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Abstract

The availability of data on economic uncertainty sparked a lot of interest in models
that can timely quantify episodes of international spillovers of uncertainty. This chal-
lenging task involves trading off estimation accuracy for more timely quantification.
This paper develops a local vector autoregressive model (VAR) that allows for adap-
tive estimation of the time-varying multivariate dependency. Under local, we mean
that for each point in time, we simultaneously estimate the longest interval on which
the model is constant with the model parameters.

The simulation study shows that the model can handle one or multiple sudden
breaks as well as a smooth break in the data. The empirical application is done using
monthly Economic Policy Uncertainty data. The local model highlights that the em-
pirical data primarily consists of long homogeneous episodes, interrupted by a small
number of heterogeneous ones, that correspond to crises. Based on this observation,
we create a crisis index, which reflects the homogeneity of the sample over time. Fur-
thermore, the local model shows superiority against the rolling window estimation.

Keywords: adaptive local estimation, connectedness, local homogeneity, multivariate time
series, vector autoregression.
JEL classification: C32, C53, E3.
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1 Introduction

Currently, there is a series of events with international consequences which increase economic
uncertainty around the globe. They are the onset of the corona pandemic in early 2020,
followed by the attack of Russia on Ukraine in 2022. Diebold and Yilmaz (2014) stressed
the importance of a timely quantification of the international spillover of current events. In
line with this background, our research question is as follows:

“How can we measure international spillovers of current events in a timely manner?”
To measure current events, we rely on a dataset created by Baker et al. (2016) with

monthly data on Economic Policy Uncertainty (EPU), which is shown to react to current
events. More recently, EPU has also been used by the European Central Bank to quantify
the increasing uncertainty around the corona pandemic, see Gieseck et al. (2020). There
are many other options for measuring the uncertainty that current events create, see Bloom
(2014) for an excellent overview. To mention a few: Bachmann et al. (2013) based on
the disagreement of firm survey participants, Jo and Sekkel (2017) on forecast errors of
professional forecasters, Jurado et al. (2015) on forecast error variance in a large set of
financial and economic variables, and Creal and Wu (2017) on interest rate data. Despite
the many alternatives, EPU is well suited for our research question since it becomes available
with a publication lag of just one month which is much faster than data from official statistics.
Additionally, it covers not only developed countries but also countries, where other data is
more difficult to obtain. This is also why we prefer EPU to stock market data which also
have little publication lag and react to current events but are only available in relatively
wealthy countries with an established stock market.

Various researchers have already used EPU data to quantify uncertainty spillovers across
countries. One of the first examples is Klößner and Sekkel (2014), which employs a spillover
method for six countries. They find that spillovers account for one-fourth of variation in
EPU across countries and that spillovers change over time. But most papers investigating
spillovers, focus on the average spillovers over time instead of the dynamics and quantification
of spillovers from recent events, e.g. Clausen et al. (2019), Liow et al. (2018), Luk et al. (2020),
Tzika and Fountas (2021). With our research question, we aim to fill the gap in the literature
and investigate the temporal dynamics of spillover.

For quantifying international spillovers, we use an updated version of the DY-spillover
method also used in Klößner and Sekkel (2014). This method, created by Diebold and
Yilmaz (2014), is based on Forecast Error Variance Decompositions (FEVD) of a Vector
Autoregressive (VAR) model. It is widely used to quantify spillovers (see, for example,
Demirer et al. (2018) and Dungey et al. (2019)), and has several advantages that make it
particularly appealing for our research question. First, it provides an intuitive way to measure
spillovers by linking spillover to the question: “How much of country A’s future uncertainty
is due to the current situation in country B?”. Second, it avoids additional theoretical
knowledge for estimation and offers a simple quantitative measurement of spillovers. Third,
the framework can easily be adopted into a dynamic setup. Despite the alternative ways of
measuring spillovers, such as Barigozzi and Brownlees (2019), Engle and Kelly (2012) and
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Adrian and Brunnermeier (2016), the DY-spillover method is the preferred method for our
application for its simplicity and interpretability.

Usually, a dynamic setup is adopted through rolling window estimation. However, rolling
window sizes are often chosen subjectively and can easily drive the results. Furthermore, too
short windows result in large variance, while too long ones result in large bias. Therefore, we
propose a data-driven approach to identify meaningful window sizes for dynamic estimation.

Our approach for quantifying international spillovers in a timely manner is based on the
literature on local parametric estimation, introduced by Č́ıžek et al. (2009) and Spokoiny
(2009) through local univariate parametric time series models. Later methodological contri-
butions include Chen and Spokoiny (2015), Spokoiny et al. (2013). The local estimation has
been applied successfully to many topics, including temperature risk (Härdle et al. (016b)),
crop yields (Shen et al. (2018)), financial risk management (Fengler and Okhrin (2016)),
electricity price (Chen and Li (2017)), and financial (Härdle et al. (2015)) forecasting.

We adapted the framework by Č́ıžek et al. (2009) to the multivariate time series context
using finite-sample likelihood ratio tests to test for homogeneous intervals. The works most
related to us, which apply the likelihood testing procedure to univariate time series to identify
local intervals instead of change points, are Chen et al. (2010), Niu et al. (2017), and Chen
et al. (2013). The local estimation approach is particularly well suited to answer our research
question since it is a natural extension of the already established fixed rolling windows.
Additionally, this approach allows us to obtain estimation results for our sample’s most
recent data points, thereby allowing for timely quantification of the spillover of current
events.

Our contribution is threefold: 1. We extend the local parametric estimation approach
from a univariate autoregressive to a VAR setting. 2. We confirm the successful extension by
a set of Monte Carlo simulations by testing if local VAR models can identify homogeneous
intervals correctly, even in the presence of structural breaks of various types. 3. In the
empirical application to the measurement of EPU spillover, it turns out that spillover of
EPU is homogeneous over long episodes, interrupted only by a few major crises, which are
the GFC, the European debt crisis, and the trade war. These findings are used to create a
crisis indicator, highlighting when the sample becomes heterogeneous. Furthermore, total
dynamic spillover estimated locally tends to be the same as that estimated by a big rolling
window. Only during times of crisis the local approach results in total dynamic spillover
that corresponds to a small rolling window size.

The paper proceeds as follows: chapter 2 introduces the EPU data, chapter 3 describes
the spillover measure, chapter 4 outlines the local estimation procedure in the VAR context,
chapter 5 contains an extensive simulation exercise, chapter 6 illustrates the empirical appli-
cation to EPU, and chapter 7 concludes. Some specific simulation scenarios are put in the
Appendix.
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Med SD Min Max Skew Kurt ADF12 ADF1 KPSS N Time

DE 138.53 80.91 28.43 498.06 2.60 9.51 0.22 0.01 0.10 2 1993M1-2021M1
IN 80.10 50.27 24.94 283.69 -1.49 5.82 0.42 0.01 0.01 7 2003M1-2021M1
JP 105.02 34.52 48.37 240.24 -1.50 7.51 0.28 0.01 0.08 6 1990M1-2021M1
KR 129.70 70.87 37.31 538.18 2.74 11.68 0.05 0.01 0.10 3 1990M1-2021M1
US 116.25 69.98 44.78 503.96 2.56 11.23 0.89 0.01 0.09 10 1985M1-2021M1

Table 1: Summary statistics of the EPU variables, with p-values for the Augmented Dickey-Fuller
(ADF) and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests. N is the number of newspapers
used for construction.

2 Economic Policy Uncertainty

To capture recent events and their potential connections across countries, we use monthly
EPU data, Baker et al. (2016), freely available at policyuncertainty.com. The EPU indices
are based on newspaper articles classified as related to EPU if they contain specific economic,
policy, and uncertainty keywords. The methodology has been used to measure uncertainty
in many countries like Australia (Moore (2017)), Chile (Cerda et al. (2018)), and Sweden
(Armelius et al. (2017)). Researchers employed this variable to measure uncertainty from
current events and estimate its impact on the economy (Ghirelli et al. (2021), Prüser and
Schlösser (2020b)). EPU is also commonly used to investigate spillover effects across coun-
tries (Caggiano et al. (2020), Nilavongse et al. (2021), Stockhammar and Österholm (2016)).
By now, indices for more than 23 countries are available, with further countries continuously
added by groups of researchers who followed the Baker et al. (2016) methodology.

We chose a set of indices that are based on at least two newspapers from five countries:
Germany (DE), India (IN), Japan (JP), South Korea (KR), and the United States of America
(US). This constellation is a good mix of large economies from the developed and developing
worlds. All chosen countries come from the original database by Baker et al. (2016). The
time-series for the countries in the final dataset are plotted in Figure 1, and some descriptive
statistics are shown in Table 1. The ADF tests in the table indicate that four out of five
series are not stationary when using twelve lags but, became stationary with just one lag.
This is a powerful indication that the time series should be modeled locally. Based on data
availability, the selected time frame is from 2003M01 until 2021M01.

The period is shaped by major events which resulted in high uncertainty in most coun-
tries. There was the second Gulf War (2003M03) at the beginning, the Lehman Broth-
ers bankruptcy (2008M09) and the Eurozone crisis (2011M06) in the middle, and Brexit
(2016M06) as well as the Trade War (2019M07) towards the end. COVID-19 causes the
highest spikes at the very end of the sample. The question of time variation in uncertainty
transmission is not straightforward. Angelini et al. (2019) estimate a threshold model based
on macroeconomic volatility as a proxy for uncertainty which finds strongly increasing im-
pacts of uncertainty during recessions. Caggiano et al. (2020) find similar results using EPU.
Prüser and Schlösser (2020a) estimating a TVP model, however, finds that uncertainty trans-
mission is more or less stable over time. With the proposed local model, we are trying to
provide more evidence on the time variation of uncertainty, especially since threshold and
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Figure 1: Monthly data time series of EPU for Germany (DE), India (IN), Japan (JP), Korean
Republic (KR), and the United States of America (US).

TVP models require assumptions about the time dynamics while local models do not.
Regarding the general, static transmission of uncertainty, it can be expected that it eas-

ily and quickly spills over between countries (Belke and Osowski (2019)), especially between
those with close trade links (Balli et al. (2017)). Furthermore, larger economies will likely
transmit uncertainty to smaller economies, as stated by Tzika and Fountas (2021). This
is partly due to the fact revealed by Bloom (2017) that small open economies have a large
probability of being affected by uncertainty shocks of a foreign origin. Also, developing coun-
tries were found by Carrière-Swallow and Céspedes (2013) to be more affected by external
uncertainty. Therefore, we can expect, for example, the spillover between Germany and the
US to be large since they have strong trade links. At the same time, India will probably
not receive and transmit much uncertainty to the other countries in the sample as its ties
to the other sample countries are weaker. Also, the US, the biggest economy in the sample,
will most likely be the primary transmitter of uncertainty. As a small open economy, Korea
is expected to experience a lot of spillover from abroad. Just from Figure 1, it can already
be seen that Germany, Korea, and the US comove a lot, Japan and India do so to a lesser
extent. This observation is also supported by the negative skewness and lower kurtosis of
the latter two in Table 1.

Applied to the local model, we expect that EPU will be homogeneous for most of the
covered period resulting in long intervals of homogeneity. Around the events, as mentioned
earlier, the intervals of homogeneity might, however, be relatively short since these events
result in sudden surges of EPU. All in all, the dynamics the data display seem to be a good
test for the local estimation approach.
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3 Measuring spillover

Spillover is measured using a framework called connectedness by Diebold and Yilmaz (2014).
The framework is prevalent and has been used in many papers, e.g., Demirer et al. (2018),
Dungey et al. (2019), and Hale and Lopez (2019). We are aware of alternative methods to
measure spillover and numerous suggestions for improving connectedness, such as Baruńık
and Křehĺık (2018), Buse and Schienle (2019), Lanne and Nyberg (2016). Since the method
is only used to evaluate the local estimation algorithm in an empirical application, we decided
that using the original methodology is the most suitable as it has been tested and validated
the most.

Consider a series of d-dimensional EPU data EPUt = (EPU1,t, ..., EPUd,t)
> with t ∈ T

being the time component. It is believed that the size of the share to the H-step ahead
forecast error of the variance of EPU in the country i due to innovations from EPU in the
country j, denoted by Cij(H), i, j = 1, . . . , N, i 6= j, can be interpreted as the connectedness
between them. Here i 6= j is used to identify relevant variance shares for connectedness.
Variance decompositions are used to calculate the variance shares for all countries in the
system. The approximating model for the variance decomposition is a VAR model. The
traditional VAR relies on orthogonal innovations, whereas connectedness means correlated
innovations. Therefore, we used the generalized VAR framework by Pesaran and Shin (1998)
that allows for correlated innovations by considering the observed distribution of the errors.

Let the cross-sectional dependency between the elements of the EPU vectors be modeled
with a VAR as EPUt =

∑p
s=1 φsEPUt−s+ εt, where ε ∼ N(0,Σ). When the VAR fulfills the

requirements for stationarity, with all roots lying in the unit circle and having a modulus
smaller than one, it can be inverted to a Vector Moving-Average (VMA) of infinite order as
EPUt =

∑∞
u=0 Auεt−u, where the Au’s are (d× d) moving average coefficient matrices which

obey the recursion Au = φ1Au−1 + . . . + φpAu−p, A0 = I (the identity matrix), and Au = 0
for u < 0. Based on this setup, country j’s contribution to the country i’s H-step ahead
generalized forecast error variance, Cij(H), can be calculated using the previously defined
MA coefficients and covariance matrix. The following formula results on the generalized
formulation by Pesaran and Shin (1998)

Cij(H) =
σ−1
jj

∑H−1
h=0 (e>i AhΣej)

2∑H−1
h=0 (e>i AhΣA

>
h ej)

, (1)

where σjj is the standard deviation of the error term for the jth equation in the VMA, and
ei is a selection vector with zeros except for the i’th entry. Due to correlated innovations,
the forecast error variance contributions might not add to unity. Following Diebold and
Yilmaz (2012) each element is divided by its corresponding row sums C̃ij(H) =

Cij(H)∑N
j=1 Cij(H)

.

Having all C̃ij(H)’s, we obtain a spillover table, with diagonal elements representing variance
shares and off-diagonal ones the cross-variance shares. Based on the spillovers C̃ij(H), we
can compute total spillover, which is obtained by the total share of the cross-variances in

the system S(H) =
∑N
i=1,i 6=j

∑N
j=1,j 6=i C̃ij(H)∑N

i,j=1 C̃ij(H)
× 100.
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Diebold and Yilmaz (2014) further developed the connectedness methodology by con-
sidering the variance decompositions as networks. They are more sophisticated than sim-
ple networks since the adjacency matrix, which corresponds to the variance decomposition
matrix, now contains values ranging between 0 and 1 instead of containing either 0 or 1.
Additionally, the links are directed so that the link from country i to country j might differ
from the link from j to i, meaning that the adjacency matrix is not symmetric anymore.

4 Method

As mentioned before, this paper aims to measure the impact of current events on interna-
tional spillover as timely as possible. To quantify spillovers, we use the DY-connectedness
measure relying on VAR models. Though rolling window techniques are commonly used in
the literature to estimate dynamic spillovers, they are far from optimal. Short windows might
work well in the presence of many events associated with high spillover, but they disregard
valuable information if there are only a few breaks in the data. Long windows will produce
good results in stable times but might incur serious bias when structural breaks are present
in the data. Using VAR models with time-varying parameters would require extra assump-
tions about the dynamics in the data. Hence, we believe that a local estimation approach
that allows for time-varying window size is the best solution to measure dynamic spillovers.
Additionally, local estimation is quickly applicable since it does not require assumptions on
the underlying time dynamics.

4.1 Time-varying VAR estimation

Let the temporal and cross-sectional dependency of EPUt be modeled by the VAR process,
which differs from the one introduced in Chapter 3 in the respect that φ and Σ now change
with time t

EPUt = φ0,t +

p∑
s=1

φs,tEPUt−s + εt, (2)

where φ0,t and φs,t(s = 1, . . . , p) are (d × d) coefficient matrices and the random noise
εt ∼ N(0,Σt). To simplify notations, let the parameters be summarised in θt =
(φ0,t, φ1,t, . . . , φp,t,Σt). Within VAR models, parameters driving the temporal dynamics are
usually assumed to be constants. In practice, however, most processes are not constant over
time, and parameters show different behavior during turbulent and calm periods. We deal
with this by allowing parameters to vary over time without making specific assumptions
about the structure of the time variation. The only assumption we make is that of local
homogeneity: For each τ ∈ [1, T ], there exists a true unknown local interval of homogeneity
I∗τ = [τ −m∗τ , τ ] over which θt = θ for t ∈ I∗τ .

The assumption of local intervals represents a good balance between the model’s adapt-
ability and its estimation’s feasibility. Furthermore, local intervals allow the procedure to
handle smooth transitions and sudden jumps of underlying parameters. Thereby we cover
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both varying coefficients (Cai et al. (2000)) and piecewise constant (Bai and Perron (1998))
models. For extensive details on univariate local parametric models and their theoretical
properties, we refer to Spokoiny (2009), and from here on, we closely follow the notation of
Chen et al. (2010). For each local interval Iτ , the local log-likelihood function is defined as

`(EPU, Iτ , θ) = −mτ

2
log 2π +

mτ

2
log|Σ−1| − 1

2

τ∑
v=τ−mτ+1

ε>v Σ−1εv, (3)

where εv = EPUv − φ0,v −
∑p

s=1 φs,v−sEPUv−s and all the parameters are collected in θ =
(φ0, φ1, . . . , φp,Σ). This results in the following local maximum likelihood (ML) estimator
θ̃τ = argmax

θ∈Θ
`(Iτ , θ), with Θ being the parameter space, where for notational simplicity we

denoted `(Iτ , θ) for `(EPU, Iτ , θ).

4.2 Quality of local estimation

Suppose that for each time point τ ∈ [1, T ], EPU is driven by a local VAR process with the
true (unknown) parameters θ∗τ being constant on the homogeneous interval I∗τ . To assess the
quality of the local model with parameters θ̃τ , we can measure the deviation from the model
with optimal parameters θ∗τ using a likelihood ratio (LR) statistics as

LR(Iτ , θ̃τ , θ
∗
τ ) = `(Iτ , θ̃τ )− `(Iτ , θ∗τ ). (4)

There exists a well-established theory for identifying local models with the LR from Equation
(4); e.g., Spokoiny (2009) and Č́ıžek et al. (2009). Polzehl and Spokoiny (2006) derived a
risk bound (RB) which depends on the true parameter θ∗τ for the expected deviation (4) and
its rth-power transformations with r > 0 for an iid sequence of Gaussian innovations

Eθ∗τ |LR(Iτ , θ̃τ , θ
∗
τ )|r ≤ RBr. (5)

The introduced bound is nonasymptotic and can be used for any finite interval Iτ . It allows
us to construct confidence intervals for assessing the quality of estimation, meaning that θ̃τ
and the corresponding LR fulfill the risk bound (5). Hence, the assessment of the quality of
the local estimation is done using the following LR statistics

|LR(Iτ , θ̃τ , θ
∗
τ )|r. (6)

In practice, the true parameter θ∗τ is not known and instead a hypothetical parameter is used
for simulating data and calculating the risk bound RBr. Details on the procedure are given
in the next section. For a series of models with distributions from exponential families, this
risk bound even does not depend on the true parameter, which is, unfortunately, not the
case in our model.

Belomestny and Spokoiny (2007) show that an optimal choice of an interval of local homo-
geneity for univariate processes can be obtained via the adaptive procedure. We concentrate
on the construction details for a multivariate VAR process in the following. A comprehensive
simulation study in the next chapter illustrates the performance of the adaptive procedure
in our setting.

8



4.3 Adaptive identification of local intervals of homogeneity

A sequential testing procedure is employed to identify the local homogeneous intervals of the
process. Therefore, we consider a finite set of candidate intervals Iτ,k = {Iτ,1, . . . , Iτ,K} with
Iτ,k = [τ −mk, τ ] and ML estimators θ̃kτ with k = 1, . . . , K on each candidate. For each τ ,
we start with the shortest possible interval Iτ,1 = [τ −m1, τ ], assumed to be homogeneous.
From there on, we extend the interval backward and test whether parameter θ̃1

τ is also well
suited on the next bigger interval Iτ,2 = [τ − m2, τ ]. If the hypothesis is not rejected, we
consider Iτ,2 to be homogeneous and continue extending until the largest possible interval is
reached.

The procedure is performed using the obtained ML estimators θ̃kτ and the LR statistic
(6). The only difference is that now the true θ∗τ is replaced with the best-known one – the
adaptive estimator θ̂τ , which will be determined sequentially at each backward-looking step
and formalized below. The adaptive estimators will differ for each τ since it depends on
I∗τ . Furthermore, since Iτ,1 is assumed to be always homogeneous, the procedure starts with

θ̂τ = θ̃1
τ and then continues either until the last interval Iτ,K or where the test statistic does

not exceed the critical value as

|LR(Iτ,k, θ̃
k
τ , θ̂τ )|r ≤ ζrk , k = 2, . . . , K, (7)

with ζrk being the critical value at step k and is described in more detail below. The test
statistic measures the difference between the current local ML estimator θ̃kτ and the adaptive
estimator θ̂τ over a possible k-th interval of local homogeneity Iτ,k. If the test statistic is
small, there is no significant change in the dynamics, and (7) is not violated. We thus cannot
reject the null of local homogeneity and adopt the new estimator θ̃kτ as the adaptive estimator
θ̂τ = θ̃kτ . Suppose the test statistic is bigger than the critical value. In that case, it indicates
that the adaptive estimator θ̂τ for the current point in time τ cannot be extended further
backward and is only valid until k− 1. Therefore, the iterative procedure is terminated and
θ̃k−1
τ is accepted as the optimal i.e. the adaptive estimator θ̂τ for the current τ .

When testing the procedure with simulations, we realized that for a few τ , we sometimes
obtain implausible interval series like Iτ,6, Iτ+1,1, Iτ+2,6, corresponding to the intervals of the
lengths mτ,6, mτ+1,1, and mτ+2,6 respectively. For the real data as EPUt, this behavior
is hardly empirically interpretable, but formally this is because the procedure takes each τ
individually. Hence, we implemented an additional if-condition that ensures that the final
intervals Iτ do not allow for sudden unexpected jumps: Ifmτ,k 6= mτ−1,k, thenmτ,k = mτ,kmax ,

where kmax is the index of the interval with the largest LR: maxk∈[1,K]{LR(Iτ,k, θ̃
k
τ , θ̂τ )}. It

was furthermore verified in the simulations that this additional restriction does not affect
the results but only produces more smooth and better interpretable changes of the identified
intervals of homogeneity.

The whole procedure can be thus summarized as follows

1. initialization: Set θ̂τ = θ̃1
τ and k = 2

2. while |LR(Iτ,k, θ̃
k
τ , θ̂τ )|r ≤ ζrk and k ≤ K

do θ̂τ = θ̃kτ , k = k + 1.

9



3. set m̂τ = mτ,k−1 and θ̂τ = θ̃k−1
τ .

4. check if m̂τ = mτ−1,k. If not, m̂τ := mτ,kmax , where kmax is the index of the interval
with the largest LR.

4.4 Critical values

The critical values ζrk are obtained through Monte Carlo simulations. There are two main
ingredients. The first is the empirical version with the expectation being replaced by the
theoretical risk bound RBr based on θ∗τ . The second is the empirical counterpart which is
the deviation between the MLE estimator θ̃kτ and the adaptive estimator θ̂τ measured by a
likelihood ratio. Additionally, k

K
as a normalizing factor to make estimates based on different

k comparable and ρ, a tuning factor, to ensure that the LR and RB match, are needed.
The whole procedure, which is similar to Chen and Spokoiny (2015), Härdle et al. (2015)

and Shen et al. (2018), is summarized in the following algorithm, where we use the notation
`(Xi, Iτ,k, θ̃

k
τ ) to highlight, that the likelihood is evaluated on the interval Iτ,k of the sample

Xi using the parameter θ̃ki,τ :

1. simulate N = 104 homogenous processes Xi,t, i = 1, . . . , N from a fixed θ∗.

2. use (5) to calculate R̂B
r

k = 1
N

∑N
i=1

∣∣∣`(Xi, Iτ,k, θ̃
k
i,τ )− `(Xi, Iτ,k, θ

∗)
∣∣∣r, for k = 2, . . . , K.

3. set initial critical values ζrk =∞.

4. using (6) to get θ̂i,τ (ζ
r
k) for each sample i = 1, . . . , N select ζrk over k = 2, . . . , K by

ζrk = arg min
ζ

∣∣∣∣∣ 1

N

N∑
i=1

∣∣∣`(Xi, Iτ,k, θ̃
k
iτ )− `{Xi, Iτ,k, θ̂i,τ (ζ)}

∣∣∣r − ρ k
K
R̂B

r

k

∣∣∣∣∣ .
4.5 Selection of ρ and r

There are two choices to be made for the calibration of critical values: ρ and r. Keeping r
fixed while increasing ρ will lead to smaller critical values. On the other side, leaving ρ fixed
while increasing r will lead to bigger critical values.

Härdle et al. (2015) suggest r = 0.5 and ρ = 0.5 in a univariate setting, while Chen and
Netsunajev (2018) recommend r = 0.5 in a functional AR model. Since the selection of ρ is
often arbitrary, we follow the idea from Č́ıžek et al. (2009) and determine it by minimizing
prediction errors. In detail, we estimate local models over a grid of values for ρ ranging from
0.01 to 1 (including 0.5). From each set of local models, we predicted from the estimated

VAR the ÊPU t,ρ for each ρ from the grid. In the end, we compute the Mean Absolute
Percentage Error (MAPE) for each ρ and select the ρ which corresponds to the smallest

MAPE as ρ̂ = argmin
ρ>0

1
T

∑T
t=1

∣∣∣EPUt−ÊPUt,ρEPUt

∣∣∣. The algorithm results in a potentially different

ρ and, therefore, a different critical value for each dataset. This is important because different
datasets might need a higher or a lower break detection sensitivity depending on the amount
of general heterogeneity.
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θ1 φ0 =

[
29.00
132.00

]
φ1 =

[
0.71 0.08
0.13 0.08

]
θ2 φ0 =

[
31.00
130.00

]
φ1 =

[
0.63 0.00
0.12 0.23

]
Table 2: Parameters for the simulation study with d = 2 and p = 1

5 Simulation

We perform a Monte Carlo study to investigate the performance of the local estimation
procedure. There are three criteria that the procedure should fulfill. First, it should not
detect a break when there is none in the data. Second, it should detect a break, when there
is one. Third, it should not recover to the maximum length if there is a second break shortly
after the first. Therefore, datasets that include tests for all three conditions are generated.
But before results are presented, the choice of parameters and the setup has to be described
to ensure reproducibility.

5.1 Simulation design

We use a finite set of K + 1 = 7 candidate intervals based on a geometric grid mi =
[m0a

k], with m0 = 12 and a = 1.25, where the [x] means the largest integer smaller than x,
which results in the following set of interval lengths: mτ,k = {12, 15, 19, 23, 29, 37, 46}. Note
that the first interval corresponding to a length of 12 is always assumed to be homogenous
and works as a baseline against which to compare the candidate intervals. In our setting,
the smallest interval corresponding to twelve months i.e., one year seemed a good tradeoff
between timeliness and estimation accuracy. The geometric grid is preferred over the linear
grid since it generally yields better results in the simulation exercise and is also used by most
of the literature (Č́ıžek et al., 2009; Härdle et al., 2015; Spokoiny, 2009).

Parameters for testing our algorithm are obtained from fitting two-dimensional VAR(1)
models to EPU1. A short lag is sufficient in our setting because our set of intervals is also
relatively short. The resulting parameters can be found in Table 2. Two points in the
selection of the parameters are worth noting: a) the structural break will contain changes
in both φ0 and φ1; b) changes in the parameters are small. This is the way the real data
typically change. Theoretical studies usually vary just one single coefficient, but we are
interested in empirical applications where more than one coefficient might change.

The simulation results are divided into three scenarios ranging from “easy” to “difficult”.
Here we present only Scenario 1, and the two other scenarios can be found in Appendix
A1. Scenario 1 contains a single break: x1, . . . , x84 ∼ θ1, x85, . . . , x146 ∼ θ2. The simulated
data are referred to as xt, and we generate each dataset 250 times. The notation “∼ θ1”

1We modified the parameters obtained from the data a bit since the original ones resulted in a large break
which was easy to detect. The parameters presented here will result in a small break and are, therefore,
challenging. Results for higher dimensions are shown in Appendix A1.

11



means that observations are generated from a VAR(1) with parameter θ1. In Appendix
A2, we present the distribution of test statistics for each scenario and compare it with the
corresponding selected critical values. The same exercise is also performed for different sets
of parameters to guarantee robustness, with results available upon request. Since the growth
of the interval of homogeneity for each τ goes backward, an initial set of 46 observations
corresponding to the longest interval has to be discarded.

For each scenario, we calculate four different results. First is optimal ρ and its restriction.
Then, results for two fixed ρ’s, namely the most often chosen ρ from the optimal algorithm
and a ρ = 0.5. Finally, results with the optimal ρ algorithm but without the additional
restriction are also shown.

Results are presented as three combined plots to show the input data and the algorithm.
The setup is as follows: The plot on the top shows the simulated input data with the break.
Its purpose is to serve as an orientation for when something should happen in the local
process. The middle panel shows the resulting intervals of homogeneity for each τ . Plotted
are means (solid lines) and medians (dashed lines) over 250 repetitions. The plot at the
bottom depicts the values of the likelihood ratio tests for the accepted interval plus one for
each τ to show whether the algorithm starts to react after the breaks appear in the input
data. Please note that the values might be a combination of tests for different k’s since each
repetition might stop at a distant k. The horizontal red line indicates the critical value for
the longest possible interval, k = 6. A test value below means that the local interval could
have been extended more. There is a dashed line through the top plot that highlights the
point when the parameter set for the input data changes.

5.2 Simulation results

Figure 2 shows the simulation results for Scenario 1 based on 250 repetitions. There is
just one break located in the middle of the observation period. It is marked by a dashed
line to help visualize exactly where the break occurs. The middle plot shows that all four
specifications detect the break. The reaction to the break is that the window length jumps
down to one. After the break, it slowly increases to maximum length again. The recovery
process is characterized by a step function with six constant regions, which we call stairs.
These six stairs correspond to the six intervals. So, while the stairs for the lower intervals
are shorter, the stairs for the higher intervals are more prolonged, corresponding to the
predetermined intervals Iτ,k, k = 1, . . . , K − 1. The number and length of the preselected
intervals can determine the number of stairs and their length.

As expected, the procedure with the optimal ρ performs best. While the medians are
almost identical, with only the median window length for ρ = 0.5 being visibly lower than
six, there are some differences in the means. Specification for ρ = 0.5 results in an average
window length of only four instead of six. On the other side, specification with an optimal
ρ and no restrictions does not result in flat steps for lower window lengths and instead
displays some spikes, particularly for the first and second steps. The algorithm, without any
restrictions, using ρ = 0.088, results in the most symmetric distribution of window lengths,
as the mean is closest to the median.
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The lower means happen because, over the 250 repetitions, each run will have a few τ ’s,
where there is a false alarm, and the algorithm mistakenly selects a window length of one.
Most false alarms appear for specification ρ = 0.5, which features the highest value of ρ for
this setting. This large value results in a low critical value, so false alarms happen more
often when the test statistic exceeds the critical value. In the univariate setting, ρ = 0.5
was a good choice. Still, in our multivariate setting with small window sizes, we need higher
critical values to prevent false alarms while detecting true breaks.

The upwards spikes in the stairs of specification with optimal ρ with no restrictions
happen because here, the algorithm jumps down to a small window length when the break
occurs but directly jumps up again in a set of repetitions so that the mean is upwards biased.
In the other specifications, this upward bias is prevented by using the additional restriction,
which keeps the selected window length low for an adequate time. This is evidence that
applying the additional restriction in the multivariate setting with small window sizes makes
sense.
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Figure 2: Simulation results - One break.
Top: Simulated 2dim VAR. The vertical line indicates a break. Mid : Identified Intervals for: optimal ρ
(black), ρ = 0.5 (blue), ρ = 0.088 (green), optimal ρ with no restrictions (red). Bottom: Test statistics for
k + 1 with ζ6 = 3.0 (horizontal red). Bounds for 5% and 95% bounds are depicted in grey.

The likelihood ratio test values in the bottom plot are virtually identical across specifi-
cations, where only ρ = 0.5 results in slightly higher values. It is reassuring to see that 95%
of test statistics during the homogeneous part of the sample are below the critical value for
the longest possible interval. Then, as soon as the break in the input data occurs, there is a
slight reaction. However, it takes a bit until the break shows in the window lengths. This is
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because the test statistic only becomes large once all observations inside the smallest interval
come from θ2.

6 Empirical Application

The goal of this chapter is twofold. First, it should provide evidence that empirical data are
mostly homogeneous over time since crises are rare events. Second, it should illustrate that
longer intervals are more suitable for measuring dynamic spillover because, during homoge-
neous periods, there is little risk of bias when using longer intervals for estimation. Therefore,
at first, the local estimation algorithm identifies the longest homogeneous interval for each
τ in the sample of EPU for Germany, India, Japan, South Korea, and the US. Second, these
intervals will be used to calculate the Diebold Yilmaz connectedness measure, a common
way to measure spillover, similar to a rolling window approach. The connectedness measure
is detailed in Chapter 3. The same set of interval lengths mτ,k = {12, 15, 19, 23, 29, 37, 46}
as for the simulation in Chapter 5 based on a geometric grid is used for the setup of the
local estimation algorithm. As a benchmark for the second part, rolling windows with win-
dows of the length w of the size of the shortest (w = 12) and longest (w = 37) interval are
additionally applied. Note that the last window (w = 46) cannot be selected because of how
the local estimation algorithm is designed. Therefore a length of w = 37 constitutes the
longest possible window length. Furthermore, since during the estimation of the intervals
of homogeneity, intervals extend backward in time from τ , we need to discard the first 46
observations so that the first τ is 2006M11. The last one is then τ = 2021M01.

6.1 A crisis indicator based on local homogeneity

For all possible pairs of EPU in the five selected countries (DE, IN, JP, KR, and US), bivariate
VAR models are estimated to identify homogeneous intervals. This strategy is chosen because
estimating just one VAR with all five countries would flatten out the breaks, which only affect
a fraction of the countries. By estimating bivariate VAR models, heterogenous episodes that
only occur in a few country pairs are also considered.

The length of the intervals of homogeneity can be treated as an indicator of structural
breaks that happened in the recent past. Moreover, structural breaks in economic policy are
rare events and, in history, were mirrored through various crises. Based on this logic, we
define the crisis indicator CI between countries i and j, which reflects the homogeneity of
the multivariate process at each time point τ , as

CIi,j = 1− k̂τ,i,j − 1

K − 1
, (8)

where k̂τ,i,j is the index of the estimated length of the interval of homogeneity for the VAR(1)
model that is modeling EPU for countries i and j and K − 1 is the index of the largest
possible interval (K = 6 in our paper). The resulting values fall in the interval [0, 1], with
an indication of the crisis via CIi,j = 1 indicating the shortest interval length corresponding

14



to kτ,i,j = 1, and no crisis with CIi,j = 0 the longest one corresponding to kτ,i,j = K.
Therefore, a crisis indicator of zero means no heterogeneity in the sample and the longest
possible interval of homogeneity. As soon as the indicator starts increasing towards one, we
obtain shorter intervals of homogeneity, leading to an increase in heterogeneity, indicating
that some structural change is happening.

Suppose all the models possess the longest homogeneity interval for the given τ . In this
case, the causal effects between EPU for different countries follow a fixed structure over
the given period. This implies that no shocks were present during this period in economic
policy for all the involved countries. If for some country pairs for a given τ , the homogeneity
interval is short, this implies a structural break in the economic policy modeling in this pair.
Therefore averaging the crisis indicator CIi,j over all the pairs of countries, we obtain the
global crisis indicator

CI =
2

d(d− 1)

d−1∑
i=1

d∑
j=i+1

CIi,j

=
K

K − 1
− 2

d(d− 1)(K − 1)

d−1∑
i=1

d∑
j=i+1

k̂τ,i,j,

with d being the number of countries. Instead of the mean, one can use a median that
neglects the magnitude of the interval indices, thus leading to a more robust specification.

The CI estimated for EPU is presented in Figure 3. Here, the identified intervals of a
local homogeneity of all ten pairs based on EPU in the five selected countries are used to
compute the global crisis indicator CI. It has long periods of homogeneity where no crisis
exists in any country pair. These episodes usually span several years. The homogeneous
episodes are interrupted by three common crises in nearly all the pairs. The first crisis
lasted less than one year and corresponded to the global financial crisis, which resulted in a
sudden shock to economic policy. Furthermore, it affected economic policy in countries with
less integration into the global financial market, like India, to a lesser degree. Therefore,
the global crisis indicator does not reach a value of one during this crisis. The second crisis
lasted two years, which is more than double the duration of the first one. It corresponds to
the Eurozone debt crisis, a prolonged episode of uncertainty about economic policy in the
Eurozone. Simultaneously, there was uncertainty about economic policy in the US due to a
debt ceiling debate and the risk of a government shutdown. Both issues involved discussions
over a longer period to resolve underlying problems. This is reflected in two years when the
global crisis indicator stayed elevated. Still, the crisis indicator again did not reach a value
of one because of India and the same reasoning.

The last crisis in the sample is different since it does attain the value of one, meaning that
it affected economic policy in all country pairs in the sample. This crisis can be attributed
to two simultaneously occurring events: the Brexit referendum and the election of Donald
Trump as president of the United States. Both events severely increased the uncertainty
about international cooperation, especially regarding trade agreements. Since India has
historical links to the UK and trades a lot with the US, economic policy in India was affected
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Figure 3: A global crisis indicator based on local homogeneity.
The crisis indicator is obtained by transforming the intervals of local homogeneity ranging from 1 to 6 into
a 0,1 Index. A value of 0 indicates homogeneity and, therefore, no crisis. A value of 1 indicates the absence
of homogeneity and, thus, a crisis in all pairs.

by this increase in uncertainty as well, resulting in a value of one for the global crisis indicator.
The crisis also lasted for a long time since the involved governments of the UK and the US
at this time did not swiftly act to dispel worries about their political agendas. This is in line
with earlier warnings from researchers such as Baker et al. (2016), that governments should
communicate policies transparently and predictably since they otherwise risk causing high
economic policy uncertainty. Furthermore, Caggiano et al. (2020) found that rising EPU in
influential countries such as the US can trigger large spillovers to smaller countries. Putting
that together with the finding in Davis (2016) that global economic policy uncertainty peaked
during the Brexit referendum further supports our conclusion that Brexit and the election
of Donald Trump resulted in the most global crisis of economic policy in our sample.

All in all, the proposed global crisis indicator allows a classification of recent events into
periods of crises and non-crises based on the degree of homogeneity that the data exhibit
during the respective events. It helps to assess how global the specific crises were and also
sheds light on how long each crisis lasted. From the application, economic policy crises
last longer if governments do not clarify their agendas or try to dispel worries about future
policy goals. We also learned that economic policy in developing countries like India is not
that much affected by internal political issues in the developed world or issues regarding
the global financial market. However, economic policy in developing countries is affected by
uncertainty about international cooperation and trade. Lastly, a minor shortcoming of this
setting with monthly frequency data is that our algorithm can only detect breaks with a
delay. Using monthly frequency will therefore require some patience to classify recent crises.
Daily data might be more suited for monitoring ongoing crises.
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6.2 Spillover estimation results

Papers like Angelini et al. (2019); Caggiano et al. (2020) have shown that uncertainty
spillovers from Chapter 3 vary over time. The intervals of homogeneity identified in the
previous section are window lengths of a rolling window procedure selected in a data-driven
way. They feature primarily long windows, interrupted by a few sequences of short windows
during episodes of crises. This section uses them to estimate bivariate rolling window VARs
for calculating DY spillovers. The top panel of Figure 4 shows the actual EPU data, and
the bottom one shows the spillover for the different window lengths with LHI standing for
Local Homogeneous Intervals. In line with most of the literature, uncertainty spillovers vary
over time. They increase during high economic policy uncertainty and decrease again when
uncertainty is low. This means that long windows do not, as might be worried by some,
smoothen out the countercyclicality in the data. Instead, the long windows can adequately
capture the data’s features. The data has five peaks marked with vertical lines, which cor-
respond to: 1. The global financial crisis in October 2008. 2. The European sovereign debt
crisis in August 2011. 3. The US and UK political struggle from June 2016 onwards. 4.
The trade war between the US and China, as well as the EU in 2019. 5. The outbreak of
COVID-19 in 2020. From the previous section, we know that the third crisis was more global
than the first and second one, affecting all countries in the sample. This did not result in
higher spillover as the spillover during the two previous crises attained the same level. The
third crisis differs from the two other crises, however, in the time persistence of the elevated
spillover level. It seems that a crisis being more global will lead to a prolonged episode of
high spillover instead of a more pronounced peak.

During the global financial crisis, spillover jumped up drastically in October 2008. This
was driven by the US, where Lehman Brothers declared bankruptcy on September 15th, trig-
gering the crisis. The European debt crisis was a prolonged episode of increased uncertainty.
The highest spillover in our sample is recorded in August 2011. Among the countries, it is
Germany and Japan who push up spillover this month. For Germany, it is clear that dis-
cussions about bailouts for other European countries created uncertainty. Regarding Japan,
the government intervened in currency markets to prevent the yen from rising, which would
make Japanese exports less competitive on the international market. This intervention also
seems to have created significant spillovers of economic policy uncertainty. In June 2016,
spillover jumped up. This is, when the first results of the Brexit referendum became public.
It caused stock markets around the world to fall. In our sample, the event is most clearly
visible in the country pairs of India and Korea, India and the US, as well as Korea and
the US. This is probably because especially India and the US are closely linked to the UK.
During the trade war, spillover is highest in August 2019 for the country pairs involving the
Korean Republic. This is because Korea announced that it would scrap a military informa-
tion agreement with Japan, which reacted to a Japanese decision to tighten high-tech exports
to Korea. This announcement prompted stark criticism from the US and the international
community, spreading uncertainty about Korea’s future economic policy to the world. The
Covid-19 crisis caused the strongest spillover in March 2020. While spillovers among pairs
involving either Japan or the US were highest, pairs with India generally resulted in very

17



100

200

300

400

500

0

20

40

60

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Time

EPU
DE
IN
JP
KR
US

Spillover
LHI
Max RW
Min RW

Figure 4: Spillovers.
Top: EPU data for the five selected countries. Bottom: Total spillover based on all pairs of 2dim VARs.
LHI stands for Local Homogeneous Intervals. Min and Max RW, respectively, stand for fixed windows of
length 12 and 37 months.

low spillovers during this month. Japan introduced mandatory quarantine for travelers from
China and Korea in early March. Korea responded by suspending visas for all Japanese
citizens traveling to Korea. Furthermore, Japan announced in March 2020 that it would
postpone the Olympic Games by one year and implement a range of economic measures to
stop the spread of the virus. In the US, Donald Trump tried to downplay concerns about
COVID-19 as long as possible. But in March 2020, he was forced to announce a national
emergency and had to acknowledge that the US would be heading for a recession. Therefore,
the US transmitted uncertainty because of Trump’s unclear and hesitant communication. In
contrast, Japan transmitted uncertainty due to the large range of measures, of which the
impact on economic development was unclear at the time of the announcement.

When comparing the different methods for calculating spillover, one immediately notices
that spillovers are much higher when based on small windows. This is because small windows
result in increased variance. The high spillover, resulting from small windows, does not reflect
changes in the data but the estimation uncertainty of the small windows. The spillover
based on the LHI is similar to the spillover based on long windows, which is more stable and
has lower variance. The proposed method improves the estimation of spillover compared
to rolling windows since it sometimes results in higher peaks, also staying high for longer
periods, than the long windows, meaning that our local estimation algorithm reacts more
to sudden increases in the data while still maintaining a low variance. This is particularly
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noticeable around 2011 during the European sovereign debt crisis and in 2016 during the
US and the UK political struggle. Here, the long windows smoothen out some variation in
EPU, failing to represent time-varying spillover adequately.

The window sizes used in the previous estimation represent our choice based on ideal
windows for monthly frequency. In empirical applications, researchers used different window
sizes. The variance of the window sizes employed in the literature ranges from 18 months
in Yin and Han (2014) to 72 months in Clausen et al. (2019). Therefore, we use a new grid
of windows: mτ,k = {18, 23, 29, 36, 45, 57, 72}. Since we now have longer intervals, we have
to discard more data at the start of the sample so that now the starting month is 2009M01.
The results of this exercise are depicted in Figure 5.
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Figure 5: Spillovers based on window sizes used in the literature.
Top: EPU data for the five selected countries. Bottom: Total spillover based on all pairs of 2dim VARs.
LHI stands for Local Homogeneous Intervals. Min and Max RW, respectively, stand for fixed windows of
length 18 and 71 months.

The variance between the spillover based on the shortest and longest window increased
compared to the previous figure. Especially the spillover estimated with the smallest window
size seems very large compared to the two other curves. Interestingly, our algorithm indicates
that the longest window is again preferred for spillover calculation since the spillover based
on the LHI is again very close to the longest window, even though the longest window is
now 71 months instead of just 37 months. The only period were the longest window size
would smoothen out too much variation is again around 2016, when the spillover based on
our method shows more variation and higher spillover. Based on this finding, one should be
careful when selecting window sizes for rolling window estimation not to choose too small
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windows. Too small windows will result in high values of spillover during crises. They are,
therefore, tempting. These results are based more on estimation uncertainty than increased
economic policy uncertainty.

7 Conclusion

An existing algorithm for detecting locally homogeneous intervals in a univariate setting is
adapted to the multivariate VAR context. Through a series of Monte Carlo simulations,
the algorithm is shown to perform well in this multivariate context, even when intervals are
small and breaks occur within short periods from each other or as smooth changes over time.
The algorithm can be applied to many settings by modifying the set of intervals.

In the paper’s last chapter, the algorithm is applied to identify homogeneous intervals
and estimate the spillover of EPU across countries. It turns out that empirical data are
primarily homogeneous, and breaks only occur during a limited number of common crises.
This feature is exploited to create a crisis indicator, which measures how the homogeneity
of the sample changes over time. The most significant episode of non-homogeneity turned
out to be the time around Brexit and the election of Donald Trump, when all countries
experienced increased uncertainty about economic policy. Even the global financial crisis had
less impact on economic policy uncertainty since it affected developing countries to a lesser
degree. From the spillover estimation part, it does not seem necessary to have window sizes
that vary at each τ since breaks occur only during specific periods and for short amounts of
time. Most of the time long window sizes are adequate for quantifying spillovers. This means
that sophisticated assumptions about time dynamics are unnecessary. Small adaptions to
the traditional rolling window approach are sufficient to take care of potential bias when
estimating time dynamics.

Avenues for further research are the application of the algorithm to empirical settings
with different time frequencies of the data, such as quarterly or weekly data. Furthermore,
the crisis indicator is an interesting topic for further research. It might indicate uncertain
times earlier than commonly available uncertainty indicators since heterogeneous patterns
in the data usually characterize uncertain times.

The authors report there are no competing interests to declare.
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Härdle, W. K., B. López Cabrera, O. Okhrin, and W. Wang (2016b). Localizing temperature risk.
Journal of the American Statistical Association 111 (516), 1491–1508.

Jo, S. and R. Sekkel (2017). Macroeconomic Uncertainty Through the Lens of Professional Fore-
casters. Journal of Business & Economic Statistics 0015, 1–11.

Jurado, K., C. S. Ludvigson, and S. Ng (2015). Measuring Uncertainty. American Economic
Review 105 (3), 1177 – 1216.
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policy uncertainty spillover
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A Simulation robustness

This appendix shows simulation results for scenarios two and three as well as results for

d = 4 for all three scenarios. The set of intervals is the same for d = 4, but we do need to

use a different set of parameters to estimate from, and therefore, we also obtain new risk

bounds. As in the setting with d = 2, we simulate three scenarios ranging from easy to

complex. The results are presented in the following three sections, one for each scenario.

A.1 Simulation robustness for Scenario 1: One break

This section only contains results for d = 4, which are depicted in Figure 6. In general, the

results are very similar to the case when d = 2. The only noticeable difference is that there is

now a larger heterogeneity in the mean (solid lines) of the different specifications during the

homogeneous part of the sample. The medians (dashed lines) are still all perfectly detecting

the break.

A.2 Simulation robustness: Scenario 2 - Two breaks

The results for Scenario two are depicted in Figure 7. It contains two breaks that occur

within a brief period: x1, . . . , x84 ∼ θ1, x85, . . . , x99 ∼ θ2, x100, . . . , x146 ∼ θ1. Since they

are barely visible, two dashed lines clarify where the breaks happen. All four specifications

detect both breaks. The behavior before the first break is very similar to the first scenario;

it, however, changes afterward. Suppose the additional restriction is not applied instead of a

small upward bias. In that case, the algorithm returns to the maximum window length before

jumping down again when the second break happens. This happens because observations
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Figure 6: Simulation robustness d = 4 - One break.

Top: Simulated 4dim VAR. The vertical line indicates a break. Mid : Identified Intervals for: optimal ρ

(black), ρ = 0.5 (blue), ρ = 0.088 (green), optimal ρ with no restrictions (red). Bottom: Test statistics for

k + 1 with ζ6 = 4.1 (horizontal red). Bounds for 5% and 95% bounds are depicted in grey.

from both sets of parameters mix. Shortly after the first break, most observations in the

tested windows again belong to θ1. Because of this, specification for optimal ρ with no

restrictions will result in long homogeneous window lengths furthermore too early.

The means of the other three specifications show an inverted u-shape that only grows to

a window length of four before jumping down to one again. The mix of observations from

both sets of parameters causes this smoother behavior. Nevertheless, the algorithm can still

identify the second proper break.

After the first break, the values of the likelihood ratio test fall below the threshold so that

the window length would be the maximum again. The restriction prevents the procedure

from jumping up, however. This is another piece of evidence why the additional restriction

is beneficial. It keeps results clear and identified breaks visible.
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Figure 7: Simulation robustness d = 2 - Two breaks.

Top: Simulated 2dim VAR. Vertical lines indicate breaks. Mid : Identified Intervals for: optimal ρ (black),

ρ = 0.5 (blue), ρ = 0.088 (green), optimal ρ with no restrictions (red). Bottom: Test statistics for k+ 1 with

ζ6 = 3.0 (horizontal red). Bounds for 5% and 95% bounds are depicted in grey.

The downward movements at the end of the sample in the middle and bottom panels

indicate the return to homogeneity. The test statistic falls below the critical value, and the

mean of specification ρ = 0.5 returns to a window length of four again.

Results for the second scenario with d = 4 are depicted in Figure 8. Again, the results

are very similar to the case when d = 2 except for a bit more heterogeneity in the means of

the different specifications during the homogeneous part of the sample.

A.3 Simulation robustness: Scenario 3 - Smooth break

Figure 9 illustrates the simulation results for Scenario three. It contains one break that is

a linear change from θ1 to θ2: x1, . . . , x96 ∼ θ1, x97, . . . , x112 ∼ θ = (16−i
16
θ1 + i

16
θ2) with
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Figure 8: Simulation robustness d = 4 - Two breaks.

Top: Simulated 4dim VAR. Vertical lines indicate breaks. Mid : Identified Intervals for: statistics ρ (black),

ρ = 0.5 (blue), ρ = 0.088 (green), optimal ρ with no restrictions (red). Bottom: Test statistics for k+ 1 with

ζ6 = 4.1 (horizontal red). Bounds for 5% and 95% bounds are depicted in grey.

i ∈ [1, 15], x113, . . . , x200 ∼ θ2. We constructed a tiny change that is barely visible. Still, the

gradual change is detected by all four specifications. However, the algorithm cannot jump

down to the smallest window since the likelihood ratio is not big enough. Furthermore, while

the medians follow the expected form with stairs at each window length, the mean increases

more smoothly. This is because some repetitions will already result in a window length that is

one higher than the current window length, which will result in a more smooth line instead

of strict stairs. The scenario with the highest value of ρ can return the smallest window

during the break. However, it will already return smaller windows during the homogeneous

part of the sample. This is because the highest value of ρ will result in the smallest critical

value. Hence, this scenario is best visualizing the trade-off involved in this procedure. Lower

critical values will result in better detection and a higher false alarm rate. Therefore, we
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prefer higher critical values only to detect true breaks and to avoid false alarms, even if this

means that we will not have a big break in the window length.
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Figure 9: Simulation robustness d = 2 - Smooth break.

Top: Simulated 2dim VAR. Vertical lines indicate breaks. Mid : Identified Intervals for: optimal ρ (black),

ρ = 0.5 (blue), ρ = 0.088 (green), optimal ρ with no restrictions (red). Bottom: Test statistics for k+ 1 with

ζ6 = 3.0 (horizontal red). Bounds for 5% and 95% bounds are depicted in grey.

The likelihood ratio test values are different from previous scenarios during the break.

They show a gradual reaction, slowly increasing in value. Only when the window lengths

nearly recovered to their maximum again there are noticeable spikes in the test values.

Despite the minimal reaction of the test statistic, particularly right after the break occurs,

the algorithm still manages to detect the smooth break.

Results for the third scenario with d = 4 are depicted in Figure 10. The results are even

more similar to the case when d = 2 than the other scenarios.
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Figure 10: Simulation robustness d = 4 - Smooth break.

Top: Simulated 4dim VAR. Vertical lines indicate breaks. Mid : Identified Intervals for: optimal ρ (black),

ρ = 0.5 (blue), ρ = 0.088 (green), optimal ρ with no restrictions (red). Bottom: Test statistics for k+ 1 with

ζ6 = 4.1 (horizontal red). Bounds for 5% and 95% bounds are depicted in grey.

B Distribution of test statistics

This appendix illustrates the distribution of test statistics for all three simulation scenarios

when d = 2. For comparison, the sample is divided into homogeneous and non-homogeneous

parts. Since the data are simulated, we know precisely which observations to use in which

part. The plots are then arranged in a way that the top panel contains average test statistics

for all intervals across the homogeneous part of the simulated data and the bottom panel

for the non-homogeneous part. The test statistics always represent the question: ”Can we

extend our homogeneous interval from k− 1 to k?” Therefore the number two on the x-axis

represents the test when going from the shortest interval to the second one. Additionally,

each plot contains a dashed horizontal red line representing the critical value for extending
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the homogeneous interval from the first to the second candidate interval. The critical values

across intervals are very similar, so there is no need to draw them for all steps. In all top

panels, the critical value is not visible since the test statistics are far below it. This is

expected since the top panel shows the homogeneous samples, which should always extend

to the longest candidate interval and not reject any interval length.

B.1 Distribution of test statistics for Scenario 1: One break

The first figure in this section corresponds to the results of the first scenario with just one

break. The results for this scenario are shown in the main body of the paper. For the

homogeneous plot, observations for τ ∈ [1, 38] are included. This is until the Likelihood

ratio test statistic in the bottom panel of Figure 2 in Chapter 5 reacts. The heterogenous

plot is then based on τ ∈ [39 : 84], which includes all time points for which the test statistic

deviates from the homogeneous values. As expected, some test statistics exceed the critical

value only in the bottom panel. The increasing pattern in the bottom panel is due to the

growing step length of the algorithm at each interval when recovering from a detected break.

The clustering below the critical value occurs because it is usually just the interval cov-

ering the break going backward from each respective τ which is rejected. For example, when

we are already 25 observations away from the break, the tests for intervals two, three, and

four will not exceed the critical value anymore since they will not contain any breaks any-

more. The few points around the critical value for each step are points where the respective

window does include one or more observations from the structural gap but not enough to

exceed the critical value. This behavior is by design since we want the algorithm to slowly

recover after a structural break instead of jumping down and up again.
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Figure 11: Test-stats - One break.

Top: Homogeneous subsample containing 38 data points for each distribution based on τ ∈ [1, 38]. Bottom:

Non-homogeneous subsample containing 46 data points for each distribution based on τ ∈ [39 : 84]. The

critical value is 3.1 (horizontal red). Results are based on the median of 250 runs. The figure was created

with the function pirateplot() from the package yarr in R.

B.2 Distribution of test statistics for Scenario 2: Two breaks

The second test statistic figure corresponds to the second scenario, which contains two breaks

within a short distance from each other and is depicted in Figure 12. The figure looks almost

identical to the one for the first scenario. The only difference is that there is a bit of a mass

shift above the critical value from the highest intervals to the ones in the middle. This

is because this scenario contains more data points with intervals of medium size and fewer

intervals with long length since the recovery process from the first break is interrupted by the

second break. In general, it makes sense that the figures are very similar since the algorithm

also detected the breaks correctly when they occurred within a short distance. Therefore,
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our algorithm can handle structural breaks, even if they occur with high frequency in the

data.
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Figure 12: Test-stats - Two breaks.

Top: Homogeneous subsample containing 38 data points for each distribution based on τ ∈ [1, 38]. Bottom:

Non-homogeneous subsample containing 62 data points for each distribution based on τ ∈ [39 : 100]. The

critical value is 3.1 (horizontal red). Results are based on the median of 250 runs. The figure was created

with the function pirateplot() from the package yarr in R.

B.3 Distribution of test statistics for Scenario 3: Smooth break

The third test statistic figure corresponds to the simulation’s third scenario, which contains

a smooth break and is depicted in Figure 13. For this scenario, even the test statistics in

the bottom part are mostly smaller than the critical value. In the resulting plot of the third

scenario, we can already see that the algorithm struggles to identify the break in this setting.

Therefore, it is no big surprise that the test statistics, even in the non-homogeneous sample,
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are also minimal.

Interval

Te
st

 s
ta

t

0.6

1.1

1.6

2.1

2.6

3.1

3.6

2 3 4 5 6

Interval

Te
st

 s
ta

t
0.8

1

1.2

1.4

1.6

Figure 13: Test-stats - Smooth break.

Top: Homogeneous subsample containing 70 data points for each distribution based on τ ∈ [1, 70]. Bottom:

Non-homogeneous subsample containing 30 data points for each distribution based on τ ∈ [71 : 100]. The

critical value is 3.1 (horizontal red). Results are based on the median of 250 runs. The figure was created

with the function pirateplot() from the package yarr in R.
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