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ABSTRACT

Context. High accuracy astrometric instruments like Gaia aiming at an accuracy of 1 microarcsecond cannot be considered as point-like
observers in the framework of relativistic modelling of observable quantities.
Aims. Special-relativistic effects on the imaging by a non-point-like arbitrarily moving optical instrument are discussed.
Methods. A special-relativistic reflection law for a mirror of arbitrary shape and motion is derived in the limit of geometrical optics. The
aberration patterns are computed with ray tracing using a full special-relativistic model for two simple rotating optical instrument.
Results. It was found that the effect of special-relativistic reflection law on the photocenters of aberration patterns of an optical system rotating
with a moderate angular velocity of 60′′/s may be at the level of 1 microarcsecond if the system involves mirrors significantly inclined relative
to the optical axis.
Conclusions. Special-relativistic optical modelling of the future astrometric instrument is generally speaking indispensable ifa level of a few
microarcseconds is envisaged.
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1. Introduction

The purpose of this paper is to investigate possible relativistic
effects on the imaging by an optical system in arbitrary motion.
Normally, in the framework of relativity one considers point-
like observers. The methods to calculate observed quantities for
such observers are well known. It is tacitly assumed herewith
that the actual instrumentation of the observer is so small that
one considers the positions and velocities of each part of the
instrument to be the same (and that single position and velocity
is called the position and velocity of the observer). In reality
even for an Earth-based telescope it is clear that the velocities
of different parts of the primary mirror in inertial coordinates
(not rotating with the Earth) are slightly different. However, in
the past the accuracy of observations was considered to be “too
low” and the size of the mirror “too small” for that differences
to be of practical relevance.

Due to recent technical developments especially for as-
trometric space missions like Gaia (de Boer et al. 2000;
Perryman et al. 2001; Bienaymé & Turon 2002), JASMINE
(Gouda et al. 2002) and SIM (Shao 1998) the situation has
changed. In case of Gaia, we deal with a scanning satellite
which permanently rotates in space with a period of 6 hours.
The size of the primary mirror of Gaia is 1.4 m, that is compa-
rable with the size of the spacecraft itself. The envisaged best
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accuracy of Gaia is a fewµas (and can be even below that limit
in some favorable cases). Therefore, one cannot neglect a priori
the difference of velocities of various parts of the instruments.
It is our purpose to investigate these effects and estimate their
magnitude for Gaia.

The general-relativistic model for Gaia has been formu-
lated in full detail by Klioner (2003, 2004). The model uses
two principal relativistic reference systems: (1) the Barycentric
Celestial Reference System (BCRS) and (2) the Center of Mass
Reference System (CoMRS) of the satellite. The former is a
global reference system with origin at the barycenter of the
solar system. It has been recommended by the International
Astronomical Union for relativistic modelling of high-accuracy
astronomical observations (Soffel et al. 2003). This reference
system is used to model the dynamics of massive bodies, space
vehicles (e.g., the Gaia satellite) and light rays within the Solar
system. The final Gaia catalogue will contain coordinates ofce-
lestial objects in the BCRS. The CoMRS is the local relativistic
reference system of the satellite. It is explicitly constructed by
Klioner (2004). The gravitational influence of massive bodies
is effaced in the CoMRS as much as possible and, according to
the equivalence principle, represented by tidal potentials. The
CoMRS has its origin in the center of mass of the satellite and
is kinematically non-rotating with respect to the BCRS. The
CoMRS is physically adequate to model phenomena occur-
ring in the immediate neighborhood of the satellite: attitude,
the process of observation, etc. According to Klioner (2004)
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the metric tensor of the CoMRS differs from the Minkowski
metric by three kinds of terms (the gravitational field of the
satellite is too small and can be neglected safely): an inertial
term due to non-gravitational accelerations of the satellite (for
Gaia these accelerations can be relatively large during orbital
maneuvers and only about 2× 10−13 m/s2 in between mainly
due to solar pressure); an inertial term due to the slow rota-
tion of the CoMRS relative to the co-moving Fermi-Walker
transported locally inertial reference system (with angular ve-
locity of ∼ 3 × 10−15 s−1 = 2 ′′ per century); and tidal gravi-
tational potentials (producing relative accelerations ofat most
10−12 m/s2 at a distance of 2.5 meters from the satellite’s cen-
ter of mass). Simple calculations show that all these terms in-
fluence the CoMRS light propagation within a few meters from
the satellite’s center of mass at a level much lower than the goal
accuracy of 1µas. Therefore, all these terms can be neglected
for our purposes and one can consider the CoMRS for a suffi-
ciently small interval of time as an inertial reference system of
Special Relativity.

In Section 2 we summarize the ideas of how to calculate
the special-relativistic effects in the aberration patterns due to
the rotation of the instrument. Section 3 is devoted to a descrip-
tion of ray tracing calculations of the relativistic effects in the
aberration patterns for two simple optical systems. The details
of the derivation of the special-relativistic deflection law are
given in the Appendix. There we also introduce a general the-
oretical scheme which we use to treat arbitrarily-shaped and
arbitrarily moving mirrors in special relativity.

2. General scheme of computing relativistic
effects due to the rotation of an optical system

Our general goal is to discuss and calculate the influence of
relativistic effects on the imaging by an optical instrument in
some non-inertial motion. In this paper we simplify our gen-
eral goal in several directions: (1) we consider here the case
of optical instruments consisting of mirrors only (no lenses are
considered), (2) we do not consider the effects of wave optics
and work in the approximation of geometric optics (see, how-
ever, a note at the end of Section 4).

For an optical system consisting solely of a number of
arbitrarily moving mirrors, the most important relativistic ef-
fect is the special-relativistic modification of the reflection law.
That modified special-relativistic reflection law will produce a
change in aberration patterns as compared to the patterns cal-
culated by using the normal Newtonian reflection law. These
perturbed aberration patterns could potentially affect astromet-
ric measurements based on an interpretation of the images ob-
tained in the instrument’s focal plane.

2.1. Reflection law

First, we have to formulate the general principles allowing
one to calculate the aberration patterns within the framework
of Special Relativity. Let us consider the following problem
within the framework of Special Relativity. Given a mirror of
arbitrary shape in arbitrary motion (see Section A.2 for a for-
mal mathematical description of such an arbitrary mirror and

Section 2.2 for a discussion of such mirrors from the physical
point of view) and a light ray hitting the surface of the mirror
at a given point and moment of time we would like to calculate
the parameters of the outgoing (reflected) light ray. The simpli-
fied problem of a plain mirror moving with a constant velocity
perpendicular to its surface has been considered by Einstein
(1905) in the very first paper on Special Relativity Theory. In
the Appendix the most general case of this problem within
Special Relativity is considered in great detail. Slightlymod-
ifying the arguments of Einstein (1905) we first use Lorentz
transformations to transform from a laboratory inertial refer-
ence system (t, xi) to an inertial reference system (T, Xa) in-
stantaneously co-moving with the element of the mirror where
the reflection of a particular light ray occurs, then apply the
known reflection law in that reference system and then trans-
form the reflected light ray back into the laboratory reference
system. The relation of that scheme to direct calculations in-
volving Maxwell’s equations is also discussed in the Appendix.
In our calculations we recover a number of known results for
various particular cases. An overview of these known results
and the corresponding comparison are also given. The main
formula used in all the ray tracing calculations of Section 3is
the relativistic reflection law given by Eq. (A.51).

2.2. Arbitrarily shaped and moving mirrors

A very important point of the whole scheme is that the shapes
of the mirrors in laboratory coordinates (t, xi) and, possibly, the
time-dependence of these shapes are assumed to begiven. We
describe the shape of each mirror by a two-parameter family of
worldlines of each individual particle of the mirror denoted as
xi

m(t; ξ, η). Hereξ andη are two continuous parameters “num-
bering” the particles which constitute the surface of the mirror.
Clearly, for fixed values ofξ andη function xi

m(t; ξ, η) repre-
sents the (t, xi)-parametrization of the world line of the cor-
responding particle. For fixedt the same functionxi

m(t; ξ, η)
represents the instantaneous position and shape of the mirror
in the t = const hyperplane of the coordinates (t, xi). In this
case (t = const) the parametersξ andη give a kind of non-
degenerated two-dimensional coordinate chart on the surface
of the mirror. We considerxi

m(t; ξ, η) to be differentiable with
respect toξ andη. This means that the coordinate represen-
tation of the surface is a smooth two-dimensional surface for
each moment of coordinate timet.

Let us note that in general there is no inertial reference sys-
tem where the whole system or any of its mirrors is at rest. In
the special cases when such an inertial rest-frame of a mirror
does exist one should certainly consider the shape of the mirror
in that rest-frame. In the practical cases considered belowsuch
rest-frames do not exist. Moreover, the size of the mirrors is so
large that we cannot assume that the velocities of all pointsof
the mirror are approximately constant in any inertial reference
system.

We do not consider the question of deformations of the mir-
rors due to their non-inertial (for example, rotational) motion
(i.e., the relation between the intended shapes of the mirrors
during their manufacturing and their shapes, e.g., in a rotating
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satellite, in coordinates (t, xi)). The behaviour of a mirror as
a physical body is a separate question, a rigorous relativistic
treatment of which would require at least a special-relativistic
theory of elasticity. As long as the angular velocity is con-
stant the deformations and special-relativistic effects on the
shape (e.g. Lorentz contraction) are also constant. In thiscase a
rigidly rotating mirror can be considered to be Born-rigid (Pauli
1958, Section 45). We can also argue that the constant defor-
mations are assumed to be properly taken into account during
manufacturing so that the rotating mirrors have the assumed
forms. One can even argue that the mirrors can be made active
to retain the prescribed form (which is certainly the case for
many larger Earth-bound instruments, but may appear to be a
rather bizarre argument in some other cases).

2.3. “Observable” aberration patterns

The last issue is the definition of the observing (imaging) de-
vice. In analogy to our representation of the mirrors we first
define a coordinate “plane”xi

f (t; ζ, χ) in laboratory coordinates

(t, xi) which coincides with the focal “plane” of the instrument
in the Newtonian case. In many cases (e.g. for the case consid-
ered in Section 3 below)xi

f (t; ζ, χ) can be taken to be a plane
in the considered coordinates (that is, for any moment of time
there existni(t) independent ofζ andχ such thatx f ·n = 0). The
aberration patterns we calculate below are defined as the setof
points at which the light rays from a source hit that coordinate
focal plane at some momentt = tobs = const. Generally speak-
ing the aberration patterns cannot be considered as “infinitely
small”. This means that there is no inertial coordinate system
in which the part of the detector (that is, of the focal “plane”)
registering an aberration pattern can be considered at rest.

If the patterns are “small enough” (which is typical case
for reasonable high-quality optical instruments) one could in-
troduce an inertial reference system (τ, ρi) instantaneously co-
moving some central point of the aberration pattern and de-
fine the “observable” pattern as a set of points at which the
light rays from a source hit that coordinate focal plane at some
momentτ = τobs = const (here one should also take into ac-
count the relativistic effects in spatial coordinates and corre-
spondingly treat Lorentz contraction etc.). First, although this
approach seems to be more adequate for a non-inertial motion
it still gives a coordinate-dependent picture because of finite
extension of the patterns. Second, we have explicitly checked
that this additional Lorentz boost does not influence any of the
pictures and numerical results given below.

Note that we are interesting in prediction of the changes in
the aberration patterns compared to the prediction made forthe
“same” optical device without rotation and using Newtonian
geometric optics (this latter prediction is typically available
from the manufacturers of the instrumentation). From this point
of view, our definition of “observed” aberration pattern is ade-
quate. In more realistic case one has to model the process of
observation in much more detail (e.g., CCD orientation and
position within the instrument, CCD clocking, averaging, TDI
mode etc.). Such a detailed modelling is however unnecessary
for the purposes of this paper.

Summarizing, our aberration pattern modelling consists of
(1) fixing the models of the mirrorsxi

m(t; ξ, η) and the focal
planexi

f (t; ζ, χ), and (2) tracing a grid of incoming light rays,
which interact with the optical system only at the moments of
reflection according to (A.51), until the point of intersection
with the focal planexi

f (t; ζ, χ), and (3) forming the aberration
pattern itself and/or calculating its photocenter.

3. Relativistic astrometric effects due to rotational
motion of the satellite

In order to evaluate the relativistic effects in the aberration pat-
terns of planned scanning astrometric instruments, let us con-
sider an extended optical system rotating rigidly with a constant
angular velocity relative to the inertial reference system(t, xi).
For a scanning astrometric satellite the real angular velocity is
not constant (e.g., because of the required scanning law), but its
changes are small and slow, and will be neglected here. Rigid
rotation of the optical instrument means that the whole instru-
ment is at rest in a reference system (t, yi) related to the inertial
laboratory reference system (t, xi) asyi = Ri

j x j, Ri
j being an

orthogonal (rotational) matrix.
To calculate the aberration patterns of several optical sys-

tems discussed below we have developed a numerical ray trac-
ing code in Java allowing us to calculate aberration patterns
for an arbitrary optical system rigidly rotating in our labora-
tory coordinates. Each mirror in the system can be individually
shaped and oriented in those coordinates. The code allows us
to control all intermediate calculations as well as the overall
numerical accuracy.

Parameters of the optical systems (size of the mirrors, focal
distance, distance of the primary mirror from the rotational axis
and angular velocity) considered in Sections 3.1 and 3.2 below
are chosen to represent qualitatively some principal features of
planned astrometric missions like Gaia (Perryman et al. 2001)
or JASMINE (Gouda et al. 2002), where a scanning satellite
comprising two astrometric telescopes continuously rotates
with an angular velocity of orderΩ ∼ 60 ′′/s.

3.1. A One-mirror optical system

The first optical system that we will study consists of one rotat-
ing parabolic mirror. A scheme of this optical system is given
on Fig. 1. The parabolic mirrorM1 is a square mirror of size
1.5 m× 1.5 m and focal lengthd f = 46.67 m. This roughly cor-
responds to the astrometric instruments of Gaia. The receiver at
the focal plane is considered to be 0.814 m× 0.814 m in size
providing a field of view of∼ 1◦ × 1◦. The rotational axis goes
through the origin O of our coordinates perpendicular to the
plane of Fig. 1. The distance from O to the center of the pri-
mary mirror P1 is r = 1.5 m. The distance from P1 to the center
of the focal plane C is obviously the focal distance 46.67 m.
The whole optical system is rotating with respect to O with
an angular velocityΩ = 60 ′′/s. Theoptical axis of the sys-
tem is defined as the path of the light ray which goes perpen-
dicular to the surface of the primary mirror through its center
provided that the system does not rotate. The direction of an
incoming light ray is parameterized with two angles: thealong
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Fig. 1. A rotating optical system with one mirror. The primary
mirror M1 is parabolic. The point P1 lies on the vertex of the
parabola. The distance from the origin O to P1 is r. The dis-
tance from P1 to the focal plane center C is the focal distance
of the parabolad f . The optical system rotates rigidly around
the origin O with an angular velocityΩ in the sense shown on
the scheme. The direction of the incoming light ray is parame-
terized with two angles: thealong scan angleaL in the plane of
the depicted scheme (this angle is changing continuously for a
given source because of the rotation), and the across scan angle
aC (not shown in the picture) in perpendicular direction. The
instantaneous optical axis is represented by the bold horizon-
tal line going from P1 to C. Without rotation light rays parallel
to the optical axis converge to the single pointC in the focal
plane.

scan angleaL and theacross scan angleaC (see Fig. 1). The
along scan angle is the angle between the instantaneous direc-
tions of the optical axis and the incoming light ray projected
into the plane containing the optical axis and perpendicular to
the vector of angular velocity of the system (i.e., the planeof
Fig. 1). The across scan angle is the angle between the instan-
taneous directions of the optical axis and the incoming light
ray projected into the plane containing both the optical axis
and the vector of angular velocity. The along scan and across
scan angles are widely used in the context of scanning astro-
metric missions like HIPPARCOS (Perryman et al. 1997) and
Gaia (Perryman et al. 2001).

In order to evaluate the effects due to the rotation of the
instrument we calculate aberration patterns for different values
of the field anglesaL andaC as well as the differences of the
photocenters for each considered case. To compute aberration
patterns a rectangular grid of parallel incoming light rayswith
direction characterized by some givenaL andaC is generated.
These light rays are then traced through the optical system until
they intersect the focal plane. The coordinates of the intersec-
tion points produce the corresponding aberration pattern in the
focal plane (see, e.g., Figs. 2 and Fig.4). The photocenter of
a pattern is defined as the mean position of all points of that
pattern.

We distinguish between two different effects changing the
aberration patterns (and their photocenters) of a rotatinginstru-
ment compared to those of some identical non-rotating instru-
ment. The first effect is the change of orientation of various
reflecting surfaces during the time delays needed for a lightray

Fig. 2. Aberration patterns for the one-mirror system: non-
rotating instrument (upper pane), rotating instrument consid-
ering the light propagation delays and using the Newtonian
reflection law (middle pane), and rotating instrument consid-
ering both the light propagation delays and the relativistic re-
flection law (lower pane). An extremely high angular velocity
Ω = 5 × 109′′/s is used in order to and make the distortion
clearly visible. See text for further explanations.
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to propagate from the primary mirror to the focal plane. The
second effect is the difference between the Newtonian and rel-
ativistic reflection laws.

Clearly, the propagation delays are related just to the finite-
ness of the light velocity. The delays appear also in the non-
rotating case, but can be completely ignored since the orienta-
tion of all reflecting surfaces is constant. For a rotating instru-
ment the propagation delays mean in particular that the light
rays producing an aberration pattern (that is, the light rays in-
tersecting the focal plane at the same moment of time) hit the
primary mirror (and, generally speaking, all other mirrors) at
different moments of time. The effect of propagation delays
can be directly calculated in our ray tracing software by using
a specially designed iterative scheme.

There are several effects related to the propagation delays,
some of which are quite easy to understand. The first one is just
the constant shift of the aberration patterns due to the change of
the orientation of the instrument during the propagation time:
an image of a star observed at timetobs is produced by the
light rays from the star which hit the primary mirror at time
∼ tobs − d f /c when the orientation of the latter differed by
∼ Ω d f /c from the orientation attobs. Similar constant shifts
will be caused by intermediate mirrors and by the motion of
the focal plane during the propagation delay: during the light
propagation the focal plane is moving and the photon hits the
focal plane at different position which corresponds to a differ-
ent position on the sky. It is clear that the latter effect can be
computed as∼ Ω (d f − r)/c for the one-mirror system depicted
in Fig. 1. Note that in the limit when the center of rotation is
infinitely far from the instrument (that is, when all parts ofthe
instrument effectively have the same velocity), these constant
shifts are fully equivalent to normal aberration of light. The
constant shifts of the aberration patterns, which could be rela-
tively large, effectively lead only to a constant time shift in the
orientation parameters of the satellite derived from astromet-
ric observations: the orientation obtained from observations at
tobs is actually the orientation the satellite had some small time
interval earlier. This hardly has consequences on the measure-
ments in any existing or planned astrometric projects. However,
the propagation delays lead also to a deformation of aberration
patterns which depends on the field angles. Those aberration
pattern deformations together with the deformations due tothe
relativistic reflection law can be important as illustratedbelow.
The distortions of the shape of the patterns are caused by dif-
ferent velocities of different parts of both mirrors and slightly
different incident angles for each mirror.

For the one-mirror case these effects are illustrated in Fig. 2.
The nine patterns in each of the three panes correspond to nine
combinations of the field angles withaL = −30′, 0′,+30′ (hor-
izontal direction) andaC = −30′, 0′,+30′ (vertical direction).
For the focal lengthd f = 46.67 m, 30′ corresponds to about
407 mm in the focal plane coordinates. The size of the axes in
focal plane coordinates is 0.5 mm× 0.5 mm for all patterns.
The aberration patterns on the upper pane are calculated fora
non-rotating instrument. On the middle pane the aberrationpat-
terns are obtained using the Newtonian reflection law, but the
effects of the light propagation delays are taken into account.
On the lower pane both the light propagation delays and the

δaL × 10−3µas δaC × 10−3µas

aC \ aL −30′ 0′ +30′ −30′ 0′ +30′

−30′ 0.9 -1.2 0.9 1.4 0.0 -1.4
0′ 0.2 -1.9 0.2 0.0 0.0 0.0

30′ 0.9 -1.2 0.9 -1.4 0.0 1.4

Table 1.The one-mirror optical system rotating atΩ = 60 ′′/s:
the part of the shifts of the photocenters which depends on the
field angles (that is, the constant shift ofδa d

L + δa
r
L = 18.3834

µas is removed; see text for further explanations).

relativistic reflection law are used. An extremely high angular
velocityΩ = 5× 109′′/s is used in order to exaggerate the dis-
tortion and make it clearly visible. The three rightmost patterns
on both the middle and the lower panes are much larger than
all other patterns. These six patterns extend to the left from the
edge of Figure by about 3 times the size of the horizontal axis
in each pattern. These parts of the patterns are not shown in
Fig. 2. The axes for each pattern are centered at the correspond-
ing photocenter. Note that those photocenters are significantly
shifted between the three panes due to the constant propagation
time effects discussed above.

Since for the one-mirror instrument the angle of each light
ray with respect to the normal to the mirror at each point of
the surface is not greater than 30′, the effect of the relativistic
reflection law on aberration patterns for the one-mirror system
is very small. At point P1 the velocity vector is perpendicular to
the normal to the mirror. Therefore, at this point for anyaL and
aC the relativistic reflection law coincides with the Newtonian
one (see Eq. (A.51)). A light ray going through that point will
intersect the focal plane in the same point for both Newtonian
and relativistic reflection laws. The light rays of the same grid
not going through P1 have different images in the Newtonian
and relativistic cases.

For realisticΩ = 60 ′′/s the mean shift of the photocenters
due to the propagation delays amount toδa d

L = 18.3842µas.
Note that this number can be reproduced with a good accuracy
byΩ (2d f − r)/c = 18.3807µas as discussed above. The field-
angle dependent change of the photocenters is at the level of
0.001µas and is shown in Table 1. The change of the photo-
centers due to relativistic reflection law turns out to be a shift
in the along-scan directionδaL ≈ δa r

L = −0.0008µas and is
independent ofaL andaC at the level of 0.0001µas.

3.2. A two-mirror optical system

Real optical systems normally have more than one mirror.
Often the instruments involve mirrors inclined by about 45◦

to the optical axis (i.e., Nasmith focus, beam combiners, beam
splitters, etc.). In this case the effects of the relativistic reflec-
tion law on the aberration pattern are significantly larger than in
the case discussed above. Here we consider an optical system
consisting of one parabolic primary mirror and one flat sec-
ondary mirror as depicted on Fig. 3. The whole system is again
rigidly rotating with a constant angular velocityΩ in labora-
tory coordinates. The flat mirror is inclined at an angleθ with
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Fig. 3.A flat secondary mirrorM2 has been added to the optical
system depicted on Fig. 1. The distance from P1 to center of the
flat mirror P2 is d12. The focal plane position depends on the
angleθ. Now the bold line representing the optical axis goes
from P1 to P2 and then to the focal plane centerC.

respect to the optical axis of the primary mirror. The distance
from P1 to P2 is d12 = 3 m, and the distance from P1 to the ro-
tational axis O isr = 1.5 m. The distance from P2 to the center
C of the focal plane isd f − d12 = d2 f = 43.67 m.

We repeat the ray tracing calculations as described in
Section 3.1 above with this additional flat mirror. We use three
different configurations of the flat mirror with inclination an-
glesθ = +45◦, θ = 0, andθ = −45◦. Figure 4 shows the aber-
ration patterns obtained withθ = 45◦ (again for a large angular
velocity ofΩ = 5×107′′/s (100 times lower than for Fig. 2) was
used in order to make the effects visible). The same 9 combina-
tions ofaL andaC, and the same size and centering of the axes
are used for each pane as described above for Fig. 2. The up-
per pane is again for the aberration patterns for a non-rotating
instrument (Ω = 0). These patterns are identical to those on
the left pane of Fig. 1. Clearly, the aberration patterns forthe
rotating instrument (the middle and the lower pane) look dif-
ferently compared to Fig. 2. Numerical values of the shifts of
the photocentersδaL andδaC for Ω = 60 ′′/s are presented in
Table 2.

As for the one-mirror system for any value ofθ the shifts
due to the light propagation delays exceed the level of 1µas
and amount toδa d

L ∼ 2µas. For the two-mirror systemδa d
L is

significantly lower than for the one-mirror system since theef-
fects of the motion of the primary mirror and the motion of the
focal plane largely compensate each other if just one interme-
diate mirror is present.

For θ = 0 the shifts due to the relativistic deflection law
are again very small as was the case for the one-mirror system.
The situation with these shifts is different forθ = ±45◦ where
the mean shiftδa r

L ∼ 0.3µas. The latter number can be easily
understood. Forθ = ±45◦ all the light rays hit the flat surface at
an angle of aboutα = ±45◦ with respect to the normal and the
factor|sinα| appearing in (A.67) is of the order of 1/

√
2 ≈ 0.7.

Each light ray of the grid hits the mirror at a slightly different

Fig. 4. Aberration patterns for the two-mirror system with
θ = 45◦: non-rotating instrument (upper pane), rotating in-
strument considering the light propagation delays and using
the Newtonian reflection law (middle pane), and rotating in-
strument considering both the light propagation delays andthe
relativistic reflection law (lower pane). An angular velocity
Ω = 5 × 107′′/s is used to make the distortion clearly visible.
See text for further explanations.
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θ = −45◦ : δa d
L = 1.7422µas, δa r

L = −0.2776µas

δaL × 10−3µas δaC × 10−3µas

aC \ aL −30′ 0′ +30′ −30′ 0′ +30′

−30′ 4.6 0.0 −4.5 4.8 4.9 4.9
0′ 4.5 −0.1 −4.6 0.0 0.0 0.0

30′ 4.6 0.0 −4.5 −4.8 −4.9 −4.9

θ = 0◦ : δa d
L = 2.0246µas, δa r

L = 0.0006µas

δaL × 10−3µas δaC × 10−3µas

aC \ aL −30′ 0′ +30′ −30′ 0′ +30′

−30′ 0.0 0.0 0.0 0.0 0.0 0.0
0′ 0.0 0.0 0.0 0.0 0.0 0.0

30′ 0.0 0.0 0.0 0.0 0.0 0.0

θ = +45◦ : δa d
L = 1.7422µas, δa r

L = −0.2776µas

δaL × 10−3µas δaC × 10−3µas

aC \ aL −30′ 0′ +30′ −30′ 0′ +30′

−30′ −4.5 0.0 4.6 −4.9 −4.9 −4.8
0′ −4.6 −0.1 4.5 0.0 0.0 0.0

30′ −4.5 0.0 4.6 4.9 4.9 4.8

Table 2. Special-relativistic angular shifts for the optical sys-
tem described on Fig. 3 rotating atΩ = 60 ′′/s and for different
inclination anglesθ = 45◦, 0◦,−45◦. The mean constant shift
δa d

L of the patterns due to the light propagation delays andδa r
L

due to the relativistic reflection law are given at the top of each
table. Each of the tables shows the part of the total shifts depen-
dent on the field angles. Let us note that the position-dependent
effects inδa d

L andδa r
L have different signs and are 2-3 times

larger then in the total shiftδaL = δa d
L + δa

r
L. On the contrary,

the effects inδa d
C andδa r

C are of the same sign and are about 2
times less than in the sumδaC = δa d

C + δa
r
C.

value ofα, but the main perturbation due to the relativistic re-
flection law can be estimated considering the light ray going
along the optical axis. Using (A.67) we obtain

δ2 ≃ 2
v
c

d2 f

d f
sin2 θ, (1)

whered2 f is again the distance between P2 and the focal plane
center as shown on Fig. 3, andv is the velocity of the point
of the mirror lying on the optical axis (v = Ω (d12 − r) for the
case depicted in Fig. 3). One can check that the mean constant
shifts δa r

L as shown in Table 2 can be recovered from (1) al-
most exactly. If more flat (or almost flat) mirrors are added, the
expression can be generalized by

|δi| ≃
∣

∣

∣

∣

∣

∣

2
vi

c

di f

d f
sinθi sinϕi

∣

∣

∣

∣

∣

∣

. (2)

The indexi is used to enumerate the surfaces along the light
path, i = 1 corresponding to the primary mirror. In our case

i = 1 is the parabolic mirrorM1 andi = 2 is the flat mirrorM2.
The angleϕi is the angle between the velocity and the surface at
the intersection of the mirrorMi with the optical axis applying
the conventions described on Fig. A.1.θi is the angle between
the optical axis and the normal to the surface at the point of
intersection. The quantitydi f is the distance from the center of
the focal planeC to the point where the optical axis crosses
the i-th mirror. As defined aboved f is the focal distance of the
optical system.

The presence of the factordi f /d f in (1) and (2) can be ex-
plained easily: a small perturbation∆ of the propagation direc-
tion of a light ray by a mirror located at a distancedi f from the
focal plane causes a linear shift on the focal planedi f ∆ which
is efficiently interpreted as an angular shift ofdi f /d f ∆. In the
more general case when the intermediate reflecting surfacesare
not flat, Eq. (2) is no longer valid, but gives a reasonable idea of
the magnitude of the effect provided that all reflecting surfaces
are not too different from a flat mirror. The cumulative effect
of a series of (almost) flat mirrors will not be a direct addition
of all δi since the relativistic perturbation may occur at differ-
ent planes. An analytic expression in vectorial form can be de-
rived for the combined effect, but since the resulting formula is
rather complicated and still a rough approximation it will not
be discussed here. Eq. (2) has been checked also for some other
optical systems involving more reflecting surfaces of different
shapes, sizes and velocities. A good agreement with the num-
bers from numerical ray tracing was obtained in all cases.

4. Concluding remarks

We have considered in detail the main relativistic effect on the
imaging by a rotating optical system which is produced by the
relativistic modification of the reflection law. We have consid-
ered two simple optical systems containing one and two mir-
rors. Although the size of the primary mirror, the focal length
and the angular velocity of rotation of both systems were de-
fined to agree with the corresponding parameters of Gaia, it
is not clear how big these effects will be for the real optical
scheme of Gaia. We have seen that the effects are utterly small
for the one-mirror system and that they may amount of 0.3µas
for the two-mirror system. For a real Gaia optical scheme the
effect may be much larger because of the presence of several in-
clined mirrors. The two examples of a rotating optical system
considered above do not allow to predict the relativity-induced
photocenter shifts for a real optical system like Gaia. A detailed
calculation of the photocenter shifts can be in principle done
using the ray tracing software developed for this investigation.

Again the part of the effect which does not depend on the
position in the focal plane can be effectively interpreted as a
constant change in the orientation of the satellite (as discussed
at the end of the previous Section for propagation delay ef-
fects). Moreover, if a satellite (like Gaia) has two optically dif-
ferent telescopes, the difference in the main effects for these
two telescopes can be interpreted as a change in the angle be-
tween the two instruments.

In this paper we confined ourselves to ray tracing in the ge-
ometric optics limit. A more strict way to analyze the imaging
by a rotating optical system is to apply wave optics and cal-
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culate corresponding intensity patterns (PSF or similar char-
acteristics). The intensity patterns would then allow to predict
the observable shifts of the photocenters more reliably than the
aberration patterns used in this paper. Preliminary calculation
with a simplified model fosters the hope that at optical wave-
lengths the differences in the photocenter shifts calculated from
ray tracing and from wave optics are negligible. However, the
effects of propagation delays due to the rotation of the telescope
may play a role. This may deserve a separate investigation.
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BMWi grant 50 QG 0601 awarded by the Deutsche Zentrum für Luft-
und Raumfahrt e.V. (DLR).

References
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Appendix A: Reflection of a light ray by an
arbitrarily moving mirror

A.1. Notation and conventions

Let us first summarize the most important notation and conventions
used throughout the paper:

– c is the velocity of light in vacuum.
– Lowercase latin indicesa, i, j, . . . take values 1, 2, 3 and refer to

spatial components of corresponding quantities.
– Index 0 is used for time components.
– Greek indicesα, µ, ν, . . . take values 0, 1, 2 and 3 and refer to all

space-time components of corresponding quantities.
– The Minkowski metric is denoted byη = diag(−1,+1,+1,+1).
– All latin indices are lowered and raised by means of the unit ma-

trix δi j = δ
i j = diag(1,1, 1), and therefore the disposition of such

indices plays no role:ai = ai.

– The symbolεi jk is the fully antisymmetric Levi-Civita symbol
(ε123 = +1).

– Repeated indices imply Einstein summation rule irrespective of
their positions (e.g.,ai bi = a1b1 + a2b2 + a3b3).

– The spatial components of a quantity considered as a 3-vector are
set in boldface:a = ai.

– The absolute value (Euclidean norm) of a 3-vectora is denoted|a|
and is defined by|a| =

(

a1 a1 + a2 a2 + a3 a3
)1/2

.
– The scalar product of any two 3-vectorsa and b with respect to

the Euclidean metricδi j is denoted bya · b is defined bya · b =
δi jai b j = ai bi.

Below two reference systems (t, xi) and (T,Xa) will be used. To im-
prove readability of the formulas all quantities defined inxµ = (t, xi)
are denoted by small latin characters with space-time and spatial in-
dices taken from second parts of the Greek and Latin alphabet, respec-
tively (µ, ν, . . . , i, j, . . . ). All quantities defined inXα = (T,Xa) are
denoted by capital latin characters with space-time and spatial indices
taken from first parts of the Greek and Latin alphabet, respectively (α,
β, . . . ,a, b, . . . ).

A.2. Coordinate representation of an arbitrary moving
mirror

Let us consider an inertial reference system of Special Relativity
(t, xi). We define an arbitrary mirror in arbitrary motion by a bundle of
particles moving along worldlines

xµm(t; ξ, η) =
(

t, xi
m(t; ξ, η)

)

. (A.1)

Hereξ andη are two parameters “numbering” the particles. These pa-
rameters can be though of as some non-degenerated “coordinate sys-
tem” on the surface of the mirror which is described byxi

m(t; ξ, η) for
any fixed timet. On the other hand, fixingξ andη we fix a particle on
the surface of the mirror andxi

m(t; ξ, η) is the worldline of that particle
in coordinates (t, xi). Further, we assume thatxi

m(t; ξ, η) is differen-
tiable with respect to all its three parameters. This means in particular
that the surface of the mirror is assumed to be smooth.

Here we do not pay attention to any physical properties of themir-
ror as a “physical body” (elasticity, deformations, etc.).We just con-
sider that (A.1) formally defines the position of each point of the mir-
ror at each moment of time. The source of information forxi

m(t; ξ, η)
for realistic mirrors and the plausibility of these representation of an
arbitrarily shaped and arbitrarily moving mirror is discussed in Section
2 above.

Starting from (A.1) it is easy to see that for any fixed timet at
any fixed point of the mirror characterized by some values ofξ andη
we have two three-dimensional vectors tangent to the surface of the
mirror at the considered point as

li =
∂

∂ξ
xi

m(t; ξ, η), (A.2)

mi =
∂

∂η
xi

m(t; ξ, η). (A.3)

Then a coordinate vector normal to the surface of the mirror at that
point can be defined as

ni = εi jk l j mk. (A.4)

The order of vectorsli and mi in (A.4) is arbitrary and corresponds
to a choice of the sign in the definition ofni (if ni is a normal vector
then−ni is also a normal). Not restricting the generality we assume
below that (A.4) defines thatni which is directed toward the “working
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surface” of the mirror, that is for any incoming light rayσi which
hits the mirror at the considered point one hasσ · n < 0. Let us note
immediately that this normal vectorni has clearly no physical meaning
since it is defined in some arbitrary coordinate system (t, xi). It is,
however, straightforward to computeni if xi

m(t; ξ, η) is given. Below
we show how to relateni to a physically meaningful normal vector at
some point of the mirror as observed by an observer instantaneously
co-moving with the considered point of the surface.

The coordinate velocity of any point of the mirror reads

vi
m =

∂

∂t
xi

m(t, ξ, η). (A.5)

A.3. Transforming the mirror surface from one inertial
reference system to another

Let us now define another reference system (T,Xa) moving with con-
stant velocityvi with respect to (t, xi). The coordinates (T,Xa) and
(t, xi) are related by a Lorentz transformation of the form

c t = Ł0
0 c T + Ł0

a Xa, (A.6)

xi = Ł i
0 c T + Ł i

a Xa. (A.7)

The Ł matrix coefficients are given by

Ł0
0 = γ, (A.8)

Ł0
a = ka γ, (A.9)

Ł i
0 = ki γ, (A.10)

Ł i
a = δ

ia +
γ2

1+ γ
ki ka, (A.11)

γ = (1− k · k)−
1
2 , (A.12)

k =
1
c

v. (A.13)

The inverse transformation reads

c T = Λ̄0
0 c t + Λ̄0

i xi, (A.14)

Xa = Λ̄a
0 c t + Λ̄a

i xi. (A.15)

with

Λ̄0
0 = γ, (A.16)

Λ̄0
i = −ki γ, (A.17)

Λ̄a
0 = −ka γ, (A.18)

Λ̄a
i = δ

ia +
γ2

1+ γ
kika. (A.19)

Clearly, in the reference system (T,Xa) the mirror can be also rep-
resented in the same form as in Section A.2

Xαm(T ; ξ, η) =
(

T,Xa
m(T ; ξ, η)

)

, (A.20)

where fixed values forξ andη should correspond to one and the same
surface particle in both coordinate systems. The vectors tangent and
normal to the surface read

La =
∂

∂ξ
Xa

m(T ; ξ, η), (A.21)

Ma =
∂

∂η
Xa

m(T ; ξ, η), (A.22)

Na = εabc Lb Mc. (A.23)

Here again,Na is a coordinate normal vector which has, generally
speaking, no physical meaning. The coordinate velocity of apoint of
the mirror is given by

Va
m =

∂

∂T
Xa

m(T ; ξ, η). (A.24)

Let us now relate the vectorsLa, Ma, Na andVa
m to the correspond-

ing ones in the reference system (t, xi). This this end we consider the
coordinate transformation of the events defined by (A.1) and(A.20)

c T = Λ̄0
0 c t + Λ̄0

i xi
m(t; ξ, η), (A.25)

Xa
m(T ; ξ, η) = Λ̄a

0 c t + Λ̄a
i xi

m(t; ξ, η). (A.26)

The functionXa
m(T, ξ, η) is thus defined by (A.25)–(A.26) implicitly

since (A.25) should be inverted to givet as function ofT , ξ andη and
thatt should be substituted into (A.26) to give the explicit dependence
of Xa

m on T , ξ andη. Clearly, that inversion cannot be done explicitly
for any xi

m(t; ξ, η). However, the partial derivatives ofXa
m(T ; ξ, η) rep-

resentingLa, Ma andVa
m can be calculated as derivatives of an implicit

function. A straightforward algebra gives

Va
m = c

Λ̄a
0 + Λ̄

a
i ki

m

Λ̄0
0 + Λ̄

0
i ki

m

, (A.27)

La = S̄ a
i li (A.28)

Ma = S̄ a
i mi (A.29)

S̄ a
i = Λ̄

a
i − Λ̄0

i

Λ̄a
0 + Λ̄

a
j k j

m

Λ̄0
0 + Λ̄

0
j k j

m

, (A.30)

or inverting

vi
m = c

Ł i
0 + Ł i

a Ka
m

Ł0
0 + Ł0

a Ka
m

, (A.31)

li = S i
a La, (A.32)

mi = S i
a Ma, (A.33)

S i
a = Ł i

a − Ł0
a

Ł i
0 + Ł i

b Kb
m

Ł0
0 + Ł0

b Kb
m

, (A.34)

with ki
m = c−1 vi

m andKa
m = c−1 Va

m. Equations (A.27) and (A.31) coin-
cide with the law for velocities addition in Special Relativity. One can
also check by direct calculation thatS i

aS̄ a
j = δ

i
j andS̄ a

i S i
b = δ

a
b.

Using (A.30) and (A.34) one can see that

S̄ b
j S̄ c

kεabc =
1

γ (1− k · km)
S i

aεi jk, (A.35)

S j
b S k

cεi jk = γ (1− k · km) S̄ a
i εabc. (A.36)

Now using these formulas, definitions (A.23) and (A.4) and relations
(A.28)–(A.29) and (A.32)-(A.33) one can prove thatNa and ni are
related as

Na =
1

γ (1− k · km)
S i

a ni, (A.37)

ni = γ (1− k · km) S̄ a
i Na. (A.38)

To proof (A.35)–(A.36) we used the identity

εa jc δ
kb + εkac δ

jb + ε jkc δ
ab = εa jk δ

bc. (A.39)

A.4. Observable and coordinate normal vectors

Let us consider an infinitely small element of the mirror which is char-
acterized by infinitely small intervals around some fixed values ofξ
andη. The velocity of the element isvi

m(t; ξ, η) in the laboratory ref-
erence system (t, xi). Let us now identify the constant velocityvi of
the reference system (T,Xa) relative to (t, xi) with vi

m(t; ξ, η) of the
considered point given byξ andη and at some fixed moment of time:
vi ≡ vi

m(t; ξ, η). Then (T,Xa) is a momentarily co-moving inertial refer-
ence system of the considered infinitesimal element of the mirror. The
coordinates basis of (T,Xa) gives an orthonormal tetrad of an observer
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co-moving with the considered element of mirror. That reference sys-
tem can be used to describe the results of instantaneous observations
made by that observer.

In particular,Na is the observable normal vector which will be
used below to formulate the reflection law for the light rays as it is
seen by the co-moving observer. From now on,Na is always used in
this sense (that is, from now on we always putkm = k). Normalizing
the vectors one can see that the normal unit vectorN̂ = N/|N| to
the surface as seen by an observer instantaneously co-moving with a
particular point of the mirror relates to the normal unit vector n̂ = n/|n|
seen by an observer at rest relative to (t, xi) as

N̂ =
1

√

1− (k · n̂)2

(

n̂− (k · n̂)
γ

1+ γ
k
)

, (A.40)

n̂=
1

√

1+ γ2(k · N̂)2

(

N̂ + (k · N̂)
γ2

1+ γ
k
)

. (A.41)

It is illustrative to see that this transformation of normalvectors
can be derived by the transformation rule of 4-vectors. Let us again
consider a certain surface element in its instantaneously co-moving
inertial coordinate system (T, Xa). In that system we consider the 3-
components of the surface normal vectorN̂ as spatial components of
the covariant 4-vector̂Nα = (0, N̂a). A Lorentz transformation of this
4-vector to coordinates (t, xi) leads to result (A.41) after normaliza-
tion.

A.5. Wave vectors in the two inertial reference
systems

In order to consider the light reflection from the mirror we first need
to relate the wave vectors of the incoming and outgoing lightrays in
the two considered coordinate system. In the reference system (t, xi)
the incoming light ray is characterized by its null wave vector pµ

(ηµν pµ pν = 0). The unit light ray directionσi (σ · σ = 1) in that
reference system is related topµ asσi = pi/p0. In the reference sys-
tem (T,Xa) the null wave vector of the same light ray isPα, and the
unit light ray directionΣa = Pa/P0 (Σ · Σ = 1). The frequenciesf
andF of the light in the corresponding reference systems are linearly
proportional top0 andP0, respectively.

The wave vectorspµ andPα are related by the Lorentz transfor-
mation

Pα = Λ̄αµ pµ, (A.42)

pµ = Łµα Pα, (A.43)

which means that the frequencies and unit light ray directions are re-
lated as

Σa =
Λ

a

0 + Λ
a

i σ
i

Λ
0

0 + Λ
0

i σ
i
, (A.44)

σi =
Λi

0 + Λ
i
a Σ

a

Λ0
0 + Λ

0
a Σ

a
, (A.45)

F =
(

Λ
0

0 + Λ
0

i σ
i
)

f , (A.46)

f =
(

Λ0
0 + Λ

0
a Σ

a
)

F. (A.47)

A.6. Reflection as seen by an instantaneously
co-moving observer

For an observer instantaneously co-moving with the elementof the
mirror where the light ray is reflected the following simple reflection

law is valid (in an inertial reference system of Special Relativity for a
mirror at rest)

F′ = F, (A.48)

Σ
′ = Σ − 2 (N̂ · Σ) N̂, (A.49)

whereN̂ is the observable unit normal vector to the surface of the mir-
ror at the point of reflection as discussed in Section A.4 above. The
reflection law (A.49) means simply that the component ofΣ perpen-
dicular to the surface changes its sign. This is automatically guarantees
that the angle of incidence is equal to the angle of reflectionand that
the incoming rayΣ, the reflected rayΣ′ and the normal̂N are coplanar.
The same equations (A.48) and (A.49) are valid for, respectively, time
and space components of wave vectors before and after reflection.

We consider this reflection law as given, but it is well known how
to derive it from Maxwell equations for electromagnetic field for a
mirror at rest (Jackson 1975). In the instantaneously co-moving ref-
erence system (T,Xa) the coordinate velocity of the reflecting point
vanishes but its acceleration may differ from zero. However, the accel-
eration cannot affect the instantaneous process of reflection in virtue
of the equivalence principle as long as the conditions for geometrical
optics are satisfied (see also Section A.10 below).

A.7. Reflection as seen by a laboratory observer

Now combining the reflection law in reference system (T,Xa) with the
transformations discussed in Sections A.3–A.5 one gets thereflection
law as seen in reference system (t, xi) where the mirror is arbitrarily
moving

f ′ = f
1+ (k · n̂) [ n̂ · ( k − 2σ) ]

1− (k · n̂)2
, (A.50)

σ
′ =

(

1− (k · n̂)2
)

σ + 2(k · n̂− σ · n̂) n̂

1+ (k · n̂)2 − 2(k · n̂) (σ · n̂)
. (A.51)

Here, f ′ andσ′ are the frequency and the unit direction of the reflected
light ray in the reference system (t, xi). These expressions are valid at
each point of the mirror surface in arbitrary motion. Let us remind
that k = vm/c, wherevm is the coordinate velocity of the reflecting
point of the mirror at the moment of reflection. Velocityvm can be
computed from any mathematical representation of the mirror surface
(for example, from (A.5)).

The same way can be used to derive the 4-momentum or 4-
velocity of a particlep′µ after a completely elastic collision with a
surface of infinite mass:

p′0 = p0 − 2k · n̂
(

p · n̂− k · n̂ p0

1− (k · n̂)2

)

, (A.52)

p′i = pi − 2n̂i

(

p · n̂− k · n̂ p0

1− (k · n̂)2

)

, (A.53)

wherepµ is wave vector of the particle before the collision. Recalling
the relations between wave vectors and frequencies and directions for
a photon it is easy to see that Eqs. (A.52)–(A.53) are equivalent to
(A.50)–(A.51).

Let us note two important properties of (A.50)–(A.51), alsoappli-
cable to (A.52)–(A.53):

1. Also in the reference system (t, xi) the reflected directionσ′ lies
in the plane defined by the incoming rayσ and the normal vector
n̂.

2. The reflected ray is only affected by the projection of the velocity
vm on the vector ˆn.
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The latter property implies that the relation betweenσ′ andσ co-
incides with the usual reflection law (A.49) if the velocityvm is
perpendicular to ˆn. This case is relevant for liquid (rotating) mir-
rors and was discussed by Lightman et al. (1975, problem 1.19),
Ragazzoni & Claudi (1995) and Hickson et al. (1995). Our result (no
relativistic effects on reflection law in that case) coincides with that of
Lightman et al. (1975) and Hickson et al. (1995).

Multiplying both sides of (A.51) by ˆn and use the following defi-
nitions for the angles between vectors

− σ · n̂= cosα, (A.54)

σ
′ · n̂= cosα′, (A.55)

k · n̂= k cos
(

ϕ − π
2

)

= k sinϕ, (A.56)

(k = |k| = |vm|/c) one obtains a relation between the angle of incidence
α and angle of reflectionα′

f ′ = f
1+ 2k sinϕ cosα + k2 sin2 ϕ

1− k2 sin2 ϕ
, (A.57)

cosα′ =
2k sinϕ +

(

1+ k2 sin2 ϕ
)

cosα

1+ k2 sin2 ϕ + 2k sinϕ cosα
. (A.58)

The latter equation can be also re-written into an equation relating
sinα and sinα′:

sinα′ = sinα
1− k2 sin2 ϕ

1+ 2k sinϕ cosα + k2 sin2 ϕ
. (A.59)

Comparing (A.57) and (A.59) one can see thatf sinα = f ′ sinα′.
Anglesα, α′ andϕ are illustrated on Fig. A.1. The angleα lies

between 0 andπ/2 (since we always consider that the incoming light
ray comes to the mirror from one particular side of the tangent plane
to the mirror’s surface at the point of reflection). For the same reason
we have 0≤ α′ ≤ π/2. Angle ϕ lies between−π/2 andπ/2. It is
negative if the angle betweenk and n̂ is greater thanπ/2 and positive
otherwise.

A.8. Particular case of a flat mirror moving with a
constant velocity

As a particular example let us apply the developed scheme to aflat
mirror moving at constant velocity in reference frame (t, xi). The
mathematical expression for that is a worldline equation (A.1) in the
form

xm(t, ξ, η) = xm0 + l ξ + mη + vm t, (A.60)

wherel, m, vm and xm0 are constant vectors defining position, veloc-
ity and orientation of the mirror. It is easy to see that in coordinates
(T,Xa) one gets

Xm(T, ξ, η) = Xm0 + L ξ + M η + Vm T, (A.61)

where vectorsVm, L and M are related tovm, l and m by (A.27),
(A.28) and (A.29), respectively, andXa

m0 = S̄ a
i xi

m0. Eq. (A.61) implies
that a flat surface remains flat in any inertial reference system.

Since for a flat mirrorl andm are constants, the unit normal vec-
tor n̂ is also a constant. Sincevm is also time-independent the same
reflection law described by (A.51) or (A.58) is valid for any point of
the mirror and at any moment of time. One can check that (A.58)co-
incides with the results of Gjurchinovski (2004). We believe, however,
that our framework is more general than that of Gjurchinovski (2004)
since we do notassume the vectorsσ, n̂, k andσ′ to be coplanar, and
our derivation is valid for an arbitrary mirror in arbitrarymotion.
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Fig. A.1. Vectors and angles at the point of reflection. Vector ˆn
is a coordinate unit vector perpendicular in the Euclidean sense
to the surface of the mirror at the reflection point. Vectorsσ
andσ′ are unit directions of propagation of the incoming and
reflected light rays, respectively. Vectorvm is the velocity of the
point of the mirror at which the reflection occurs. Angleα be-
tween the direction−σ toward the source of the incoming light
ray and vector ˆn is 0≤ α ≤ π/2. Angleα′ between the propaga-
tion directionσ′ of the reflected light ray and vector ˆn is again
0 ≤ α′ ≤ π/2. Finallyϕ (−π/2 ≤ ϕ ≤ π/2) is the angle between
the velocity vectorvm and the plane tangential to the mirror at
the point of reflection. The latter angle is negative if the angle
betweenvm and n̂ is greater thanπ/2 and positive otherwise.
Because of the special-relativistic effects angleα andα′ are in
general different.

Note that the central result of Gjurchinovski (2004) coincides with
the formula derived by Einstein (1905) in the particular case of a
flat mirror moving with constant velocity directed perpendicular to
the surface when sinϕ = 1 (see also Lightman et al. (1975, problem
1.18)). Bolotovskii & Stolyarov (1989) have derived the same relation
as Einstein (1905) by solving Maxwell field equations directly in the
coordinates where the mirror is moving.

A.9. Low velocity limit

It is useful to derive the first-order expansion of (A.50)–(A.58) in pow-
ers ofvm/c since in practice the velocity of the mirror will be small
compared to the light velocity. One gets

f ′ = f
(

1− 2 (σ n̂) (k · n̂) + O(c−2)
)

, (A.62)

σ
′ = σ − 2 (σ · n̂) n̂

+2 (k · n̂)
[(

1− 2 (σ · n̂)2
)

n̂+ (σ · n̂)σ
]

+O(c−2), (A.63)

or

f ′ = f
(

1+ 2k sinϕ cosα + O(c−2)
)

, (A.64)
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cosα′ = cosα + 2k sinϕ sin2 α + O(c−2), (A.65)

sinα′ = sinα − k sinϕ sin 2α + O(c−2). (A.66)

The first two terms in the right-hand side of (A.63) representjust the
usual reflection law and the rest contains the largest relativistic effects.
Eq. (A.65) shows that

α′ − α = −2k sinϕ sinα + O(c−2). (A.67)

This expression can be used to estimate the differenceα′ −α for many
realistic situations.

A.10. Derivation of results by means of Maxwell’s
equations

It is illustrative to see how the results (A.57)–(A.58) can be derived
directly from Maxwell’s equations. It is well known that theusual
reflection law can be obtained from Maxwell’s theory by a principle
of phase matching: the phase of the incoming waveΦ should agree
with the phase of the outgoing waveΦ′ on the mirror surfacem (e.g.,
Jackson (1975, Section 7.3)):

Φ|m = Φ′|m . (A.68)

The central results (A.57)–(A.58) can simply be derived from the prin-
ciple of phase matching in case of a flat mirror moving with constant
velocity vm with respect to inertial coordinatesxµ where the observer
is at rest. The mirrorxi

m is given in this case by (A.60). The constant
(time- and position-independent) unit normal vector is again denoted
as n̂. Maxwell’s equations in inertial coordinates lead to the the usual
wave equation of the form

−
(

1
c2

∂2

∂t2
+ ∆

)

Ψ = 0 (A.69)

that is solved, e.g., by a monochromatic plane wave of the form

Ψ = a exp
(

i pµ xµ
)

≡ a exp(iΦ) (A.70)

with a wave vectorpµ = (p0, p) satisfying the usual null condition

− p0 p0 + p · p = 0 . (A.71)

The principle of phase matching (A.68) then determines boththe
law of reflection and the Doppler shifts of “photon” frequencies. Let
us decompose the wave vectorp into a tangential and a normal part
with respect to the surface normal:

p= pT + pn n̂, (A.72)

pT = n̂× (p× n̂), (A.73)

pn = p · n̂. (A.74)

Then phase matching on the mirror surface leads to

pT = p′T (A.75)

p0 − 1
c

vm · n̂ pn = p′0 − 1
c

vm · n̂ p′n . (A.76)

or using the null condition the two matching equations for frequencies
f and f ′ and direction anglesα andα′ (see Fig. A.1) take the form

f sinα = f ′ sinα′ (A.77)

f

(

1+
1
c

vm · n̂ cosα

)

= f ′
(

1− 1
c

vm · n̂ cosα′
)

. (A.78)

Straightforward algebra then leads to the results (A.57) and (A.58)
above. Note, that this phase-matching argument works in a simple

way for plane mirrors and plane waves that mathematically are in-
finitely extended both in space and time. Such a treatment, however,
is meaningful for any mirror as long as the conditions for geometrical
optics are satisfied, i.e., as long as amplitude, polarization and wave
vector do not change significantly over a distance determined by the
wavelength. This implies that the accelerationam of the mirror should
satisfy a constrain of the formam ≪ c2/λ, whereλ is the wavelength
of the radiation.
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