in Eq. (12), 4 each according to Eq. (14) for

�̄�, �̄�1 and �̄�, �̄�2 and a further invariant defined by �̄�12 := tr(�̄� · �̄�1 · �̄�2). Thus, we end up with the set Ī�̄�1 ,�̄�2 :=
(𝐼1, 𝐼2, 𝐼3, �̄�4, . . . , �̄�12) ∈ R12.

This formulation includes five different anisotropy classes. For the following discussion, we are taking up the
argumentation from Olive et al. [87] in a slightly modified form. To this end, we use the spectral decomposition of the
structure tensors according to Eq. (15):

�̄�1 =

𝑛𝐺1∑︁
𝛼=1

𝜆𝛼𝑷𝛼 and �̄�2 =

𝑛𝐺2∑︁
𝛼=1

𝜇𝛼𝑴𝛼 . (25)

Note that we only consider positive semi-definite structure tensors. For the case that both structure tensors have
only equal eigenvalues each, i.e, 𝑛𝐺1 = 𝑛𝐺2 = 1, the tensors describe the isotropic group G14. If �̄�1 has 𝑛𝐺1 = 2
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non-equal eigenvalues and it holds �̄�2 = 𝑐11 + 𝑐2�̄�1 with 𝑐1, 𝑐2 ≥ 0 ∧ 𝑐1 + 𝑐2 > 0, the material is transversely
isotropic (G13). The same holds if �̄�1 and �̄�2 change the roles. For the case that �̄�1 · �̄�2 − �̄�2 · �̄�1 = 0 holds and
∃�̄�𝛼 with 𝑛𝐺𝛼 = 3 for 𝛼 ∈ {1, 2} or both structure tensors have 𝑛𝐺1 = 𝑛𝐺2 = 2 non-equal eigenvalues and it holds
�̄�1 ≠ 𝑐11 + 𝑐2�̄�2 ∀𝑐1, 𝑐2 ∈ R, the material is orthotropic (G3). Both tensors describe the monoclinic group G2 if it
holds 𝑤𝐿 = 𝑒𝐿𝑀𝑁𝐺1

𝑀𝑃𝐺
2
𝑃𝑁 ≠ 0 and (�̄�𝛼 · 𝒘) × 𝒘 = 0 ∀𝛼 ∈ {1, 2}. Finally, �̄�1 and �̄�2 describe the triclinic group

G1 if and only if 𝑤𝐿 = 𝑒𝐿𝑀𝑁𝐺1
𝑀𝑃𝐺

2
𝑃𝑁 ≠ 0 and ∃�̄�𝛼 with (�̄�𝛼 · 𝒘) × 𝒘 ≠ 0, 𝛼 ∈ {1, 2}.

4 Physics-augmented neural networks with anisotropy detection

To enable an efficient and accurate description of the complex behavior of composite materials at the macroscale, we
use NNs as a replacement for the time-consuming RVE simulation in this work. In doing so, we combine the advantages
of NNs with a rigorous physical formulation, which we refer to as physics-augmented neural networks (PANNs) [24].
In this section, we formulate a PANN that builds on the concept of generalized structure tensors as introduced in Sect. 3
and allows the description of a variety of symmetry groups. The training and model identification procedure tailored
to the problem makes it possible to recognize the underlying anisotropy only from homogenized data. Note that an
application of our approach to data from real experiments is also possible.

4.1 Model formulation

4.1.1 Parameterized generalized structure tensors

To find a set of generalized structure tensors accounting for the underlying anisotropy of the material, it is necessary
to determine the probability density function 𝜌(𝜃, 𝜑), or, in the case of two structure tensors, the probability density
functions. Usually this is done by identifying the orientation distribution from 2D microscopy images or computer
tomography (CT) scans of the microstructure, e.g., [88].

However, in the following we leave this idea behind us and do not directly use the integral formulations as given in the
previous section. Instead, we consider parameterized versions of the structure tensors. This procedure has two main
advantages: (i) It allows for the efficient determination of �̄� ∈ 𝒮𝓎𝓂, Ḡ ∈ 𝒮𝓎𝓂4, Ḡ ∈ 𝒮𝓎𝓂6 or �̄�1, �̄�2 ∈ 𝒮𝓎𝓂 directly
from available data during training, i.e., from homogenized quantities (�̄�, �̄�, �̄�, Ā) or also from real experimental
data, and (ii) it enables to apply the modeling framework to arbitrary materials, e.g., crystals, composites or foams.
The parameterized generalized structure tensors are constructed in such a way that the properties discussed in Sect. 3,
i.e., symmetry, positive semi-definiteness and (generalized) trace of one, are guaranteed while maintaining the high
flexibility of the original approach.

2nd order structure tensor(s) For the 2nd order structure tensor, the ansatz

�̄� :=
1

𝑔1 + 𝑔2 + 𝑔3
𝑸 · diag(𝑔1, 𝑔2, 𝑔3) · 𝑸𝑇 ∈ 𝒮𝓎𝓂 ,𝑸 ∈ 𝒮𝒪(3) , (26)

[𝑸] :=

[cos 𝜑1 cos 𝜑2 cos 𝜑1 sin 𝜑2 sin 𝜑3 − cos 𝜑3 sin 𝜑1 sin 𝜑1 sin 𝜑3 + cos 𝜑1 cos 𝜑3 sin 𝜑2
cos 𝜑2 sin 𝜑1 cos 𝜑1 cos 𝜑3 + sin 𝜑1 sin 𝜑2 sin 𝜑3 cos 𝜑3 sin 𝜑1 sin 𝜑2 − cos 𝜑1 sin 𝜑3
− sin 𝜑2 cos 𝜑2 sin 𝜑3 cos 𝜑2 cos 𝜑3

]
(27)

with 𝓶�̄� ∈ M�̄� :=
{
𝓶�̄� ∈ R6 | 𝑔1, 𝑔2, 𝑔3 ∈ [0, 1], 𝑔𝑖𝑔𝑖 ≠ 0, 𝜑1 ∈ [0, 𝜋], 𝜑2 ∈ [−𝜋/2, 𝜋/2], 𝜑3 ∈ [−𝜋, 𝜋]} is used.

Note that it would be possible to reduce from six to five parameters due to the normalization condition [82], i.e.,
tr �̄� = 1. From a numerical point of view, however, the chosen approach has proven to be advantageous, since the
conditions on 𝓶�̄� in the optimization can be set quite easily. As already stated, for 𝑔1 = 𝑔2 = 𝑔3, �̄� belongs to the
isotropic group G14, for 𝑔1 = 𝑔2 ≠ 𝑔3 to the transversely isotropic group G13 and for 𝑔1 ≠ 𝑔2 ≠ 𝑔3 to the orthotropic
group G3, see A.8 and A.4. If two 2nd order tensors are used, the ansatz given above is made for each of the two tensors,
respectively. Thus, one gets 12 trainable parameters in this case: 𝓶�̄�1 ,�̄�2

∈ R12.

4th and 6th order structure tensors For the 4th order structure tensor, we propose an ansatz motivated from the
crystal symmetries, see also Ebbing [53]. It is given by a sum of dyadic products of three vectors, i.e.,

Ḡ :=
1
𝑛
S̄ with S̄ :=

3∑︁
𝛼=1

𝑨𝛼 ⊗ 𝑨𝛼 ⊗ 𝑨𝛼 ⊗ 𝑨𝛼 , 𝑛 := 𝑆𝐾𝐾𝐿𝐿 (28)

This special choice for Ḡ allows to fulfill for symmetry, positive semi-definiteness and normalization. In contrast to
the 2nd order structure tensor, only a subset of the structure tensors described by Eq. (16) can be described using the
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𝐼1

�̄�NN𝐼2

𝑖1

𝑖2

𝑖𝑚𝐼𝑚

�̄�NN

□

𝓶□

�̄�
□ ⊙ 𝒈
Gates

�̄� �̄�

Figure 1: Illustration of the neural network �̄�NN ( Ī□) for the representation of the elastic potential described by an invariant set Ī□
build from �̄� := �̄�

𝑇 · �̄� and one or two structure tensor(s) □ ∈ {�̄�, Ḡ, Ḡ, (�̄�1, �̄�2)}, i.e., the mapping is �̄�NN : R𝑛 → R≥0 , Ī□ ↦→
�̄�NN ( Ī□) := (𝑛out ◦ 𝑔NN ◦ 𝓵gate ◦𝓷in) ( Ī□). Therein, 𝓷in ( Ī□) and 𝑛out (𝔭NN) are non-trainable normalization layers that have to
fitted before training, 𝓵gate (�̄�□) is a trainable gate layer and 𝑔NN (�̄�□ ⊙ 𝒈) is a standard PNN guaranteeing positive outputs. The
vector 𝓶□ includes the parameters of the structure tensors and is also trainable.

selected approach. The vectors, given by

𝑨𝛼 := 𝑎𝛼𝑵 (𝛼) ∈ L1, [𝑵] :=

[sin 𝜗𝛼 cos 𝜑 (𝛼)
sin 𝜗𝛼 sin 𝜑 (𝛼)

cos 𝜗𝛼

]
, (29)

are described by the three parameters 𝑎𝛼 ∈ [0, 1], 𝜗𝛼 ∈ [0, 𝜋], 𝜑𝛼 ∈ [0, 2𝜋] each. The parameters of the three
vectors, which describe the 4th order structure tensor, are summarized in the set 𝓶Ḡ ∈ MḠ. For the special case
𝑨𝛼 · 𝑨𝛽 = |𝑨(𝛼) | |𝑨(𝛽) |𝛿𝛼𝛽 , the resulting tensor Ḡ describes the cubic anisotropy group G7 and for 𝑨𝛼 · 𝑨𝛽 = 0, 𝛼 ≠ 𝛽,
|𝑨1 | = |𝑨2 | ≠ |𝑨3 | it represents the tetragonal group G5, see A.6 and A.5.

Note that the choice of parameterization of the unit vectors may affect the uniqueness of the mininizer, see [89].
However, we were able to achieve very good results with the parameterization used here.

Similarly, for the 6h order structure tensor, we use the ansatz

Ḡ :=
1
𝑛

S̄ with S̄ :=
3∑︁
𝛼=1

𝑨𝛼 ⊗ 𝑨𝛼 ⊗ 𝑨𝛼 ⊗ 𝑨𝛼 ⊗ 𝑨𝛼 ⊗ 𝑨𝛼 , 𝑛 := 𝑆𝐾𝐾𝐿𝐿𝑀𝑀 . (30)

Again, this particular choice is made to ensure symmetry, a generalized trace of one and positive semi-definiteness for
Ḡ. The parameters describing the 6th order structure tensor are summarized in the set 𝓶Ḡ ∈ MḠ. For the special case
𝑨𝛼 · 𝑨𝛽 = ± 1

2 |𝑨𝛼 | |𝑨𝛽 |, 𝛼 ≠ 𝛽 and |𝑨1 | = |𝑨2 | = |𝑨3 |, the tensor describes the hexagonal group G11, see A.7.

4.1.2 Neural network-based model

In the following, we will restrict ourselves to models that only use a single 2nd, 4th, or 6th order structure tensor or
two 2nd order structure tensors. As stated above, these models already cover a wide range of symmetry groups and
have proven to be sufficient for the numerical examples shown later. However, the extension to models with other
combinations of structure tensors is straightforward.

Neural network architecture We construct an elastic potential based on a feedforward neural network (FNN) [90]
with the invariant set Ī□ as input, i.e., �̄�NN ( Ī□), where □ ∈ {�̄�, Ḡ, Ḡ, (�̄�1, �̄�2)}. This network has a structure tailored
to the problem. It consist of a non-trainable input normalization layer, a trainable gate layer, a trainable positive
neural network (PNN), and a non-trainable output normalization layer, i.e., �̄�NN : R𝑛 → R≥0 , Ī□ ↦→ �̄�NN ( Ī□) :=
(𝑛out ◦ 𝑔NN ◦ 𝓵gate ◦𝓷in) ( Ī□). The task of the trainable gate layer is to remove unneeded invariants from the model
during training. The architecture is illustrated in Fig. 1.

To satisfy that the output of the PNN is always greater equal to zero, the activation function in the last hidden layer
has to be greater equal to zero for all outputs of the former layer. Here, the softplus activation function is chosen.
Furthermore, weights and bias of the output layer have to be non-negative. For brevity, the weights and biases of

11
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the PNN interconnected between the normalization layers and the gate layer are summarized in the parameter set
𝔀 ∈ PNN , where the set PNN is introduced in B, Eq. (86).

As introduced in [46], non-trainable normalization layers for in- and output are used, which allows an efficient
optimization without having to normalize the training data. The layers are given by

𝓷in : R𝑛 → R𝑛, Ī□ ↦→ �̄�
□ and 𝓃out : R≥0 → R≥0, �̄�

NN ↦→ �̄�NN . (31)

As already mentioned, the weights and biases of these normalization layers are non-trainable. Instead, they have to be
fitted to the data before training.

Furthermore, to allow to automatically remove unneeded invariants from the model during training, we add a trainable
gate layer between the input normalization layer and the PNN. The gate layer is defined by

𝓵gate : R𝑛 → R𝑛,�̄�□ ↦→ �̄�
□ ⊙ 𝒈 with 𝑔𝛼 := min(1, 𝛾 tanh(𝜖𝑞𝛼)) ∈ [0, 1] , (32)

where 𝛾, 𝜖 ∈ R>0 are hyper parameters and 𝑞𝛼 ∈ [0, 1] are trainable variables. Thus, we have the additional set
𝓺 ∈ 𝒢𝒶𝓉ℯ := {𝓺 ∈ R𝑛 | 𝑞𝛼 ∈ [0, 1]}.
The details on the chosen neural network architecture are given in B.

Additional terms for the construction of the elastic potential In addition, following Linden et al. [24], terms which
guarantee zero energy and stress in the undeformed state as well as a term for the fulfillment of the volumetric growth
condition are added. Thus, we end up with

�̄�□ ( Ī□, 𝐽) := �̄�NN ( Ī□) + �̄�en + �̄�str,□ ( Ī□, 𝐽) + �̄�gr (𝐽) . (33)

Note that the additional terms are chosen in such a way that the material symmetry is not violated.

The term to guarantee zero energy in the undeformed state is independent of the symmetry group and is given by
�̄�en = −�̄�NN ( Ī□)��

�̄�=1. In contrast, the energy expression enforcing �̄�(�̄� = 1) = 0 depends on the chosen set of
invariants [24], i.e., whether the set is constructed either with �̄�, Ḡ, Ḡ or (�̄�1, �̄�2). The expressions �̄�str,□ ( Ī□, 𝐽)
chosen in this work are summarized in C. For the growth term, which enforces the fulfillment of the volumetric growth
condition introduced in Sect. 2.2, the expression �̄�gr (𝐽) := 𝜆gr

(
𝐽 + 𝐽−1 − 2

)3 is chosen. The parameter 𝜆gr has to be
chosen such that the energy grows fast enough during compression. Following [25], a value between 1 × 10−2 and
1 × 10−3 the material’s initial stiffness has proven to be suitable.

The proposed models fulfill the following conditions by construction: thermodynamic consistency, symmetric Cauchy
and 2nd Piola-Kirchhoff stress, objectivity, material symmetry, energy- and stress-free undeformed state, as well as
volumetric growth condition.7

4.2 Training

To calibrate the NN-based models, the weights and biases of the PNN, collected into 𝔀 ∈ PNN , the parameters of the
generalized structure tensors 𝓶□ ∈ M□, and the gate variables 𝓺 ∈ 𝒢𝒶𝓉ℯ have to be determined in a suitable training
procedure. Thereby, we apply a strategy allowing to optimize all parameters simultaneously, which has the advantage
that no further information from the microscopic geometry are necessary. Only data from RVE simulations are required.
We collect these data into the set D := {1T , 2T , . . . , 𝑘T }. Thereby, the tuples are given by

𝑖T := (𝑖 �̄�, 𝑖�̄�, 𝑖�̄�, 𝑖c̄)RVE ∈ GL+ (3) × R≥0 ×𝒮𝓎𝓂 × L4 . (34)

Please note that a calibration based on �̄� and Ā is equivalent, as the respective quantities can be calculated from each
other by pullback or push-forward operations, see Sects. 2.1 and 2.2.

A model must be assessed against non-calibration data in order to look at its generalizability. Consequently, in
accordance with standard machine learning procedure [24, 36, 45, 90], we split the whole dataset D into calibration
and test sets, respectively:

D = Dcal ∪ Dtest and ∅ = Dcal ∩ Dtest . (35)

7Note that the introduced energy expression is not polyconvex by construction. However, since a polyconvex energy turned
out to be too restrictive for the fitting, this does not play a role here. For details on how an NN-based polyconvex energy can be
constructed for anisotropic materials, which fulfills the material symmetry and at the same time guarantees a stress-free undeformed
configuration, the reader is referred to Linden et al. [24].
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The NN-based model’s predictions for Dtest can be verified once it has been calibrated with Dcal. Thereby, the calibrated
model should be able to generate reasonable predictions not only for the calibration but also for the test dataset, which
will ensure good generalization of the model and allows to mimic the RVE’s effective behavior for arbitrary states
�̄� ∈ GL+ (3).
To perform training based on the tuples given in Eq. (34), we define the following loss terms for the mean squared error
(MSE) for energy, stress and elasticity tensor:

L𝜓 :=
1
𝑛𝜓

𝑖�̄� − �̄�(𝑖 �̄�,𝔀,𝓶□,𝓺)


MSE with 𝑛𝜓 := max
(

1�̄�2, 2�̄�2, . . . , |Dcal | �̄�2
)
, (36)

L𝝈 :=
1
𝑛𝝈

𝑖�̄� − �̄�(𝑖 �̄�,𝔀,𝓶□,𝓺)


MSE with 𝑛𝝈 :=
1
32 max

(
∥1�̄�∥2, ∥2�̄�∥2, . . . , ∥ |Dcal | �̄�∥2

)
, (37)

Lc :=
1
𝑛c

𝑖�̄� − �̄�(𝑖 �̄�,𝔀,𝓶□,𝓺)


MSE with 𝑛c :=
1
62 max

(
∥1�̄�∥2, ∥2�̄�∥2, . . . , ∥ |Dcal |�̄�∥2

)
. (38)

Therein, �̄� ∈ R6×6 denotes a matrix representation of the coordinates of the 4th order material tangent c̄ given in Voigt
notation and ∥(·) − (·)∥MSE is the standard MSE norm. The normalization factors 𝑛𝜓, 𝑛𝝈 and 𝑛c ensure that the loss
terms can be compared with each other. Thus, the prediction loss is given by Lpred = 𝑤𝜓L𝜓 + 𝑤𝝈L𝝈 + 𝑤cLc, where
the non-trainable weights 𝑤𝜓 , 𝑤𝝈 , 𝑤c ∈ R≥0, with 𝑤𝜓 + 𝑤𝝈 + 𝑤c = 1, have to be chosen. In addition, to enforce
sparsity of the model with respect to the number of invariants, a penalty term based on the 𝑝-norm [10, 68] of the gates

Lgate :=
1
𝑛gate

[
𝑛∑︁
𝛼=1

(𝑔𝛼 (𝑞𝛼) + 𝛿) 𝑝
] 1

𝑝

with 𝑛gate := [𝑛(1 + 𝛿) 𝑝] 1
𝑝 (39)

is used, where 𝑝 ∈ R≥0 and 𝑛 is the number of invariants. The parameter 𝛿 ≪ 1 prevents division by zero when
differentiating. By applying the introduced loss terms, the training is defined by the optimization

(�̂�, �̂�, �̂�) = arg min
𝔀∈PNN,𝓶□∈M□ ,𝓺∈𝒢𝒶𝓉ℯ

(
𝑤𝜓L𝜓 + 𝑤𝝈L𝝈 + 𝑤cLc + 𝑤gateLgate) , (40)

where the parameter 𝑤gate has to be chosen such that the approximation quality of the model does not decrease. Since
the second derivatives of the potential with respect to �̄� are necessary to compute Ā and from this c̄, it is a higher-order

Sobolev training [45, 46]. The proposed training method allows to calibrate all four models, �̄��̄� ( Ī�̄�
, 𝐽), �̄�Ḡ ( ĪḠ, 𝐽),

�̄�Ḡ ( ĪḠ
, 𝐽), as well as 𝜓�̄�1 ,�̄�2 ( Ī�̄�1 ,�̄�2 , 𝐽). Note that the internal normalization layers of the PNN have to be fitted to the

data before training.

Remark 3. To achieve optimal results after training, a two-step approach has shown to be favorable. Thereby, a pre-
training with the Adam optimizer and a post-training with the SLSQP optimizer (Sequential Least Squares Programming),
which is a quasi Newton optimizer, is carried out. As shown in [46], the optimization with SLSQP is clearly superior to
Adam for comparatively small networks, since it converges faster and a lower loss is reached. However, it has shown to
be difficult to find a suitable structure tensor only with SLSQP, which is due to the fact that a strong dependence on
the initialization is typical for this optimizer. However, very good results can be achieved if good starting values are
specified by applying the pre-training with Adam. The implementation of the models and the calibration workflow was
realized using Python, TensorFlow and SciPy.

4.3 Data generation and model identification procedure

In order to generate the NN-based surrogate for RVE simulations, the following procedure is applied: (a) sampling of
the deformation space in a prescribed range, (b) generation of a database by computational homogenization, and (c)
model identification procedure which consists of a maximum of four substeps. The overall procedure is illustrated in
Fig. 2.

The sampling technique, which is similar to [46], is described in D and the computational homogenization is done

as described in Sect. 2.4. Finally, in step (c), the model which is suitable as a surrogate, i.e., �̄��̄� ( Ī�̄�
, 𝐽), �̄�Ḡ ( ĪḠ, 𝐽),

�̄�Ḡ ( ĪḠ
, 𝐽) or �̄��̄�1 ,�̄�2 ( Ī�̄�1 ,�̄�2 , 𝐽), is chosen and calibrated. In order to obtain an RVE surrogate model that is as efficient

as possible in macroscopic FE simulations [25], we want to find the model with the lowest possible order in the structure
tensor that allows to describe the RVE’s underlying symmetry group.8 This is done as follows: First, in (c.1), the model

8Note that models based on higher order structure tensors contain others, e.g., the model based on the 4th order structure tensor
can also be used to describe transverse isotropy and orthotropy.
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(c) Model identification procedure + calibration: steps (c.1)–(c.4)
�̄� ( Ī□, 𝐽 ) , □ ∈ {�̄�, Ḡ, Ḡ, (�̄�1, �̄�2 ) }

(b) Computational

H : �̄� ↦→ ( �̄�, �̄�, Ā)

𝑖T := (𝑖 �̄� , 𝑖 �̄�, 𝑖�̄�, 𝑖 c̄)RVE
D := {1T , 2T , . . . , 𝑛T}

PF : (�̄� , �̄�, Ā) ↦→ (�̄�, c̄)

(a) Sampling

𝑖 �̄� ∈ GL+ (3)

�̄� = �̄� · �̄� with �̄� = 1
Sample in �̄� min

𝔀∈NN,𝓶□∈M□ ,𝓰∈𝒢𝒶𝓉ℯ

(
Lpred + 𝑤gateLgate

)

deformations homogenization

𝐼1

�̄�NN𝐼2

𝑖1

𝑖2

𝑖𝑚𝐼𝑚

�̄�NN

□

𝓶□

�̄�
□ ⊙ 𝒈

�̄�

Start

End

𝔀,𝓶□,𝓰

□ ∈ {�̄�, Ḡ, Ḡ, (�̄�1, �̄�2 ) }

□,𝓶□,𝓰,𝔀

(c.1) Training model type I
Structure tensor □ = �̄� ∈ 𝒮𝓎𝓂

Error control 𝜖 ( �̄�, �̄�, c̄) ≤ 𝜖tol

yes no
□ = �̄�

(c.2) Training model type II
Structure tensor □ = Ḡ ∈ 𝒮𝓎𝓂4
Error control 𝜖 ( �̄�, �̄�, c̄) ≤ 𝜖tol

yes no

□ = Ḡ

(c.4) Training model type IV
□ = (�̄�1, �̄�2 ) ∈ 𝒮𝓎𝓂

□ = (�̄�1, �̄�2 )

(c.3) Training model type III
Structure tensor □ = Ḡ ∈ 𝒮𝓎𝓂6
Error control 𝜖 ( �̄�, �̄�, c̄) ≤ 𝜖tol

yes no

□ = Ḡ

Figure 2: Data generation and model identification procedure: (a) the deformation space is sampled in a prescribed range by Latin
Hypercube Sampling (LHS), (b) by prescribing the sampled deformation gradients 𝑖 �̄� in RVE simulations, corresponding energy 𝑖�̄�,
stress 𝑖�̄� and elasticity tensor 𝑖 c̄ are calculated, (c) the dataset D is used to identify and calibrate the NN-based model �̄�( Ī□, 𝐽) via
a higher-order Sobolev training with prediction loss Lpred = 𝑤𝜓L𝜓 + 𝑤𝝈L𝝈 + 𝑤cLc and gate loss Lgate for sparsity. The step (c)
involves the substeps (c.1)–(c.4): to identify which (set of) structure tensor(s) □ ∈ {�̄�, Ḡ, Ḡ, (�̄�1, �̄�2)}, i.e., 2nd, 4th, 6th, or two
2nd order structure tensor(s), is needed, the training is performed sequentially from low to high structure tensor order and an error
control is performed after each training to decide whether the underlying anisotropy can be described with sufficient accuracy.
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based on the 2nd order structure tensor is calibrated with the RVE data. After training, the relative error measures in
energy, stress and material tangent

𝜖𝜓 =

|D |∑
𝑖=1

|𝑖�̄�□ − 𝑖�̄� |
|D |∑
𝑗=1

| 𝑗 �̄� |
, 𝜖𝝈 =

|D |∑
𝑖=1

∥𝑖�̄�□ − 𝑖�̄�∥
|D |∑
𝑗=1

∥ 𝑗 �̄�∥
and 𝜖c =

|D |∑
𝑖=1

∥𝑖�̄�□ − 𝑖�̄�∥
|D |∑
𝑗=1

∥ 𝑗�̄�∥
(41)

are calculated. If all errors are below a given tolerance 𝜖tol, the model identification is complete. Here, we choose
𝜖tol = 1 %. If the tolerance is exceeded, the model based on the 4th order structure tensor is trained and the errors are
calculated again, substep (c.2). If this model is also insufficient, the 6th order structure tensor is used, substep (c.3).
Finally, if it is not possible to reach errors below 𝜖tol with a model based on a single structure tensor, a training based on
two 2nd order structure tensors is done (c.4). Note that this final step should lead to an error below the given tolerance,
since the formulation then includes the triclinic group, i.e., fully anisotropic behavior. In each substep, the training as
described in Sect. 4.2 is applied.

5 Numerical examples

In order to illustrate the ability of the developed NN-based elastic surrogate models to mimic the complex anisotropic
behavior of RVEs with high precision, we will calibrate them with data from computational homogenizations in the
following. With these data, the interpolation behavior of the models as well as the extrapolation behavior is investigated.
Since we only use data generated by homogenization, we do not consider the case of noisy data in this paper.

5.1 Data generation via computational homogenization

In this work, two-phase soft composites consisting of matrix and spherical inclusions or matrix and fibers are considered.
In order to provide data with varying overall anisotropic behavior, we consider five different RVEs depicted in Fig. 3:
An RVE of a fiber reinforced material with stochastic fiber distribution (stochastic fibers), a unit cell with a hexagonal
fiber arrangement (hexagonal fibers), a unit cell with one spherical inclusion (cubic sphere), an RVE with a plane-like
arrangement of particles (plane spheres), and an RVE with an arrangement of particles in a chain-like structure (chain
spheres). The geometries and the subsequent creation of the periodic mesh has been done with the Python tool
gmshModel.9

(e)(d)(a) (b)

𝑥3

𝑥2𝑥1

Cubic sphereStochastic fibers

Plane spheres Chain spheres

Hexagonal fibers

(c)

Figure 3: Considered RVEs for data generation: (a) fiber reinforced material (stochastic fibers), (b) unit cell with hexagonal
fiber arrangement (hexagonal fibers), (c) unit cell with one spherical inclusion (cubic sphere), (d) particle reinforced plane-like
microstructure (plane spheres), and (e) particle reinforced chain-like microstructure (chain spheres). The volume fractions of the
fiber/particle phase are given by 𝜙 ∈ {30, 30, 20, 12, 15} % from left to right.

All components, i.e., matrix, particles and fibers are assumed to be compressible and isotropic. For all, we choose the
two-parametric neo-Hookean model according to Ciarlet [91] given by

𝜓(𝐼1, 𝐼3) :=
1
2

[
𝜇(𝐼1 − ln 𝐼3 − 3) + 𝜆

2
(𝐼3 − ln 𝐼3 − 1)

]
with 𝜇, 𝜆 > 0 , 𝜇 =

𝐸

2(1 + 𝜈) , 𝜆 =
𝐸𝜈

(1 + 𝜈) (1 − 2𝜈) . (42)

In the equation above, 𝜇 and 𝜆 denote Lamé parameters and 𝐸 and 𝜈 are Young’s modulus and Poisson’s ratio,
respectively. Note that the elastic potential (42) is also polyconvex [24] and thus guarantees ellipticity for all possible
states 𝑭 ∈ GL+ (3). The chosen material parameters for the individual components are given in Tab. 1.

9The Python tool gmshModel is freely available under the link https://gmshmodel.readthedocs.io/en/latest/
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Table 1: Chosen parameters for matrix material, spherical particles and fibers, described by the constitutive model (42).
Parameter Symbol Matrix material Spherical particles Fibers
Young’s modulus 𝐸 1 MPa 1000 MPa 10 MPa
Poison’s ratio 𝜈 0.4 0.3 0.44

Figure 4: Sampled deformation space comprising 141 loading paths with 20 increments each. Shown are sectional planes of the
Green-Lagrange strain tensor �̄�.

In order to investigate the RVEs’ behavior within a predefined range of effective deformations �̄� ∈ GL+ (3), a sampling
technique similar to the approach used in [46] is applied. Details on this technique are given in D. With that, a total of 154
loading paths comprising 20 increments each are generated. The sampled states are shown within sectional planes of the
Green-Lagrange strain tensor �̄� in Fig. 4. For all sampled states, the resulting effective material response is calculated
by computational homogenization according to Sect. 2.4, i.e., H : �̄� ↦→ (�̄�, �̄�, Ā) and PF : (�̄�, �̄�, Ā) ↦→ (�̄�, c̄).10

Besides the determination of energy, stress and tangent corresponding to a deformation state, the local ellipticity
condition (6) has been evaluated for all generated data. To this end, the positive semi-definiteness of the acoustic tensor
�̄�(�̄�, 𝑵) = �̄�𝑖𝐽𝑘𝐿 (�̄�)𝑁𝐽𝑁𝐿𝒆𝑖 ⊗ 𝒆𝑘 [46, 53, 54] has been checked numerically by sampling 𝑵(𝜗, 𝜑) parameterized by
spherical coordinates (𝜗, 𝜑) ∈ [0, 𝜋] × [0, 2𝜋] in 𝜋/180 steps for all states �̄� included in the dataset. Thereby, a loss of
ellipticity was found in some states for all RVEs considered, except for the RVE plane spheres. Thus, the effective
material response cannot be represented by a polyconvex model, which would guarantee ellipticity by construction, at
least not for the complete data set.

The generated homogenized data will be made freely available in the final version of the article.

10Note that some simulations of the RVEs with spherical inclusions diverged before reaching the last increment, which is due to
the fact that the large phase contrast can easily lead to extremely high matrix deformations. In that case, the corresponding states
have been removed from the dataset of the RVE, respectively.
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Remark 4. It is well known that polyconvex microscopic energies in multiscale problems do not necessarily im-
ply macroscopic quasi-convexity and consequently rank-one convexity [74, 92]. For some regions of the effective
deformation �̄�, even a loss of ellipticity is possible, cf. [92, 93].

5.2 Training and prediction of the neural networks

The obtained data D for the different considered RVEs are now used for the calibration of the proposed NN-based
macroscopic models introduced in Sect. 4, where the model identification procedure described in Sect. 4.3 is applied,
i.e., it is automatically determined whether a 2nd, 4th or 6th order structure tensor or a set of two 2nd order structure
tensors is required. To evaluate the performance of the developed invariant-based NN models, a typical approach based
on the coordinates of the right Cauchy-Green deformation tensor �̄� will also be considered as a reference. Similar
models are widespread, e.g., [22, 44]. The coordinate-based reference model is given by the energy expression

�̄�coord (�̄�, 𝐽) := �̄�PNN (�̄�) − �̄�PNN (�̄�)
��
�̄�=1 −

𝜕�̄�PNN

𝜕�̄�

�����
�̄�=1

:
(
�̄� − 1

) + 𝜆gr

(
𝐽 + 𝐽−1 − 2

)2
, (43)

where a PNN according to B, but without trainable gate, is chosen for the network. To enable a fair comparison, it is
designed to fulfill the same conditions as the invariant-based models except for the material symmetry, i.e., it ensures
thermodynamic consistency, symmetric Cauchy and 2nd Piola-Kirchhoff stress, objectivity, energy- and stress-free
undeformed state, as well as volumetric growth condition.

The parameter 𝜆gr has to be chosen such that the energy grows fast enough during compression. According to [46],
a value of around 1 × 10−2 or 1 × 10−3 the material’s initial stiffness11 has shown to be reasonable. Here we choose
𝜆gr = 0.01 MPa for all NN-based models. According to the hyperparameter study given in E.1, two hidden layers with
16 neurons each are chosen for the invariant-based NN models and three hidden layers with 16 neurons each for the
coordinate-based model. For training of the invariant-based NN models, the parameter for the penalization of the gates
was chosen to 𝑤gate = 5 × 10−5, see E.2 for a study to determine this value. Following [10], we have chosen 𝑝 = 1

4 for
the exponent in the 𝑝-norm. The parameters in the gate are chosen to 𝛾 = 1.025, 𝜖 = 2.5 and 𝛿 = 1 × 10−6, respectively.

To exclude random effects from initialization, 5 training runs with pre-training and post-training steps as described in
Remark 3 were carried out each. The best model is then used for the discussion of the results, where this is decided by
the measure Lpred/𝐴, where 𝐴 ∈ N is the number of active gates. In the pre-training with Adam, an initial learning rate
of 0.01 and an exponential learning rate decay, so that the learning rate is multiplied by 1/3 every 500 epochs, was
selected. In addition, mini-batches were used, which introduces a regularization effect [90]. The mini-batches were
recomposed in a random manner after each epoch. For the interpolation studies, the mini-batch size was set to 64, while
it was set to 16 for the extrapolation. All training runs were carried out with 8 CPUs each, whereby a high performance
cluster (HPC) equipped with Intel Xeon Platinum 8470 CPUs was used.

To mark that a structure tensor was calibrated by data from a specific RVE, we use the following superscripts: stochastic
fibers □stf, hexagonal fibers □hef, cubic sphere □cus, plane spheres □pls, and chain spheres □chs.

5.2.1 Interpolation behavior: Training with stress and tangent

In this first study we mainly check the interpolation ability of the NN-based models. Thus, as described in Sect. 4.2, we
divide the overall datasets into calibration and test sets with a ratio of 70/30, respectively, see Eq. (35). The prediction
loss Lpred = 0.7L𝝈 + 0.3Lc is chosen, which is to weight the stresses somewhat more than the material tangent. It
should be noted that experience has shown that it is not necessary to include the energy �̄� itself in the loss, as this is
adjusted very well with the Sobolev training used here [24, 29, 46].

Identified structure tensors For the RVEs stochastic fibers and plane spheres, a model based on a 2nd order
generalized structure tensor �̄� was selected by the algorithm according to Fig. 2, respectively. The coordinates of these
structure tensors are given by

[�̄�stf] =
[0.01 0.01 0.
0.01 0.02 0.

0. 0. 0.97

]
and [�̄�pls] =

[ 0.01 0. −0.01
0. 0. 0.02

−0.01 0.02 0.99

]
. (44)

The vectors of active/non-active gates for the two RVEs are given by

𝐺 (𝒈stf) = (1, 0, 1, 0, 1, 1, 0) and 𝐺 (𝒈pls) = (1, 1, 1, 1, 0, 0, 1) , (45)

11In the anisotropic case the maximum initial stiffness has to be considered.
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respectively, where 𝐺 (𝑥) := [𝑥 > 0] is a function which is zero for all 𝑥 ≤ 0 and 1 else. The gates correspond to the
invariants defined in Eqs. (12), (14), i.e., the additional invariants needed to describe orthotropy are removed from the
model by the gates. The identified structure tensor for the RVE stochastic fibers corresponds to the expected result,
i.e. transverse isotropy G13 around 𝒆3, as the fibers are aligned with the 𝑋3 axis, which was identified as a preferred
direction during training.12 The result also makes sense for the RVE plane spheres, where the out-of-plane direction is
a preferred direction. The slight deviation to ideal transverse isotropy with 𝑋3 as preferred direction results from the
stochastic arrangement of the particles within the plane of particles and from numerical inaccuracies during training.

In contrast, for the RVE cubic sphere, the selection procedure has identified that a 4th order generalized structure tensor
Ḡ is needed. This is not surprising, since it is well known that a 4th order structure tensor is needed for cubic anisotropy
[53, 65, 66]. Interestingly, however, a 4th order structure tensor was identified during the optimization, which belongs
to the tetragonal group G5. This can be explained by the fact that the invariant set belonging to the cubic group G7 up
to order �̄�3 can be represented by the invariant set of the tetragonal group, cf. A.6. The coordinates of the identified
structure tensor in Voigt notation and the vector of active gates are given by

[Ḡcus] =



0. 0. 0. −0. −0. 0.
0. 0.5 0. −0. −0. 0.
0. 0. 0.5 −0. −0. 0.
−0. −0. −0. 0. 0. −0.
−0. −0. −0. 0. 0. −0.
0. 0. 0. −0. −0. 0.


and 𝐺 (𝒈cus) = (1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0) , (46)

respectively. The gates correspond to the invariants defined in Eqs. (12), (19).

For the RVE hexagonal fibers, the algorithm has determined that even a 6th order structure tensor is required. This also
corresponds to the expectation for a material that belongs to the hexagonal anisotropy group G11 [65, 66]. The three
vectors 𝑨1, 𝑨2 and 𝑨3 specifying the 6th order tensor Ḡ ∈ 𝒮𝓎𝓂6 have been identified to

[𝑨hef
1 ] =

[−0.66
0.38

0.

]
, [𝑨hef

2 ] =
[ −0.
0.76
−0.

]
and [𝑨hef

3 ] =
[−0.66
−0.38
−0.

]
. (47)

As one can see, the conditions ( |𝑨𝛼 | |𝑨𝛽 |)−1𝑨(𝛼) · 𝑨(𝛽) = ± 1
2 , 𝛼 ≠ 𝛽, 𝑵 · 𝑨𝛼 = 0, with 𝑵 ∈ N being the fiber direction,

and |𝑨1 | = |𝑨2 | = |𝑨3 | apply in good approximation to the three vectors that form Ḡ. The structure tensor determined
thus corresponds to the expected structure tensor for the hexagonal group G11, cf. A.7. The vector of active/non-active
gates is given by 𝐺 (𝒈hef) = (1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1), where the gates correspond to the invariants defined in
Eqs. (12), (24).

Finally, the identification algorithm has determined that two 2nd order structure tensors are needed for the RVE chain
spheres. These two tensors are given by

[�̄�chs
1 ] =

[0.08 0.02 0.04
0.02 0.53 −0.01
0.04 −0.01 0.39

]
and [�̄�chs

2 ] =
[ 0.5 −0.02 0.05
−0.02 0.49 −0.
0.05 −0. 0.01

]
. (48)

To determine which symmetry group was determined, we apply the tests given in Sect. 3.4. Accordingly, since
𝑤𝐿 = 𝑒𝐿𝑀𝑁 �̄�

1
𝑀𝑃�̄�

2
𝑃𝑁 ≠ 0 and 𝒗𝛼 = (�̄�𝛼 · 𝒘) × 𝒘 ≠ 0 for 𝛼 ∈ {1, 2}, the algorithm has detected the triclinic

group G1. However, taking a certain numerical tolerance into account, the structural tensors can be assigned to the
monoclinic group G2 to a good approximation. To show this, we consider 𝒘, 𝒗1 and 𝒗2 and compute the norms given
by |𝒘 | = 3.77 × 10−2, |𝒗1 | = 6.59 × 10−5 and |𝒗2 | = 1.90 × 10−4. Thus, since the norms of the latter two vectors are
approximately two orders of magnitude smaller compared to the norm of 𝒘, one can say that the conditions which have
to hold for the monoclinic group are fulfilled in good approximation, i.e., 𝒘 ≠ 0 ∧ 𝒗1 = 0 ∧ 𝒗2 = 0. This means, �̄�1 and
�̄�2 share one and only one (anti)parallel eigenvector in good approximation. The vector of active/non-active gates is
given by 𝐺 (𝒈chs) = (1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0). The gates correspond to the invariant set as introduced in Sect. 3.4.

Training process and model performance The training process is exemplary shown for the RVE plane spheres
in Fig. 5, where the calibration loss is plotted for all 5 runs with thin lines and the best run is marked with a thick
line, respectively. The deviation between the individual runs is relatively small, which demonstrates the robustness

12 For the transverse isotropy with preferred direction 𝑋3 there is an unlimited number of permissible structure tensors with
tr �̄� = 1, since all tensors given by �̄� = 𝛼(𝒆1 ⊗ 𝒆1 + 𝒆2 ⊗ 𝒆2) + 𝛽𝒆3 ⊗ 𝒆3 with 𝛼, 𝛽 ∈ R≥0, 𝛼 ≠ 𝛽 and 2𝛼 + 𝛽 = 1 are equivalent to
each other, cf. A.8.
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Figure 5: Training process of the invariant-based NN model �̄��̄� ( Ī�̄� , 𝐽) for the RVE plane spheres with the loss L = Lpred + 5 ×
10−5Lgate, Lpred = 0.7L𝝈 + 0.3Lc: (a) pre-training with Adam optimizer and (b) post-training with SLSQP optimizer. Shown is
the prediction loss for five training runs.

Figure 6: Predictions of the invariant-based NN model �̄��̄� ( Ī�̄� , 𝐽) for the RVE plane spheres compared to reference values: Shown
are the energy �̄� ∈ R≥0 as well as the coordinates of �̄� ∈ 𝒮𝓎𝓂 and c̄ ∈ 𝒮𝓎𝓂4. The ratio of calibration and test data is 70/30 and
the training has been done with the loss L = Lpred + 5 × 10−5Lgate, where Lpred = 0.7L𝝈 + 0.3Lc.

of the method. As one can be seen in the plots, a very good result is already achieved during pre-training with Adam.
Post-training with SLSQP, however, can noticeably reduce the loss again for other RVEs.

The performance of the calibrated model is depicted in Fig. 6 for energy, stress and material tangent, where the RVE
plane spheres is exemplary considered here. As one can see, the accuracy of the invariant-based NN model is very
good for all three quantities. Thereby, the accurate prediction quality for the material tangent c̄ is to be particularly
emphasized. As shown in the zoom plot, even this rather difficult to model quantity is predicted with good precision.
Note that there are only a few studies in the literature in which the NN’s predictive quality of this quantity is considered
at all, e.g., [45, 46, 62]. Works in which a loss is used for the material tangent and at the same time an energy-based NN
model is used are even rarer [45], which is due to the fact that this requires expensive higher-order Sobolev training.

To avoid redundancy, the training process and the model predictions are not shown for the other four RVEs here. Instead,
the final loss terms and the error measures as defined in Eq. (41) for all RVEs are given in Tab. 2. There, also the results
for the coordinate-based model (43) are given for comparison. Although the coordinate-based model achieves slightly
higher accuracies for most RVEs, the differences do not play a major role due to the very good precision also achieved
with the invariant-based approach. It should also be noted that the coordinate-based model requires 3 instead of two
hidden layers in order to achieve acceptable results, cf. the study given in E.1.
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Table 2: Interpolation study on the performance of the developed invariant-based NN models �̄�□ ( Ī□, 𝐽) and the coordinate-based
reference model �̄�coord (�̄�, 𝐽) for the five considered RVEs and the prediction loss Lpred = 0.7L𝝈 + 0.3Lc. The loss term for
training the invariant-based models was L = Lpred + 5 × 10−5Lgate and an architecture with two hidden layers with 16 neurons
each was chosen. The loss term for the coordinate-based model was L = Lpred and an architecture with three hidden layers with 16
neurons each was chosen. The overall datasets were divided into calibration and test sets with a ratio of 70/30, respectively. All
models were trained 5 times, where the best training run was selected. Given are the loss values after training and the error measures
for �̄�, �̄� and c̄, cf. Eqs. (37), (38) and (41).

RVE Model □ Active gates Lpred
cal Lpred

test 𝜖𝜓/% 𝜖𝝈/% 𝜖c/%

Stochastic fibers �̄�□ ( Ī□, 𝐽) �̄� 4 2.520 × 10−6 3.031 × 10−6 0.19 0.39 0.19
�̄�coord (�̄�, 𝐽) – – 4.145 × 10−6 6.305 × 10−6 0.11 0.31 0.29

Hexagonal fibers �̄�□ ( Ī□, 𝐽) Ḡ 9 2.059 × 10−5 2.352 × 10−5 0.39 0.91 0.47
�̄�coord (�̄�, 𝐽) – – 8.319 × 10−6 1.063 × 10−5 0.13 0.42 0.39

Cubic sphere �̄�□ ( Ī□, 𝐽) Ḡ 8 2.265 × 10−5 2.341 × 10−5 0.27 0.8 0.62
�̄�coord (�̄�, 𝐽) – – 2.488 × 10−5 3.363 × 10−5 0.22 0.8 0.85

Plane spheres �̄�□ ( Ī□, 𝐽) �̄� 5 1.349 × 10−5 1.614 × 10−5 0.41 0.92 0.44
�̄�coord (�̄�, 𝐽) – – 4.563 × 10−6 5.448 × 10−6 0.1 0.31 0.29

Chain spheres �̄�□ ( Ī□, 𝐽) (�̄�1, �̄�2) 8 2.037 × 10−5 2.242 × 10−5 0.37 0.92 0.54
�̄�coord (�̄�, 𝐽) – – 9.665 × 10−6 1.297 × 10−5 0.13 0.42 0.42

Elastic surface plots Finally, after the discussion of the achieved loss terms and error measures, we want to focus
on the material tangents corresponding to the different RVEs. To visualize the effective anisotropic behavior of the
four considered RVEs and to illustrate the high prediction quality of the calibrated NN models for the effective 4th
order tenors c̄, the technique described in Nordmann et al. [94] to visualize the material’s effective Young’s modulus
in all spatial directions is applied. We call such a plot elastic surface in the following. Since c̄(�̄�) depends on the
deformation within the considered nonlinear setting, it is not constant. Thus, the material tangent is not only visualized
for the undeformed state, i.e., c̄(�̄� = 1) which is the elasticity tensor, but also for a state with �̄� ≠ 1. Exemplary, the
state

[�̄�] =
[0.89 0.09 0.02
0.09 1.4 0.18
0.02 0.18 0.94

]
(49)

is chosen here. The 3D plots of the Young’s modulus are given in Figs. 7–11 for the five different RVEs, see [94] for
details on this visualization technique. As can be clearly seen, each RVE is characterized by a special anisotropy. All
RVEs show a significant change in the elastic surface as a result of the imposed deformation. Both the shape of the
surface shown and the amount of the maximum modulus �̄� change significantly. This effect is partly due to the already
nonlinear behavior of the individual phases given by Eq. (42), but mainly due to the change in the microstructure as a
result of the applied deformation. For both, undeformed as well as deformed state, the plots underpin the excellent
prediction quality of the invariant-based NN models.

Once again it should be noted that a smaller NN architecture compared to the coordinate-based model is needed to
achieve a similar accuracy in the predictions with the invariant-based approach. In addition, the trained model can be
interpreted in a certain way, since the anisotropy group can also be inferred beyond the linear elastic case by analyzing
the structure tensors. Thus, the advantage of our approach becomes clear even from this first study.

5.2.2 Interpolation behavior: Training with stress

In order to show that the underlying anisotropy and thus a meaningful structural tensor can be identified with the
proposed approach by using deformation-stress tuples alone, only Lpred = L𝝈 is now used as loss. The overall datasets
are again divided into calibration and test sets with a ratio of 70/30, respectively, see Eq. (35). In order to decide when
the selection procedure shown in Fig. 2 terminates, the only the error measures 𝜖𝜓 and 𝜖𝝈 , so not 𝜖c, are chosen since
the material tangent is not directly trained within this study, cf. Eq (41) for the definition of the errors.

We will discuss the results for the RVE plane spheres as an example, cf. Fig. 3(d). For this RVE, the following structure
tensor was identified after calibration with Lpred = L𝝈:

[�̄�pls] =
[0.08 0. −0.

0. 0.07 0.02
−0. 0.02 0.85

]
. (50)
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(a)
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RVE

RVE

�̄� = 1

�̄� ≠ 1

Figure 7: RVE stochastic fibers and corresponding elastic surfaces from the homogenized tangent tensor c̄ as well as the NN

prediction from the model �̄��̄� ( Ī�̄� , 𝐽): (a) undeformed state with �̄� = 1 and (b) deformed state with �̄� ≠ 1 as given in Eq. (49).

(a)

(b)

RVE

RVE

�̄� = 1

�̄� ≠ 1

Figure 8: RVE hexagonal fibers and corresponding elastic surfaces from the homogenized tangent tensor c̄ as well as the NN

prediction from the model �̄�Ḡ ( ĪḠ
, 𝐽): (a) undeformed state with �̄� = 1 and (b) deformed state with �̄� ≠ 1 as given in Eq. (49).
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�̄� = 1

�̄� ≠ 1

Figure 9: RVE cubic sphere and corresponding elastic surfaces from the homogenized tangent tensor c̄ as well as the NN prediction

from the model �̄�Ḡ ( ĪḠ, 𝐽): (a) undeformed state with �̄� = 1 and (b) deformed state with �̄� ≠ 1 as given in Eq. (49).

(a)

(b)

RVE

RVE

�̄� = 1

�̄� ≠ 1

Figure 10: RVE plane spheres and corresponding elastic surfaces from the homogenized tangent tensor c̄ as well as the NN prediction

from the model �̄��̄� ( Ī�̄� , 𝐽): (a) undeformed state with �̄� = 1 and (b) deformed state with �̄� ≠ 1 as given in Eq. (49).
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Figure 11: RVE chain spheres and corresponding elastic surfaces from the homogenized tangent tensor c̄ as well as the NN prediction

from the model �̄��̄�1 ,�̄�2 ( Ī�̄�1 ,�̄�2 , 𝐽): (a) undeformed state with �̄� = 1 and (b) deformed state with �̄� ≠ 1 as given in Eq. (49).

(a) (b)

Figure 12: Model predictions of the material tangent c̄ ∈ 𝒮𝓎𝓂4 compared to reference values from the RVE plane spheres for NN
models trained with the prediction loss Lpred = L𝝈 : (a) coordinate-based NN model �̄�coord (�̄�, 𝐽) and (b) invariant-based NN model

�̄��̄� ( Ī�̄� , 𝐽). The ratio of calibration and test data is 70/30.

Again, as in the former study, the invariant-based NN model was able to identify the 𝑋3 axis as the preferred direction
and to find a valid structure tensor. Note that the difference to the identified structure tensor given in Eq. (44) is not
problematic, since both structure tensors are equivalent, see Footnote 12. The structure tensor describes transverse
isotropy G13 since it is characterized by two approximately equal eigenvalues: (𝜆1, 𝜆2, 𝜆3)pls = (0.08, 0.07, 0.85). In
addition, the vector of active/non-active gates is given by 𝐺 (𝒈pls) = (1, 1, 1, 1, 0, 0, 1), i.e., the additional invariants
needed to describe orthotropy are removed from the model by the gates.

Comparing the predictions of the invariant-based model with the coordinate-based model, it can first be observed that
similarly good results for energy and stress are achieved with both models, which is not surprising given the selected
loss, see Tab. 3 third line. However, as shown in Fig. 12, the accuracy in the material tangent, which was not directly
used for training, is noticeably better if the invariant-based NN model is used. This is due to the fact that, if the structure
tensor is identified correctly, the model structure ensures the material symmetry condition (5) to be fulfilled and is
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Table 3: Interpolation study on the performance of the developed invariant-based NN models �̄�□ ( Ī□, 𝐽) and the coordinate-based
reference model �̄�coord (�̄�, 𝐽) for the five considered RVEs and the prediction loss Lpred = L𝝈 . The loss term for training the
invariant-based models was L = Lpred + 5× 10−5Lgate and an architecture with two hidden layers with 16 neurons each was chosen.
The loss term for the coordinate-based model was L = Lpred and an architecture with three hidden layers with 16 neurons each was
chosen. The overall datasets were divided into calibration and test sets with a ratio of 70/30, respectively. All models were trained 5
times, where the best training run was selected. Given are the loss values after training and the error measures for �̄�, �̄� and c̄, cf.
Eqs. (37) and (41).

RVE Model □ Active gates Lpred
cal Lpred

test 𝜖𝜓/% 𝜖𝝈/% 𝜖c/%

Stochastic fibers �̄�□ ( Ī□, 𝐽) �̄� 4 1.771 × 10−6 2.593 × 10−6 0.19 0.41 0.28
�̄�coord (�̄�, 𝐽) – – 6.746 × 10−7 1.650 × 10−6 0.08 0.29 1.1

Hexagonal fibers �̄�□ ( Ī□, 𝐽) Ḡ 7 1.194 × 10−5 1.679 × 10−5 0.38 0.93 0.96
�̄�coord (�̄�, 𝐽) – – 1.728 × 10−6 3.592 × 10−6 0.1 0.43 1.39

Cubic sphere �̄�□ ( Ī□, 𝐽) Ḡ 8 1.452 × 10−5 2.427 × 10−5 0.22 0.76 1.24
�̄�coord (�̄�, 𝐽) – – 6.994 × 10−6 1.187 × 10−5 0.16 0.64 2.03

Plane spheres �̄�□ ( Ī□, 𝐽) �̄� 5 1.000 × 10−5 1.314 × 10−5 0.41 0.92 0.61
�̄�coord (�̄�, 𝐽) – – 1.002 × 10−6 2.238 × 10−6 0.06 0.29 0.97

Chain spheres �̄�□ ( Ī□, 𝐽) (�̄�1, �̄�2) 7 1.274 × 10−5 1.462 × 10−5 0.31 0.89 1.25
�̄�coord (�̄�, 𝐽) – – 1.820 × 10−6 3.056 × 10−6 0.08 0.35 1.06

Figure 13: Dataset D for the extrapolation study with: sampled deformation space visualized in five sectional planes of the
Green-Lagrange strain tensor. Only 6 load cases out of D comprising a total number of 120 tuples are used for calibration.

therefore much more suitable for the specific problem of describing the RVE’s effective constitutive behavior. To be
more precise, referring to Eq. (9)1, the stress results from the derivative of the energy with respect to the invariants
multiplied with derivatives of the invariants with respect to the deformations, the tensor generators [27]. This is similar
for the material tangent, which is obtained by further derivation, cf. Eq. (9)2.

For the other RVEs considered within this work, similar results are achieved. The final prediction loss values and the
error measures defined in Eq. (41) are given in Tab. 3. As can be seen there, the invariant-based NN approach is superior
regarding the error 𝜖c in the material tangent over the coordinate-based model for all RVEs expect for chain spheres.

5.2.3 Extrapolation behavior

After the detailed analysis of the model’s ability to learn the effective constitutive behavior of different anisotropic
RVEs from a large dataset, the extrapolation behavior is now studied. To mimic the situation of sparse data for training,
only six load cases with 20 increments each are used. For visualization, the chosen load paths are shown in Fig. 13
within five sectional planes of the coordinates of the Green-Lagrange strain tensor �̄�. Accordingly, large parts of the
strain space are not covered by the sparse calibration data for the extrapolation study. In order to decide when the
selection procedure shown in Fig. 2 terminates, the error measures 𝜖𝜓, 𝜖𝝈 and 𝜖c are now calculated using only the
calibration data Dcal, cf. Eq (41).

To compare the predictive capability of the invariant-based NN approach and the coordinate-based reference NN model,
we again consider the RVE plane spheres exemplarily. Even for the sparse data set used for calibration, a reasonable
structure tensor was identified during training:

[�̄�pls] =
[ 0.5 −0.01 −0.01
−0.01 0.5 −0.01
−0.01 −0.01 0.

]
. (51)
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(a)

(b)

Figure 14: Predictions for the extrapolation behavior of NN-based models for the RVE plane spheres: (a) coordinate-based model

�̄�coord (�̄�, 𝐽) with three hidden layers including 16 neurons each and (b) invariant-based model �̄��̄� ( Ī�̄� , 𝐽) with two hidden layers
including 16 neurons each. The prediction loss was Lpred = 0.7L𝝈 + 0.3Lc and the loss term for training the invariant-based models
was L = Lpred + 5 × 10−5Lgate. Only six load cases were used for calibration. All models were trained 5 times, where the best
training run was selected.

Thus, the underlying transverse isotropy G13 with the 𝑋3-axis as preferred direction has been detected. Also the vector
of active/non-active gates given by 𝐺 (𝒈pls) = (1, 1, 1, 0, 0, 1, 1) corresponds to this since two reducible invariants have
been removed from the model by the gates.

The predictions for energy, stress and material tangent of the coordinate-based model �̄�coord (�̄�, 𝐽) and the invariant-
based models �̄�□ ( Ī□, 𝐽) trained with the reduced data and the prediction loss Lpred := L𝝈 + Lc are given in
Fig. 14(a),(b). As shown there, the calibration data have been learned quite well by both models. However, the
predictions for the unknown data, which require the model to extrapolate from the calibration domain, are very poor
for the coordinate-based model, cf. Fig. 14(a). In contrast, as shown in Fig. 14(b), the extrapolation behavior of the
invariant-based approach is significantly improved.

As shown by the loss terms for the test data given in Tab. 4, the invariant-based approach shows a clearly better
extrapolation behavior compared to the coordinated-based approach for all five considered RVEs. The test loss is
consistently one or even two orders of magnitude smaller. This advantageous behavior can again be attributed to the fact
that the material symmetry is built into the model by construction through the use of structure tensors and invariants. At
least if a meaningful structure tensor is detected during training with the sparse data set. It should be noted that for the
RVEs hexagonal fibers and cubic sphere, the algorithm given in Fig. 2 did not select 6th and 4th order structure tensors
as in the interpolation study, cf. 5.2.1. This is due to the fact that the tolerance in the error measures 𝜖𝜓 , 𝜖𝝈 and 𝜖c for
the calibration data was not undershot. Nevertheless, although the expected structural tensor set could not be detected
for these two cases and a set comprising two 2nd order structure tensors was chosen instead, the extrapolation behavior
is still noticeably better than with the coordinate-based approach.
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Table 4: Extrapolation study on the performance of the developed invariant-based NN models �̄�□ ( Ī□, 𝐽) and the coordinate-based
reference model �̄�coord (�̄�, 𝐽) for the five considered RVEs and the prediction loss Lpred = 0.7L𝝈 + 0.3Lc. The loss term for
training the invariant-based models was L = Lpred + 5 × 10−5Lgate and an architecture with two hidden layers with 16 neurons
each was chosen. The loss term for the coordinate-based model was L = Lpred and an architecture with three hidden layers with 16
neurons each was chosen. Only six load cases were used for calibration. All models were trained 5 times, where the best training run
was selected. Given are the prediction loss values after training, cf. Eqs. (37) and (38).

RVE Model □ Active gates Lpred
cal Lpred

test

Stochastic fibers �̄�□ ( Ī□, 𝐽) �̄� 5 7.759 × 10−6 1.141 × 10−4

�̄�coord (�̄�, 𝐽) – – 2.019 × 10−7 1.117 × 10−2

Hexagonal fibers �̄�□ ( Ī□, 𝐽) (�̄�1, �̄�2) 8 2.115 × 10−6 1.003 × 10−3

�̄�coord (�̄�, 𝐽) – – 3.740 × 10−7 1.522 × 10−2

Cubic sphere �̄�□ ( Ī□, 𝐽) (�̄�1, �̄�2) 6 2.214 × 10−5 3.329 × 10−3

�̄�coord (�̄�, 𝐽) – – 5.511 × 10−7 1.063 × 10−2

Plane spheres �̄�□ ( Ī□, 𝐽) �̄� 5 1.195 × 10−5 1.248 × 10−4

�̄�coord (�̄�, 𝐽) – – 2.904 × 10−7 1.590 × 10−2

Chain spheres �̄�□ ( Ī□, 𝐽) (�̄�1, �̄�2) 7 9.537 × 10−6 4.285 × 10−4

�̄�coord (�̄�, 𝐽) – – 3.246 × 10−7 1.260 × 10−2

6 Conclusions

In the present work, an NN-based approach for the automated modeling of anisotropic finite strain elasticity including
detection of anisotropy type and orientation is proposed. To this end, an invariant-based approach is formulated in such
a way that important physical conditions are fulfilled a priori, i.e., by construction, whereby these models are denoted
as PANNs [23, 24, 46]. The invariants are built from the deformation tensor and generalized structure tensor(s), where
2nd, 4th and 6th order structure tensors are used to cover a wide range of anisotropies. Thus, special attention is paid to
the principle of material symmetry. The ability of our approach is investigated and compared to an NN model based on
the coordinates of the deformation tensor by a calibration to data generated via computational homogenization of five
different RVEs.

The article begins with a brief review of the kinematics of finite strains and stress measures in continuum solid
mechanics, a summary of common principles in hyperelasticity, the concept of structure tensors and a scale transition
scheme. In the following section, the generalized structure tensor approach [67] is introduced, where 2nd, 4th and 6th
order tensors are given. Based on this theoretical foundation, PANNs are formulated that are based on parameterized
versions of the generalized structure tensors, using a network with an additional gate layer and a penalty loss of 𝑝-norm
type [10] to enforce sparsity with respect to the number of invariants involved in the model. Furthermore, a strategy
is presented to decide which set of structure tensor(s) is required. Finally, the invariant-based NN models are used
as macroscopic surrogates for computational homogenizations in an examples section, where a comparison with a
model based on the coordinates of the right Cauchy-Green deformation tensor is included. A detailed analysis of the
interpolation and extrapolation capability of the models was carried out with the generated data sets. It turned out that
both approaches, the invariant-based one and the coordinate-based one, deliver very good results for the interpolation
case. However, the presented invariant-based approach requires fewer hidden layers for an equivalent prediction quality.
This applies to the energy, the stress and the material tangent tensor. In terms of extrapolation behavior, the presented
invariant-based approach clearly beats the coordinate-based model. Even with a sparse data set, the prediction quality
for states not included in the training remains acceptable, whereas the coordinate-based model exhibits huge errors in
the extrapolation regime.

In summary, the presented PANN based on invariants formulated with generalized structural tensors is a very accurate
surrogate model for computationally expensive RVE simulations in finite strain elasticity. The a priori inclusion of
principles from constitutive modeling in the NN model, in particular the principle of material symmetry, ensures that the
underlying physics is not violated even during extrapolation, thus guaranteeing good generalization. This also enables
comparatively small network architectures. The use of ℓ𝑝 regularization enables the elimination of unneeded invariants
from the model.

Various applications and extensions of our approach are planned for the future. For example, an additional sparsification
of the network as done in [68, 95] is possible. Furthermore, in order to exploit the advantages of the developed
invariant-based PANN approach, an integration into multiscale schemes as FEANN [25] and the application to real
experimental data are planned. In addition, an extension of our approach to further anisotropy classes is possible,
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which requires the use of sets of structure tensors. Finally, the application of the developed concepts in the NN-based
modeling of inelastic material behavior [39, 45, 58, 69, 96, 97, 98, 99], damage [100, 101] and coupled problems
[46, 75, 102, 103] is possible.
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A Structure tensors and invariant sets for specific symmetry groups

Within this appended section, we summarize and discuss the structure tensors and invariants sets for specific symmetry
groups. As the numbering of the groups is not uniform in the literature, we use the Schoenflies notation in addition to
the group number. In the following, structure tensors and invariants are given for: isotropy G14 (Kℎ = O(3)), triclinic
anisotropy G1 (C𝑖), monoclinic anisotropy G2 (C2ℎ), orthotropy G3 (D2ℎ), tetragonal anisotropy G5 (D4ℎ), cubic
anisotropy G7 (Oℎ), hexagonal anisotropy G11 (D6ℎ), as well as transverse isotropy G13 (D∞ℎ).

For the following discussions, we make use of the spectral decomposition of a symmetric 2nd order tensor

𝑺 =
𝑛∑︁
𝛼=1

𝜆𝛼𝑷𝛼 with 𝑷𝛼 · 𝑷𝛽 = 𝛿𝛼(𝛽)𝑷𝛽 and
𝑛∑︁
𝛼=1

𝑷𝛼 = 1 (52)

with 𝑛 ∈ {1, 2, 3} non-equal eigenvalues. The projection tensors 𝑷𝛼 ∈ 𝒮𝓎𝓂 related to 𝑺 can be represented by
Sylvester’s formula [76]

𝑷𝛼 = 𝛿1𝑛1 +
𝑛∏
𝛽=1
𝛽≠𝛼

𝑺 − 𝜆𝛽1
𝜆𝛼 − 𝜆𝛽 . (53)

Furthermore, we use the Cayley-Hamilton theorem [76], which states that a 2nd order tensor fulfills its own eigenvalue
equation, i.e.,

𝑺3 − 𝐼1𝑺2 + 𝐼2𝑺 − 𝐼31 = 0 with 𝐼1 = tr 𝑺, 𝐼2 = tr(cof 𝑺), 𝐼3 = det 𝑺 , (54)

where 𝐼1, 𝐼2, 𝐼3 are the principal invariants.

A.1 Isotropy G14

By applying the Cayley-Hamilton theorem (54), one can find the well known relation that the invariant set 𝐽1 := tr �̄�,
𝐽2 := 1

2 tr �̄�2 , 𝐽3 := 1
3 tr �̄�3 can be expressed by 𝐼1 := tr �̄�, 𝐼2 := tr(cof �̄�) , 𝐼3 := det �̄� as

𝐽1 = 𝐼1, 𝐽2 =
1
2
𝐼2
1 − 𝐼2, 𝐽3 =

1
3
𝐼3
1 − 𝐼1𝐼2 + 𝐼3 . (55)

It is thus equivalent to use the sets Īiso
= (𝐼1, 𝐼2, 𝐼3) ∈ R3 and Īiso,∗

= (𝐽1, 𝐽2, 𝐽3) ∈ R3 for isotropy G14.
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A.2 Triclinic anisotropy G1

The triclinic anisotropy G1 can be modeled with two symmetric 2nd order structure tensors �̄�tri, �̄�tri ∈ 𝒮𝓎𝓂, cf.
Olive et al. [87]. For these tensors, the following conditions must hold:

𝑤𝐿 = 𝑒𝐿𝑀𝑁 𝐴
tri
𝑀𝑃𝐵

tri
𝑃𝑁 ≠ 0 ∧ [( �̄�tri · 𝒘) × 𝒘 ≠ 0 ∨ (�̄�tri · 𝒘) × 𝒘 ≠ 0

]
. (56)

The statement of the above condition is that the eigensystems of the tensors �̄�tri, �̄�tri are completely rotated to each
other, i.e., there is no eigenvector of �̄�tri which is (anti)parallel to an eigenvector of �̄�tri. Note that it is only possible to
fulfill condition (56) if both structure tensors have three non-equal eigenvalues each.

According to Boehler [81], we get 9 additional invariants given by

�̄�4 = tr(�̄� · �̄�tri) , �̄�5 = tr(�̄�2 · �̄�tri) , �̄�6 = tr(�̄� · �̄�2
tri) , �̄�7 = tr(�̄�2 · �̄�2

tri) , �̄�8 = tr(�̄� · �̄�tri) , (57)

�̄�9 = tr(�̄�2 · �̄�tri) , �̄�10 = tr(�̄� · �̄�2
tri) , �̄�11 = tr(�̄�2 · �̄�2

tri) , �̄�12 = tr(�̄� · �̄�tri · �̄�tri) . (58)

Thus, we end up with the following set Ītri
= (𝐼1, 𝐼2, 𝐼3, �̄�4, �̄�5, . . . , �̄�12) ∈ R12. Note that the given set is complete

but might be irreducible. It is also possible to model tricilinic anisotropy with two skew symmetric 2nd order tensors
[65, 66].

A.3 Monoclinic anisotropy G2

The monoclinic anisotropy G2 can also be modeled with a set of two symmetric 2nd order structure tensors �̄�mon, �̄�mon ∈
𝒮𝓎𝓂 [87]. For these tensors, the following conditions must hold:

𝑤𝐿 = 𝑒𝐿𝑀𝑁 𝐴
mon
𝑀𝑃𝐵

mon
𝑃𝑁 ≠ 0 ∧ [( �̄�mon · 𝒘) × 𝒘 = 0 ∧ (�̄�mon · 𝒘) × 𝒘 = 0

]
. (59)

The statement of the above condition is that the tensors �̄�mon, �̄�mon share one and only one eigenvector, i.e., it is parallel
or antiparallel.

According to Boehler [81], we get 9 additional invariants given by

�̄�4 = tr(�̄� · �̄�mon) , �̄�5 = tr(�̄�2 · �̄�mon) , �̄�6 = tr(�̄� · �̄�2
mon) , �̄�7 = tr(�̄�2 · �̄�2

mon) , �̄�8 = tr(�̄� · �̄�mon) , (60)

�̄�9 = tr(�̄�2 · �̄�mon) , �̄�10 = tr(�̄� · �̄�2
mon) , �̄�11 = tr(�̄�2 · �̄�2

mon) , �̄�12 = tr(�̄� · �̄�mon · �̄�mon) . (61)

Thus, we end up with the following set Īmon
= (𝐼1, 𝐼2, 𝐼3, �̄�4, �̄�5, . . . , �̄�12) ∈ R12. Note that the given set is complete

but might be irreducible. It is also possible to model monclinic anisotropy with one symmetric and one skew symmetric
2nd order tensor [65, 66].

A.4 orthotropy G3

Typically, orthotropy G3 is modeled with two structure tensors �̄�1 := 𝒂1 ⊗ 𝒂1 ∈ 𝒮𝓎𝓂 and �̄�2 := 𝒂2 ⊗ 𝒂2 ∈ 𝒮𝓎𝓂 with
𝒂𝛼 · 𝒂𝛽 = 𝛿𝛼𝛽 . Applying the rules from Boehler [81] and accounting for the orthogonality of 𝒂1 and 𝒂2 as well as the
fact that both tensors have two non-equal eigenvalues, respectively, we can build four additional invariants from �̄�, �̄�1
and �̄�2:

𝑆4 = tr(�̄�1 · �̄�), 𝑆5 = tr(�̄�1 · �̄�2), 𝑆6 = tr(�̄�2 · �̄�), 𝑆7 = tr(�̄�1 · �̄�2) . (62)

As we will show in the following, it is also possible to build an equivalent invariant set by only using a single 2nd order
structure tensor �̄�orth ∈ 𝒮𝓎𝓂 with three different eigenvalues 𝜆1 ≠ 𝜆2 ≠ 𝜆3. According to Boehler [81], we can build
the following four additional invariants form �̄� and �̄�orth:

𝑇4 = tr(�̄�orth · �̄�), 𝑇5 = tr(�̄�orth · �̄�2), 𝑇6 = tr(�̄�2
orth · �̄�), 𝑇7 = tr(�̄�2

orth · �̄�2) . (63)

By applying Sylvester’s formula (53), we get

𝑷1 = 𝒏1 ⊗ 𝒏1 =
1

(𝜆1 − 𝜆2) (𝜆1 − 𝜆3)
(
�̄�

2
orth − (𝜆2 + 𝜆3)�̄�orth + 𝜆2𝜆31

)
and (64)

𝑷2 = 𝒏2 ⊗ 𝒏2 =
1

(𝜆2 − 𝜆1) (𝜆2 − 𝜆3)
(
�̄�

2
orth − (𝜆1 + 𝜆3)�̄�orth + 𝜆1𝜆31

)
. (65)
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If �̄�orth is chosen in such a way that 𝒏1 = 𝒂1 and 𝒏2 = 𝒂2, we find

𝑆4 =
1

(𝜆1 − 𝜆2) (𝜆1 − 𝜆3)
(
𝑇6 − (𝜆2 + 𝜆3)𝑇4 + 𝜆2𝜆3𝐼1

)
, (66)

𝑆5 =
1

(𝜆1 − 𝜆2) (𝜆1 − 𝜆3)
(
𝑇7 − (𝜆2 + 𝜆3)𝑇5 + 𝜆2𝜆3 (𝐼2

1 − 2𝐼2)
)
, (67)

𝑆6 =
1

(𝜆2 − 𝜆2) (𝜆2 − 𝜆3)
(
𝑇6 − (𝜆1 + 𝜆3)𝑇4 + 𝜆1𝜆3𝐼1

)
, (68)

𝑆7 =
1

(𝜆2 − 𝜆2) (𝜆2 − 𝜆3)
(
𝑇7 − (𝜆1 + 𝜆3)𝑇5 + 𝜆1𝜆3 (𝐼2

1 − 2𝐼2)
)
. (69)

Thus, it is equivalent to use the set Īorth
= (𝐼1, 𝐼2, 𝐼3, 𝑆4, 𝑆5, 𝑆6, 𝑆7) ∈ R7 and Īorth,∗

= (𝐼1, 𝐼2, 𝐼3, 𝑇4, 𝑇5, 𝑇6, 𝑇7) ∈ R7.

A.5 tetragonal anisotropy G5

Following [66], tetragonal anisotropy G5 can be modeled with the structure tensors

D̄tet :=
2∑︁
𝛼=1

𝑨𝛼 ⊗ 𝑨𝛼 ⊗ 𝑨𝛼 ⊗ 𝑨𝛼 with 𝑨𝛼 · 𝑨𝛽 = 𝛿𝛼𝛽 and �̄� tet := 𝑵 ⊗ 𝑵 , 𝑵 ∈ N , 𝑵 · 𝑨𝛼 = 0 . (70)

A complete invariant set can be formed from �̄�, �̄�1 := D̄tet : �̄�, �̄�2 := D̄tet : �̄�2 and �̄� tet. According to Boehler [81],
one can build a set comprising 30 invariants from these four 2nd order tensors. By exploiting the orthogonality of
the three vectors 𝑨1, 𝑨2 and 𝑵, we find D̄tet : D̄tet = D̄tet. Furthermore, by using 𝑨𝛼 = 𝑸 · 𝒆𝛼 and 𝑵 = 𝑸 · 𝒆3, with
𝑸 ∈ 𝒮𝒪(3) and 𝒆𝛼 denoting the Cartesian basis vectors, we find that 𝑄𝐼 𝛼𝑄𝐽𝛽�̄�𝐼 𝐽 = �̄�∗

𝛼𝛽 , where �̄�∗
𝛼𝛽 are the in-plane

coordinates of �̄� with respect to 𝑨1, 𝑨2 and 𝑄𝐼3𝑄𝐽3�̄�𝐼 𝐽 = �̄�∗
33 is the out-of-plane coordinate in the direction of 𝑵.

From these relations we can find that tr(�̄�1 · �̄� tet) = tr(�̄�2
1 · �̄� tet) = tr(�̄�2 · �̄� tet) = tr(�̄�2

2 · �̄� tet) = tr(�̄� · �̄�1 · �̄� tet) =
tr(�̄� · �̄�2 · �̄� tet) = tr(�̄�1 · �̄�2 · �̄� tet) = 0 and tr(�̄� · �̄� tet) = tr �̄� − tr �̄�1 and tr(�̄�2 · �̄� tet) = tr �̄�2 − tr �̄�2 can be
expressed by �̄�, �̄�1 and �̄�2. Thus, �̄� tet can be removed from the list of structure tensors for the tetragonal symmetry
group G5. By accounting for the relations given above and by neglecting redundant expressions, e.g., tr(�̄� · �̄�1) = tr �̄�2

1,
we end up with the following set Ītet

= (𝐼1, 𝐼2, 𝐼3, �̄�4, �̄�5, . . . , �̄�13) ∈ R13, where

�̄�4 = tr �̄�1 , �̄�5 = tr �̄�2
1 , �̄�6 = tr �̄�3

1 , �̄�7 = tr �̄�2 , �̄�8 = tr �̄�2
2 , �̄�9 = tr �̄�3

2 ,

�̄�10 = tr(�̄�2 · �̄�1) , �̄�11 = tr(�̄�2 · �̄�2
1) , �̄�12 = tr(�̄� · �̄�2

2) , �̄�13 = tr(�̄�2
1 · �̄�2

2) .
(71)

Note that the given invariant set might be reducible. We do not proof this here. Also note that the 4th order structure
tensor

D̄∗
tet :=

3∑︁
𝛼=1

𝑨𝛼 ⊗ 𝑨𝛼 ⊗ 𝑨𝛼 ⊗ 𝑨𝛼 with 𝑨𝛼 · 𝑨𝛽 = 0, 𝛼 ≠ 𝛽, |𝑨1 | = |𝑨2 | ≠ |𝑨3 | (72)

build from three orthogonal vectors 𝑨𝛼 is equivalent to (70).

A.6 cubic anisotropy G7

Following [53, 65, 66], cubic anisotropy G7 can be modeled with the structure tensor

Ḡcub :=
3∑︁
𝛼=1

𝑨𝛼 ⊗ 𝑨𝛼 ⊗ 𝑨𝛼 ⊗ 𝑨𝛼 with 𝑨𝛼 · 𝑨𝛽 = 𝛿𝛼𝛽 . (73)

A complete invariant set can be formed from �̄�, �̄�1 := Ḡcub : �̄� and �̄�2 := Ḡcub : �̄�2, cf Xiao [65]. According to
Boehler [81], one can build a set comprising 21 invariants from the three 2nd order tensors �̄�, �̄�1 and �̄�2. We can
reduce this set by exploiting the orthogonality of the vectors 𝑨𝛼, i.e., it holds Ḡcub : Ḡcub = Ḡcub. Furthermore, by
using 𝑨𝛼 = 𝑸 · 𝒆𝛼, with 𝑸 ∈ 𝒮𝒪(3) and 𝒆𝛼 denoting the Cartesian basis vectors, we find that 𝑄𝐼 𝛼𝑄𝐽𝛽�̄�𝐼 𝐽 = �̄�∗

𝛼𝛽 ,
where �̄�∗

𝛼𝛽 are the coordinates of the right Cauchy-Green deformation tensor with respect to the coordinate system
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formed by 𝑨𝛼, 𝛼 ∈ {1, 2, 3}. By applying these relations and neglecting redundant expressions, we find the set
Īcub

= (𝐼1, 𝐼2, 𝐼3, �̄�4, �̄�5, . . . , �̄�11) ∈ R11 with

�̄�4 = tr �̄�2
1 , �̄�5 = tr �̄�3

1 , �̄�6 = tr �̄�2
2 , �̄�7 = tr �̄�3

2 , �̄�8 = tr(�̄�2 · �̄�1) ,
�̄�9 = tr(�̄�2 · �̄�2

1) , �̄�10 = tr(�̄� · �̄�2
2) , �̄�11 = tr(�̄�2

1 · �̄�2
2) .

(74)

Note that the given invariant set might be reducible. We do not proof this at this point.
Remark 5. Note that the invariant set belonging to the cubic group can be expressed by invariants from the tetragonal
group G5 up to order �̄�3:

�̄�4 = �̄�5 + (𝐼1 − �̄�4)2 , �̄�5 = �̄�6 + (𝐼1 − �̄�4)3 , �̄�8 = �̄�10 + (𝐼1 − �̄�4) (1/2𝐼2
1 − 𝐼2 − �̄�7) . (75)

A.7 hexagonal anisotropy G11

According to [65, 66], the hexagonal anisotropy group G11 can be modeled with the structure tensors

Ḡhex :=
3∑︁
𝛼=1

𝑨𝛼 ⊗ 𝑨𝛼 ⊗ 𝑨𝛼 ⊗ 𝑨𝛼 ⊗ 𝑨𝛼 ⊗ 𝑨𝛼 and �̄�hex := 𝑵 ⊗ 𝑵 , (76)

where 𝑨𝛼 · 𝑨𝛽 = ± 1
2 , 𝛼 ≠ 𝛽, 𝑵 · 𝑨𝛼 = 0 and |𝑨1 | = |𝑨2 | = |𝑨3 | = |𝑵 | = 1. By building the 2nd order tensors

�̄�1 := �̄� : Ḡ : �̄� and �̄�2 := �̄�
2 : Ḡ : �̄�2, cf. [65], one can build a set comprising 30 invariants. However, similar to

the tetragonal symmetry discussed in A.5, the following invariants are equal to zero: tr(�̄�1 · �̄�hex) = tr(�̄�2
1 · �̄�hex) =

tr(�̄�2 · �̄�hex) = tr(�̄�2
2 · �̄�hex) = tr(�̄� · �̄�1 · �̄�hex) = tr(�̄� · �̄�2 · �̄�hex) = tr(�̄�1 · �̄�2 · �̄�hex) = 0. By neglecting

redundant expressions, we find the set Īhex
= (𝐼1, 𝐼2, 𝐼3, �̄�4, �̄�5, . . . , �̄�24) ∈ R24 with

�̄�4 = tr �̄�1 , �̄�5 = tr �̄�2
1 , �̄�6 = tr �̄�3

1 , �̄�7 = tr �̄�2 , �̄�8 = tr �̄�2
2 , �̄�9 = tr �̄�3

2 , �̄�10 = tr(�̄� · �̄�hex) ,
�̄�11 = tr(�̄�2 · �̄�hex) , �̄�12 = tr(�̄� · �̄�1) , �̄�13 = tr(�̄�2 · �̄�1) , �̄�14 = tr(�̄� · �̄�2

1) , �̄�15 = tr(�̄�2 · �̄�2
1) ,

�̄�16 = tr(�̄� · �̄�2) , �̄�17 = tr(�̄�2 · �̄�2) , �̄�18 = tr(�̄� · �̄�2
2) , �̄�19 = tr(�̄�2 · �̄�2

2) , �̄�20 = tr(�̄�1 · �̄�2) ,
�̄�21 = tr(�̄�2

1 · �̄�2) , �̄�22 = tr(�̄�1 · �̄�2
2) , �̄�23 = tr(�̄�2

1 · �̄�2
2) , �̄�24 = tr(�̄� · �̄�1 · �̄�2) .

(77)

Note again that the given invariant set for the hexagonal anisotropy group G11 might be reducible. We do not proof this
at this point.

Alternatively, if in addition to �̄�1 and �̄�2, the tensors �̄�3 := 1 : Ḡ : �̄� and �̄�4 := 1 : Ḡ : �̄�2 are used to build an
invariant set for the hexagonal anisotropy group G11, we can find that the invariants tr(�̄� · �̄�hex) = tr �̄� − 2

3 tr �̄�3 and

tr(�̄�2 · �̄�hex) = tr �̄�2 − 2
3 tr �̄�4 can be expressed by �̄� and Ḡhex. Thus, �̄�hex is not needed anymore in this case.

A.8 Transverse isotropy G13

In the case of transverse isotropy G13, the structure tensor is given by �̄� ti := 𝑎1𝒂1 ⊗ 𝒂1 + 𝑎2 (1 − 𝒂1 ⊗ 𝒂1) ∈ 𝒮𝓎𝓂 with
|𝒂1 | = 1, 𝑎1, 𝑎2 ∈ R≥0 for positive semi-definiteness, 𝑎1 ≠ 𝑎2, where 𝑎2 is chosen to zero typically. Thus, according to
Boehler [81], we get four additional invariants given by

�̄�4 = tr(�̄� · �̄� ti), �̄�5 = tr(�̄�2 · �̄� ti), �̄�6 = tr(�̄� · �̄�2
ti), �̄�7 = tr(�̄�2 · �̄�2

ti) (78)

However, since �̄� ti has only two non-equal eigenvalues 𝜆1 ≠ 𝜆2, one can find that �̄�2
ti can be expressed as

�̄�
2
ti = (𝜆1 + 𝜆2)�̄� ti + 𝜆1𝜆21 (79)

by applying Eqs. (52) and (53). Thus, the invariants �̄�6, �̄�7 given in Eq. (78) are redundant since they can be expressed
as �̄�6 = (𝜆1 + 𝜆2) �̄�4 + 𝜆1𝜆2𝐼1 and �̄�7 = (𝜆1 + 𝜆2) �̄�5 + 𝜆1𝜆2 (𝐼2

1 − 2𝐼2). A complete set for transverse isotropy is thus

given by Īti
= (𝐼1, 𝐼2, 𝐼3, �̄�4, �̄�5) ∈ R5. Note that it is equivalent to choose the set Īti,∗

= (𝐼1, 𝐼2, 𝐼3, �̄�6, �̄�7) ∈ R5.

B Neural network architecture

In this work, NNs combined with internal in- and output normalization layers are employed to represent the elastic
potential [46]. This avoids prior normalization of the training data and still limits the weights and biases to a range that
is appropriate for an efficient optimization. It also makes the process of integrating calibrated models into FE codes
simpler. More specifically, after training, the internal normalization layers are included into the architecture by just
multiplying the normalization weights. In addition, an architecture with an additional gate layer is introduced.
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B.1 Neural network with internal normalization layers

A model which have to be trained by the data D consisting of tuples 𝑖T := (𝑖𝓧, 𝑖𝑌 ) ∈ R𝑛 × R, with the generalized
vector 𝑖𝓧 := (𝑖𝑋1,

𝑖𝑋2, . . . ,
𝑖𝑋𝑛), is given by

𝑓 NN : R𝑛 → R , 𝓧 ↦→ 𝑓 NN (𝓧) := (𝑛out ◦ 𝑔NN ◦𝓷in) (𝓧) . (80)

Therein, the trainable network is represented by the function 𝑔NN (𝔁), where a PNN, i.e., an NN enforcing positive
outputs for all possible normalized input vectors 𝔁 ∈ R𝑛, is used. The internal normalization layers are 𝓷in (𝓧) and
𝓷out (𝑦). In order to not disturb the required positivity, we introduce these normalization layers as

𝑛in
𝛼 : R→ [𝑥min

𝛼 , 𝑥max
𝛼 ] ⊂ R , 𝑋𝛼 ↦→ 𝑛in

𝛼 (𝑋𝛼) := 𝑋𝛼
𝑥max
𝛼 − 𝑥min

𝛼

𝑋max
𝛼 − 𝑋min

𝛼

+ 𝑥
max
𝛼 𝑋min

𝛼 − 𝑥min
𝛼 𝑋max

𝛼

𝑋min
𝛼 − 𝑋max

𝛼

and (81)

𝑛out : [𝑦min, 𝑦max] → R , 𝑦 ↦→ 𝑛out (𝑦) :=
𝑌max − 𝑌min

𝑦max − 𝑦min 𝑦 , (82)

whereby there is no summation over the index (·)𝛼. The values 𝑋min
𝛼 , 𝑋max

𝛼 , 𝑌min and 𝑌max have to be determined from
the data before training, whereas 𝑥min

𝛼 , 𝑥max
𝛼 , 𝑦min and 𝑦max have to be prescribed.

The PNN 𝑔NN (𝔁) with 𝐻 hidden layers is given by

𝑜 [1]𝛼 = A
( 𝑛∑︁
𝛽=1

𝑤 [1]
𝛼𝛽𝑥𝛽 + 𝑏

[1]
𝛼

)
, 𝛼 ∈ {1, 2, . . . , 𝑁nn,1} , (83)

𝑜 [ℎ]𝛼 = A
( 𝑁NN,ℎ−1∑︁

𝛽=1
𝑤 [ℎ]
𝛼𝛽 𝑜

[ℎ−1]
𝛽 + 𝑏 [ℎ]𝛼

)
, 𝛼 ∈ {1, 2, . . . , 𝑁nn,h} , ℎ ∈ {2, . . . , 𝐻} , (84)

𝑔NN (𝔁) =
𝑁NN,𝐻∑︁
𝛼=1

𝑊𝛼 𝑜
[𝐻 ]
𝛼 + 𝐵 ∈ R , (85)

whereby there are no restrictions for the weights expect for the output layer, i.e., 𝑤 [1]
𝛼𝛽 , 𝑏

[1]
𝛼 , 𝑤 [ℎ]

𝛼𝛽 , 𝑏
[ℎ]
𝛼 ∈ R. The

activation function in the final hidden layer must be greater equal to zero for all possible output values of the
previous layer in order to meet the condition that 𝑔NN (𝔁) ≥ 0 ∀𝔁 ∈ R𝑛. Thus, the softplus activation function
SP(𝑧) := ln(1 + exp 𝑧) is chosen and𝑊𝛼, 𝐵 ∈ R≥0, the output layer’s weights and bias, are restricted to be non-negative.
All weights and bias values of the PNN are summarized in the 𝑘-dimensional vector

𝔀 ∈ PNN :=
{
𝑤 [ℎ]
𝛼𝛽 , 𝑏

[ℎ]
𝛼 ∈ R;𝑊𝛼, 𝐵 ∈ R≥0 | ℎ ∈ {1, . . . , 𝐻}

}
. (86)

For the sake of clarity, a somewhat simplified mathematical notation is used here for the quantity PNN .

B.2 Neural network with internal normalization layers and gate layer

If, to enable sparsity of the model with respect to the number of inputs, a trainable gate layer is included into the
network in addition, the model given by Eq. (83) is modified according to

𝑓 NN : R𝑛 → R , 𝓧 ↦→ 𝑓 NN (𝓧) := (𝑛out ◦ 𝑔NN ◦ 𝓵gate ◦𝓷in) (𝓧) . (87)

Thereby, the gate layer is defined by

𝓵gate : R𝑛 → R𝑛, 𝒙 ↦→ 𝒙 ⊙ 𝒈 with 𝑔𝛼 := min(1, 𝛾 tanh(𝜖𝑞𝛼)) ∈ [0, 1] (88)

where 𝛾, 𝜖 ∈ R are hyper parameters and 𝑞𝛼 ∈ [0, 1] are trainable variables. Thus, we have the additional set
𝓺 ∈ 𝒢𝒶𝓉ℯ := {𝓺 ∈ R𝑛 | 𝑞𝛼 ∈ [0, 1]}. To enforce sparsity, ℓ𝑝 regularization is used within this work.

C Terms to guarantee zero stress in the undeformed state

As discussed in Linden et al. [24], the energy expression �̄�str,□ enforcing �̄�(�̄� = 1) = 0 depends on the chosen set of
invariants, i.e., in our case whether the set is constructed either with �̄�, Ḡ, Ḡ, or (�̄�1, �̄�2).
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2nd order structure tensor For the invariant set build with �̄� and the 2nd order structure tensor �̄�, i.e., Ī�̄� ∈ R7, we
use the following expression to enforce a stress-free undeformed state:

�̄�str,�̄� ( Ī�̄�
, 𝐽) = −𝔪�̄� (𝐽 − 1) − 𝔫�̄� (�̄�4 − 1) − 𝔬�̄� (�̄�6 − �̄�6 (1)) with (89)

𝔪�̄� = 2
(
𝜕�̄�NN

𝜕𝐼1
+ 2

𝜕�̄�NN

𝜕𝐼2
+ 𝜕�̄�

NN

𝜕𝐼3

) �����
�̄�=1

, (90)

𝔫�̄� =

(
𝜕�̄�NN

𝜕�̄�4
+ 2

𝜕�̄�NN

𝜕�̄�5

) �����
�̄�=1

and 𝔬�̄� =

(
𝜕�̄�NN

𝜕�̄�6
+ 2

𝜕�̄�NN

𝜕�̄�7

) �����
�̄�=1

. (91)

4th order structure tensor Similarly, for the invariant set ĪḠ ∈ R11 build with �̄� and the 4th order structure tensor
Ḡ, the expression

�̄�str,Ḡ ( ĪḠ, 𝐽) = −𝔪Ḡ [𝐽 − 1] − 𝔫Ḡ
[
�̄�4 − �̄�4 (1)

] − 𝔬Ḡ
[
�̄�5 − �̄�5 (1)

] − 𝔭Ḡ
[
�̄�6 − �̄�6 (1)

] − 𝔮Ḡ
[
�̄�11 − �̄�11 (1)

]
with

(92)

𝔪Ḡ = 2
(
𝜕�̄�NN

𝜕𝐼1
+ 2

𝜕�̄�NN

𝜕𝐼2
+ 𝜕�̄�

NN

𝜕𝐼3

) �����
�̄�=1

, (93)

𝔫Ḡ =

(
𝜕�̄�NN

𝜕�̄�4
+ 2

𝜕�̄�NN

𝜕�̄�7
+ 2

𝜕�̄�NN

𝜕�̄�8
+ 3

𝜕�̄�NN

𝜕�̄�9

) �����
�̄�=1

, (94)

𝔬Ḡ =

(
𝜕�̄�NN

𝜕�̄�5
+ 3

2
𝜕�̄�NN

𝜕�̄�10

) �����
�̄�=1

, (95)

𝔭Ḡ =
𝜕�̄�NN

𝜕�̄�6

�����
�̄�=1

and 𝔮Ḡ =
𝜕�̄�NN

𝜕�̄�11

�����
�̄�=1

(96)

is used. Thereby, only invariants up to the order �̄�3 are used into the set.

6th order structure tensor Finally, for the model based on the 6th order structure tensor Ḡ, we can use the expression

�̄�str,Ḡ ( ĪḠ
, 𝐽) = −𝔪Ḡ [𝐽 − 1] − 𝔫Ḡ [

�̄�4 − �̄�4 (1)
] − 𝔬Ḡ [

�̄�5 − �̄�5 (1)
] − 𝔭Ḡ [

�̄�6 − �̄�6 (1)
] − 𝔮Ḡ [

�̄�10 − �̄�10 (1)
]
,

(97)

where the introduced terms are given by

𝔪Ḡ = 2
(
𝜕�̄�NN

𝜕𝐼1
+ 2

𝜕�̄�NN

𝜕𝐼2
+ 𝜕�̄�

NN

𝜕𝐼3

) �����
�̄�=1

, (98)

𝔫Ḡ =

(
𝜕�̄�NN

𝜕�̄�4
+ 2

𝜕�̄�NN

𝜕�̄�7
+ 2

𝜕�̄�NN

𝜕�̄�8
+ 3

𝜕�̄�NN

𝜕�̄�9
+ 3

𝜕�̄�NN

𝜕�̄�11

) �����
�̄�=1

, (99)

𝔬Ḡ =

(
𝜕�̄�NN

𝜕�̄�5
+ 3

2
𝜕�̄�NN

𝜕�̄�12
+ 3

2
𝜕�̄�NN

𝜕�̄�13

) �����
�̄�=1

, (100)

𝔭Ḡ =
𝜕�̄�NN

𝜕�̄�6

�����
�̄�=1

and 𝔮Ḡ =
𝜕�̄�NN

𝜕�̄�10

�����
�̄�=1

(101)

to enforce zero stress in the undeformed state.
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Two 2nd order structure tensor For the invariant set build with �̄� and the two 2nd order structure tensors �̄�1 and
�̄�2, i.e., Ī�̄�1 ,�̄�2 ∈ R12, we use the following expression to enforce a stress-free undeformed state:

�̄�str,�̄�1 ,�̄�2 ( Ī�̄�1 ,�̄�2 , 𝐽) = −𝔪�̄�1 ,𝑮2 (𝐽 − 1) − 𝔫�̄�1 ,�̄�2 (�̄�4 − 1) − 𝔬�̄�1 ,�̄�2 (�̄�6 − �̄�6 (1)) . . .
− 𝔭�̄�1 ,�̄�2 (�̄�8 − 1) − 𝔮�̄�1 ,�̄�2 (�̄�10 − �̄�10 (1)) − 𝔯�̄�1 ,�̄�2 (�̄�12 − �̄�12 (1)) with

(102)

𝔪�̄�1 ,�̄�2 = 2
(
𝜕�̄�NN

𝜕𝐼1
+ 2

𝜕�̄�NN

𝜕𝐼2
+ 𝜕�̄�

NN

𝜕𝐼3

) �����
�̄�=1

, (103)

𝔫�̄�1 ,�̄�2 =

(
𝜕�̄�NN

𝜕�̄�4
+ 2

𝜕�̄�NN

𝜕�̄�5

) �����
�̄�=1

, 𝔬�̄�1 ,�̄�2 =

(
𝜕�̄�NN

𝜕�̄�6
+ 2

𝜕�̄�NN

𝜕�̄�7

) �����
�̄�=1

, (104)

𝔭�̄�1 ,�̄�2 =

(
𝜕�̄�NN

𝜕�̄�8
+ 2

𝜕�̄�NN

𝜕�̄�9

) �����
�̄�=1

, 𝔮�̄�1 ,�̄�2 =

(
𝜕�̄�NN

𝜕�̄�10
+ 2

𝜕�̄�NN

𝜕�̄�11

) �����
�̄�=1

and (105)

𝔯�̄�1 ,�̄�2 =

(
𝜕�̄�NN

𝜕�̄�12

) �����
�̄�=1

. (106)

Note that the proposed stress normalization terms are not polyconvex by construction. However, as the selected NN
architecture is also not polyconvex, this is not a disadvantage.

D Sampling technique for data generation

In this appended section, we describe the details on the sampling technique that has been applied for the data generation.
The used technique is similar to the one presented in Kalina et al. [46] but with the difference that the invariant space of
the underlying anisotropy is not exploited here.

From the principle of material frame invariance we find that �̄�(�̄�) only depends on the right stretch tensor �̄�, where
�̄� = �̄� · �̄�, �̄� ∈ 𝒮𝒪(3). Thus, for sampling we pragmatically choose �̄�

samp := 1. Since �̄� has to be positive definite,
i.e., 𝒔 · �̄� · 𝒔 > 0∀𝒔 ∈ L1, 𝒔 ≠ 0, it is not easily possible to directly sample the coordinates �̄�𝐾𝐿 . Instead, we make use
of the relation

�̄�
samp = �̄�

𝑇 (𝜃1, 𝜃2, 𝜃3) · diag(�̄�1, �̄�2, 𝐽 �̄�
−1
1 �̄�−1

2 ) · �̄�(𝜃1, 𝜃2, 𝜃3) ∈ 𝒮𝒪(3) (107)

and sample in the six-dimensional space defined by S := (�̄�1, �̄�2, 𝐽, 𝜃1, 𝜃2, 𝜃3) ∈ R>0 × R>0 × R>0 × R × R × R by
Latin Hypercube Sampling (LHS). This guarantees the desired property of all samples 𝑠�̄�samp, 𝑠 ∈ {1, 2, . . . , 𝑛samp}.
For each state 𝑠 �̄�

samp = �̄� · 𝑠�̄�samp = 𝑠�̄�
samp, a loading path from �̄� = 1 to the final deformation is generated by

linearly interpolating in �̄�1, �̄�2, 𝐽 within 𝑛inc increments and keeping 𝜃1, 𝜃2, 𝜃3 fixed. Thus, we have a set containing
𝑘 = 𝑛sampe · 𝑛inc states: A := {1�̄�, 2�̄�, . . . , 𝑘�̄�}.
Finally, to avoid duplicate states in the data set and to reduce the number of states, filtering is performed using the
Green-Lagrange strain �̄� as a measure for comparing the states. To start the process, all states of the first loading path
are added to a set U which only contains unique states, i.e., U := {1�̄�

un
, 2�̄�

un
, . . . , 𝑛inc �̄�

un}. Then, to decide whether
another state 𝑎 �̄� with 𝑎 ∈ {𝑛inc + 1, . . . , 𝑘} is inimitably, the relative distance

𝑎𝑏𝑑 :=
∥𝑎 �̄� − 𝑏 �̄�∥2

ReLU(∥𝑏 �̄�∥2 − 𝛿) + 𝛿 with 𝛿 :=
1
3

max
(
∥1�̄�∥2, ∥2�̄�∥2, . . . , ∥𝑘 �̄�∥2

)
and 𝑏 �̄� ∈ U (108)

of the state to all states currently included in U is calculated. Thereby, 𝛿 is a heuristic parameter to prevent small values
to be overrepresented [46]. If 𝑎𝑏𝑑 ≥ 𝑑tol only applies to one 𝑏 ∈ {1, 2, . . . , |U|}, the state is unique and must be added
to U. To facilitate the subsequent application of a state in the computational homogenization, the complete loading
path belonging to a new unique state is added to the set U. After filtering, the deformation gradients belonging to the
identified set of unique states are saved.

To generate the deformation tuples by using the algorithm described above, the parameters given in Tab. 5 have been
chosen. With that, a total of 154 loading paths have been identified. Note that there exist several alternative sampling
technique in the literature, e.g., Kunc and Fritzen [104] or Fuhg and Bouklas [7].

33



Neural networks meet anisotropic hyperelasticity A PREPRINT

Table 5: Chosen parameters for the sampling algorithm. With that, a set containing a total of 154 loading paths have been generated.
range �̄�1 range �̄�2 range 𝐽 range 𝜃1 range 𝜃2 range 𝜃3 𝑛samp 𝑛inc 𝑑tol

[0.8, 1.4] [0.8, 1.4] [0.9, 1.2] [0, 𝜋] [−𝜋/2, 𝜋/2] [−𝜋, 𝜋] 5 × 103 20 0.15
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Figure 15: Hyperparameter study for the invariant-based model �̄�□ ( Ī□, 𝐽) and the coordinate-based model �̄�coord (�̄�, 𝐽) with the
loss L = 0.7L𝝈 + 0.3Lc: (a) NNs with one hidden layer and varied number of neurons 𝑁NN,1 and (b) NNs consisting of 𝐻 hidden
layers with 16 neurons each. The trainable gate layer was deactivated for the invariant-based models. Shown are the results of the
best run out of 5 training runs.

E Hyperparameter study

Within this appended section, we provide a hyperparameter study for the considered network architectures. In addition,
a study on the optimal choice of the weight for ℓ𝑝 regularization is shown. To exclude random effects from initialization,
5 training runs with pre-training and post-training step as described in Remark 3 have carried out each. The best training
run is used. The overall datasets are divided into calibration and test sets with a ratio of 70/30, respectively, see Eq. (35).
To reduce the number of trainings, we set the knowledge of the required order of structure tensor for the respective
RVEs here: stochastic fibers (�̄� ∈ 𝒮𝓎𝓂), hexagonal fibers (Ḡ ∈ 𝒮𝓎𝓂6), cubic sphere (Ḡ ∈ 𝒮𝓎𝓂4), plane spheres
(�̄� ∈ 𝒮𝓎𝓂), and chain spheres (�̄�1, �̄�2 ∈ 𝒮𝓎𝓂), cf. Tab. 2.

E.1 Number of hidden layers and neurons

Here, the hyperparameters of the networks used in the invariant-based model �̄�□ ( Ī□, 𝐽) according to Eq. (33) and the
coordinate-based model �̄�coord (�̄�, 𝐽) given in Eq. (43) are varied. For the loss, we choose L = 0.7L𝝈 + 0.3Lc. Within
this hyperparameter study, the trainable gate layer is deactivated for the invariant-based models.

Variation number of neurons in one hidden layer In a first study, we consider NNs with one hidden layer and
vary the number of neurons 𝑁NN,1 ∈ {8, 16, 32, 64}. The results are shown in Fig. 15(a). As can be seen, the loss
achieved with the coordinate-based model does not fall below 5 × 10−3 for any of the RVEs, and there is no noticeable
improvement when the number of neurons is increased. In contrast, the invariant-based approach achieves very good
results with just one hidden layer for four of the five RVEs. Only for the RVE cubic sphere does the loss remain above
1 × 10−4 even with 64 neurons in the hidden layer.

Variation number of hidden layers Secondly, we consider NNs with 𝐻 ∈ {1, 2, 3, 4} hidden layers with 𝑁NN,ℎ = 16,
ℎ ∈ {1, . . . , 𝐻}. The results of this study are shown in Fig. 15(b). As can be seen, the loss achieved with the coordinate-
based model now drops significantly for all RVEs considered when the number of hidden layers is increased. With
two hidden layers, the loss values are around 1 × 10−4 and with three hidden layers, values clearly below 1 × 10−4 and
in some cases below 1 × 10−4 are achieved for all RVEs. With four hidden layers, there is then no further significant
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Figure 16: Variation of the weight 𝑤gate for the gate loss term Lgate: (a)–(e) RVEs stochastic fibers, hexagonal fibers, cubic fibers,
plane spheres, and chain spheres, respectively. The prediction loss was chosen to Lpred = 0.7L𝝈 + 0.3Lc. Shown are the results of
the best run out of 5 training runs.

improvement. In contrast, the invariant-based approach results in almost no dependence on the number of hidden
layers for four of the five RVEs. Even with one hidden layer of 16 neurons, the results here are very good. Only for
the RVE cubic sphere there is a noticeable improvement above a number of two hidden layers, so that a loss below
1 × 10−4 can be achieved from 𝐻 ≥ 2. It should be noted that the finding that relatively small networks are required for
invariant-based NN approaches is consistent with the literature, cf. [24, 28, 36, 46, 69, 75].

The study thus results in the following choice for the NNs used in this work: For the invariant-based approach,
architectures with 2 hidden layers of 16 neurons each are used. For the coordinate-based model, on the other hand,
networks with 3 hidden layers of 16 neurons each are used.

E.2 Weighting of the gate loss

Here, the weight 𝑤gate for the loss term Lgate defined in Eq. (39) is varied systematically. Thus, only the invariant-based
model �̄�□ ( Ī□, 𝐽) is considered. According to the study given in E.1, architectures with 2 hidden layers of 16 neurons
each are used. The parameters for the gates and the exponent in the 𝑝-norm are chosen to 𝛾 = 1.025, 𝜖 = 2.5, 𝛿 =
1×10−6, and 𝑝 = 1

4 , respectively. The loss term for the training is given by L = Lpred +𝑤gateLgate, where the prediction
loss is chosen as Lpred = 0.7L𝝈 + 0.3Lc. The weight is varied as follows: 𝑤gate ∈ {1 × 10−8, 5 × 10−8, . . . , 1 × 10−1}.
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The results of this study are given in Fig. 16 for the five considered RVEs. On the left vertical axis of each subplot,
the prediction loss is plotted and on the right vertical axis (blue) the number of active gates, i.e., gates for which the
condition 𝑔𝛼 > 0 holds. As one can see, the number of active gates after training decreases with an increasing 𝑤gate.
However, if the weight is set too high, this leads to an excessive weighting of the penalty term based on the 𝑝-norm.
This initially leads to the elimination of invariants required to describe the anisotropy from the model and, if the value
is increased further, to a disproportionate deterioration in the prediction capability. Thus, the aim is now to find a value
for the weight that leads to a model with as few invariants as possible, but at the same time does not negatively affect
the prediction quality. Accordingly, a value of 5 × 10−5 has proven to be suitable for all RVEs.
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