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Abstract: The search for environmental data typically involves lexical approaches, where query terms
are matched with metadata records based on measures of term frequency. In contrast, dense retrieval
approaches employ language models to comprehend the context and meaning of a query and provide
relevant search results. However, for environmental data, this has not been researched and there are
no corpora or evaluation datasets to fine-tune the models. This study demonstrates the adaptation
of dense retrievers to the domain of climate-related scientific geodata. Four corpora containing text
passages from various sources were used to train different dense retrievers. The domain-adapted dense
retrievers are integrated into the search architecture of a standard metadata catalogue. To improve the
search results further, we propose a spatial re-ranking stage after the initial retrieval phase to refine the
results. The evaluation demonstrates superior performance compared to the baseline model commonly
used in metadata catalogues (BM25). No clear trends in performance were discovered when comparing
the results of the dense retrievers. Therefore, further investigation aspects are identified to finally enable
a recommendation of the most suitable corpus composition.

Keywords: IR; information retrieval; GeoAI; SDI

1. Introduction

Information retrieval (IR) in spatial data infrastructures (SDIs) is commonly handled
by metadata catalogues. These catalogue services provide a search interface in the frontend
and are connected to a database and an inverted search index in the backend. Traditional
IR approaches in geospatial metadata data catalogues commonly rely on keyword-based
(lexical) search approaches using bag-of-words (BOW) retrieval models [1] (e.g., BM25 [2]).
Therefore, the search terms of a query (i.e., keywords) are compared to the terms contained
in different fields of the metadata records (e.g., title, keywords, abstract). This approach
has certain benefits:

(1) It is set up quickly: BM25 is already implemented in established Lucene-based search
indexes such as ElasticSearch [3] or Apache SOLR [4].

(2) It is performant and efficient: efficiency tests by [5] showed that BM25 outperforms
other retrieval methods in terms of retrieval latency and the required index size.

However, a lexical search suffers from several limitations, such as the vocabulary
mismatch problem [6], wherein queries containing synonyms, homonyms, acronyms,
or misspelled terms fail to retrieve relevant metadata records. For instance, if a user enters
the search term “precipitation data”, only records that contain the word “precipitation” will
be retrieved. Metadata records containing synonyms of “precipitation” such as “rain” or
“rainfall” will not be retrieved unless a synonym register or ontology is configured to match
these terms. The need for an effective geospatial data search becomes even more critical in
domains like climate adaptation, where the responsible policymakers may not be familiar
with the domain-specific terminology used in the metadata descriptions of research data
and still need to retrieve the data or information effectively.
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In the context of geospatial metadata catalogues, methodologies of Semantic Web and
Linked (Open) Data (e.g., ontologies, knowledge graphs) have been commonly used to
minimise the potential lexical gap between queries and the retrieved metadata records [7–9].
However, widely used metadata catalogues such as GeoNetwork [10] or CKAN [11] do
not offer an out-of-the-box integration of ontologies or knowledge graphs. Therefore, both
the integration and the required curation of ontologies result in additional efforts.

Another drawback of lexical retrieval in the context of geospatial metadata retrieval
is the dependence on accurate and complete metadata [12]. Although the geospatial
community has put a lot of effort in standardisation (c.f. [13,14]) and increasing metadata
quality [15], presenting consistent and complete metadata in publicly available metadata
catalogues is still an issue [16,17].

Aside from a lexical search, IR approaches that use dense retrieval models, and, in par-
ticular, transformer models such as BERT-based models [18], have become increasingly pop-
ular [5]. Pre-trained language models are used to obtain a meaningful semantic and contex-
tual representation of queries and documents. The models generate dense vectors—i.e., nu-
merical representation of a text’s semantics (commonly called embeddings)—for queries
and documents that are used to rank retrieved documents with a similarity score [19]. This
IR approach is referred to as a neural search [20]. In contrast to BOW approaches, the order
and context of each word is taken into consideration. Further, synonyms, abbreviations,
and misspelled words can be automatically handled to a certain extent. However, this
requires that the language model has been trained on a corpus that includes these terms and
their particular semantic context and use in the domain. In the past few years, a substantial
number of models have been published that are pre-trained on general or on various
domain-specific corpora (e.g., SciBERT for understanding scientific texts [21] or SpaBERT
for geo-entity representation [22]). To the best of our knowledge, no models exist that are
trained to support geospatial metadata retrieval.

Such domain adaption is usually relatively costly and therefore not always effective.
However, recent works such as [23,24] have made domain adaptation more feasible by
demonstrating that it is possible to achieve superior performance without the need for a
labelled corpus. In this context, “labelling” means the assignment of ranking or similarity
scores between queries and the documents within the corpus, which requires considerable
effort when creating a new corpus. This addresses the need for more self-supervised train-
ing methods in the domain of GeoAI (geospatial artificial intelligence) to enhance scalability
and reduce the reliance on labelled data. This requirement was already mentioned in 2019
in the work of [25], which provides an overview of progress and future research directions
in the field of GeoAI. Recent studies, such as [26,27], demonstrate that this requirement
continues to be relevant.

The methodology proposed in the following sections demonstrates the design of
an unlabelled corpus required for the domain adaption of a pre-trained BERT model for
geospatial metadata retrieval with a special focus on climate-related data. The retrieval
model is fine-tuned with various corpus compositions to compare and assess the best
performing corpus configuration. The resulting fine-tuned retrieval models are primarily
optimised to retrieve thematically relevant records. For environmental datasets, retrieving
spatially relevant data is crucial, as users often search for datasets of specific geographic
areas. To address this requirement, this study proposes a method for re-ranking the
results obtained from the retrieval models fine-tuned with the aforementioned corpora.
A prototypical implementation of a neural search in a metadata catalogue demonstrates
context-aware search’s feasibility and advantages.

2. Related Work

Several prior studies have addressed the improvement of IR in the context of geodata
catalogues with diverse solutions. Works by Lacasta et al. [28,29] have addressed an often
occurring mismatch between the users’ query demands and the returned metadata records.
Specifically, ref. [29] describes that retrieved datasets often do not entirely cover the area of
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interest that is requested by the user. To improve this, a method is proposed to semantically
cluster metadata records and then return these aggregated results. Ref. [30] introduced a
method to measure the similarity of geospatial metadata records with neural networks that
could be combined with the approach proposed by [29].

Many prior studies have highlighted the importance of semantic-based retrieval ap-
proaches using, for example, knowledge bases or ontologies [31–34]. Domain ontologies
provide relevant concepts and definitions. Therewith, they support the harmonisation
of keywords contained in metadata records as well as the query formulation and query
refinement based on the hierarchical structure of the concepts [31]. For instance, queries
can be extended by terms that are semantically similar according to the domain vocab-
ulary (query expansion) [35], or terms with multiple meanings can be resolved (termed
disambiguation resolution) [32]. Linking metadata records to concepts of an ontology
or knowledge graph allows for a more effective search. Therewith, all records that are
semantically similar to the query can be fetched and a higher recall can be expected [8,34].
Additionally to thematic query expansion, it is also feasible to extend the query terms with
spatially explicit context, as proposed by [36]. However, the semantic-based approaches
also have some disadvantages. The authors of [32] noted the constant need to update
ontologies as the domain evolves and the concepts alter. Ref. [37] developed a custom
ontology for geospatial data and identified additional challenges related to ontologies, such
as the absence of metrics to evaluate their quality, completeness, or accuracy, as well as
difficulties in integrating custom ontologies with pre-existing ones.

These limitations of traditional semantic-based approaches and the ability of dense
retrieval approaches to match queries and documents based on their semantic context
motivated a dense retrieval approach. In this context, there are previous works that demon-
strated the fine-tuning of models for scientific information retrieval. For instance, ref. [38]
introduced a semantic search for COVID-19-related publications. Their proposed search
engine used a hybrid approach, combining a dense retriever (SBERT model [39]) and two
sparse retrievers (TF-IDF and BM25) to first generate document embeddings (context-aware
vector representations) and subsequently index these. During inference, query embeddings
were produced using all three models. These embeddings were then employed to iden-
tify the most proximate document embeddings to the query embeddings by computing
retrieval scores. These scores were combined to create a ranked candidate list. Finally,
the retrieved documents were parsed into a question-answering model. Ref. [40] demon-
strated a novel approach to enhance BERT-based dense retrievers by incorporating spatial
context awareness. The proposed method considers the potential geographic distances
between spatial entities (e.g., location names) contained in queries and documents. This
spatial context heuristic is applied during fine-tuning on a subset of the well-established
MS-MARCO benchmark dataset [41]. The authors identify documents that semantically
match the query but include spatial entities that are distant from the ones in the query.
These documents are considered hard-negative training samples. Hard-negative samples
are negative examples that closely resemble the True positive results. These samples are
particularly challenging for the model because they are similar to the correct answers,
making it difficult to distinguish them from the actual positive cases. The resulting models
are then considered to have acquired spatially explicit knowledge, enabling spatial ranking
without relying on external sources such as gazetteers. Such models can then be effectively
employed for question-answering tasks that include geographic aspects (i.e., questions
about places).

Parts of the aforementioned dense retrieval approaches can be incorporated into the
method proposed in this paper. However, the method of [38] is optimised for question-like
queries and the retrieved documents are scientific publications. The spatial ranking intro-
duced by [40] offers an innovative alternative to traditional spatial filtering methods, which
typically rely on the spatial extent (bounding box) specified in metadata records. However,
such an approach has limitations when it comes to geographic entities (i.e., regions or place
names) that are under-represented in the training dataset. Achieving spatial ranking in
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dataset retrieval necessitates a model that can effectively encode the spatial context of each
location entity within queries and metadata records, regardless of whether the entities
occur in the training data (zero-shot learning). Other recent advancements, such as the
spatially aware encoding model introduced by [36] (which utilises a subset of DBPedia with
a spatial extent limited to the U.S.), or GeoBERT by [42] (a BERT-based model that learns
point-of-interest representations from Chinese city data) may encounter similar constraints.
The necessity of developing models that are capable of generalising effectively across
diverse geographical contexts was identified as a key challenge for the field of GeoAI re-
search [25]. The review paper from [43] discusses several location encoding techniques that
are applicable in the context of GeoAI applications. However, these methods require input
features with geometries, such as points, polylines, or raster data. In metadata catalogues,
these geometries might be present in the metadata as spatial extents (bounding boxes),
but the queries of full-text searches include only textual features such as place names.
Therefore, the location encoding methods are not suitable for ad hoc metadata retrieval.
Instead, we propose applying traditional techniques for incorporating the spatial context of
the queries, such as named entity recognition (NER) and geocoding such as that proposed
by [44], and ranking results based on the geocoded entities in the query and the bounding
boxes present in the metadata records. This study recommends a two-stage process: an
initial retrieval stage using the models described in the following sections, without spatial
ranking, followed by a spatial re-ranking stage employing the aforementioned method.
This approach allows for a more nuanced and accurate integration of spatial information in
the search process.

3. Materials Methods

The following section describes the steps to create a domain-adapted model for spatial
metadata IR. Specifically, the steps include the design of the corpora and the refinement of
the model using a training algorithm along with the corresponding corpora. The spatial re-
ranking process mentioned earlier is also briefly described. A prototype demonstrating the
integration of the model into a realistic metadata catalogue setup utilising a CKAN catalogue
is presented. Finally, methods for evaluating the presented IR system are elaborated upon.

3.1. Domain Adaptation
3.1.1. Corpus Design

The domain adaptation of a dense retrieval model requires a corpus consisting of
passages that are representative of the target domain. As mentioned, ref. [23] introduced
a powerful method called GPL (Generative Pseudo Labelling), which does not require
a labelled corpus. GPL was used for domain adaptation in this study. Therefore, 33,314
text passages considered relevant for the geospatial and climate-related data search were
collected. The passages include an average of 202 words per passage (total number of words
included in the collection: 6,715,384). The passages originate from the following sources:

(I) Dataset descriptions from openly accessible metadata catalogues, namely the EEA
geospatial data catalogue [45], United Nations FAO Map Catalogue [46], Copernicus Data
Store [47], and Data portal of the European Commission [48] (10573 metadata records).

(II) Ontology concepts from the General Multilingual Environmental Thesaurus (GEMET) [49].
A subset of 187 concept definitions were selected. Concepts related to the GEMET
themes “climate” [50] and “natural dynamics” [51] as well as concepts assigned to the
GEMET group “ATMOSPHERE (air, climate)” [52] were used for this study.

(III) Scientific literature from open access Copernicus journals [53] and scientific textbooks
(passages from two basic literature sources were parsed: [54,55]). Thematically rel-
evant journals (a selection of relevant Copernicus journals: Atmospheric Chemistry
and Physics (ACP), Atmospheric Measurement Techniques (AMT), Advances in Statistical
Climatology, Meteorology and Oceanography (ASCMO), Earth System Dynamics (ESD),
Hydrology and Earth System Sciences (HESS), and Natural Hazards and Earth System
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Sciences (NHESS)) have been selected from the existing Copernicus publications and
all available online abstracts were downloaded (21.618 abstracts and 2 textbooks).

One goal of this study was to explore how various domain-specific text sources influ-
ence the effectiveness of the retrieval. Specifically, the aim was to compare the performance
of the retrieval model when fine-tuned with a single domain-specific text type (e.g., only
dataset descriptions) or if and how the results improved when a more diverse domain-
specific corpus was utilised (e.g., dataset descriptions and ontology concepts).

Table 1 shows how the passage collection was used to compose different corpora.
Corpus-(1a) only included dataset descriptions. This represents the knowledge a conven-
tional search is based on. Corpus-(1b) combined the dataset descriptions with GEMET
concepts and their respective definitions. The aim was to incorporate more domain-specific
comprehension into the model. The third corpus (2) included only the scientific literature.
This corpus is intended to test whether the literature is sufficient for a domain adaptation,
although the structure of these text passages differs from the target passages of the search
in metadata catalogues. The last corpus (3) combines all the previous passages. This is to
check whether a model trained with a more extensive and heterogeneous corpus performs
significantly better.

Table 1. Different corpus compositions used for the domain adaptation of four dense retrievers.

Corpus Compositions Contents Number of Text
Passages

Average Number of
Words per Passage Number of Words

(1a) Dataset descriptions 10,573 92 975,659

(1b) Dataset descriptions +
ontology concepts 10,760 96 1,038,174

(2) The scientific literature 22,137 255 5,645,063

(3) = (1b) + (2)
The scientific literature
+ dataset descriptions +

ontology concepts
33,314 202 6,715,384

3.1.2. Training Method

The unsupervised domain adaptation method GPL [23] was used for the domain
adaptation of the retrievers. GPL uses a text corpus and generates synthetic queries,
tailored to the contents of the corpus, using a docT5query text generation model [56]. These
queries are then utilised by the training algorithm to form training samples, comprising
query-positive and query-negative pairs. A cross-encoder model (“ms-marco-MiniLM-L-6-
v2”) [57] fine-tuned on passage retrieval is then used to generate similarity scores (labels)
for all query–document pairs. Thereafter, the pre-trained (not domain-adapted) model is
fine-tuned using these training pairs with the generated labels employing MarginMSE [58]
as the loss function. In this study, the pre-trained model DistilBERT-base (“distilbert-base-
uncased”, introduced by [59]) is used. The reason for choosing this model is that it retains
most of the capabilities of the original BERT-base model ([18]) while being faster and more
lightweight. It is well suited for use as a retriever in a neural search, offering efficient
performance even with limited computing resources (e.g., without GPU acceleration),
or in large-scale catalogue applications involving large volumes of metadata records. The
queries generated by docT5query are formulated like questions. However, the queries in
the target system (metadata catalogue) are expected to be based on listed search terms.
Therefore, keyword-based queries were generated instead of using the docT5query model.
A BERT-based keyword extraction method called KeyBERT [60] was used to generate
queries. The remaining GPL algorithm was applied as introduced in the original paper [24]
including the proposed model checkpoints and hyper-parameters (1 epoch, with 140 k
training steps and a batch size of 32). Finally, the fine-tuning of the corpora described above
resulted in four domain-adapted checkpoints of DistilBERT-base.
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For the domain adaptation, the models were fine-tuned on the High-Performance
Computing (HPC) cluster of the TU Dresden using AMD “Rome” Processors (AMD EPYC
CPU 7352) with NVIDIA A100-SXM4 Tensor Core-GPUs. The training jobs took around
10–12 h depending on the corpus size and the respective computing load and capacity of
the HPC cluster.

Analogous to the corpus names (see Table 1), the domain-adapted models are named
after the respective corpus with which the model was fine-tuned: corpus-1a, corpus-1b,
corpus-2, and corpus-3.

3.2. Spatial Re-Ranking Method

While dense retrieval models are primarily fine-tuned for thematic relevance, they do
not inherently consider spatial aspects. This limitation becomes apparent when dealing
with environmental datasets where geographical relevance is crucial. To address this issue,
we propose an extension of the dense retrieval approach through a subsequent spatial
re-ranking stage.

For spatial ranking, we assume that the records stored in the environmental metadata
catalogue include a spatial extent property in the form of a bounding box. The following
workflow was then applied in the experiments described in Section 4.2.

(1) Spatial context parsing: A geocoding service was developed to parse the spatial
context from the query. The service uses the following:

(a) A BERT model fine-tuned on named entity recognition [61] to extract location
entities from a query (e.g., “Berlin” from the query “climate data berlin”).

(b) An open-source geocoding service [62] to generate a query bounding box
(e.g., “[13.088345, 52.3382448, 13.7611609, 52.6755087]” for “Berlin”).

(2) Calculating a spatial similarity metric: To calculate the spatial similarity metric be-
tween the query bounding box and the bounding boxes of candidates retrieved by
the dense retriever, the Hausdorff distance is an appropriate measure, as proposed
by [28,63]. The Hausdorff distance takes into account both the size and position of
the geometries (polygons in this case). Unlike other metrics such as area of overlap,
which can yield a value of zero when there is no overlap between the bounding boxes,
the Hausdorff distance provides a more robust measure for re-ranking as it accounts
for the spatial proximity and geometry even without a direct spatial overlap.

(3) Re-ranking: the final step is to re-rank the results according to the descending Haus-
dorff distances.

One drawback of spatial re-ranking is the risk of promoting results with high spatial
relevance but low thematic relevance, which are initially ranked low. To address this,
it is essential to limit the re-ranking process to a smaller subset of the top-k retrieved
candidates. In our experiments (see Section 4.2), we determined that it was beneficial
to only re-rank the top 30 candidates retrieved by the dense retriever. This threshold is
dataset-dependent. In cases where spatial information is well documented in the dataset
descriptions, a different balance between spatial and thematic relevance may be observed,
which may require adjustments to the threshold.

3.3. Prototype Architecture

After the domain adaptation (see Section 3.1.2), the models can be used for dense
retrieval. Since conventional metadata catalogues only support searches based on BOW
representations, the catalogue’s search and indexing processes must be adapted to facilitate
dense retrieval. Figure 1 illustrates the customised search and indexing workflow. For the
prototype, an established open-source cataloguing solution CKAN (Comprehensive Knowl-
edge Archive Network) was used. CKAN is connected to the inverted index Apache-SOLR,
which is based on Lucene. By default, BM25 is used for retrieving documents (i.e., metadata
records) from the index. Since using dense retrievers was not supported, the following
configurations and extensions became necessary:
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(1) The SOLR index needed to be configured to store the embeddings produced by the
dense retriever. Therefore, an additional field for storing multidimensional vectors
was added to the SOLR schema.

(2) Also, SOLR does not inherently support the calculation of scores based on embeddings.
There is a plugin available for SOLR (also for ElasticSearch) that supports the score
calculations using the query and document embeddings. This plugin, called SOLR
Vector Scoring Plugin [64], was installed on the SOLR instance.

(3) Moreover, a mechanism was required to generate embeddings for both queries and
documents. For the prototype, a text embedding service was set up using the frame-
work fastAPI [65]. It provides an API that takes text as input and returns embeddings
using the SBERT model.

(4) Finally, a mechanism was required that changes the built-in search method of CKAN
from BM25 to the custom search approach using the dense retriever. For that purpose,
a CKAN extension [66] was developed.

Figure 1. Neural search architecture: (a) indexing stage, (b) retrieval stage (search), and (c) re-ranking
stage. The text embedding service using the SBERT model is used in both stages.

The extensions replace the two built-in stages indexing (a) and retrieval (b) and an
additional re-ranking stage (c) as shown in Figure 1. For every metadata record that is
inserted or updated in the catalogue, a document embedding is generated by passing
a concatenated text passage from the title and description field to the text embedding
service. The respective document embedding is then stored in the SOLR index. Without the
extension, CKAN would only transmit the metadata without the document embedding
into the SOLR index. During retrieval stage (b), the built-in search in CKAN passes the
search terms and optional search parameters to the SOLR index and fetches retrieved
documents ranked by the index. For dense retrieval, it is necessary to generate a query
embedding first and then calculate a ranking score between the query embedding and
the indexed document embeddings. Therefore, the extension sends the query to the text
embedding service, which generates the query embedding. Then, the score (so-called dot-
score) between the query embedding and the stored document embeddings is generated
by calculating the dot-product between the embeddings. Finally, the dot-scores are used
to return the ranked metadata records. By default, the ranking contains all documents.
Thus, a threshold value must be set to only return documents with a reasonable dot-score.
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During the tests of the prototype, a threshold dot-score of 0.6 appeared to be suitable to
retrieve the relevant candidates. However, this value has to be set individually depending
on the use case. Influencing factors can be the number of metadata records and the similarity
of the records. Further, a maximum number of results has to be defined for the case that too
many records are above the threshold. In the prototype, the maximum number of results is
set to 1000.

As described in Section 3.2 and tested in Section 4.2, it is essential to only consider
the top-ranked (thematically relevant) records for spatial re-ranking. The prototype is
configured to include the top 30 hits retrieved by the dense retriever into re-ranking.

To allow us to switch seamlessly between dense retrieval and the standard BM25-based
search, the developed CKAN extension integrates into the default search user interface (see
Figure 2). The main purpose of this feature is for testing purposes.

Figure 2. Selection of the search algorithm used in the prototype: Users can either select from the
dropdown menu or by passing a URL parameter “?algorithm=sbert” or “?algorithm=bm25”. BM25 is
used by default.

3.4. Evaluation Method
3.4.1. Test Collection

Test collections are typically used to assess the effectiveness of an IR system. These
collections consist of benchmark datasets with queries (also called topics) and documents
that have been carefully annotated to determine their relevance to the given queries. The rel-
evant annotations allow the calculation of evaluation metrics such as Precision or Recall.
The existing domain-unspecific test collections are too generic for evaluating models fine-
tuned on the specific task of an environmental data search. On the other hand, there are test
collections for specific domains such as COVID-19-related research [67] or the biomedical
domain [68], but none fitting for environmental data search. Therefore, it became necessary
to create a test collection. A set of 1739 metadata records was harvested from the World
Data Centre for Climate (WDCC) [69] provided by the German Climate Computing Center
(DKRZ). This archive contains metadata records describing meteorological and climate-
related data. In addition to the collected metadata descriptions, test queries were also
needed. The metadata records of WDCC provide keywords. As the IR system was tested
for matching documents with search term-based queries it seemed straightforward to pick
these tags as queries in the test collection. Four keyword pairs, which were frequently used
in the metadata of the WDCC platform, were selected for the test collection:

(1) Q1: “climate simulation”;
(2) Q2: “greenhouse gases”;
(3) Q3: “observation data”;
(4) Q4: “aircraft measurement”.

Finally, the harvested metadata records of the test collection had to be manually
checked for their relevance to the above queries (1–4) and the relevance annotations had
to be stored. These annotations categorise a metadata record either as “relevant” or as
“irrelevant”, with no indication regarding the degree of relevance. These annotations are
essential for the calculations of the evaluation metrics described in the following section.
Although the metadata contained the keyword pairs used for the queries, all records were
double-checked for relevance to ensure that no relevant record had been missed.
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3.4.2. Evaluation Metrics

To evaluate the effectiveness of the presented IR system, the following standard met-
rics were used: Precision (P), Recall (R) and (Mean) Average Precision (MAP/AP). The metrics
Precision and Recall were calculated for different ranking levels k, where k refers to the
number of top results retrieved by the models for a query. For instance, if k is set to 10, the
evaluation considers the top 10 results for each query. However, Precision and Recall do not
take into account the ranking order, whereas the AP value is sensitive to the order of the
results and offers an impression of the ranking quality of an IR system. The metrics are
defined as follows [70–72]:

P =
TP

TP + FP
with Pk as P at rank k (1)

R =
TP

TP + FN
with Rk as R at rank k (2)

where TP, FP, and FN are True Positive, False Positive, and False Negative search results.
Table 2 specifies the meaning of these terms in the context of IR.

Table 2. Confusion matrix for True/False Positive/Negative documents in IR.

Retrieved Not Retrieved

Relevant True Positive (TP) False Negative (FN)
Irrelevant False Positive (FP) True Negative (TN)

The Average Precision (AP) is defined as

APk =
1
n

n

∑
k=1

Pk ∗ relk (3)

with the relevance function:

relk =

{
1 if the item at rank k is a relevant document
0 if the item at rank k is an irrelevant document

(4)

Here, n is the number of all available documents, k is the rank and Pk is the Precision at
rank k. Table 3 illustrates an example where n = 5, document1, document4 and document5
are relevant while the remaining documents are irrelevant:

Table 3. Example calculation of APk.

Rank k 1 2 3 4 5
Relevance of documentk relevant irrelevant irrelevant relevant relevant

relk 1 0 0 1 1
Pk 1/1 1/2 1/3 2/4 3/5

Pk ∗ relk 1 0 0 1/2 3/5
Rk 1/3 1/3 1/3 2/3 3/3

APk 1 1/2 1/3 0.375 0.42

The Mean Average Precision MAPk is defined as the mean of the APk values over all
queries q of the test collection:

MAPk =
1
q

q

∑
i=1

APi,k (5)

While the metrics Precision and Recall only provide insights into the ability to retrieve
relevant documents, AP takes into account the ranking quality, emphasising the importance
of ranking relevant documents higher in the list.



ISPRS Int. J. Geo-Inf. 2024, 13, 380 10 of 18

4. Results and Discussion
4.1. Dense Retrieval

The four domain-adapted dense retrievers (corpus-1a, corpus-1b, corpus-2, and corpus-3)
were evaluated using the metrics defined in the previous chapter. We expect users to be
most interested in search results within the first few result pages. Therefore, only the top
100 (k ≤ 100) retrieved records (i.e., the first five result pages in the CKAN protype) were
considered for the calculation of the evaluation metrics. The results were compared to the
performance of the baseline model BM25 and the initial DistilBERT-base (the model before
domain adaptation).

Comparing the MAP100 values (Table 4 in the right column), as a summarising
evaluation metric considering all queries, the domain-adapted dense retrievers outper-
formed the baseline BM25 model. Further, all retrievers, including BM25, clearly outper-
formed the DistilBERT-base model. This emphasises the need for a domain adaptation of
dense retrievers.

Table 4. AP100 and MAP100 values calculated for all retrievers and queries (the bold values mark the
best performing model for each query).

AP100

MAP100Retrieval Model Q1 Q2 Q3 Q4

Relevant Items 1384 975 285 139

BM25 0.8726 0.8432 0.5760 0.9358 0.8069

DistilBERT-base 0.4216 0.1732 0.2237 0.2440 0.2656

corpus-1a 1 0.9670 0.9491 0.9180 0.9585

corpus-1b 0.9986 0.9603 0.9894 0.7973 0.9364

corpus-2 1 0.9677 0.8066 0.9707 0.9362

corpus-3 1 0.9680 0.7177 0.8917 0.8943

The AP100 values provide a more differentiated basis for the comparison of the four
domain-adapted dense retrievers and their responses to the four test queries. As the
AP100 values in Table 4 document, the domain-adapted dense retrievers showed a better
ranking performance than BM25, except for query Q4 (“aircraft measurement”) where
BM25 performed better than three of the dense retrievers (corpus-1a, corpus-1b, and corpus-3).
Further, one could expect that the dense retriever with the largest corpus (corpus-3: the
corpus composition combining all contents) leads to the best results. This was not verified
by the AP100 values. Corpus-3 showed particularly good results for Q1 and Q2, but here,
all adapted dense retrievers performed very well with only minor differences. For Q3 and
Q4, the corpus-3 dense retriever performed significantly worse than at least one of the
other retrievers. This is a general finding verified by the AP100 values: the domain-adapted
dense retrievers do not necessarily perform better when they are trained on a larger corpus.
There is also no dense retriever that significantly outperforms the others. Each retriever
has at least one query with weaker results:

• For Q3 (“observational data”), the dense retrievers fine-tuned with corpora including
text passages from the scientific literature performed weaker.

• Corpus-1b (containing dataset descriptions and ontology concepts) showed a relatively
weak performance for Q4 (“aircraft measurement”).

A further evaluation regarding the Precision and Recall values revealed a similar trend
(see Figure 3). Please note that as Recall is the ratio of retrieved relevant results to the total
number of relevant documents, the slope of the Recall graphs in Figure 3 depends on the
total number of possible relevant documents for each query. Consequently, the curves of
different queries are not directly comparable. The Recall curves for Q1 and Q2 are less
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steep due to significantly more relevant results than the other two queries. To improve
readability, the y-axis of the Recall graphs was scaled differently for Q1 and Q2.

Figure 3. Comparison of the results of the dense retrievers for each test collection query. The left
graphs show the Precision and the right shows the Recall values for varying top-k levels (5–100).

Due to the black box character of the domain-adapted dense retrievers, it is rela-
tively difficult to uncover possible reasons for weak performances. In our analysis, we
compared the top 50 hits of the best performing retriever with those of the weaker per-
former, specifically focusing on the additional False Positive documents. The identified
False Positive documents were analysed for recognisable semantic patterns or conspicuous
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features that could explain the retrieval errors. Further, the training corpus was analysed
for query–document pairs that might have influenced the retrieval of the False Positives.
However, we could not find robust evidence that could help to explain the differing results
of the retrievers.

One relatively obvious source of error was that some retrievers did not fully com-
prehend the semantics of the provenance of the derived data. Specifically, for query Q3
(“observational data”), some retrievers (in particular corpus-2) could not differentiate
the observational data from the data, which had been derived from the observational
data. In the context of climate data, observational data refers to datasets sourced from at-
mospheric or oceanographic measurements, typically collected by meteorological stations.
These observations can then be used to evaluate or calibrate climate models [73]. Such
provenance linkages to data sources are commonly described in the abstracts of the data
descriptions [74]. Compared to corpus-(1b), corpus-(2) did not provide sufficient knowl-
edge for the retriever to distinguish between observational data and data derived from
observational data.

We also tried to improve the performance of the model by adding specific text pas-
sages. For this purpose, the following experiment was conducted: The dense retriever
based on corpus-(1b) performed weaker than the other dense retrievers at Q4 (“aircraft
measurement”) (see Table 4). Therefore, the corpus-(1b) was extended with a passage,
providing context for the topic “aircraft measurement”. We re-trained the model with the
modified corpus-(1b) to test if an improvement for Q4 could be observed. Contrary to
expectations, the opposite effect occurred, and the retrieval quality decreased. As illustrated
in Figure 4, the retriever with the modified corpus-(1b) shows weaker Precision, especially
for top-k levels below 20 compared to the original corpus-1b retriever. It is noteworthy that
corpora-(2) and -(3) also contained this text passage but performed significantly better for
Q4 than the modified version of corpus-1b (see Table 3 and Figure 3). Obviously, corpus-(2)
and corpus-(3) also contained other relevant passages that could balance the negative effect.

Figure 4. Testing a re-trained version of DistilBERT-base using the modified corpus-(1b). The graph
shows the Precision and Recall values for Q4 (“aircraft measurement”) for both models.

4.2. Spatial Re-Ranking

To test the spatial re-ranking, Q2 (“greenhouse gases”) was extended by the search
term “Italy” as a spatial context. Since not all records in the test collection had a spatial
extent property (bounding box), a subset of 663 records was taken that included only
records with this spatial property. As with the preceding experiment (see Section 4.1),
the top 100 results were retrieved using a dense retriever. For this experiment, the model
corpus-3 was selected as it has performed best on Q2 (c.f. Table 4). As described in
Section 3.2, it could be expected that the overall search quality would decrease if the re-
ranking was carried out with all hits returned in the retrieval stage. To evaluate this effect,
we performed the re-ranking in this experiment once with all 100 search results and once
with only the top 30 search results. The graphs in Figure 5 confirm this assumption with
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significantly better values for Precision and Recall for re-ranking with the top 30 results
(lower two graphs).

Figure 5. Spatial re-ranking effects on Precision and Recall for the “greenhouse gases” query (Q2)
extended with “Italy” using corpus-1b.

In addition to improving thematic relevance, the spatial relevance of the search results
significantly improved. After re-ranking the top 30 results from the retrieval phase, the top
10 final results were analysed. The average Hausdorff distance between the bounding boxes
of the top 10 results decreased from about 156 (before re-ranking) to about 44. The maps in
Figures 6 and 7 illustrate these findings.

Figure 6. Spatial extent (blue boxes) of the top 10 search results before spatial re-ranking.
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Figure 7. Spatial extent (blue boxes) of the top 10 search results after spatial re-ranking with the spatial
extent of Italy.

5. Future Works
5.1. Extension and Improvement of the IR Approach

The defining attribute of spatial data is their inherently multi-dimensional nature,
including temporal, spatial, and thematic dimensions. This is also reflected in the way
users search [75]. The authors of ref. [29] describe users’ search demands as queries
for “concept at a location in time”. The presented work aims to take the initial step of
integrating a contextual search into metadata catalogues using dense retrieval. However,
the current spatial re-ranking stage is effective but it can only serve as a provisional solution.
As retrieval models evolve to better understand and integrate spatial and temporal contexts
directly, re-ranking might no longer be required in the future. Moving towards models
capable of natively identifying and interpreting spatiotemporal aspects in queries would
reduce the reliance on external techniques like geocoding and named entity recognition
(NER), which may introduce errors or fail to accurately extract the spatial scope from
queries. Beyond detecting location context, we also identify additional elements of the
spatiotemporal context that future retrieval models should be capable of interpreting:

(1) Scale and resolution: Ensuring alignment between the spatial scale of the query context
and the document context is essential. For instance, if data for “Europe” are queried,
metadata records on the continental scale and a corresponding resolution should be
ranked best.

(2) Spatial relations: Some queries might contain relative spatial descriptions based on
topological (e.g., within) or directional (e.g., north of) relations. This aspect has already
been addressed in the study by [76].

(3) Temporal aspects: Geospatial and especially climate data often contain a temporal
dimension, such as “past” (e.g., observation data) or “future” (e.g., climate projections),
a certain time period (e.g., climate reference period, decades) or temporal relations
(e.g., before). Dense retrievers could especially be fine-tuned with keywords that
indicate time-related context.

As the results of the study demonstrated, the specific semantics of datasets and the
relations among them are not sufficiently covered by the corpora so far. This could be
addressed by adding specific ontologies like PROV-O [77] to include the data provenance
relations in the corpora, for instance.
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5.2. Improvement of the Evaluation

The necessity to establish an evaluation test collection led to the creation of a dataset
with limitations in terms of its size and reliability. The manual annotation of a substantial
number of documents is time-consuming and does not scale when undertaken by a limited
number of annotators. The development of a larger test collection typically involves
major campaigns, such as the Text REtrieval Conference (TREC) [78], in which experts
develop relevant topics (queries) and make relevance judgments for query–document
pairs (qrels) [79]. Although methods like “pooling” (c.f. [80]) can reduce the effort required
to create the qrels, these test collections typically involve several months of work and a
large team of experts. Moreover, the binary metric, which determines the relevance of
a document as either query-positive or query-negative, further restricts the assessment.
To obtain a more comprehensive understanding of the quality of the output ranking,
a graded relevance metric like nDCG [81] could be used. Given these constraints, we
decided to build a smaller test collection for this study while working in parallel on a larger
TREC-compliant test collection in a separate effort [82]. A forthcoming study is planned to
engage additional expert annotators providing graded relevance labels. The involvement of
a greater number of annotators would also lead to a more extensive and diverse document
collection, accompanied by an increased number of sample queries.

6. Summary and Conclusions

This study highlights the importance of exploring diverse IR approaches beyond
relying solely on traditional BOW-based models to improve environmental data searches.
In particular, the utilisation of dense retrieval through pre-trained transformer models
is presented. The objective was to demonstrate a pragmatic methodology for preparing
pre-trained models by employing existing domain adaptation techniques and subsequently
integrating them into the search architecture of a standard metadata catalogue.

This work is groundbreaking since there is hardly any prior literature focusing on
dense retrieval for research data searches or providing methods for designing suitable
corpora for this task. The used domain adaptation method proposed by [24] requires an
unlabelled text corpus with domain-specific vocabulary. The lack of benchmark corpora
for vocabulary related to environmental research data made it necessary to create a custom
corpus. Various sources, including public geospatial data portals, ontologies, and the
scientific literature, were used to compile domain-specific corpora. The DistilBERT-base
model was then domain-adapted using four distinct corpora.

The evaluation revealed the superior performance of the dense retrievers compared
to the BM25 baseline and the original DistilBERT-base checkpoint. Notably, no significant
differences between the different domain-adapted dense retrievers were observed during
the evaluation. The domain-adapted dense retrievers do not necessarily perform better
when they are trained on a larger corpus. Nevertheless, the identified limitations in the
evaluation process require a more extensive assessment, involving a larger test collection
and additional metrics such as nDCG. Generally, the dense retrievers performed well in
retrieving thematically relevant documents. However, the retrievers did not fully com-
prehend the semantics of relations among datasets and the provenance of derived data.
Further, the retrieval did not incorporate the spatio-temporal dimension of geospatial data
and respective queries. To meet this requirement, which is inherent in an environmental
data search, an approach was proposed that includes a spatial re-ranking stage following
the initial retrieval stage. This allowed us to refine results based on geocoded entities and
bounding boxes. While effective, this method is a provisional solution until future retrieval
models can directly handle spatial and temporal contexts.

In conclusion, this study not only advances the understanding of effective IR ap-
proaches in the context of an environmental data search but also contributes a practical
methodology for incorporating dense retrieval into existing metadata catalogues. The iden-
tified limitations pave the way for future research, emphasising the need for a more
comprehensive evaluation and exploration of the spatio-temporal dimension.
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