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Abstract

In this note we introduce a notion of dichotomy which generalizes the

classical concept of exponential dichotomy and the recent notion of Bohl

dichotomy. A key attribute is the discussion of the sets of subspaces of

the state space on which the dichotomy estimates are uniform. Two main

results are a dichotomy spectral theorem based on our notion of dichotomy

which is uniform on subspaces and a formula for the dichotomy spectral

intervals which is new for the Bohl dichotomy spectrum as well as for the

classical exponential dichotomy spectrum.

1 Introduction

In this paper we develop formulas for the dichotomy spectrum of linear time-
varying difference equations on Rd, d ∈ N>0

x(n+ 1) = A(n)x(n), n ∈ T, (1)

with one-sided time T = N or two-sided time T = Z and invertible coefficients
A : T → GL(Rd) such that A and A−1 : T → GL(Rd), n 7→ A(n)−1 are bounded.

There is a rich body of literature on hyperbolicity concepts for systems (1), most
prominently exponential dichotomy, but also more recently Bohl dichotomy, see
Definition 1 and [19] (for the case T = N) and Remark 2 for a short history
and references. In this introduction we observe that a main difference between
these known dichotomy notions is the set of subspaces on which the dichotomy
estimates for the solutions of (1) are uniform. This will lead us in Definition 4 to
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a new notion of dichotomy which is uniform on subspaces and which generalizes
the concepts of exponential and Bohl dichotomy.

Section 2 contains results on properties of dichotomous systems (1) as a prepa-
ration for the main results in Section 4. In Section 3 we recall in Definition 13
Bohl exponents from [19] and investigate their relation to our general notion of
dichotomy. Section 4 contains the two main results, a dichotomy spectral the-
orem based on our general notion of dichotomy which is uniform on subspaces
(Theorem 26) and a formula for the dichotomy spectral intervals (Theorem 27).

For an initial value x0 ∈ Rd the solution x(·, x0) : T → Rd of (1) starting at 0
in x0 satisfies x(0, x0) = x0,

x(n, x0) = A(n− 1) · · ·A(0)x0, n > 0,

and if T = Z

x(n, x0) = A(n)−1 · · ·A(−1)−1x0, n < 0.

Dichotomies are solution estimates on subspaces of the state space Rd which
form a splitting. Denote for L ⊆ Rd the set of subspaces of L by

G(L) := {U ⊆ L : U subspace}.

For L1, L2 ∈ G(Rd) we say that (L1, L2) is a splitting of Rd if L1 ⊕ L2 = Rd.

Let (L1, L2) be a splitting of Rd. We denote by πL1 the projection onto L1 along
L2. Then πL2

:= I − πL1 is the projection onto L2 along L1, where I denotes
the identity mapping on Rd. For V ∈ G(Rd) and i ∈ {1, 2}

πLi
[V ] := {πLi

v : v ∈ V }

is the projection of V onto Li. For the following definition see e.g. [19] and the
references therein.

Definition 1 (Exponential and Bohl dichotomy). Let (L1, L2) be a splitting of
Rd. System (1) has a Bohl dichotomy on (L1, L2) if there exists an α > 0 such
that

‖x(n, x0)‖ ≤ C1e
−α(n−m)‖x(m,x0)‖, m, n ∈ T, n ≥ m,x0 ∈ L1,

‖x(n, x0)‖ ≥ C2e
α(n−m)‖x(m,x0)‖, m, n ∈ T, n ≥ m,x0 ∈ L2,

with constants C1, C2 > 0 which depend on x0 in L1 and L2, respectively.

In case C1 and C2 can be chosen independent of x0, system (1) has an expo-
nential dichotomy.

Remark 2 (History of dichotomy notion).

(a) Foundations. Massera and Schaeffer [29, 30] coined the name exponen-
tial dichotomy and formulated the canonical definition of exponentially dichoto-
mous linear differential equations. The foundational formulation of the theory
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of exponentially dichotomous systems was completed through the monographs
of Massera and Schaeffer [28] and Daleckii and Krein [21], which summarized
earlier results on exponentially dichotomous systems and outlined paths for the
development of this theory by presenting numerous open questions.

For difference equations, this concept first appeared in the work of Coffman and
Schaeffer [17], where the notion of uniform exponential dichotomy for infinite-
dimensional, one-sided discrete-time systems was introduced, highlighting dif-
ferences between continuous and discrete-time systems due to the potential non-
invertibility of the transition operator. The first definitions of dichotomy for two-
sided sequences were provided in [22] and [25, Definition 7.6.4]. Subsequently,
many authors have studied the concept of uniform exponential dichotomies for
discrete systems with both invertible and non-invertible coefficients [13, 14, 14,
1, 24].

(b) Concepts of uniformity. The term uniform usually refers to the fact that
the dichotomy estimates are uniform with respect to both time and the initial
condition. While the role of uniformity with respect to time has been extensively
analyzed in the literature (see e.g. [9, 10, 11, 40] and references therein), re-
search of the significance of uniformity with respect to the initial condition has
only recently been initiated (see e.g. [12, 23, 8, 19, 20]). These studies examine
a type of dichotomy, referred to as Bohl dichotomy in [19], where the conver-
gence with respect to time is uniform, but uniformity with respect to the initial
condition is restricted to each one-dimensional subspace.

In the following remark we emphasize the subspaces on which the dichotomy
estimates in Definition 1 hold uniformly. Denote for k ∈ N and L ⊆ Rd the set
of k-dimensional subspaces of L by

Gk(L) := {U ∈ G(L) : dimU = k}.

Remark 3 (Uniformity subspaces of Bohl and exponential dichotomy). If (1)
has a Bohl dichotomy on (L1, L2) then, using the homogeneity of the solution
x(·, cx0) = cx(·, x0), c ∈ R, the dichotomy estimates hold uniformly on all
one-dimensional subspaces of L1 and L2, respectively. More precisely, for all
U ∈ G1(L1), there exists C(U) > 0 with

‖x(n, x0)‖ ≤ C(U)e−α(n−m)‖x(m,x0)‖, m, n ∈ T, n ≥ m, x0 ∈ U,

and for all U ∈ G1(L2), there exists C(U) > 0 with

‖x(n, x0)‖ ≥ C(U)eα(n−m)‖x(m,x0)‖, m, n ∈ T, n ≥ m, x0 ∈ U.

If (1) has an exponential dichotomy on (L1, L2) then the dichotomy estimates
hold uniformly on all subspaces of L1 and L2, respectively.

We introduce a new dichotomy notion based on dichotomy estimates which hold
uniformly on a set of subspaces which covers the splitting.
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Definition 4 (Dichotomy uniform on subspaces of a splitting). Let (L1, L2) be a
splitting of Rd and U1 ⊆ G(L1), U2 ⊆ G(L2) be covers of L1 and L2, respectively,
i.e. ⋃

U1 = L1 and
⋃

U2 = L2. (2)

We say that system (1) has a dichotomy on (L1, L2) uniformly on the subspaces
in (U1,U2) if there exists an α > 0 such that for each U1 ∈ U1, there exists
C(U1) > 0 with

‖x(n, x0)‖ ≤ C(U1)e
−α(n−m)‖x(m,x0)‖, m, n ∈ T, n ≥ m, x0 ∈ U1, (3)

and for each U2 ∈ U2, there exists C(U2) > 0 with

‖x(n, x0)‖ ≥ C(U2)e
α(n−m)‖x(m,x0)‖, m, n ∈ T, n ≥ m, x0 ∈ U2. (4)

We say that system (1) has a dichotomy on (L1, L2) if there exist covers U1 ⊆
G(L1) of L1 and U2 ⊆ G(L2) of L2 such that system (1) has a dichotomy on
(L1, L2) uniformly on the subspaces in (U1,U2).

The important and obvious observation that a dichotomy estimate which holds
uniformly on a subspace U also holds uniformly on all subspaces of U is formu-
lated in the following theorem.

Theorem 5 (Refining uniformity subspaces of dichotomy). If system (1) has a
dichotomy on (L1, L2) uniformly on the subspaces in (U1,U2), then it also has
a dichotomy on (L1, L2) uniformly on the subspaces in the refinement (V1,V2)
with

V1 :=
⋃

U∈U1

G(U) and V2 :=
⋃

U∈U2

G(U).

Proof. Let i ∈ {1, 2}. The set Vi consists of all subspaces of the subspaces in
Ui and therefore it also covers Li. Let Vi ∈ Vi. Then there exists Ui ∈ Ui such
that Vi is a subspace of Ui and the dichotomy estimate which holds on Ui also
holds on Vi.

In Remark 3 it was pointed out that for Bohl and exponential dichotomies the
estimates are uniform on all one-dimensional subspaces of the corresponding
spaces of the splitting. This property also holds for the new dichotomy notion
defined in Definition 4.

Remark 6 (Dichotomy is uniform on one-dimensional subspaces). If L 6= {0}
is a subspace of Rd and U ⊆ G(L) is a cover of L then

G1(L) ⊆
⋃

U∈U

G(U).

As a consequence, if system (1) has a dichotomy on (L1, L2) then it also has a
Bohl dichotomy on (L1, L2).
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The notions of exponential and Bohl dichotomy spectrum (see e.g. [19]) are
based on dichotomies of the γ-shifted systems for γ ∈ R

x(n+ 1) = e−γA(n)x(n), n ∈ T. (5)

Theorem 7 (Exponential and Bohl dichotomy spectrum). The Bohl dichotomy
spectrum of (1)

ΣBD(A) := {γ ∈ R : (5) has no Bohl dichotomy} ,

as well as the exponential dichotomy spectrum of (1)

ΣED(A) := {γ ∈ R : (5) has no exponential dichotomy} ,

is the nonempty union of at most d compact intervals.

In this paper we generalize Theorem 7 to dichotomies which hold uniformly on
subspaces of prescribed dimensions and provide formulas for the endpoints of the
spectral intervals (Theorems 26 and 27) which are also new for the exponential
and Bohl dichotomy spectrum.

2 Dichotomies

In this section we study dichotomies which are uniform on subspaces of a split-
ting. The estimates (3) and (4) are the building blocks of Definition 4 which we
abbreviate for convenience in the following definition.

Definition 8 (Dichotomy estimates). Let γ ∈ R and U ∈ G(Rd).

(a) We say D1(γ, U) holds if there exists C : U → R>0, such that

‖x(n, x0)‖ ≤ C(x0)e
γ(n−m)‖x(m,x0)‖, m, n ∈ T, n ≥ m, x0 ∈ U.

If the mapping C is constant, we say that D1(γ, U) holds uniformly.

(b) We say D2(γ, U) holds if there exists C : U → R>0, such that

‖x(n, x0)‖ ≥ C(x0)e
γ(n−m)‖x(m,x0)‖, m, n ∈ T, n ≥ m, x0 ∈ U.

If the mapping C is constant, we say that D2(γ, U) holds uniformly.

Using the notation of Definition 8 system (1) has a dichotomy with splitting
(L1, L2), if and only if there exists α > 0 and a covering U1 of L1 and a covering
U2 of L2, such that D1(−α,U) holds uniformly for all U ∈ U1 and D2(α,U)
holds uniformly for all U ∈ U2.
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Remark 9 (Characterization of dichotomy of γ-shifted system). For γ ∈ R, the
solution of the γ-shifted system (5) which starts at 0 in x0 ∈ Rd is

(
e−γnx(n, x0)

)
n∈T

.

The γ-shifted system has a dichotomy with splitting (L1, L2) if and only if there
exists α > 0 and a covering U1 of L1 and a covering U2 of L2, such that
D1(γ − α,U) holds uniformly for all U ∈ U1 and D2(γ + α,U) holds uniformly
for all U ∈ U2.

Proposition 10 (Dichotomy estimates are dichotomous). Let α > 0, γ ∈ R and
U1, U2 ∈ G(Rd). If D1(γ − α,U1) and D2(γ + α,U2) hold, then U1 ∩ U2 = {0}.

More generally, suppose that U ∈ G(Rd), α > 0 and γ ∈ R. If D2(γ + α,U)
holds and if

(
e−γnx(n, x0)

)
n∈N

is bounded for all x0 ∈ U , then U = {0}.

Proof. Let x0 ∈ U1 ∩ U2. From D1(γ − α,U1) (with m = 0 and noting that
N ⊆ T), we conclude that there exists C1 > 0 with

‖x(n, x0)‖ ≤ C1e
γ−αn‖x0‖, n ∈ N.

In particular,
(
e−γnx(n, x0)

)
n∈N

is bounded. The estimate D2(α,U2) yields a
C2 > 0 with

‖x0‖ ≤ C2e
−(γ+α)n‖x(n, x0)‖, n ∈ N.

Letting n → ∞, using the fact that α > 0 and the boundedness of
(
e−γnx(n, x0)

)
n∈N

,
we conclude x0 = 0.

Proposition 11 (Monotonicity of dichotomy subspaces). Let γ, γ̃ ∈ R with
γ ≤ γ̃. Suppose that the γ-shifted system (5) has a dichotomy with splitting

(L1, L2) and that the γ̃-shifted system has a dichotomy with splitting (L̃1, L̃2).

Then L1 ⊆ L̃1. If T = Z, then L2 ⊇ L̃2.

Proof. We prove L1 ⊆ L̃1. Let x1 ∈ L1. There are x̃1 ∈ L̃1, x̃2 ∈ L̃2 with
x1 = x̃1 + x̃2. We show x̃2 = 0 by applying Proposition 10 to the γ̃-shifted
system, so that x1 = x̃1, i.e. L1 ⊆ L̃1. Indeed, there are α1, α2 > 0, such that
D1(γ−α1, span{x1}) and D1(γ̃−α2, span{x̃1}) and D2(γ̃+α2, span{x̃2}) hold
by Remark 6. In particular, for α := min(α1, α2) there is C > 0, such that for
n ∈ N,

‖e−γ̃nx(n, x̃2)‖ = e−γ̃n‖x(n, x1 − x̃1)‖

≤ e−γ̃n
(
Ce(γ−α)(n−0)‖x(0, x1)‖ + Ce(γ̃−α)(n−0)‖x(0, x̃1)‖

)

= C
(
e(γ−γ̃−α)n‖x1‖+ e−αn‖x̃1‖

)
.

Since γ− γ̃ ≤ 0, we see that
(
e−γ̃nx(n, x̃2)

)
n∈N

is bounded, so that Proposition

10 yields span{x̃2} = {0}, i.e. x̃2 = 0. That L2 ⊇ L̃2 if T = Z, can be shown
similarly.
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Proposition 12 (Uniqueness and dynamic characterization of dichotomy sub-
spaces). Let γ ∈ R. Suppose that the γ-shifted system (5) has a dichotomy with
splitting (L1, L2). Then

L1 = {x0 ∈ Rd : lim
n→∞

e−γnx(n, x0) = 0},

and if T = Z, then

L2 =
{
x0 ∈ Rd : lim

n→−∞
e−γnx(n, x0) = 0

}
.

Moreover, if for γ̃ ∈ R, the γ̃-shifted system has a dichotomy with splitting
(L̃1, L̃2) and dimL1 = dim L̃1, then L1 = L̃1 and if T = Z, then L2 = L̃2.

Proof. We prove the representation of L1 only and set M := {x0 ∈ Rd :
limn→∞ e−γnx(n, x0) = 0}. L1 ⊆ M , since there is α > 0, such that D1(γ −
α, span{x0}) holds for all x0 ∈ L1. To show M ⊆ L1, let x0 ∈ M and let
x1 ∈ L1, x2 ∈ L2 with x0 = x1 + x2. Similar to the proof of x̃2 = 0 in the proof
of Proposition 11, it follows that x2 = 0 and thus x0 = x1 ∈ L1. Now suppose
γ̃ ∈ R and assume w.l.o.g. γ̃ ≤ γ. From Proposition 11, we obtain that L̃1 ⊆ L1

and since dim L̃1 = dimL1, also L̃1 = L1. Similarly one can show that L̃2 = L2

if T = Z.

3 Bohl exponents and dichotomy estimates

A useful tool for studying properties of dichotomies is the concept of Bohl expo-
nents which were introduced for individual solutions in [16] and later extended
to subspace exponents in [15] and [19]. In this section we recall the upper and
lower Bohl exponents from [19] and investigate their relation to the dichotomy
estimates in Definition 8. We set sup ∅ := −∞ and inf ∅ := ∞.

Definition 13 (Upper and lower Bohl exponent). For U ∈ G(Rd) we define the
upper Bohl exponent

β(U) := inf
N∈N

sup

{
1

n−m
ln

‖x(n, x0)‖

‖x(m,x0)‖
: m,n ∈ T, n−m > N, x0 ∈ U \ {0}

}

and the lower Bohl exponent

β(U) := sup
N∈N

inf

{
1

n−m
ln

‖x(n, x0)‖

‖x(m,x0)‖
: m,n ∈ T, n−m > N, x0 ∈ U \ {0}

}
.

Remark 14 (Basic properties of Bohl exponents).

(a) β({0}) = −∞ and β({0}) = ∞.

(b) If U 6= {0} then − ln ‖A−1‖∞ ≤ β(U) ≤ β(U) ≤ ln ‖A‖∞. In particular,

β(U), β(U) ∈ R, U ∈ G(Rd) \ {0}.
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(c) For U, V ∈ G(Rd)

U ⊆ V ⇒ β(U) ≥ β(V ) and β(U) ≤ β(V ).

The next two propositions state the relation between the upper and lower Bohl
exponents and the dichotomy estimates D1(γ, U) and D2(γ, U), respectively.

Proposition 15 (Upper Bohl exponent and dichotomy estimate D1(γ, U)). Let
V ⊆ G(Rd) be non-empty and for each V ∈ V let U(V ) ⊆ G(Rd) be non-empty.
Let γ ∈ R.

(a) If there is V ∈ V, such that for all U ∈ U(V ) the estimate D1(γ, U) holds
uniformly, then γ ≥ infV ∈V supU∈U(V ) β(U).

(b) If γ > infV ∈V supU∈U(V ) β(U), then there is V ∈ V, such that for all
U ∈ U(V ) the estimate D1(γ, U) holds uniformly.

Proof. We prove (a). Let V ∈ V , such that D1(γ, U) holds for all U ∈ U(V ).
First consider U ∈ U(V ) \ {0}. We obtain by D1(γ, U) a constant C > 0, such
that

1

n−m
ln

‖x(n, x0)‖

‖x(m,x0)‖
≤

1

n−m
C + γ, m, n ∈ T, n > m, x0 ∈ U \ {0}.

Hence for all N ∈ N, we obtain

1

n−m
ln

‖x(n, x0)‖

‖x(m,x0)‖
≤

C

N
+ γ, m, n ∈ T, n−m > N, x0 ∈ U \ {0}.

Thus β(U) ≤ γ. Also β({0}) = −∞ < γ and we obtain supU∈U(V ) β(U) ≤ γ.

We prove (b). From γ > infV ∈V supU∈U(V ) β(U) we conclude that there exists
V ∈ V , such that for all U ∈ U(V ) we have

γ > β(U) = inf
N∈N

sup

{
1

n−m
ln

‖x(n, x0)‖

‖x(m,x0)‖
: m,n ∈ T, n−m > N, x0 ∈ U\{0}

}
.

Note that D1(γ, {0}) always holds uniformly and for U ∈ U(V ) \ {0}, there is
N ∈ N with

γ >
1

n−m
ln

‖x(n, x0)‖

‖x(m,x0)‖
, m, n ∈ T, n−m > N, x0 ∈ U \ {0}.

Rearranging yields ‖x(n, x0)‖ ≤ eγ(n−m)‖x(m,x0)‖ for m,n ∈ T, n −m > N ,
x0 ∈ U . To conclude, we have to show that there is C > 0, such that

‖x(n, x0)‖ ≤ Ceγ(n−m)‖x(m,x0)‖, m, n ∈ T, n−m ≤ N, x0 ∈ U.

Indeed, for x0 ∈ U \ {0} this follows from

e−γ(n−m) ‖x(n, x0)‖

‖x(m,x0)‖
= e−γ(n−m) ‖A(n− 1) · · ·A(m)A(m − 1) · · ·A(0)x0‖

‖A(m− 1) · · ·A(0)x0‖
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≤ e−γ(n−m)‖A(n− 1) · · ·A(m)‖

and by noting that e−γ(n−m)‖A(n− 1) · · ·A(m)‖ is bounded on {(m,n) ∈ T2 :
0 ≤ n−m ≤ N}, since A is bounded.

Proposition 16 (Lower Bohl exponent and D2(γ, U)). Let V ⊆ G(Rd) be non-
empty and for every V ∈ V let U(V ) ⊆ G(Rd) be non-empty. Let γ ∈ R.

(a) If there is V ∈ V, such that for all U ∈ U(V ) the estimate D2(γ, U) holds
uniformly, then γ ≤ supV ∈V infU∈U(V ) β(U).

(b) If γ < supV ∈V infU∈U(V ) β(U), then there is V ∈ V, such that for all
U ∈ U(V ) the estimate D2(γ, U) holds uniformly.

Proof. The proof is along the lines of Proposition 15.

4 The spectral theorem

In this section we generalize Theorem 7 and provide formulas for the spectrum.
For each γ ∈ R which is contained in the Bohl dichotomy resolvent set of (1)

ρBD(A) := R \ ΣBD(A) = {γ ∈ R : (5) has a Bohl dichotomy}

or the exponential dichotomy resolvent set

ρED(A) := R \ ΣED(A) = {γ ∈ R : (5) has an exponential dichotomy}

the γ-shifted system (5) admits a dichotomy on a splitting (L1, L2). The sub-
space L1 and, in particular, its dimension k := dimL1 is unique for a fixed γ in
the resolvent set (Proposition 12).

Covers U1 ⊆ G(L1), U2 ⊆ G(L2) of L1 and L2, respectively, on which the
dichotomy estimates hold uniformly (cf. Definition 4) are

U1 = G1(L1), U2 = G1(L2) if γ ∈ ρBD(A)

and

U1 = Gk(L1) = {L1}, U2 = Gd−k(L2) = {L2} if γ ∈ ρED(A).

In both cases
U1 = Gj1 (L1), U2 = Gj2(L2) (6)

with (j1, j2) ∈ {(1, 1), (k, d−k)}. We extend this idea and answer in the following
proposition for k ∈ {0, . . . , d} the question which (j1, j2) ∈ N × N have the
property that for each splitting (L1, L2) with dimL1 = k the spaces U1 and U2

in (6) are covers of L1 and L2, respectively (cf. Definition 4).
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Proposition 17 (Admissible uniformity dimensions for dichotomy). For k ∈
{0, . . . , d} and j1, j2 ∈ {0, . . . , d}, the following two statements are equivalent:

(i) For each splitting (L1, L2) with dimL1 = k, the spaces L1 and L2 are covered
by their j1- and j2-dimensional subspaces, respectively, i.e.

⋃

U∈Gj1 (L1)

U = L1 and
⋃

U∈Gj2 (L2)

U = L2.

(ii) If k = 0 then j1 = 0, j2 ∈ {1, . . . , d}. If k ∈ {1, . . . , d − 1} then j1 ∈
{1, . . . , k}, j2 ∈ {1, . . . , d− k}. If k = d then j1 ∈ {1, . . . , d}, j2 = 0.

If (i) and (ii) hold we say that (j1, j2) is k-admissible.

Proof. This follows from Gj(L) = ∅ for L ∈ G(Rd) if dimL < j.

The following remark is a consequence of the refinement Theorem 5 applied to
dichotomies which are uniform on all subspaces of prescribed dimensions (j1, j2).

Remark 18 (Dichotomy with uniformity dimensions). Let (j1, j2) ∈ N×N. If
system (1) has a dichotomy on (L1, L2) uniformly on all subspaces of dimensions
(j1, j2), i.e. with

U1 = Gj1 (L1) and U2 = Gj2(L2),

then we say that system (1) has a dichotomy with uniformity dimensions (j1, j2)
and (j1, j2) is k-admissible with k = dimL1.

In this case system (1) has also a dichotomy with uniformity dimensions (ℓ1, ℓ2)
for each k-admissible (ℓ1, ℓ2) which satisfies ℓ1 ≤ j1 and ℓ2 ≤ j2.

We are now ready to define a notion of spectrum based on dichotomies with
k-admissible uniformity dimensions (j1k, j2k) for the γ-shifted system (5) where
k is the dimension of the dynamically characterized set (Proposition 12)

{x0 ∈ Rd : lim
n→∞

e−γnx(n, x0) = 0}.

The exponential and Bohl dichotomy spectrum are special cases for specific
choices of uniformity dimensions (Remark 20).

Definition 19 (Dichotomy resolvent and spectrum). For each k ∈ {0, . . . , d}
let (j1k, j2k) be k-admissible. The dichotomy resolvent of (1) with uniformity
dimensions J :=

(
(j10, j20), . . . , (j1d, j2d)

)
∈ (N× N)d+1 is defined as

ρJ(A) :={γ ∈ R | the γ-shifted system has a dichotomy on a splitting (L1, L2),

uniform on subspaces with dimension (j1k, j2k), where k = dimL1}

and the dichotomy spectrum of system (1) with admissible uniformity dimen-
sions J is

ΣJ (A) := R \ ρJ(A).
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Remark 20 (Special cases of Bohl and exponential dichotomy spectrum).

(a) ΣBD(A) = ΣJ(A) for J =
(
(0, 1), (1, 1), . . . , (1, 1), (1, 0)

)
.

(b) ΣED(A) = ΣJ(A) for J =
(
(0, d), (1, d− 1), . . . , (d, 0)

)
.

Remark 21 (Resolvent set characterized by dichotomy estimates). For admis-
sible uniformity dimensions J the following two statements are equivalent:

(i) γ ∈ ρJ(A),

(ii) there exists a splitting (L1, L2) of R
d and α > 0, such that with k := dimL1

the dichotomy estimate D1(γ − α,U) holds uniformly for all U ∈ Gj1k(L1) and
D2(γ + α,U) holds uniformly for all U ∈ Gj2k(L2).

We now define exponents, called limiting Bohl exponents, which turn out to be
the boundary points of the dichotomy spectrum. Such descriptions were previ-
ously known for the uniform exponential dichotomy only in the one-dimensional
case [35] and in the multidimensional case only for the largest and smallest ele-
ments of the spectrum [19, Remark 23].

Definition 22 (Limiting Bohl exponents). For j, k ∈ N define

βk,j := inf
L∈Gk(Rd)

sup
U∈Gj(L)

β(U),

β
k,j

:= sup
L∈Gd−k(Rd)

inf
U∈Gj(L)

β(U).

Remark 23. Let k ∈ {0, . . . , d} and (j1, j2) be k-admissible. From Remark 14
it follows that for k = 0, resp. k = d,

βk,j1
= β0,0 = −∞ resp. β

k,j2
= β

d,0
= ∞.

From Remark 14 it also follows that

βk,j1
∈
[
− ln ‖A−1‖∞, ln ‖A‖∞

]
, k ∈ {1, . . . , d},

β
k,j2

∈
[
− ln ‖A−1‖∞, ln ‖A‖∞

]
, k ∈ {0, . . . , d− 1}.

Lemma 24 (Characterization of dichotomy). Let k ∈ {0, . . . , d} and (j1, j2) be
k-admissible. Then the following two statements are equivalent:

(i) γ ∈
(
βk,j1

, β
k,j2

)
,

(ii) there exists a splitting (L1, L2) of R
d with dimL1 = k, such that the γ-shifted

system (5) has a dichotomy on (L1, L2) with uniformity dimensions (j1, j2).

Proof. (i) ⇒ (ii). Let γ ∈
(
βk,j1

, β
k,j2

)
. There exists α > 0 with γ − α > βk,j1

and γ + α < β
k,j2

. Applying Proposition 15(b) (where V is set to Gk(R
d) and

U(V ) is set to Gj1(V ) for V ∈ V), we obtain the existence of a space L1 ∈
Gk(R

d), such that D1(γ − α,U) holds uniformly for all U ∈ Gj1 (L1). Applying
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Proposition 16(b) (where V is set to Gd−k(R
d) and U(V ) is set to Gj2(V ) for

V ∈ V), we obtain the existence L2 ∈ Gd−k(R
d), such that D2(γ + α,U) holds

uniformly for all U ∈ Gj2(L2). From Proposition 10, we conclude L1∩L2 = {0},
so that (L1, L2) is a splitting of Rd with dimL1 = k. With Remark 21 (ii)
follows.

(ii) ⇒ (i). Suppose that (L1, L2) is a splitting of Rd with dimL1 = k, such that
the γ-shifted system (5) has a dichotomy on (L1, L2) with uniformity dimensions
(j1, j2). By Remark 21, there is α > 0, such that D1(γ − α,U) holds uniformly
for all U ∈ Gj1(L1) and D2(γ + α,U) holds uniformly for all U ∈ Gj2 (L2) for
some α > 0. Propositions 15(a) and 16(a) prove that γ ∈

(
βk,j1k

, β
k,j2k

)
.

Lemma 25 (Dichotomy resolvent). Let J :=
(
(j10, j20), . . . , (j1d, j2d)

)
∈ (N ×

N)d+1 be admissible uniformity dimensions (in the sense of Definition 19). Then

ρJ (A) =
(
−∞, β

0,j20

)
∪

(
β1,j11 , β1,j21

)
∪ · · · ∪

(
β(d−1),j1(d−1)

, β
(d−1),j2(d−1)

)
∪

(
βd,j1d

,∞
)

and the union is ordered with

− ln ‖A−1‖∞ ≤ β
k,j2k

≤ βk+1,j1(k+1)
≤ ln ‖A‖∞, k ∈ {0, . . . , d− 1}.

Proof. From Lemma 24 we obtain

ρJ(A) =

d⋃

k=0

(
βk,j1k

, β
k,j2k

)
.

The equality follows from Remark 23. We show for k ∈ {0, . . . , d − 1} that
β
k,j2k

≤ βk+1,j1(k+1)
, i.e.

sup
L∈Gd−k(Rd)

inf
U∈Gj2k

(L)
β(U) ≤ inf

L∈Gk+1(Rd)
sup

U∈Gj1(k+1)
(L)

β(U).

To this end, let L ∈ Gd−k(R
d), L̃ ∈ Gk+1(R

d). Since dimL = d−k, dim L̃ = k+1,

there is x0 ∈ L ∩ L̃ with x0 6= 0. Since j2k, j1(k+1) > 0 by admissibility, there is

V ∈ Gj2k (L), Ṽ ∈ Gj1(k+1)
(L̃) with x0 ∈ V ∩ Ṽ . Thus by Remark 14,

inf
U∈Gj2k

(L)
β(U) ≤ β(V ) ≤ β(span{x0}) ≤ β(span{x0}) ≤ β(Ṽ ) ≤ sup

U∈Gj1(k+1)
(L̃)

β(U).

We are now in a position to formulate our first main result on the dichotomy
spectrum which generalizes Theorem 7 and provides a spectral flag or spectral
filtration of dynamically characterized subspaces which are also related to the
formulas for the spectrum given in our second main result Theorem 27 below.
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Theorem 26 (Spectral theorem). Let J ∈ (N × N)d+1 be admissible. The
dichotomy spectrum ΣJ (A) is the nonempty union of at most d compact intervals

ΣJ(A) = [a1, b1] ∪ · · · ∪ [aℓ, bℓ],

where a1 ≤ b1 < a2 ≤ b2 < · · · < aℓ ≤ bℓ and ℓ ∈ {1, . . . , d}. Setting b0 := −∞
and aℓ+1 := ∞, there exists a spectral filtration

{0} = M0 ( M1 ( · · · ( Mℓ = Rd,

of subspaces Mk ⊆ Rd, k ∈ {0, . . . , ℓ} with

Mk =
{
x0 ∈ Rd | lim

n→∞
e−γnx(n, x0) = 0

}
, γ ∈ (bk, ak+1).

For two-sided time T = Z, there exists a spectral decomposition

Rd = W1 ⊕ · · · ⊕Wℓ

into subspaces Wk ⊆ Rd, with

Wk =
{
x0 ∈ Rd | lim

n→−∞
e−γ1nx(n, x0) = lim

n→∞
e−γ2nx(n, x0) = 0

}
,

where γ1 ∈ (ak−1, bk), γ2 ∈ (bk, ak+1) and k ∈ {1, . . . , ℓ}.

Proof. We define k0 := 0 and iteratively if ki is defined, we define ki+1 :=
inf{n ∈ {ki+1, . . . , d} : (βn,j1n

, β
n,j2n

) 6= ∅}, i ∈ N. We define ℓ ∈ {1, . . . , d} as

the maximal number, such that kℓ 6= ∞. Then kℓ = d and we set

ai := β
ki−1,j2ki−1

, i ∈ {1, . . . , ℓ+ 1} and bi := βki,j1ki
, i ∈ {0, . . . , ℓ}.

By Lemma 25, we obtain a1 ≤ b1 < a2 ≤ b2 < · · · < aℓ ≤ bℓ and

ΣJ(A) = [a1, b1] ∪ · · · ∪ [aℓ, bℓ].

From Proposition 12 and Lemma 24, we obtain that the spaceMk, k ∈ {0, . . . , ℓ},
is well-defined. Now suppose T = Z. Then by Proposition 12 and Lemma 24
the space

Nk :=
{
x0 ∈ Rd : lim

n→−∞
e−γnx(n, x0) = 0

}
, γ ∈ (bk, ak+1),

is well-defined for k ∈ {0, . . . , ℓ}, so that Wk = Mk ∩ Nk−1 for k ∈ {1, . . . , ℓ}.
We now show the spectral decomposition. To show that the sum is direct, let
ℓ, j ∈ {1, . . . , d} with ℓ < j and let x0 ∈ (Mℓ ∩ Nℓ−1) ∩ (Mj ∩ Nj−1). Since
Mℓ ⊆ Mj−1, we have x0 ∈ Mj−1 ∩Nj−1 = {0} by Proposition 10, proving that
x0 = 0. We show inductively that

(a) M1 = M1 ∩N0.
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(b) If k > 1 and Mk−1 =
k−1⊕

j=1

Mj ∩Nj−1 for k ∈ {1, . . . , d},

then Mk =

k⊕

j=1

Mj ∩Nj−1.

Part (a) follows, since N0 = Rd. To show part (b), suppose that k > 1 and

Mk−1 =
⊕k−1

j=1 Mj∩Nj−1. That
⊕k

j=1 Mj∩Nj−1 ⊆ Mk, follows from Mj ⊆ Mk

for j ∈ {1, . . . , k}. Now suppose that x0 ∈ Mk. Let x0 = x1 + x2, with
x1 ∈ Mk−1 and x2 ∈ Nk−1. Since x0 − x1 ∈ Mk, we have x2 = x0 − x1 ∈

Mk ∩ Nk−1. By assumption also x1 ∈ Mk−1 =
⊕k−1

j=1 Mj ∩ Nj−1, so that

x0 = x1 + x2 ∈
⊕k

j=1 Mj ∩ Nj−1, indeed. The theorem now follows, since

Mℓ = Rd.

The proof of Theorem 26 yields explicit formulas for the boundary points of the
spectral intervals.

Theorem 27 (Formula for the dichotomy spectrum). Let J ∈ (N × N)d+1 be
admissible. Let ki := dimMi denote the dimension of the spectral flag sub-
spaces Mi, i ∈ {0, . . . , ℓ}, of Theorem 26. The following formula holds for the
dichotomy spectrum ΣJ(A) = [a1, b1] ∪ · · · ∪ [aℓ, bℓ] of system (1).

ai = β
ki−1,j2ki−1

and bi = βki,j1ki
, i ∈ {1, . . . , ℓ}.

Remark 28 (Formulas for the Bohl and exponential dichotomy spectrum).
Using the notation of Theorem 27, we obtain the following formulas for the
boundary points of the Bohl dichotomy spectrum and the exponential dichotomy
spectrum (cf. Remark 20).

(a) The boundary points of the Bohl dichotomy spectrum are

ai = β
ki−1,1

and bi = βki,1, i ∈ {1, . . . , ℓ}.

(b) The boundary points of the exponential dichotomy spectrum are

ai = β
ki−1,d−ki−1

and bi = βki,d−ki
, i ∈ {1, . . . , ℓ}.

In case system (1) has a dichotomy then the limiting Bohl exponents of Defini-
tion 22 can also be expressed in terms of the splitting of the dichotomy.

Corollary 29 (Limiting Bohl exponents in case of dichotomy). If system (1)
has a dichotomy on (L1, L2) with uniformity dimensions (j1, j2) then

βk,j1
= sup

U∈Gj1 (L1)

β(U) (7)

where k = dimL1, and if T = Z, then

β
k,j2

= inf
U∈Gj2 (L2)

β(U). (8)
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Proof. The first part follows readily from Lemma 24 and we only proof formula
(7). Suppose that system (1) has a dichotomy with splitting (L1, L2) uniform
on subspaces of dimensions j1 and j2. Let α > 0 with −α ∈ (βk,j1

, 0), so
that D1(−α,U) holds uniformly for all U ∈ Gj1 (L1) by Proposition 15(b). Let
k := dimL1. If k = 0, then j1 = 0 and (7) is satisfied (cf. Remark 14). Let
k > 0. Suppose that L′

1 ∈ Gk(R
d) with

sup
U ′∈Gj1(L

′

1)

β(U ′) ≤ sup
U∈Gj1 (L1)

β(U). (9)

It holds that β(U) ≤ −α for all U ∈ Gj1(L1) (cf. Proposition 15(a) with V :=
{L1} and U(L1) := Gj1(L1)). By the inequality (9), also β(U ′) ≤ −α for all
U ′ ∈ Gj1 (L

′
1). By Proposition 15(b), we conclude that D1(−α/2, U ′) holds for

all U ′ ∈ Gj1(L
′
1), so that

lim
n→∞

x(n, x0) = 0, x0 ∈ L′
1.

This implies that L′
1 ⊆ L1 by Proposition 12. But since dimL1 = dimL′

1, also
L1 = L′

1. We conclude that for all L′
1 ∈ Gk(R

d), we have

sup
U ′∈Gj1(L

′

1)

β(U ′) ≥ sup
U∈Gj1 (L1)

β(U).

Taking the infimum over all L′
1 ∈ Gk(R

d) yields formula (7).

Remark 30 (Open problem). It is not clear to the authors, if (8) holds for all
L2, complementary to L1 in the case T = N.

5 Maximal subspaces of uniformity

In this section we introduce maximality of the uniformity dimensions of a di-
chotomous system in Theorem 31 and discuss its dependence on the dichotomy
splitting in Theorems 33 and 34. An open problem and a conjecture are formu-
lated in Remark 35.

Theorem 31 (Maximal uniformity dimensions). If system (1) has a dichotomy
on (L1, L2) there exist u1 ∈ {0, . . . , dimL1} and u2 ∈ {0, . . . , dimL2} such that

(a) system (1) has a dichotomy on (L1, L2) with uniformity dimensions (u1, u2),

(b) if (1) has a dichotomy on (L1, L2) with uniformity dimensions (ℓ1, ℓ2) then

ℓ1 ∈ {0, . . . , u1} and ℓ2 ∈ {0, . . . , u2}.

(u1, u2) are called maximal uniformity dimensions.

In case system (1) has a dichotomy on (L1, L2) then by Proposition 12 the
space L1 is unique and hence the maximal uniformity dimension u1 does not
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depend on L1. If T = Z, the space L2 is unique and in this case the maximal
uniformity dimension u2 does not depend on L2. We provide a partial answer to
the question how u2 does depend on L2 in Theorem 34 and formulate an open
problem in Remark 35. As preparatory results we prove the following Lemma
and Theorem 33.

Lemma 32 (Dichotomy estimate follows from uniform estimate at later time).
Let γ ∈ R, U ∈ G(Rd), C > 0 and m0 ∈ N with

‖x(n, x0)‖ ≥ Ceγ(n−m)‖x(m,x0)‖, m, n ∈ N, n ≥ m ≥ m0, x0 ∈ U. (10)

Then D2(γ, U) holds uniformly.

Proof. If m0 = 0, then the statement of Lemma 32 is clear. Suppose that
m0 ≥ 1. By induction, it suffices to show that

‖x(n, x0)‖ ≥ C′eγ(n−m0+1)‖x(m0 − 1, x0)‖, n ∈ N, n ≥ m0 − 1, x0 ∈ U
(11)

holds for some C′ > 0. Let us denote

a = max
{
‖A‖∞, ‖A−1‖∞

}
.

Considering (10) for n set to n+ 1 and for m set to m0, we get

‖x(n+ 1, x0)‖ ≥ Ceγ(n−m0+1)‖x(m0, x0)‖, m, n ∈ N, n ≥ m0 − 1, x0 ∈ U

and consequently

‖A−1(m0)‖ · ‖x(n+ 1, x0)‖ ≥ Ceγ(n−m0+1)‖A−1(m0)‖ · ‖x(m0, x0)‖.

Noting that

‖A−1(m0)‖‖x(n+ 1, x0)‖ ≤ a‖x(n+ 1, x0)‖

= a‖A(n)x(n, x0)‖

≤ a2‖x(n, x0)‖

and

‖A−1(m0)‖‖x(m0, x0)‖ ≥ ‖A−1(m0)x(m0, x0)‖ = ‖x(m0 − 1, x0)‖,

we obtain
a2‖x(n, x0)‖ ≥ Ceγ(n−m0+1)‖x(m0 − 1, x0)‖.

This proves inequality (10) with C′ = C/a2.

Theorem 33 (Independence of maximal uniformity dimensions of splitting).
Suppose that T = N. Let (L1, L2) and (L1, L

′
2) be splittings of Rd. Suppose that

System (1) has a dichotomy on (L1, L2) with maximal uniformity dimensions
(u1, u2) and on (L1, L

′
2) and with maximal uniformity dimensions (u′

1, u
′
2). Then

u1 = u′
1. (12)

If additionally for each V ′ ∈ Gu2(L
′
2), we have dimV ′

L1
≤ u1, then

u2 ≤ u′
2. (13)
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Proof. The equality (12) is clear. Let α > 0 be such that D1(−α,U) holds
uniformly for all U ∈ Gj1(L1) and D2(α,U) holds uniformly for all U ∈ Gj2 (L2)
for all j1 ∈ {0, ..., u1} and j2 ∈ {0, ..., u2}. Let V ′ ∈ Gu2(L

′
2). To prove the

inequality (13), it suffices to show that the estimate D2(α, V
′) holds uniformly.

Since dim πL1 [V
′] ≤ u1 and dimπL2 [V

′] ≤ dimV ′ = u2, there exist constants
C1, C2 > 0 such that

‖x(n, x0)‖ ≤ C1e
−α(n−m)‖x(m,x0)‖, m, n ∈ N, n ≥ m, x0 ∈ πL1 [V

′] (14)

and

‖x(n, x0)‖ ≥ C2e
α(n−m)‖x(m,x0)‖, m, n ∈ N, n ≥ m, x0 ∈ πL2 [V

′]. (15)

Let K > 0 be such that

C1 ≤ K and C2 ≥ K−1.

Then (14) and (15) imply that

‖x(n, x0)‖ ≤ Ke−α(n−m)‖x(m,x0)‖, m, n ∈ N, n ≥ m, x0 ∈ πL1 [V
′] (16)

and

‖x(n, x0)‖ ≥ K−1eα(n−m)‖x(m,x0)‖, m, n ∈ N, n ≥ m, x0 ∈ πL2 [V
′].
(17)

Consider v′ ∈ V ′ with ‖v′‖ = 1 and note that v′ 6= 0 implies πL2v
′ 6= 0. We

have
‖x(n, v′)‖ ≥ ‖x(n, πL2v

′‖ − ‖x(n, πL1v
′)‖, n ∈ N

and by applying (16) and (17), we get

‖x(n, v′)‖ ≥ K−1eα(n−m)‖x(m,πL2v
′)‖ −Ke−α(n−m)‖x(m,πL1v

′)‖

≥ K−1eα(n−m)‖x(m,πL2v
′)‖ −Keα(n−m)‖x(m,πL1v

′)‖

= eα(n−m)(K−1‖x(m,πL2v
′)‖ −K‖x(m,πL1v

′)‖),

eα(n−m)(K−1 −K
‖x(m,πL1v

′)‖

‖x(m,πL2v
′)‖

)‖x(m,πL2v
′)‖, m, n ∈ N, n ≥ m.

Taking in (14) x0 = πL1v
′ and m = 0, and in (15) x0 = πL2v

′ and m = 0, we
get

‖x(k, πL1v
′)‖

‖x(k, πL2v
′)‖

≤
K2

e2αk
‖πL1v

′‖

‖πL2v
′‖
, k ∈ N (18)

and therefore

‖x(n, v′)‖ ≥ eα(n−m)

(
K−1−

K3

e2αm
‖πL1v

′‖

‖πL2v
′‖

)
‖x(m,πL2v

′)‖, m, n ∈ N, n ≥ m.

(19)
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The function v′ 7→
‖πL1v

′‖

‖πL2v
′‖ defined on the compact set {v′ ∈ V : ‖v′‖ = 1} is

continuous and therefore attains its maximum value. Hence

C′ := max

{
‖πL1v

′‖

‖πL2v
′‖

: v′ ∈ V, ‖v′‖ = 1

}
∈ [0,∞),

is well-defined. The inequality (19) then implies that

‖x(n, v′)‖ ≥ eα(n−m)(K−1 −
K3

e2αm
C′)‖x(m,πL2v

′)‖, m, n ∈ N, n ≥ m.

Consider m0 ∈ N such that

K−1 −
K3

e2αm0
C′ > 0,

for all m ≥ m0. Define

C′′ := K−1 −
K3

e2αm0
C′.

We get

‖x(n, v′)‖ ≥ eα(n−m)C′′‖x(m,πL2v
′)‖, m, n ∈ N, n ≥ m ≥ m0, (20)

since

K−1 −
K3

e2αm
C′ ≥ C′′

for m ≥ m0. Note that by (18), we have

‖x(k, v′)‖ ≤ ‖x(k, πL2v
′‖+ ‖x(k, πL1v

′)‖

≤ ‖x(k, πL2v
′‖+

K2

e2αk
C′‖x(k, πL2v

′)‖

= (1 +
K2

e2αk
C′)‖x(k, πL2v

′)‖

≤ (1 +K2C′)‖x(k, πL2v
′)‖, k ∈ N

and therefore

‖x(m, y(v′))‖ ≥ (1 +K2C′)−1‖x(m, v′)‖, m ∈ N. (21)

From the inequalities (20) and (21), we get

‖x(n, v′)‖ ≥ eα(n−m)C′′(1 +K2C′)−1‖x(m, v′)‖, m, n ∈ N, n ≥ m ≥ m0.

The statement now follows from Lemma 32.

Theorem 34 (Maximal uniformity dimensions for one-sided time). Suppose
that T = N. Let (L1, L2) be a splitting of Rd. Suppose that System (1) has a
dichotomy on (L1, L2) with maximal uniformity dimensions (u1, u2). Denote by
(u1, u

⊥
2 ) the maximal uniformity dimensions of system (1) with respect to the

splitting (L1, L
⊥
1 ). Then it holds that u2 ≤ u⊥

2 .
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Proof. This follows from Theorem 33, noting that for each V ′ ∈ Gu2(L
⊥
1 ), we

have dimVL1 [V
′] = 0 ≤ u1

In the following remark we list those cases in which Theorem 33 yields a unique
maximal uniformity dimension of a dichotomy, i.e. independent of the split-
ting, and we formulate a conjecture on the general dependence of the maximal
uniformity dimensions on the subspace L2 which is complementary to L1.

Remark 35 (Dependence of maximal uniformity dimensions on splitting for
one-sided time). Suppose that system (1) with T = N has a dichotomy on a
splitting (L1, L2).

(a) The maximal uniformity dimensions do not depend on L2 in case dimL1 = 1
or dimL1 = d− 1.

(b) Conjecture: There exists A : N → GL(Rd) such that the maximal uniformity
dimension u2 depends on the choice of L2.
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