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Abstract

This paper compares the accuracy of tail risk forecasts with a focus on including realized skew-
ness and kurtosis in ”additive” and ”multiplicative” models. Utilizing a panel of 960 US stocks,
we conduct diagnostic tests, employ scoring functions, and implement rolling window forecasting
to evaluate the performance of Value at Risk (VaR) and Expected Shortfall (ES) forecasts. Addi-
tionally, we examine the impact of the window length on forecast accuracy. We propose model
specifications that incorporate realized skewness and kurtosis for enhanced precision. Our findings
provide insights into the importance of considering skewness and kurtosis in tail risk modeling,
contributing to the existing literature and offering practical implications for risk practitioners and
researchers.
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1. Introduction

Starting approximately thirty years ago, the issue of capital adequacy has received increased
attention, with significant impetus given to supervisory and regulatory functions to closely mon-
itor the impact of volatility and interconnectedness on financial institution portfolios. Modern
risk management is based on the principle that increased risks must be adequately covered with
sufficient resources to avoid liquidity crises or defaults that could affect other institutions and the
financial system as a whole. The consequences of the 2007-2008 financial crisis underscored the
need for suitable capital risk measures exhibiting forecastability over relevant time horizons.

The various recommendations of the Basel Committee on Banking Supervision regarding capi-
tal risk regulations emphasize that the main parameters of a conditional distribution of returns to be
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monitored are some position index, specifically the threshold (Value at Risk, VaR, Jorion, 1997)
corresponding to a certain probability in the tail where losses occur, and the average value of the
loss once that threshold has been surpassed (Expected Shortfall, ES, Artzner et al., 1999). In this
context, without loss of generality, we assume that the tail in question is the left tail, representing
losses in long positions.

Market activity, characterized by price and volume movements in response to news, renders
the conditional distribution of returns non-constant over time. Consequently, both Value at Risk
(VaR) and Expected Shortfall (ES) become time-varying risk measures. Moreover, observed per-
sistence in market behavior suggests dynamics that leverage valuable past information. From an
econometric perspective, it is challenging to determine which features of past market behavior
are relevant for predicting VaR and ES, as these measures represent conditional quantiles and
expectations, respectively, in the tail of the asset return distribution.

Approaches to address this issue can broadly be categorized into three main groups. The first
category assumes a known parametric distribution for returns, typically a Student-t distribution,
and focuses on the dynamic evolution of the conditional variance of returns. This approach aug-
ments the fixed quantile identification with a GARCH process that models the dependence of
conditional variance on recent returns and past estimates. Parameters are estimated using (Quasi)
Maximum Likelihood (QML) methods. At the opposite end of the spectrum, parametric assump-
tions about the return distribution or its dynamics are entirely discarded. So-called historical sim-
ulation methods are employed, where future outcomes are simulated by repeating observed past
behaviors.

A third stream adopts an intermediate stance, focusing on the dynamics of the risk measure of
interest while limiting or avoiding reliance on parametric assumptions about the shape of the con-
ditional return distribution. This semi-parametric approach to financial risk modeling is gaining
popularity due to its flexibility and often demonstrates competitive performance compared to more
complex parametric models. In what follows, we will position ourselves in this stream of litera-
ture, addressing, in particular, the role that higher-order conditional moments, notably skewness
and kurtosis, have on the refinement of predictions, hence highlighting the role of the time-varying
evolution of asymmetry and tail density of the return distribution in sharpening the projections of
VaR and ES.

Our synthesis in this field is to identify two main categories of semi-parametric modeling ap-
proaches for tail risk measures. The first is called the “additive” approach, which utilizes linearized
representations of GARCH models, such as in CAViaR models. The second approach, referred to
as the “multiplicative” approach, involves estimating GARCH-type models via the minimization
of a properly defined strictly consistent scoring function. We consider the recent literature (e.g.,
Neuberger, 2012; Neuberger and Payne, 2021; Bae and Lee, 2021) on the derivation of realized
measures of skewness and kurtosis as consistent estimates of the conditional skewness and kurto-
sis of daily returns. For our purposes, these additional features of the conditional distributions may
be relevant when included in the specifications. Given that Amaya et al. (2015) provides evidence
that realized skewness and kurtosis are useful when forecasting the cross-section distribution of
equity returns, our interest here is to assess whether these benefits extend to risk forecasting as
well.

Although the additive approach has gained popularity, there is still a lack of extensive forecast-
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ing comparison between these two methodologies. Hence, we aim to bridge a gap in the literature
by proposing an application that evaluates the accuracy of forecasts generated by additive and mul-
tiplicative modeling strategies for a panel of 960 US stocks. To achieve this, we employ various
diagnostic tests and scoring functions for both VaR and ES forecasts. Additionally, we investigate
the impact of window length on forecasting accuracy, a critical issue for practitioners. Short win-
dows tend to minimize bias but increase variability in risk forecasts, while long windows have the
opposite effect: hence, we conduct a rolling window estimation/forecasting exercise and evaluate
the performance of three different window lengths, 500, 1000, and 2000 days.

Our novel model specifications using information on realized higher-order moments to fore-
cast tail risk measures are both regression quantile time series models for forecasting VaR, as
well as bivariate semi-parametric models for joint VaR and ES forecasting: we are interested in
providing specific evidence on the relevance of the realized skewness and kurtosis via Wald-type
tests, but also on their contribution in improving the forecast performance, assessed with standard
backtesting procedures. Their predictive performances are compared to those of competitors that
do not include such information.

In a nutshell, the evidence on the vast panel of stock indicates that multiplicative models are
preferred to additive ones, and that the extension to higher moments does not buy a generalized
relevant improvement in the outcome. In general, simpler models are to be preferred to more
complex ones.

The structure of the paper is as follows. In Section 2, we propose our models in Subsection
2.1, while the related estimation procedures and some properties of the estimators are illustrated
in Subsection 2.2. In Section 3, we present a recent literature review on realized estimators of
skewness and kurtosis of financial returns. Section 4 is dedicated to the empirical application,
while Section 5 concludes.

2. Semi-parametric risk modeling

The literature on semi-parametric risk modeling features a seminal paper by Engle and Man-
ganelli (2004), who introduced the Conditional Autoregressive Value-at-Risk (CAViaR) model
for forecasting VaR. This model has interesting connections with both quantile regression and
GARCH models, in that the CAViaR model can be viewed as a quantile autoregression with a
recursive term. By the same token, a linear GARCH model of a given order can be represented as
a CAViaR model of the same order. Building on the duality between GARCH and CAViaR, Xiao
and Koenker (2009) present an original approach to estimating parameters of a GARCH model,
proposing to minimize the typical quantile loss function used in quantile regression models.

Direct semi-parametric modeling of ES is not feasible because, unlike VaR, ES is not elic-
itable relative to a given loss function. However, Fissler et al. (2015) have derived a class of loss
functions that are strictly consistent for the pair (VaR, ES), in the sense that the expected loss
is minimized by the true (VaR, ES). Within this framework Taylor (2020) proposes a class of
semi-parametric models for (VaR, ES), augmenting the standard CAViaR setup with an additional
dynamic equation for ES, and replacing the usual quantile loss with a member of the Fissler-
Ziegel (FZ) class. In particular, among the available choices, Taylor (2019) considers a loss, or
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scoring, function based on the Asymmetric Laplace quasi-likelihood function, AL for short. Pat-
ton et al. (2019) extend the work by Taylor (2020) in two different directions. First, they consider
time-varying semi-parametric (VaR, ES) models based on the Generalized Autoregressive Score
(GAS) framework (Creal et al., 2013). Second, as done by Xiao and Koenker (2009) for VaR,
they consider directly estimating GARCH models minimizing a specific strictly consistent loss
function in the FZ class called FZ0 (owing its denomination to the fact that, when using this loss
to compare two models, it yields loss differentials that are homogeneous of degree zero). This
property can lead to a higher power in Diebold-Mariano tests (Diebold and Mariano, 2002).

2.1. The model setup
Let rt be the log-return for the day t, for t = 1, . . . ,T , and Qα,t = F−1

r (α|It−1) indicate the
conditional α-quantile of rt (level-α Value-at-Risk –VaR), with Fr being the cdf of rt; correspond-
ingly, ES α,t = E(rt|rt < Qα,t,It−1) indicates the conditional α-tail expectation of rt, given past
information It−1 (level-α Expected Shortfall – ES).

We let RVt, Skt, and Kut denote, respectively, the conditional variance, skewness, and kurtosis
of daily returns rt as follows

RVt = E0{(rt − µ1t)2|It−1} = µ2t − µ
2
1t,

Skt = E0


rt − µ1t

RV1/2
t

3

|It−1

 = µ3t − µ1tµ2t + 2µ3
1t

(µ2t − µ
2
1t)

3/2
,

Kut = E0


rt − µ1t

RV1/2
t

4

|It−1

 = µ4t − 4µ3tµ1t + 6µ2tµ
2
1t − 3µ4

1t

(µ2t − µ
2
1t)

2
,

where µkt = E0(rk
t |It−1) indicates the k-th conditional noncentered moment under the true mea-

sure. Estimates of these quantities can be readily obtained by replacing the involved conditional
moments µkt with their estimated counterparts, at least using daily observations. In Section 3, we
will formally address the estimation of µkt for 1 ≤ k ≤ 4.

We can now present the two alternative modeling frameworks under which VaR and ES fore-
casts are generated, denoted as, for ease of reference, the additive and the multiplicative models,
respectively. We simplify the notation by defining vt ≡ Qα,t and et ≡ ES α,t. Thus, the addi-
tive modeling framework can be represented as a regression model for the 1-step ahead expected
α-level of VaR, vt:

rt = vt + ηt,

where the error term ηt is controlling the left tail of the conditional distribution of returns, so that,
under correct specification of vt, the error term ηt is such that F−1

η (α|It−1) = 0.
This is a general framework since several models can be derived as special cases by varying

the dynamic specifications for vt. Noting that a ·̂ is used to indicate an estimate, r̄ = T−1 ∑T
t=1 rt

and Ŝk
+

t and Ŝk
−

t , represent negative and positive skewness:

Ŝk
+

1t = Ŝk1t · I{Ŝk1t > 0}, Ŝk
−

1t = −Ŝk1t · I{Ŝk1t < 0},
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in what follows, we investigate three specifications.
The first is the simple additive form of the VaR being driven only by the lagged observation of

an estimator of the integrated volatility (R̂Vt−1)2.

add_sim: vt = d0 + d1R̂V
1/2
t−1 + d2vt−1, (1)

To account for the potential misspecification in add_sim, we can resort to the Cornish-Fisher
(CF) expansion (Hill and Davis, 1968), which approximates the quantiles of an unknown non-
Gaussian distribution using the information on sample skewness and kurtosis to adjust the value of
the corresponding Gaussian quantiles. Considering as an illustration a random variable X ∼ (0, 1),
the CF approximation for the α-quantile of X reads as

XCF
α = zα +

z2
α − 1

6
S k +

z3
α − 3zα

2
Ku −

2z3
α − 5zα
36

S k2,

where S k and Ku are the usual moment-based sample skewness and kurtosis coefficients of X
respectively, and zα = Φ−1(α) is the α-quantile of a N(0, 1) random variable.

Therefore, the second model adds realized negative and positive skewnesses (Sk−t−1 and Sk+t−1)
and kurtosis (Kut−1) to the add_sim3:

add_skk: vt = d0 + d1R̂V
1/2
t−1 + d2vt−1 + (a1Ŝk

−

t−1 + a2Ŝk
+

t−1 + a3K̂ut−1). (2)

The inclusion of the skewness and kurtosis terms are thus motivated by a data-driven CF expan-
sion, whose coefficients, as it will be later illustrated, can be estimated in a semi-parametric fashion
by minimizing a strictly consistent loss function.

The third model further extends the add_skk with an asymmetric impact of the integrated
volatility in correspondence with returns smaller than their average (leverage effect):

add_lev: vt = d0 + d1R̂V
1/2
t−1 + d2vt−1 + (a1Ŝk

−

t−1 + a2Ŝk
+

t−1 + a3K̂ut−1) + d3R̂V
1/2
t−1I{rt−1 ≤ r̄}. (3)

By contrast, a multiplicative modeling framework can be represented in terms of the following
nonlinear regression model

rt = vt ηt,

where, under correct specification of vt, ηt is such that F−1
η (α|It−1) = 1.

This framework can also be motivated by a simple location-scale representation of the returns
process

rt = htzt, zt
iid
∼ (0, 1),

2In the absence of jumps, the integrated variance coincides with the quadratic variation that, in turn, diverges from
the conditional variance RVt by a zero mean error, thus motivating our notation (Andersen et al., 2001). A set of
alternative choices for R̂Vt−1 will be presented and discussed in Section 3.

3In our approach, we focus on the conditional distribution of returns rather than on their unconditional distribution,
as would happen when using the standard CF expansion. Hence, the sample skewness and kurtosis coefficients are
replaced by their realized counterparts that provide point estimates of daily conditional skewness and kurtosis.
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where the dynamics of h2
t = Var(rt|It−1) can be modelled by means of GARCH type models.

Under the iid assumption for zt the 1-step ahead α-level VaR of rt is given by vt = htzα where
zα = F−1

z (α). Thus, the first multiplicative model is for the α-level 1-step ahead VaRis

mlt_sim: vt = ht, h2
t = d0 + d1R̂Vt−1 + d2h2

t|t−1. (4)

When we allow for a time-varying conditional skewness and kurtosis in the returns distribution,
this assumption must be generalized to read

vt = htzα,t,

where the time variation in the conditional error quantile zα,t is driven by the time-varying con-
ditional skewness and kurtosis values as in the mlt_lev and mlt_skk specifications introduced
below. Thus, within the multiplicative modeling framework, we consider the following alternative
specifications for the α-level 1-step ahead VaR

mlt_skk: vt = ht(a1 Sk−t−1 +a2 Sk+t−1 +a3 Kut−1), h2
t = d0 + d1R̂Vt−1 + d2h2

t|t−1, (5)

mlt_lev: vt = ht(a1 Sk−t−1 +a2 Sk+t−1 +a3 Kut−1), h2
t = d0 + d1R̂Vt−1 + d2h2

t|t−1 + d3R̂Vt−1I{rt−1 ≤ r̄}.
(6)

Multiplicative models closely mirror additive models (1), (2) and (3). The mlt_sim is similar to
(1) and is the simplest specification with only the integrated volatility driving the dynamics of
the scale. Further mlt_skk assumes similar to (2) in the additional information incorporated in
realized skewness and kurtosis that drives the dynamics of the scale. The most complex model
mlt_lev also controls for the leverage in ht in the same fashion as in the model (3).

For both additive and multiplicative frameworks, the ES can be modeled according to two
different alternative specifications:

ES_sim: et = {1 + exp(b0)}vt, (7)
ES_skk: et = {1 + exp (b0 + b1 Skt−1 +b2 Kut−1)}vt. (8)

Here ES_sim is the simple specification assuming that the ES is a rescaling of VaR. Taylor (2020)
shows that this simple specification provides competitive VaR forecasts. More recently, Wang
et al. (2023) have extended the framework proposed in Taylor (2020) to allow for separate VaR
and ES dynamics as well as for the incorporation of realized measures.

The more complex ES_skk brings the dynamics of the ES to be also driven by the skewness
and kurtosis, possibly accounting for the misspecification of ES_sim. Differently from VaR, in
this case, we did not split the skewness into negative and positive. By construction, both ES_skk

and ES_sim specifications avoid the crossing of VaR and ES forecasts.
In the additive case, neglecting to model the ES dynamics leads to a pure VaR model. This

case, labeled as ES_no, corresponds to a model specification that is close in spirit to a Engle and
Manganelli (2004) CAViaR type one where some realized estimator of the integrated variance
replaces the volatility measure based on lagged daily returns.
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2.2. Estimation
Estimation of the vector θ of unknown parameters describing the models for vt and et both in

the additive and multiplicative models (1)-(8) is done semi-parametrically by minimizing a strictly
consistent scoring rule,

θ̂ = arg min
θ

T∑
t=1

S (α)
t , (9)

where S (α)
t is a member of the general class presented by Fissler and Ziegel (2015), i.e.

S (α)
t ≡ S (vt, et|rt;α) = {I(rt ≤ vt) − α}G1(vt) − I(rt ≤ vt)G1(rt) +G2(et){

et − vt + I(rt ≤ vt)
vt − rt

α

}
− ζ2(et) + a(rt).

In the definition of S (α)
t , the functions G1, ζ2, and G2 satisfy the following conditions: G1 is

increasing, ζ2 is increasing and convex, and G2 = ζ
′

2. In particular, setting G1(·) = 0, G2(x) = −1/x,
ζ2(x) = − log(−x), a(rt) = 1 − log(1 − α), leads to the following scoring rule (Taylor, 2020)

AL(α)
t =

I(rt ≤ vt)rt + vt{α − I(rt ≤ vt)}
αet

+ log(−et) − log(1 − α)

=
I(rt ≤ vt)rt + vt{α − I(rt ≤ vt)}

αet
− log

(
1 − α

et

)
.

Adding and subtracting αrt to the numerator of the second term on the right-hand side of the
previous equation, we get

AL(α)
t = − log

(
α − 1

et

)
−

(rt − vt){α − I(rt ≤ vt)}
αet

+
rt

et
.

In the simplified expression of AL(α)
t obtained by Taylor (2020), the last term on the right-hand side

is dropped. This simplification arises from the assumption that the conditional mean of returns is
zero, as shown in their equation (19). Notably, it can be demonstrated that the negative value
of AL(α)

t quantifies the contribution of the t-observation to a quasi-likelihood function, which is
constructed based on the Asymmetric Laplace distribution (Taylor, 2020).

With the same choices for G1, G2, and ζ2 as above, but setting a(rt) = 0, leads to the zero-
degree homogeneous loss used by Patton et al. (2019)

FZ0(α)
t =

I(rt ≤ vt)rt + vt{α − I(rt ≤ vt)}
αet

+ log(−et) − 1 = −
I(rt ≤ vt)(vt − rt)

αet
+

vt

et
+ log(−et) − 1.

Therefore, in the case of the model EM_no, where only the VaR is estimated, the objective function
is given by the quantile loss:

EM(α)
t = {α − I(rt < vt)} · (rt − vt). (10)
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In what follows, models estimated relying on loss functions AL(α)
t , FZ0(α)

t and EM(α)
t are labeled as

Loss=ALS, Loss=FZ0 and Loss=EM, respectively. Standard errors are computed using the asymp-
totic theory developed by Engle and Manganelli (2004), for pure VaR models, and Patton et al.
(2019), for joint VaR-ES models. Technical details are provided in Section 5.

It is worth noting that optimization in the (9) is a challenging task irrespective of what func-
tion S (α)

t is chosen, be it either AL(α)
t , FZ0(α)

t or EM(α)
t . In particular, the optimization of these

loss functions is typically strongly dependent upon the chosen initial values. For this reason, we
implemented an optimization technique similar to Engle and Manganelli (2004) which, for ease
of reference, we call complete estimation. Namely, for each model, we evaluated the objective
function on n = 5 · 104 uniformly sampled possible parameter constellations, and among them, we
selected them = 10 parameter vectors that lead to the smallest objective function values. Selecting
each of these m vectors as a starting point, we re-estimated the model m-times iterating between
a Nelder-Mead and a BFGS optimizer until convergence is achieved, and the final estimates are
those delivering the smallest value of the objective function. In a rolling window forecasting ex-
ercise, one may be advised to follow a parsimonious estimation strategy, by using the most recent
estimates as the starting point for the next estimation round, at regular intervals.

3. The underlying process and the derived realized measures

Having developed a setup where the theoretical estimators of conditional moments such as RV,
Sk, and Ku are considered within suitable models, we are left with the delicate phase to choose
which operational counterparts we can count on at daily frequencies, employing rolling windows
and sample statistics. The standard framework starts from a true underlying continuous log-price
following a diffusion process, disregarding, for example, the presence of structural breaks:

dXt = µ(Xt)dt + σ(Xt)dWt,

where, Wt represents the standard Brownian motion, µ(Xt) is the drift càdlàg finite variation pro-
cess, and σ(Xt) is the time-varying càdlàg volatility function. It is important to note that σ(Xt)
may depend on a separate Brownian motion, which could potentially be correlated with Wt. This
general family encompasses well-known processes such as the Heston or Bates processes (see
Heston (1993); Bates (1996)). In this context, the parameter t represents the continuous temporal
component that spans within and across days.

The second moment µ2t is known as the integrated variance, an object of paramount impor-
tance to researchers and practitioners. By utilizing the aforementioned process over a one-day
interval [t − 1d, t], the integrated variance can be computed as

∫ t

t−1d
σ2(u)du.

The temporal component then needs to be somehow aggregated to get the daily estimators for
the relevant moments: in this respect, we ground ourselves in the massive literature that considers
the market activity of a day (using the same index t ∈ {1, . . . ,T }) between opening and closing
to be divided into regularly spaced intervals i ∈ {0, . . . ,N}. We then take the high-frequency log-
prices xt,i as the elementary information, to be converted into rt,i = xt,i − xt,i−1, the corresponding
intraday log-returns, i = 1, . . . ,N.

The overwhelming attention of the literature was devoted to the design of consistent estima-
tors of the integrated variance µ2t of the continuous process over a discrete interval (Andersen

8



et al., 2010), with specific care devoted to departures from the standard framework (e.g. jumps)
or to the nature of observed prices which are affected by trading mechanisms (so-called market
microstructure). There exists a range of options for researchers and practitioners alike seeking to
estimate these quantities accurately and efficiently. Starting from the realized variance (Andersen
and Bollerslev, 1998),

µ̂RV
2t =

N∑
i=1

r2
t,i,

other widely used estimators of the integrated volatility are the, proposed in Barndorff-Nielsen and
Shephard (2004) and Andersen et al. (2012), bipower variation µ̂BPV

2t = π2
N

N−1

∑N−1
i=1 |rt,i||rt,i+1|, or the

upside and downside semivariances µ̂S VPOS
2t =

∑N
i=1 r2

t,i · I{rt,i > 0} and µ̂S VNEG
2t =

∑N
i=1 r2

t,i · I{rt,i < 0}
developed in Barndorff-Nielsen et al. (2008) and Bollerslev et al. (2020).

Barring a horse race among the many estimators of µ2t available, we limit ourselves to a single
choice, and our preference goes to the median estimator

µ̂MED
2t =

π

6 − 4
√

3 + π

N
N − 2

N−1∑
i=2

med(|rt,i−1|, |rt,i|, |rt,i+1|)2,

proposed by Andersen et al. (2012), because of its documented robustness properties.
Several new estimators for higher-order moments have emerged in recent years. While these

estimators do not directly estimate daily skewness or kurtosis, they instead estimate the integrated
third or fourth power of intraday returns or the averaged jump component. Empirical evidence
suggests that these estimators can be informative in predicting cross-sectional next week’s stock
returns or in forecasting RV at medium- to long-term horizons, as demonstrated by Mei et al.
(2017). The simplest estimator of the integrated k-order moments was proposed by Amaya et al.
(2015), shadowing the relationship between the realized variance and the integrated volatility (case
k = 2).

µ̂ACJV
kt =

N∑
i=1

rk
t,i.

Amaya et al. (2015) demonstrate the estimator’s consistency, which asymptotically captures only
the jump component and the average jump size but does not capture skewness arising from the
leverage effect and heavily depends on the sampling frequency. Later Liu et al. (2014) derived
asymptotic properties of the Amaya et al. (2015) estimator and developed their own measures of
realized skewness accounting for market microstructure noise. Another extension was provided by
Choe and Lee (2014), who showed that the daily third moment is proportional to the quadratic co-
variation between the squared return and the return process, and the fourth moment is proportional
to the quadratic variation of the squared return process with some additional cross-terms.

Based on some preliminary analysis, our choice for the realized skewness and kurtosis falls on
the estimators by Neuberger (2012) and Neuberger and Payne (2021):

µ̂NP
3t =

1
τ

τ−1∑
j=0

N∑
i=1

(
r3

t− j,i + 3y∗t− j,i−1r2
t,i

)
, µ̂NP

4t =
1
τ

τ−1∑
j=0

N∑
i=1

(
r4

t− j,i + 4y∗t− j,i−1r3
t− j,i + 6z∗t− j,i−1r2

t− j,i

)
,
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where y∗t,i−1 =
1
N

∑N
j=1(xt,i−1− xt,i− j) and z∗t,i−1 =

1
N

∑N
j=1(xt,i−1− xt,i− j)2 measure local (daily) trends in

simple and squared log-prices. Similar to Choe and Lee (2014), they assume that the conditional
mean of the returns is zero. Also, in what follows, we choose τ = 5.

We note that the estimators for realized skewness and kurtosis sometimes produce outliers
that can significantly affect the performance of VaR and ES models. To address this issue, we
applied a filter that removes estimated skewness and kurtosis values falling outside the ranges of
(−15; 15) and (0; 20), respectively. Outliers excluded from our analysis are then smoothed out
using interpolation techniques accounting for autocorrelation.

4. Empirical evidence

4.1. Data and forecasting design
In this section, we present the results of our setup to a very large panel of 960 U.S. stocks

traded on the New York Stock Exchange (NYSE), included in the S&P500 index at various times
over the considered period. The list of stocks can be found in Web Appendix List of Tickers. The
original dataset for each stock consists of intra-daily prices adjusted for stock splits and dividends
sampled every 5 minutes. We focus only on regular trading hours, from 9:30 am to 4:00 pm,
resulting in 78 observations for each trading day. The stocks have different timespans, starting
within a range between 1998-01-02 and 2016-10-11, and ending between 1998-01-09 and 2017-
02-09. Furthermore, to ensure an adequate sample size, we limit our analysis to assets with a
continuous record of at least 500 daily observations. This reduces the cross-sectional size of our
sample to 823 assets (marked in the Web Appendix List of Tickers in italics).

Our empirical strategy consists of two main steps. In the first, we conduct a full-sample anal-
ysis to assess the performance of various models in fitting VaR and ES. In the second step, we
focus on the out-of-sample forecasting performance using a rolling window approach. We con-
sider three estimation windows: 500, 1000, and 2000 days. For the out-of-sample analysis, we
include assets with a continuous record of daily pricing observations from the start date of our
sample to its end, 2017-02-09. In this case, we were able to obtain one-step ahead predictions for
the dates 2000-01-04 – 2017-02-09, for w = 500, 2002-01-03 – 2017-02-09 for w = 1000, and
2005-12-21 – 2017-02-09 for w = 2000. 406 of the original 960 stocks meet this criterion and are
included in the out-of-sample analysis (marked in boldface in the Web Appendix List of Tickers).

The model universe considered for both the full-sample and out-of-sample analysis includes all
the specifications presented in Section 2. As discussed, each of these is coupled with three different
ES specifications, ES_sim, ES_sk, and ES_no, for a total of 18 different models. Implementing
the procedures discussed in Section 2.2, each model is estimated for three different risk levels,
α ∈ {0.01, 0.025, 0.05}.

4.2. Analysis of the in- and out-of-sample losses and coverage
Before delving into the assessment of the model performances through the various tests con-

ducted on the extensive dataset, it is first useful to visually assess their in- and out-of-sample
coverage. Figure D.1 presents a comprehensive overview of the aggregated information across all
datasets, three coverage levels, and all models for in-sample performance. Each model is estimated
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for every dataset, and the in-sample empirical coverage (α̂) is calculated. The models are repre-
sented by row blocks in the figure, with corresponding names on the y-axis, such as “VaR=m_lev,
ES=no, Loss=EM”. Within each block, three box plots display the coverage for all datasets, with
blue indicating α = 0.01, green representing α = 0.025, and red representing α = 0.05. These
levels are also depicted by vertical dashed lines. All the models exhibit similar behavior and, on
average, achieve the desired coverage level, albeit with slight variations. Simpler models generally
exhibit less variability. Some cases encountered convergence difficulties, leading to the inability
to estimate certain models. The right panel of Figure D.1 shows the fraction of such problematic
cases, consistently below 3%.

A similar analysis has been conducted for out-of-sample coverage, utilizing three different
window sizes of 500, 1000, and 2000 days. Aggregated results are presented in Figure D.2. In
addition to the three colors representing coverage levels (α = 0.01, α = 0.025, and α = 0.05),
varying color intensities indicate window size (lightest shade = 2000 days; darkest = 500 days).4

The out-of-sample results reveal a less favorable situation than the in-sample, as all models tend to
overestimate the coverage on average, less severely so with a wider rolling window. Surprisingly,
the variance also increases in this scenario. This can be attributed to longer intervals containing
more diverse data from potentially different underlying models, thus imperfectly capturing future
behavior. Despite these nuances, all models demonstrate similar behavior based on simple visual
inspection. Additionally, Figure D.3 provides aggregated loss information. It is evident that both
the values and spreads of the loss function decrease with larger sample sizes.

4.3. Evaluation metrics
Following the practice by researchers and risk managers, the in- and out-of-sample perfor-

mances of the dynamic models5 for VaR and ES presented in Section 2 are firstly assessed us-
ing some diagnostic tests, whose technical details are summarized in Appendix B.2-B.6 for the
reader’s convenience.

To assess the in-sample VaR estimation performance, we consider the in-sample Dynamic
Quantile (DQ) test by Engle and Manganelli (2004). In particular, we consider the test in its
conditional coverage and independence versions as described in Dumitrescu et al. (2012). The
asymptotic theory for these tests was originally derived by Engle and Manganelli (2004) for the
pure CAViaR models. Therefore, the results presented hereafter refer to the ES_no case only,
involving CAViaR models estimated by minimizing the aggregated quantile loss.

While the in-sample DQ test assesses the goodness-of-fit of CAViaR models, its out-of-sample
counterpart can be seen as a general test for evaluating the statistical properties of a set of VaR

4Fewer models are considered in the out-of-sample analysis, excluding ”ES=SkKu” due to computational complex-
ity and ”Loss=FZ0” due to its similar behavior to ”Loss=ALS”.

5It should be noted that performing a complete estimation for all rolling windows in the out-of-sample exercise has
been highly time-consuming. As a result, we perform a full estimation for the initial window and subsequently at 500-
day time intervals, and, instead of repeating the complete estimation process for each subsequent window, we update
the parameters at regular intervals. To accomplish this, we perform parameter optimization every 50 observations,
starting from the results obtained in the previous step. This parameter updating allows us to refine the estimation
without repeating the entire process. In all other rolling windows, we maintain the parameters obtained from the
previous window.
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forecasts, regardless of the model. This includes testing for unbiasedness, independent hits, and
the independence of quantile estimates, as outlined by Engle and Manganelli (2004). In our case,
the out-of-sample DQ (OOS-DQ) test can effectively evaluate the properties of the VaR forecasts
generated by joint dynamic VaR-ES models.

Further, we jointly assess the statistical accuracy of VaR and ES estimates, both in and out-of-
sample, employing two regression-based testing procedures, i.e., the regression-based calibration
tests by Patton et al. (2019), henceforth PZC, and the ESR test by Bayer and Dimitriadis (2022).
The former includes separate calibration tests for VaR and ES while the latter test is specific for
ES diagnostics. Moreover, the PZC tests are based on OLS auxiliary regression equations where
the standardized generalized residuals (as in Patton et al., 2019) are regressed on their past values
as well as on VaR and ES forecasts, respectively.

The ESR approach, instead, is based on three separate test statistics: the Auxiliary, the Strict
and the Strict Intercept Backtest, which can be seen as an extension of Mincer-Zarnowitz regres-
sion to a semi-parametric setting, relying on the minimization of the consistent loss functions
proposed by Fissler and Ziegel (2015). The Auxiliary and Strict test statistics are computed re-
gressing returns on the ES forecasts and test the ES coefficients for joint (0, 1) values. Specifically,
the Auxiliary test requires an auxiliary VaR forecast, while the Strict Intercept tests whether the
expected shortfall of the forecast error (rt − ES t) is zero.6

Finally, the out-of-sample forecasting accuracy of each of the models is assessed by comparing
the average values of the FZ0 loss achieved over the forecasting period.

4.4. Testing the properties of the risk estimates
In this section, we analyze the properties of the in-sample risk estimates over the full-sample

for the set of 823 assets, postponing to a later subsection the generation of out-of-sample risk
forecasts. Also, for the sake of brevity, we only discuss results for α = 0.01, while the results for
α = 0.025 and α = 0.05 are contained in the Web Appendix Tables W.1 and W.2.

The In-sample DQ section of Table C.1 reports the results of the in-sample DQ test in its
conditional coverage (CC−DQIS ) and independence (ID−DQIS ) versions, respectively. For each
model, the table provides the non-rejection frequency at the 5% significance level. Higher values
in the table indicate better performance, as they correspond to models less frequently rejected by
the tests.

Although the CC − DQIS provides a comprehensive evaluation of the risk estimation perfor-
mance, it has a portmanteau nature, which overlooks the clustering features of the hit series and
neglects their coverage properties. By contrast, the ID − DQIS test offers a complementary per-
spective to the previous test, since it focuses explicitly on clustering. Combining the information
from both tests makes it possible to gain deeper insight into the reasons behind any model under-
performance. The test findings for α = 0.01 (similar results hold for the other risk levels) can be
summarized as follows:

6Bayer and Dimitriadis (2022) also consider a one-sided version of the Strict Intercept that is particularly useful
for regulatory evaluations. Since our main interest is simply in the assessment of forecasting accuracy, in this paper
we only consider the two-sided version of the test.

12



CC−DQIS : multiplicative models outperform their additive counterparts with the mlt_lev
resulting the best model at all risk levels. This model is not rejected at the 5% level in
approximately 70% of cases, closely followed by the mlt_skk. The mlt_sim yields slightly
lower rates than models incorporating information on realized skewness and kurtosis. The
non-rejection frequency of additive models is much lower, being on average close to 20%,
with the highest rate being recorded for the add_sim model.

ID − DQIS : multiplicative and additive models are characterized by similar performances,
suggesting that the high rejection rate of the latter class is mostly due to lack of coverage
rather than to hit clustering.

Second, to appreciate the contribution of the additional information in the form of realized
skewness and kurtosis in the skk models, in the Wald test section of Table C.1 we assess the
significance of the skewness and kurtosis coefficients involved in the VaR and ES dynamics, re-
spectively. Specifically, we test the null a1 = a2 = a3 = 0, for VaR, and b1 = b2 = 0, for ES,
against a two-sided alternative.

Again, the test results in terms of empirical non-rejection frequencies are summarized over the
panel of assets considered. For the plain CAViaR models, the null a1 = a2 = a3 = 0 is almost
always rejected at the usual 5% significance level, for all risk levels considered. Differently, for
joint VaR-ES models, the non-rejection frequency increases with the risk level α. Namely, the
percentage of non-rejections is close to 0 for α = 0.01 but it increases to values up to ≈ 40% for
α = 0.05. The discrepancy between non-rejection frequencies for pure VaR and joint VaR-ES
models is likely to be due to the fact that, for each class of models, testing is based on a different
asymptotic distribution: we rely on the theory derived by Engle and Manganelli (2004), for the EM
loss, and on Patton et al. (2019), for ALS and FZ0. The test results are only marginally affected
by the choice of the joint loss, AL or FZ0, used for estimation.

Moving to the analysis of ES dynamics, we find that the non-rejection frequencies of the null
b1 = b2 = 0 are substantially higher than the values observed for VaR parameters and are clearly
affected by the risk level. Namely, they approximately lie in the range 49%-61%, for α = 0.01,
55%-72%, for α = 0.025, and 62%-79%, for α = 0.05. Results are very close for models based
on ALS and FZ0 losses. Overall, we conclude that the inclusion of realized skewness and kurtosis
measures in the ES equation is less strongly supported than for the VaR.

Next, we focus on the in-sample PZC and ESR calibration tests. First, the Calibration test
section of Table C.1 for α = 0.01 (see Web Appendix Tables W.1 and W.2 for α = 0.025 and
α = 0.05) reports the results of the former tests for VaR and ES. The main findings arising from
the table can be summarized as follows:

• for α ≥ 0.025 (Tables W.1 and W.2), all models yield remarkably good non-rejection fre-
quencies, with values ranging from 72% to 94%.

• For both VaR and ES, we record a decay of the non-rejection frequency at the 0.01 risk
level (Table C.1). This is particularly relevant for VaR since α = 0.01 is the mandatory level
indicated by the Basel Committee.

• Models based on ALS and FZ0 losses return very close performances.
13



• Comparing simpler models (*_sim) with more complicated specifications (*_skk and *_lev),
we find that there is no clear winner but the ranking depends on the functional form and risk
level.

Finally, to assess the ”calibration” of ES forecasts, the ES calibration test section in Table C.1
for α = 0.01 (see Web Appendix Tables W.1 and W.2 for α = 0.025 and α = 0.05) reports the
non-rejection frequencies of the three ESR tests proposed by Bayer and Dimitriadis (2022)7. It
is worth noting that due to numerical problems in the computation of the test statistic, this could
not be computed for some of the assets in our panel, in addition to those that had been previously
excluded due to convergence issues in the estimation of the reference risk models: the number
of valid assets for each configuration, determined by a combination of available models and risk
levels, ranges from a minimum of 644 to a maximum of 796 assets out of 823.

Compared to the calibration test by Patton et al. (2019), the ESR reveals a much lower dis-
criminatory power returning non-rejection frequencies very close to unity for all models and risk
levels. Again, we do not report any apparent differences in model performances based on the ALS
and FZ0 losses.

4.5. Out-of-sample forecasting comparison
This section presents the results of the out-of-sample forecasting analysis. First, the perfor-

mance of the models under analysis is assessed by computing the following test statistics and
diagnostics over the out-of-sample period

• DQ tests for independence and conditional coverage

• VaR and ES calibration tests by Patton et al. (2019)

• ESR tests for ES calibration by Bayer and Dimitriadis (2022).

As in the previous section, test results across the whole panel of assets are summarized in terms of
empirical non-rejection frequencies. Also, we only discuss results for α = 0.01 in Table C.2 while
results for α = 0.025 and α = 0.05 have been reported in the Web Appendix Tables W.3 and W.4.

Similarly to what was observed in the full sample analysis, in a limited number of cases it has
not been possible to calculate the p-values of ESR tests due to failures in the estimation of the
auxiliary regression model underlying the test. Overall, depending on risk level, specific test of
interest, and sample size, the available number of stocks has been found to range between 371 and
406 out of 406 potentially available stocks.

The findings of the analysis can be succinctly summarized as:

• DQ tests: the non-rejection frequencies are very low for the shortest estimation window
T = 500 but they tend to increase with the sample size although, even for T = 2000, they
barely exceed 40%, for independence tests, only in a few isolated cases. Overall some
stylized facts arise. Plain VaR models on average perform better than joint VaR-ES models
while the inclusion of information on skewness and kurtosis does not bring any evident
advantages.

7The tests were implemented using the esback R-library provided by the same authors, freely available from
CRAN at the URL: https://cran.r-project.org/web/packages/esback/index.html
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• VaR calibration tests: the performances are very poor for the shortest sample size T = 500
but tend to improve as T increases. The model performances also depend on the value of
the risk level α with the best results obtained for α = 0.025. In terms of model specifica-
tions, add_sim and mlt_sim yield the highest non-rejection frequencies that exceed 70%
for T=2000 and α = 0.025 when the EM loss is used. When comparing plain VaR and joint
VaR-ES models, there are no clear performance gaps.

• ES calibration tests: the results are qualitatively not different from what was observed for
the VaR tests. Hence, similar considerations hold.

• ESR tests: the performance of the “strict” and “auxiliary” tests improves as the sample size
increases although the performance gap across different sample sizes is less evident than
for the other regression-based VaR and ES calibration tests. As above, even in this case, we
record the best performances for the add_sim and mlt_sim models reaching, in some cases,
non-rejection frequencies close to 80%. As far as the “strict intercept test” is concerned, the
differences across different models and sample sizes are much less evident and the non-
rejection frequency is > 80% in all instances. Again, the information on realized skewness
and kurtosis does not appear to lead to improvements in terms of forecasting performances.

Finally, we assess and compare the forecasting accuracy of the different models based on
the out-of-sample values of the following strictly consistent scoring functions: quantile loss (E)
for VaR and AL-score for joint VaR and ES forecasting (ALS). In terms of median loss (Table
C.3), the multiplicative model without skewness and kurtosis information (mlt sim) achieves the
minimum loss value in most cases for both quantile and ALS scoring functions. It is only slightly
outperformed by its additive counterpart (add sim) in one instance for pure VaR models and in
two instances for joint forecasts of VaR and ES. A similar trend is observed when considering
average ranks (Table C.4). The mlt sim model consistently delivers the minimum average rank,
except in the case of joint VaR and ES forecasts at the 0.05 level and for T = 1000, where it
ranks second, closely following the add sim model that also does not use skewness and kurtosis
information.

In conclusion, the key insights from the assessment of forecasting performance can be sum-
marized as follows:

• Incorporating information on realized skewness and kurtosis does not enhance forecasting
accuracy;

• Simpler models are preferable to more complex ones, as the latter are more vulnerable to
computational issues;

• The multiplicative specification is generally preferable to the more popular additive ap-
proach.

5. Concluding remarks

In this paper, we have presented a forecasting comparison of several semi-parametric risk fore-
casting models. Our work presents some important elements of novelty and potential interest for
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practitioners and researchers alike. First, the comparison is based on an unusually large set of
823 stocks: to the best of our knowledge, there are no other contributions relying on such a large
dataset in the tail-risk forecasting literature. Also, the availability of such a rich data environment
has a positive impact on the reliability of the regularities that emerge from the empirical analy-
sis, giving them a good degree of external validity. Second, we assess the potential contribution
coming from considering information on some recently proposed realized skewness and kurto-
sis measures. Third, we provide deeper insight into the selection of the functional form of the
semi-parametric model used to generate forecasts.

The results of our analysis clearly indicate that, at the forecasting stage, simple models should
be preferred to more complicated ones with a preference for multiplicative GARCH-type specifi-
cations. Realized skewness and kurtosis measures do not apparently provide valuable information
for improving the accuracy of tail risk forecasts even if in most cases, their coefficients turn out to
be significant in the full-sample analysis. By the same token, they may prove useful in generating
improved density forecasts, a task that we leave for future research.

When we shift the focus to the functional form of the dynamic risk model, an interesting and
original finding from our extensive empirical investigation is that the standard CaViaR-like additive
model specification outperformed by the less commonly used (in a semi-parametric framework)
GARCH-like multiplicative parameterization.
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Appendix A: Asymptotic distribution of the estimators

A.1. Standard errors estimation for pure VaR models
The theoretical results presented in this section are based on Engle and Manganelli (2004) and

assumptions therein. It is worth noting that, although Engle and Manganelli (2004) focuses on
additive CAViaR models, their framework readily applies to the multiplicative VaR models class.
In the following, we assume that the return process rt has conditional α-quantile given by vt(θ0).
The estimated VaR, vt(θ̂

(v)
), is obtained by replacing θ0 with the minimizer of the aggregated

quantile loss function. Applying the results in Section 4 of Engle and Manganelli (2004), θ̂
(v)

can
be shown to be consistent and asymptotically normal. In particular, we have

√
T A−1/2

T DT (θ̂
(v)
− θ0)

d
→ MVN(0, I) as T → ∞,

where AT = E
[
T−1α(1 − α)

∑T
t=1 ∇

′

vt(θ
(v)
0 )∇vt(θ

(v)
0 )

]
, DT = E

[
T−1 ∑T

t=1 ht(0|It−1)∇
′

vt(θ
(v)
0

)∇vt(θ
(v)
0 )

]
,

ht(0|It−1) is the conditional density of ηt = rt−vt evaluated at 0 and ∇vt(θ(v)) = ∂vt(θ(v))/∂θ(v). Con-
sistent estimates of AT and DT can be then obtained as follows

ÂT = T−1α(1 − α)∇⊤v(θ(v)
0 )∇(vθ(v)

0 ),

where ∇v(θ0) is the (T × p) matrix whose t-th row is ∇⊤vt(θ
(v)
0 ), and

D̂T = (2 T ĉT )−1
T∑

t=1

I(|rt − vt(θ̂
(v)

)|< ĉT )∇′vt(θ̂
(v)

)∇vt(θ̂
(v)

).

Analytical expressions for the elements of ∇vt(θ̂
(v)

) have been derived and reported in Web Ap-
pendix Derivatives. Following Engle and Manganelli (2004), the bandwidth ĉT is set as: ĉT = 40,
for α = 0.01, ĉT = 60, for α = 0.05. For the case 0.01 < α < 0.05, which is not consid-
ered in the paper by Engle and Manganelli (2004), we estimate the bandwidth by linear inter-
polation. So the final estimated asymptotic variance and covariance matrix of θ̂ is computed as

Σ̂θ̂ =
1
T (α) (1−α)D̂−1

T ÂT D̂−1
T and estimated standard errors are computed as ŝe(θ̂) =

√
diag

(̂
Σ−1
θ̂

)
.

Letting a ⊂ θ, the above results can be used to test a = 0. Note that we can write Rθ = a where

R =
(

0n−2,n

02,n I2

)
0m,n indicate a (m×n) matrix of zeroes and In be a (n×n) identity matrix. Relying on the asymptotic
normality of θ̂, it can then be shown that, under the null Rθ = 0, (Rθ̂)⊤(RV̂T R⊤)−1(Rθ̂) →

d
χ2

2, as
T → ∞.

Standard errors for joint VaR-ES models

Patton et al. (2019) prove consistency and asymptotic normality for the estimator θ̂
( j)

. The
theoretical results presented in this section rely on the theory developed in Patton et al. (2019) and
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assumptions therein. In the presentation of the following results, we assume that the return process
rt has theoretical α-level VaR and ES given by vt(θ

( j)
0 ) and et(θ

( j)
0 ), respectively. The estimated

VaR and ES, vt(θ̂
( j)

) and et(θ̂
( j)

), are obtained by replacing θ( j) with the minimizer of the strictly
consistent loss function used for estimation. It is worth noting that, although the results in Patton
et al. (2019) are derived for estimators based on the FZ0 loss function, they can be immediately
extended to estimators obtained by minimizing different loss functions, such as the ALS.

In particular, the asymptotic distribution of θ̂
( j)

is given by
√

T A−1/2
0 D0(θ̂

( j)
− θ( j)

0 )
d
→ MVN(0, I) as T → ∞.

Consistent estimates of A0 and D0 can be obtained as follows

ÂT = T−1
T∑

t=1
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( j)

)λ⊤t (θ̂
( j)

) (11)

D̂T = T−1
T∑

t=1

 1
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)
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)

e2
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)
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where the bandwidth cT is set equal to T−1/3, as suggested by Patton et al. (2019) and λt(θ( j)) =
∂L(α)

t /∂θ
( j), with L(α)

t denoting the strictly consistent loss function used for estimation. When
L(α)

t ≡ FZ0(α)
t , λt(θ( j)) is given by

λt(θ( j)) =
∂FZ0(α)

t

∂θ( j) = ∇⊤vt(θ( j))
1

−et(θ( j))

[
1
α

I{vt(θ( j))} − 1
]

+ ∇⊤et(θ( j))
1

et(θ( j))2

[
1
α

I{vt(θ( j))}{vt(θ( j)) − rt} − vt(θ( j)) + et

]
.

If the ALS loss is used, the formula above becomes

λt(θ( j)) =
∂ALS (α)

t

∂θ( j) = ∇⊤vt(θ( j))
1

−et(θ( j))

[
1
α

I{vt(θ( j))} − 1
]

+ ∇⊤et(θ( j))
1

et(θ( j))2

[
1
α

I{vt(θ( j))}{vt(θ( j)) − rt} − vt(θ( j)) + et(θ( j)) + rt

]
that differs from (13) for the return rt in the last term on the RHS. Analytical expressions for the
elements of ∇et(θ̂

( j)
) have been derived and reported in Web Appendix Derivatives. Finally, an es-

timate of the asymptotic variance and covariance matrix of θ( j) is then given by Σ̂θ̂ = T−1D̂−1
T ÂT D̂T

and standard errors are computed as ŝe(θ̂) =
√

diag
(̂
Σ−1
θ̂

)
.

Appendix B: Diagnostic tests for VaR and ES

B.2. In-sample hit test
The in-sample hit test is proposed by Engle and Manganelli (2004) as a model-based diagnostic

test for detecting misspecified CAViaR models. The test relies on the Hit variables defined as
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Hitt = I(vt) − α. Replacing vt by its estimated counterpart v̂t, the estimated hits are obtained as
Ĥitt = I(v̂t) − α and stacked together into Ĥit = (Ĥitq+1, . . . , ĤitT )⊤. Then, letting θ(v) denote the
vector of CAViaR coefficients, define Xt(θ

(v)
0 ) as Xt(θ

(v)
0 ) = (Hitt−1, . . . ,Hitt−q, z⊤t−1), where zt is a

(m × 1) vector of It measurable instruments, for t = q + 1, . . . ,T . For example, z⊤t−1 could include
estimated past VaR values or realized measures of skewness and kurtosis. Let then X(θ0) be the
matrix whose generic row is given by Xt(θ

(v)
0 ), so that X(θ(v)) is of dimension (T − q) × (q + m).

Then, define (q + m) × (T − q)-dimensional matrix

MT = X⊤(θ(v)
0 ) − E

{
T−1X⊤(θ(v)

0 )H∇vt(θ
(v)
0 )

}
D−1

T ,

where H is a diagonal matrix with diagonal entries given by ht(0|It−1) as defined in A.1. Under
the assumptions from Engle and Manganelli (2004), we have{

α (1 − α) E
(
T−1MT M⊤

T

)}−1/2
T−1/2X⊤(θ̂

(v)
) Ĥit

d
→ N(0q+m, Iq+m),

where 0q+m is the q + m vector of zeros, and Iq+m is the q + m dimensional identity matrix. In the
above result, the matrix MT can be estimated as

M̂T = X⊤(θ̂
(v)

) −

(2T ĉT )−1
T∑

t=1

I(|rt − vt(θ̂
(v)

)|< ĉT ) X⊤t (θ̂
(v)

)∇vt(θ̂
(v)

)

 D̂−1
T g⊤(θ̂

(v)
),

with g(θ(v)) = {∇vq+1(θ(v)), . . . ,∇vT (θ(v))}⊤. It can then be proved that

DQIS =
Ĥit

⊤

X(θ̂
(v)

)(M̂T M̂⊤
T )−1X⊤(θ̂

(v)
)Ĥit

α (1 − α)
d
→ χ2

q,

that in the reminder will be denoted as the In-Sample Dynamic Quantile test statistic.

B.3. Out-of-sample diagnostic tests for VaR forecasts: the out-of-sample Dynamic Quantile test
(Engle and Manganelli, 2004)

Formally, let (v̂T+1, . . . , v̂T+H) be a sequence of (1-step ahead) out-of-sample VaR forecasts.
The OOS-DQ test statistic is computed as

DQOOS =
H̃it(θ̂(v)

)⊤X̃(θ̂
(v)

){X̃(θ̂
(v)

)⊤X̃(θ̂
(v)

)}−1X̃(θ̂
(v)

)⊤H̃it(θ̂(v)
)⊤

Hα(1 − α)
, (13)

where θ(v) ⊆ θ indicates the subvector of model parameters involved in the VaR model and

H̃it(θ̂(v)
) = (H̃itT+q+1, . . . , H̃itT+H),

is the series of out-of-sample hits based on parameters estimated relying on information up to time
T ; X̃(θ̂

(v)
) is a (H − q) × (q + 2) matrix such that its (t − q)-th row is given by

X̃t(θ̂
(v)

) = (1, H̃itt−1, . . . , H̃itt−q, vt(θ̂
(v)

)),
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for t = q+1, . . . ,H, and where θ̂
(v)

is the estimate of θ(v). It can be shown that, under the assumption

in Engle and Manganelli (2004), DQOOS
d
→ χ2

q+2.
The out-of-sample DQ test could also be implemented by augmenting the X̃(θ̂T ) with other in-

struments such as past volatility measures, such as realized variances, squared or absolute returns.
In this case, the degrees of freedom of the χ2 distribution should be changed accordingly.

The out-of-sample DQ test, in the above-presented configuration, can be seen as a portmanteau
test for the correct specification of the VaR forecasting model and, in this sense, we will refer to
this test as the correct conditional coverage DQOOS test, abbreviated CC − DQOOS . Differently,
removing the constant term from the specification of X̃(θ̂T ) would yield a different version of the
out-of-sample DQ test, that we will call the independence DQOOS or, abbreviated, the ID−DQOOS .
The name derives from the fact that ID−DQOOS can detect serial correlation in the sequence of hits
but, due to the missing constant term, cannot be used to assess correct coverage of VaR forecasts.
The asymptotic distribution for the ID−DQOOS will be given by a χ2

q+1 random variable. Similarly,
it is possible to define analogous conditional coverage and independence versions of the in-sample
DQ test. In the remainder, these will be labeled as CC − DQIS and ID − DQIS , respectively.

B.4. Diagnostic tests for ES forecasts
B.5. The ESR backtests (Bayer and Dimitriadis, 2022)

In Bayer and Dimitriadis (2022), authors propose a set of backtesting procedures for ES regres-
sion (ESR), which build upon the testing approach introduced by Mincer and Zarnowitz (1969).
Specifically, the authors propose three ESR backtests: the “auxiliary”, “strict” and “strict inter-
cept” ESR.

The “auxiliary” ESR test is based on the bivariate regression model

rt = β0 + β1v̂t + uv
t , (14)

rt = γ0 + γ1êt + ue
t , (15)

for t = 1, . . . ,T , where E(ue
t |It−1, rt < v̂t) = 0 and Qα(uv

t |It−1) = 0. The idea is that a series of ES
forecasts from a correctly specified ES model should satisfy the following relation

E(rt|It−1, rt < v̂t) = γ0 + γ1êt,

with (γ0, γ1)⊤ = (0, 1)⊤. This hypothesis can be tested by fitting the regression model in (14-15)
through the minimization of a strictly consistent joint (VaR, ES) loss function. This leads to the
following Wald-type test statistic

TA−ES R = T (γ̂ − γ0)Ω̂−1
γ (γ̂ − γ0)⊤

d
→ χ2

2,

where γ0 = (0, 1)⊤, γ̂ is a consistent estimator of γ = (γ0, γ1) and Ω̂γ is a consistent estimator of
the covariance of γ̂ (see Bayer and Dimitriadis, 2022). The ”strict” ESR test is based on a similar
framework but v̂t in equation (14) is replaced by êt. Finally, the ”strict intercept” test replaces
equation (15) by the following

rt − êt = γ1 + ue
t .
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The null is now given by γ1 = 0 against a one-sided or a two-sided alternative 8. The test is
performed by computing a standard t-type statistic based on the estimated asymptotic variance
of γ̂1. The one-sided alternative is of interest for regulatory and, in general, risk management
purposes. In this paper, our interest is mainly in detecting deviations from the ideal situation of
correct specification of the risk forecasting models. Hence, we will focus only on the situation
where a two-sided alternative is considered. To implement the ESR backtests, we use the Esback
R package provided by the same authors (Bayer and Dimitriadis, 2020) for our empirical analysis.

B.6. Regression based calibration tests for VaR and ES (Patton et al., 2019)
Patton et al. (2019) propose OLS regression-based calibration tests for assessing the quality of

VaR and ES forecasts. In the auxiliary regression equations used for implementing the tests, the
dependent variables are given by the standardized generalized residuals

λs
v,t = I(rt ≤ v̂t) − α λs

e,t =
1
α

I(rt ≤ v̂t)
rt

êt
− 1

for VaR and ES, respectively. Both λs
v,t and λs

e,t are conditionally zero mean under correct speci-
fication of the VaR and ES modelsE(λs

v,t|It−1) = 0 and E(λs
e,t|It−1) = 0, for all t. It is also worth

noting that λs
v,t = Hitt, the hit variable already defined for DQ tests.

The test procedures, henceforth denoted as the PZC tests, are based on fitting by OLS the
following regression models

λs
v,t = a0,v + a1,vλ

s
v,t−1 + a2,vv̂t + uv

t (16)
λs

e,t = a0,e + a1,eλ
s
v,t−1 + a2,eêt + uv

t , (17)

where, under correct specifications, we have av = (a0,v, a1,v, a2,v)⊤ = 0 and ae = (a0,e, a1,e, a2,e)⊤ =
0. The statistics for testing these hypotheses are computed as

PZCv = â⊤v Ω̂
−1
v âv

d
→ χ2

2, PZCe = â⊤e Ω̂
−1
e âe

d
→ χ2

2,

where Ω̂v (Ω̂e) is a consistent estimator of the asymptotic covariance matrix of âv (âe). In our
empirical analysis, following Patton et al. (2019), to estimate Ωv and Ωe a Newey-West estimator
with 20 lags is used.

8Differently from the ”strict” and ”auxiliary” tests for which only a two-sided alternative was allowed.
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Appendix C: Tables

Table C.1: Calibration tests for VaR and ES models Patton et al. (2019); in-sample DQ conditional coverage (CCIS )
and independence test (IDIS ); Wald tests for skewness and kurtosis coefficients in VaR and ES models; ”Str.”, ”Aux.”,
”Str.I.” ES Regression (ESR) calibration test (Bayer and Dimitriadis (2022)): non-rejection frequencies at the 0.05
significance level (full sample).

α = 0.01 In-sample DQ Wald test Calibration test ESR calibration test
VaR ES Loss CCIS IDIS ai = 0 bi = 0 VaR ES ”Str.” ”Aux.” ”Str.I.”
mlt_lev — EM 0.712 0.727 0.005 — 0.617 — — — —
mlt_skk — EM 0.701 0.690 0.002 — 0.661 — — — —
mlt_sim — EM 0.684 0.589 — — 0.684 — — — —
add_lev — EM 0.198 0.746 0.010 — 0.594 — — — —
add_skk — EM 0.193 0.679 0.004 — 0.625 — — — —
add_sim — EM 0.235 0.562 — — 0.655 — — — —
mlt_lev sim ALS — — 0.016 — 0.548 0.695 0.988 0.987 0.995
mlt_skk sim ALS — — 0.017 — 0.584 0.734 0.984 0.983 0.995
mlt_sim sim ALS — — — — 0.612 0.783 0.980 0.982 0.996
add_lev sim ALS — — 0.016 — 0.563 0.741 0.984 0.984 0.994
add_skk sim ALS — — 0.010 — 0.601 0.778 0.980 0.978 0.991
add_sim sim ALS — — — — 0.588 0.682 0.983 0.982 0.993
mlt_lev skk ALS — — 0.017 0.532 0.546 0.670 0.969 0.961 0.999
mlt_skk skk ALS — — 0.010 0.539 0.597 0.688 0.962 0.947 0.999
mlt_sim skk ALS — — — 0.494 0.638 0.718 0.978 0.931 0.999
add_lev skk ALS — — 0.012 0.610 0.598 0.722 0.975 0.946 0.997
add_skk skk ALS — — 0.015 0.589 0.604 0.730 0.975 0.946 0.997
add_sim skk ALS — — — 0.527 0.618 0.651 0.973 0.927 0.997
mlt_lev sim FZ0 — — 0.021 — 0.554 0.716 0.982 0.985 0.995
mlt_skk sim FZ0 — — 0.021 — 0.590 0.727 0.985 0.985 0.994
mlt_sim sim FZ0 — — — — 0.614 0.783 0.982 0.980 0.994
add_lev sim FZ0 — — 0.011 — 0.560 0.737 0.984 0.983 0.994
add_skk sim FZ0 — — 0.019 — 0.605 0.761 0.974 0.979 0.992
add_sim sim FZ0 — — — — 0.597 0.686 0.983 0.983 0.993
mlt_lev skk FZ0 — — 0.018 0.521 0.551 0.651 0.965 0.953 0.999
mlt_skk skk FZ0 — — 0.007 0.527 0.590 0.699 0.970 0.952 0.997
mlt_sim skk FZ0 — — — 0.487 0.623 0.711 0.967 0.934 0.999
add_lev skk FZ0 — — 0.019 0.597 0.593 0.732 0.970 0.950 0.999
add_skk skk FZ0 — — 0.010 0.592 0.618 0.738 0.968 0.942 0.997
add_sim skk FZ0 — — — 0.539 0.609 0.651 0.972 0.929 0.997
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Table C.2: Out-of-sample DQ independence test (IDOOS ) and conditional coverage test (CCOOS ); calibration tests for
VaR and ES models Patton et al. (2019); ”Strict”, ”Auxiliary” and ”Strict Intercept” ES Regression (ESR) calibration
test (Bayer and Dimitriadis (2022)): non-rejection frequencies at the 0.05 significance level and number of valid assets
(out-of-sample data Tin).

α = 0.01 Out-of-sample DQ Calibration test ESR calibration test
VaR ES IDOOS CCOOS VaR ES ”Str.” ”Aux.” ”Str.I.”

T
in
=

50
0

mlt_lev — 0.030 0.002 0.002 — — — —
mlt_skk — 0.010 0.000 0.005 — — — —
mlt_sim — 0.039 0.017 0.084 — — — —
add_lev — 0.025 0.000 0.002 — — — —
add_skk — 0.015 0.000 0.000 — — — —
add_sim — 0.052 0.022 0.074 — — — —
mlt_lev sim 0.052 0.022 0.000 0.025 0.169 0.176 0.817
mlt_skk sim 0.020 0.007 0.007 0.057 0.186 0.211 0.838
mlt_sim sim 0.042 0.022 0.067 0.099 0.370 0.366 0.867
add_lev sim 0.022 0.005 0.000 0.074 0.266 0.261 0.884
add_skk sim 0.049 0.015 0.007 0.074 0.343 0.340 0.935
add_sim sim 0.015 0.007 0.049 0.092 0.317 0.348 0.898

T i
n
=

10
00

mlt_lev — 0.180 0.086 0.165 — — — —
mlt_skk — 0.133 0.076 0.207 — — — —
mlt_sim — 0.224 0.185 0.405 — — — —
add_lev — 0.126 0.067 0.163 — — — —
add_skk — 0.126 0.047 0.175 — — — —
add_sim — 0.175 0.131 0.430 — — — —
mlt_lev sim 0.143 0.089 0.064 0.114 0.409 0.415 0.948
mlt_skk sim 0.143 0.101 0.106 0.146 0.457 0.463 0.944
mlt_sim sim 0.190 0.170 0.326 0.304 0.641 0.688 0.964
add_lev sim 0.094 0.057 0.059 0.126 0.491 0.499 0.944
add_skk sim 0.126 0.069 0.099 0.168 0.487 0.487 0.939
add_sim sim 0.145 0.123 0.277 0.296 0.551 0.580 0.960

T i
n
=

20
00

mlt_lev — 0.330 0.241 0.449 — — — —
mlt_skk — 0.310 0.227 0.491 — — — —
mlt_sim — 0.419 0.362 0.531 — — — —
add_lev — 0.281 0.200 0.459 — — — —
add_skk — 0.268 0.192 0.447 — — — —
add_sim — 0.377 0.335 0.578 — — — —
mlt_lev sim 0.291 0.232 0.316 0.326 0.593 0.587 0.885
mlt_skk sim 0.234 0.192 0.358 0.356 0.629 0.643 0.886
mlt_sim sim 0.335 0.291 0.499 0.488 0.740 0.751 0.866
add_lev sim 0.303 0.207 0.294 0.311 0.656 0.644 0.880
add_skk sim 0.222 0.150 0.259 0.323 0.630 0.618 0.896
add_sim sim 0.300 0.241 0.486 0.472 0.735 0.735 0.872
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Table C.3: Median loss function values across all assets (out-of-sample data, Tin = 500, 1000, 2000). For VaR models,
the average quantile loss is reported (×1000). For ES models, the ALS scoring function is considered. The best model
within each class is reported in boldface.

VaR ES Tin = 500 Tin = 1000 Tin = 2000
0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05

mlt_lev — 0.999 1.667 2.538 0.852 1.490 2.322 0.818 1.464 2.319
mlt_skk — 0.982 1.643 2.521 0.842 1.486 2.309 0.801 1.458 2.320
mlt_sim — 0.940 1.602 2.454 0.822 1.469 2.291 0.790 1.443 2.308
add_lev — 0.990 1.663 2.524 0.855 1.494 2.330 0.813 1.465 2.322
add_skk — 0.992 1.648 2.537 0.859 1.490 2.320 0.816 1.467 2.325
add_sim — 0.958 1.639 2.569 0.820 1.472 2.306 0.798 1.448 2.315
mlt_lev sim -0.411 -1.312 -1.739 -1.031 -1.654 -1.977 -1.395 -1.789 -2.042
mlt_skk sim -0.484 -1.365 -1.765 -1.082 -1.645 -1.984 -1.399 -1.797 -2.043
mlt_sim sim -1.002 -1.592 -1.888 -1.319 -1.784 -2.045 -1.506 -1.844 -2.055
add_lev sim -0.354 -1.316 -1.737 -1.014 -1.651 -1.965 -1.357 -1.762 -2.026
add_skk sim -0.442 -1.331 -1.695 -0.968 -1.604 -1.954 -1.297 -1.756 -2.023
add_sim sim -0.665 -1.568 -1.900 -1.302 -1.782 -2.043 -1.491 -1.836 -2.064

Table C.4: Average ranks across all assets based on quantile loss and ALS scoring functions (out-of-sample data,
Tin = 500, 1000, 2000).The best model within each class is reported in boldface.

VaR ES Tin = 500 Tin = 1000 Tin = 2000
0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05

mlt_lev — 4.441 4.374 4.153 4.303 4.241 4.155 4.204 4.034 3.975
mlt_skk — 3.436 3.303 3.192 3.554 3.594 3.483 3.643 3.466 3.581
mlt_sim — 2.002 1.709 1.820 2.020 2.027 2.081 2.261 2.241 2.264
add_lev — 4.209 4.562 4.569 4.475 4.781 4.751 4.387 4.562 4.369
add_skk — 3.990 4.143 4.081 4.143 4.113 4.217 4.165 4.236 4.200
add_sim — 2.921 2.909 3.185 2.505 2.244 2.313 2.340 2.461 2.611
mlt_lev sim 3.956 4.160 4.025 4.076 4.030 4.084 4.002 4.002 3.803
mlt_skk sim 3.739 3.685 3.749 3.766 3.938 3.778 3.778 3.682 3.734
mlt_sim sim 2.067 2.229 2.377 2.057 2.167 2.246 2.094 2.131 2.091
add_lev sim 4.101 4.283 4.165 4.234 4.458 4.507 4.446 4.549 4.623
add_skk sim 3.823 4.126 4.227 4.251 4.350 4.406 4.515 4.505 4.552
add_sim sim 3.315 2.517 2.458 2.616 2.057 1.978 2.165 2.131 2.197
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VaR=a_sim, ES=sim, Loss=FZ0
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VaR=a_lev, ES=sim, Loss=FZ0

VaR=m_sim, ES=sim, Loss=FZ0
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VaR=m_lev, ES=SkKu, Loss=ALS
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NA %
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Figure D.1: In-sample coverage for the models listed on the Y-axis. The left panel displays the estimated coverage
probabilities (α̂), while the right panel shows the percentage of cases where the model estimation failed. Different
colors represent different true coverage levels: blue for α = 0.01, green for α = 0.025, and red for α = 0.05. Each
point corresponds to one stock.
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w = 2000, α = 0.025

w = 500, α = 0.05
w = 1000, α = 0.05
w = 2000, α = 0.05

Figure D.2: Out-sample-coverage estimated probabilities (α̂) for the models listed on the Y-axis. Different colors
represent different true coverage levels: blue for α = 0.01, green for α = 0.025, and red for α = 0.05. Different
intensities of the colours represent different widths of the rolling window, as depicted in top-right corner. Each point
corresponds to one stock.
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w = 2000, α = 0.025
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Figure D.3: Value of the loss function in out-sample-performance for the models listed on the Y-axis. Different colors
represent different true coverage levels: blue for α = 0.01, green for α = 0.025, and red for α = 0.05. Different
intensities of the colours represent different widths of the rolling window, as depicted in top-right corner. Each point
corresponds to one stock.
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