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ABSTRACT

Context. High accuracy astrometric instruments like Gaia aimingraecuracy of 1 microarcsecond cannot be considered as-lp@nt
observers in the framework of relativistic modelling of ebsble quantities.

Aims. Special-relativistic fects on the imaging by a non-point-like arbitrarily movingfioal instrument are discussed.

Methods. A special-relativistic reflection law for a mirror of artay shape and motion is derived in the limit of geometricaiasp The
aberration patterns are computed with ray tracing usingl apecial-relativistic model for two simple rotating ogai instrument.

Results. It was found that theféect of special-relativistic reflection law on the photoegatof aberration patterns of an optical system rotating
with a moderate angular velocity of B0s may be at the level of 1 microarcsecond if the system ingatnigrors significantly inclined relative
to the optical axis.

Conclusions. Special-relativistic optical modelling of the future astretric instrument is generally speaking indispensahdeléivel of a few
microarcseconds is envisaged.
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1. Introduction accuracy of Gaia is a femas (and can be even below that limit

Th f thi . . . ible rédi in some favorable cases). Therefore, one cannot negleittra pr
€ purpose of this paper is to investigate possible resity the diference of velocities of various parts of the instruments.

effects on t_he imaging by an optical _system in arbiftrary mof[ion.is our purpose to investigate thed@egets and estimate their
Normally, in the framework of relativity one considers pain magpnitude for Gaia.

like observers. The methods to calculate observed questii o )
such observers are well known. It is tacitly assumed hehewit The general-relativistic model for Gaia has been formu-
that the actual instrumentation of the observer is so siat| t lated in full detail by Klioneri(2003,.2004). The model uses
one considers the positions and velocities of each parteof f4/0 Principal relativistic reference systems: (1) the Benytric
instrument to be the same (and that single position and itglocCélestial Reference System (BCRS) and (2) the Center of Mass
is called the position and velocity of the observer). Initgal Reference System (CoMRS) of the satellite. The former is a
even for an Earth-based telescope it is clear that the wiglsci 9lobal reference system with origin at the barycenter of the
of different parts of the primary mirror in inertial coordinategolar system. It has been recommended by the International
(not rotating with the Earth) are slightlyfirent. However, in Astronom_lcal Union for_ relativistic modelling of hl_gh-aa:nacy

the past the accuracy of observations was considered tobe ‘@Stronomical observations (el et al. 2008). This reference
low” and the size of the mirror “too small” for thatfiierences SyStem is used to model the dynamics of massive bodies, space
to be of practical relevance. vehicles (e.g., the Gaia satellite) and light rays withia 8olar

Due to recent technical developments especially for Rystem. The final Gaia catalogue will contain coordinatesef
trometric space missions like Gaid (de Boer étlal.poot§Stial objectsin the BCRS. The CoMRS is the local relativis

Perryman et all_2001; Bienaymé & Turon_2002), JASM'NEeference system of the satgllite. _It is explicitly cons_teuﬂ by .
(Gouda et 21 2002) and SIM_(Shao_1098) the situation H&loner (2004). The gravitational influence of massive tesdi

changed. In case of Gaia, we deal with a scanning satelfffaced in the COMRS as much as possible and, according to

which permanently rotates in space with a period of 6 hout@€ eguivalence principle, represented by tidal potesitishe

The size of the primary mirror of Gaia is 1.4 m, that is COmpg_oMRS has its origin in the center of mass of the satellite and

rable with the size of the spacecraft itself. The envisagest b'S kinematically non-rotating with respect to the BCRS. The
CoMRS is physically adequate to model phenomena occur-

Send  offrint  requests to: Guillem Anglada, e-mail: ring in the immediate neighborhood of the satellite: atkéty
anglada@am.ub.es the process of observation, etc. According to Klibner (3004
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the metric tensor of the CoMRSftirs from the Minkowski SectioZZP for a discussion of such mirrors from the physica
metric by three kinds of terms (the gravitational field of thpoint of view) and a light ray hitting the surface of the mirro
satellite is too small and can be neglected safely): anialertat a given point and moment of time we would like to calculate
term due to non-gravitational accelerations of the s&e(for the parameters of the outgoing (reflected) light ray. TheoBim
Gaia these accelerations can be relatively large duringgabrbfied problem of a plain mirror moving with a constant velocity
maneuvers and only about21013m/s? in between mainly perpendicular to its surface has been considered by Finstei
due to solar pressure); an inertial term due to the slow rofd905) in the very first paper on Special Relativity Theory. |
tion of the CoMRS relative to the co-moving Fermi-Walkethe Appendix the most general case of this problem within
transported locally inertial reference system (with anguke- Special Relativity is considered in great detail. Slightipd-
locity of ~ 3 x 1015s™t = 2" per century); and tidal gravi- ifying the arguments of Einstein (1905) we first use Lorentz
tational potentials (producing relative accelerationstainost transformations to transform from a laboratory inertidere
1012m/< at a distance of 2.5 meters from the satellite’s ceence systemt(x) to an inertial reference systeri,(X?) in-
ter of mass). Simple calculations show that all these terms stantaneously co-moving with the element of the mirror weher
fluence the CoMRS light propagation within a few meters frothe reflection of a particular light ray occurs, then applg th
the satellite’s center of mass at a level much lower than dia gknown reflection law in that reference system and then trans-
accuracy of Juas. Therefore, all these terms can be neglectfmim the reflected light ray back into the laboratory refeen
for our purposes and one can consider the CoMRS foliffa susystem. The relation of that scheme to direct calculations i
ciently small interval of time as an inertial reference sysiof volving Maxwell's equations is also discussed in the Append
Special Relativity. In our calculations we recover a number of known results for
In Section® we summarize the ideas of how to calculatarious particular cases. An overview of these known result
the special-relativisticféects in the aberration patterns due tand the corresponding comparison are also given. The main
the rotation of the instrument. Sectidin 3 is devoted to amjesc formula used in all the ray tracing calculations of Secfibis 3
tion of ray tracing calculations of the relativistifects in the the relativistic reflection law given by Eq.{AB1).
aberration patterns for two simple optical systems. Thaildet
of the derivation of the special-relativistic deflectionvlare o ) )
given in the Appendix. There we also introduce a general thé2- Arbitrarily shaped and moving mirrors
oretical scheme which we use to treat arbitrarily-shapet!

a : . .
oo . : . . - /Q very important point of the whole scheme is that the shapes
arbitrarily moving mirrors in special relativity.

of the mirrors in laboratory coordinatesX) and, possibly, the

time-dependence of these shapes are assumeddivdme We

2. General scheme of computing relativistic describe the shape of each mirror by a two-parameter farfily o
effects due to the rotation of an optical system worldlines of each individual particle of the mirror dendias

%‘t; &,1). Here& andnp are two continuous parameters “num-

Our general goal is to discuss and calculate the influence &t.’ >’ i . : .
ering” the particles which constitute the surface of theroni

relativistic dfects on the imaging by an optical instrument i learlv. for fixed val dn function . (t
some non-inertial motion. In this paper we simplify our gen- early, for fixed values of andy function x(t, £, ) repre-

iy- izati i .
eral goal in several directions: (1) we consider here the caghts the i x)-parametrization of the world line of the cor

. . . . | .
of optical instruments consisting of mirrors only (no lensee responding particle. For fixetithe same functionq(t; £, )

considered), (2) we do not consider théeets of wave optics represents the instantaneous position and shape of thermirr
' in thet = const hyperplane of the coordinatésx(). In this

and work in the approximation of geometric optics (see, hoW . :
ever, a note at the end of Sectfdn 4). case { = const) the parametegsandn give a kind of non-

For an optical system consisting solely of a number glfegenerated two-dimensional coordinate chart on the curfa
. . | . . .
arbitrarily moving mirrors, the most important relativisef- of the mirror. We considexy,(t; £, 7) to be diferentiable with

fectis the special-relativistic modification of the refiectlaw. :espectftg and ? Th_'s means ttr??t thg. coordmattle rep;resefn—
That modified special-relativistic reflection law will prace a ation ot the surtace 1S a smoofh two-dimensional surface 1o

change in aberration patterns as compared to the patterns %QCh moment of coordinate tirhe

culated by using the normal Newtonian reflection law. These Letus note thatin general there is no inertial reference sys
perturbed aberration patterns could poten“aﬂyﬁ astromet- tem where the whole System or any of its mirrors is at rest. In
ric measurements based on an interpretation of the images 6% special cases when such an inertial rest-frame of a mirro
tained in the instrument's focal plane. does exist one should certainly consider the shape of themir
in that rest-frame. In the practical cases considered bslmh
rest-frames do not exist. Moreover, the size of the mirr®si
large that we cannot assume that the velocities of all paihts

First, we have to formulate the general principles allowirfg€ mirror are approximately constant in any inertial refere
one to calculate the aberration patterns within the framewdyStem.

of Special Relativity. Let us consider the following protole We do not consider the question of deformations of the mir-
within the framework of Special Relativity. Given a mirraf orors due to their non-inertial (for example, rotational)tion
arbitrary shape in arbitrary motion (see SecfionlA.2 forma fo(i.e., the relation between the intended shapes of the mirro
mal mathematical description of such an arbitrary mirradt arduring their manufacturing and their shapes, e.g., in ainga

2.1. Reflection law
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satellite, in coordinated,(x')). The behaviour of a mirror as ~ Summarizing, our aberration pattern modelling consists of
a physical body is a separate question, a rigorous relitivig1) fixing the models of the mirrors| (t; £,7) and the focal
treatment of which would require at least a special-reistitv planexif (t;Z, x), and (2) tracing a grid of incoming light rays,
theory of elasticity. As long as the angular velocity is corwhich interact with the optical system only at the moments of
stant the deformations and special-relativistiteets on the reflection according td{A%1), until the point of interseat
shape (e.g. Lorentz contraction) are also constant. Irc#fsie a with the focal planexif (t; ¢, x), and (3) forming the aberration
rigidly rotating mirror can be considered to be Born-rigihQli  pattern itself anfbr calculating its photocenter.
1958, Section 45). We can also argue that the constant defor-
mations are assumed to be properly taken into account durflgre|ativistic astrometric effects due to rotational
manufacturing so that the rotating mirrors have the assumed, | inn of the satellite
forms. One can even argue that the mirrors can be made active
to retain the prescribed form (which is certainly the case ftn order to evaluate the relativisti¢fects in the aberration pat-
many larger Earth-bound instruments, but may appear to bteens of planned scanning astrometric instruments, lebuos ¢
rather bizarre argument in some other cases). sider an extended optical system rotating rigidly with astant
angular velocity relative to the inertial reference syster).

] For a scanning astrometric satellite the real angular iglec

2.3. “Observable” aberration patterns not constant (e.g., because of the required scanning laitsb

The last issue is the definition of the observing (imaging) dghanges are small and slow, and will be neglected here. Rigid

. ) . . r?tation of the optical instrument means that the wholerinst
vice. In analogy to our representation of the mirrors we flr?nent is at rest in a reference systemy) related to the inertial
define a coordinate “plane; (t; £, x) in laboratory coordinates Y

. ) o . ) laboratory reference systerh ¥) asy = R xI, R being an
(t, X") which coincides with the focal “plane” of the 'nStr”menBrthogonal (rotational) matrix. J J

in the Newtonian case. In many cases (€.g. for the case eonsid 14 caiculate the aberration patterns of several optical sys

ered in Sectiofi]3 belowy(t; £, x) can be taken to be a plange g giscussed below we have developed a numerical ray trac-

in the cqnsilde_red coordinates (that is, for any moment 08t code in Java allowing us to calculate aberration pastern
there exist'(t) independent of andy such thak;-n = 0). The 5 4 arpitrary optical system rigidly rotating in our labe

aberration patterns we calculate below are defined as ttw# sgf, .y, cordinates. Each mirror in the system can be indivigua

points at which the light rays from a source hit that coorténagpaneq and oriented in those coordinates. The code allows us

focal plane at some moment tons = const. Generally speak-y, control all intermediate calculations as well as the alfer

ing the aberration patterns cannot be considered as “elfnit , , 1erical accuracy

small”. This means that there is no inertial coordinate@yst  p,-ameters of the optical systems (size of the mirrors| foca
in which the part of the detector (that is, of the focal *plane yisiance, distance of the primary mirror from the rotatiends
registering an aberration pattern can be considered at rest 5 angular velocity) considered in Sectifng 3.1[End 3 @wel

If the patterns are “small enough” (which is typical casgre chosen to represent qualitatively some principal featof
for reasonable high-quality optical instruments) one doot  planned astrometric missions like Galia (Perryman et al1p00
troduce an inertial reference systemd() instantaneously co- or JASMINE [Gouda et al. 20D2), where a scanning satellite

moving some central point of the aberration pattern and dgsmprising two astrometric telescopes continuously estat
fine the “observable” pattern as a set of points at which thgth an angular velocity of orde® ~ 60"/s.

light rays from a source hit that coordinate focal plane atso

momentr = 1ops = const (here one should also take into ac-

count the relativistic £ects in spatial coordinates and corre3-1- A One-mirror optical system

spondingly treat Lorentz contraction etc.). First, althldhis  The first optical system that we will study consists of onatot
approach seems to be more adequate for a non-inertial motigd parabolic mirror. A scheme of this optical system is give
it still giveS a Coordinate-dependent piCtUre because deﬁnon F|gﬂ_ The parabo"c mirro; is a square mirror of size
extension of the patterns. Second, we have explicitly ob&cki 5 mx 1.5 m and focal lengtl; = 46.67 m. This roughly cor-
that this additional Lorentz boost does not influence anylef tresponds to the astrometric instruments of Gaia. The recatv
pictures and numerical results given below. the focal plane is considered to be 0.814m.814 m in size
Note that we are interesting in prediction of the changesjmoviding a field of view of~ 1° x 1°. The rotational axis goes
the aberration patterns compared to the prediction mad&dor through the origin O of our coordinates perpendicular to the
“same” optical device without rotation and using Newtoniaplane of Fig[d. The distance from O to the center of the pri-
geometric optics (this latter prediction is typically dadie mary mirror R isr = 1.5 m. The distance from;Ro the center
from the manufacturers of the instrumentation). From thisp of the focal plane C is obviously the focal distance6¥m.
of view, our definition of “observed” aberration pattern gea The whole optical system is rotating with respect to O with
quate. In more realistic case one has to model the procesamwfangular velocity2 = 60 ”/s. Theoptical axis of the sys-
observation in much more detail (e.g., CCD orientation anem is defined as the path of the light ray which goes perpen-
position within the instrument, CCD clocking, averagin@®IT dicular to the surface of the primary mirror through its eznt
mode etc.). Such a detailed modelling is however unnecgssarovided that the system does not rotate. The direction of an
for the purposes of this paper. incoming light ray is parameterized with two angles: #hang
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Fig. 1. A rotating optical system with one mirror. The primary
mirror M is parabolic. The point Plies on the vertex of the A . &
parabola. The distance from the origin O tpiBr. The dis- |
tance from P to the focal plane center C is the focal distance
of the parabolals. The optical system rotates rigidly around
the origin O with an angular velocit in the sense shown on

the scheme. The direction of the incoming light ray is parame
terized with two angles: thaong scan anglea, in the plane of L
the depicted scheme (this angle is changing continuously fo = 4 7
given source because of the rotation), and the across sgé an
ac (not shown in the picture) in perpendicular direction. The
instantaneous optical axis is represented by the bold tioriz

tal line going from R to C. Without rotation light rays parallel ;
to the optical axis converge to the single padihtn the focal — % € &=
plane.

L”)ftzf

scan anglea, and theacross scan angleac (see Fig[L). The - o |
along scan angle is the angle between the instantaneous dire
tions of the optical axis and the incoming light ray projecte
into the plane containing the optical axis and perpendidola
the vector of angular velocity of the system (i.e., the plahe
Fig.d). The across scan angle is the angle between the instan
taneous directions of the optical axis and the incomingtligh
ray projected into the plane containing both the opticakaxi
and the vector of angular velocity. The along scan and across
scan angles are widely used in the context of scanning astro-
metric missions like HIPPARCOS (Perryman €etlal. 1997) and
Gaia (Perryman et Hl. 2001).

In order to evaluate theffects due to the rotation of the e & ¢
instrument we calculate aberration patterns féifedent values ‘
of the field angles, andac as well as the dierences of the
photocenters for each considered case. To compute abarrati
patterns a rectangular grid of parallel incoming light rayth
direction characterized by some givanandac is generated. e &£
These light rays are then traced through the optical systdiin u | ‘
they intersect the focal plane. The coordinates of the geter
tion points produce the corresponding aberration pattetneg

focal plane (see, e.g., Fidd. 2 and Hig.4). The photoceriter o

a pattern is defined as the mean position of all points of tffa'g‘ 2 Aperratlon pattemns for the one-mirror system; hon-
pattern. rotating instrument (upper pane), rotating instrumentsabn

We distinguish between two fiierent éfects changing the ering the light propagation delays and using the Newtonian

aberration patterns (and their photocenters) of a rotatistgu- re_ﬂectlon law (’.“'dd'e pane),_ and rotating mstrumen_t _Cd_' ISt
) : .~ ering both the light propagation delays and the relativisti
ment compared to those of some identical non-rotatingunstr,

ment. The first fect is the change of orientation of variouﬂec'[Ion law (lower pane). An extremely high angular velpcit

. . ) . = 5x 10" /s is used in order to and make the distortion
reflecting surfaces during the time delays needed for a taht rlaarhs vicihlae < tavt far fiirthear eavnlanatinne
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to propagate from the primary mirror to the focal plane. The da. x 10-%uas dac x 10°uas
second #fect is the diference between the Newtonian and rel- ac \& | -30 0 +30 | -30 O +30
ativistic reflection laws.

Clearly, the propagation delays are related just to theefinit -30 09 -12 09y 14 00 -14
ness of the light velocity. The delays appear also in the non- o 02 -19 02) 00 00 0.0
Ight velocily. yS app : 30 09 -12 09| -14 00 1.4

rotating case, but can be completely ignored since the tarien bl h . ical . Cann e
tion of all reflecting surfaces is constant. For a rotatirgjrim Table 1.The one-mirror optical system rotating@t= 60" /s:

ment the propagation delays mean in particular that the Iig#ﬁe part of the sh|fts of the photoceqters Wh'Chr dependsen th

rays producing an aberration pattern (that is, the lighsiay €' angles (thatis, the constant shiftaat, + 63 = 183834

tersecting the focal plane at the same moment of time) hit #&S IS removed; see text for further explanations).

primary mirror (and, generally speaking, all other mirjcais

different moments of time. Theffect of propagation delays

can be directly calculated in our ray tracing software bygsi L _ )

a specially designed iterative scheme. relat|y|st|c reflect|0r1IaV\_/ are us_ed. An extremely high dagu_
There are severalfects related to the propagation delayé’,ek_)CItyQ =5x 1.09 /sis us_e.d in order to exaggerate the dis-

some of which are quite easy to understand. The first onetis ji{tion and make it clearly visible. The three rightmosteats

the constant shift of the aberration patterns due to thegghah on both the middie and th_e lower panes are much larger than
the orientation of the instrument during the propagatioreti all other patterns. These six patterns extend to the left fre

an image of a star observed at tirags is produced by the edge of Figure by about 3 times the size of the horizontal axis
S . .

light rays from the star which hit the primary mirror at timd" €aCh pattern. These parts of the patterns are not shown in

~ tops — df/C When the orientation of the latter fiired by Flg.lz. The axes for each pattern are centered at the gon§5p0

~ Qds/c from the orientation at,ps. Similar constant shifts '”9 photocenter. Note that those photocenters are S|gqifyca

will be caused by intermediate mirrors and by the motion ifted between the three panes due to the constant prapagat

the focal plane during the propagation delay: during thlatligtime _dfects discussed ?bo"?- _
propagation the focal plane is moving and the photon hits the Since for the one-mirror instrument the angle of each light

focal plane at dferent position which corresponds to feli- 'Y with respect to the normal to the mirror at each. p_oi_nt of
ent position on the sky. It is clear that the lattéieet can be the surface is not greater than’ 3the dfect of the relativistic

computed as Q (ds —r)/c for the one-mirror system depictedfeﬂeaion law on at_)erration patterns for th_e one-mirr.otesys
in Fig.[. Note that in the limit when the center of rotation i& very small. At point Pthe velocity vector is perpendicular to
infinitely far from the instrument (that is, when all partstbe  the normal to the mirror. Therefore, at this point for @myand
instrument &ectively have the same velocity), these constafi¢ the relativistic reflection law coincides with the Newtomia
shifts are fully equivalent to normal aberration of lighher ©ne (see EqLIA31)). A light ray going through that point wil
constant shifts of the aberration patterns, which couldete r intersect the focal plane in the same point for both Newtonia
tively large, dfectively lead only to a constant time shift in theand relativistic reflection laws. The light rays of the samie g
orientation parameters of the satellite derived from asele Ot 90ing through Phave diferent images in the Newtonian
ric observations: the orientation obtained from obseovatiat 2nd relativistic cases.
tons is actually the orientation the satellite had some smalktim ~ For realisticQ = 60”/s the mean shift of the photocenters
interval earlier. This hardly has consequences on the meas@ue to the propagation delays amountal = 18.3842uas.
ments in any existing or p|anned astrometric projectsl F\m”e Note that this number can be reproduced with a gOOd accuracy
the propagation delays lead also to a deformation of atienratPy €2 (2ds —r)/c = 18.3807as as discussed above. The field-
patterns which depends on the field angles. Those aberrafi®gle dependent change of the photocenters is at the level of
pattern deformations together with the deformations dukeo 0-001uas and is shown in Tablg 1. The change of the photo-
relativistic reflection law can be important as illustrabedow. centers due to relativistic reflection law turns out to beié sh
The distortions of the shape of the patterns are caused by Hifthe along-scan directiofe, ~ 63 = —0.0008uas and is
ferent velocities of dferent parts of both mirrors and slightlyindependent oé_ andac at the level of 0.000%as.
different incident angles for each mirror.

Fo_r the one—mifrorcase thes@exts are illustrated in Fif 2. 3.2. A two-mirror optical system
The nine patterns in each of the three panes correspondéo nin
combinations of the field angles with = —30,0’,+30 (hor- Real optical systems normally have more than one mirror.
izontal direction) andc = —30,0, +30 (vertical direction). Often the instruments involve mirrors inclined by about 45
For the focal lengthd; = 46.67 m, 30 corresponds to aboutto the optical axis (i.e., Nasmith focus, beam combineranbe
407 mm in the focal plane coordinates. The size of the axesslitters, etc.). In this case théfects of the relativistic reflec-
focal plane coordinates is 0.5 mrm0.5 mm for all patterns. tion law on the aberration pattern are significantly largantin
The aberration patterns on the upper pane are calculated féihe case discussed above. Here we consider an optical system
non-rotating instrument. On the middle pane the aberrgi#n consisting of one parabolic primary mirror and one flat sec-
terns are obtained using the Newtonian reflection law, beit tbndary mirror as depicted on FId. 3. The whole system is again
effects of the light propagation delays are taken into accoungidly rotating with a constant angular veloci€y in labora-
On the lower pane both the light propagation delays and ttoey coordinates. The flat mirror is inclined at an an@heith
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v L4 g
A A &
Fig. 3. A flat secondary mirroM; has been added to the optical i
system depicted on Figl 1. The distance froptdcenter of the
flat mirror B, is di2. The focal plane position depends on the |
angled. Now the bold line representing the optical axis goes N
from Py to P; and then to the focal plane cent@r W el A
respect to the optical axis of the primary mirror. The dis&an
from P; to P, is dj» = 3 m, and the distance from Fo the ro-

tational axis O is = 1.5 m. The distance from-o the center
C of the focal plane igl; — di2 = dof = 43.67 m.

We repeat the ray tracing calculations as described in
Sectior 31 above with this additional flat mirror. We useéhr
different configurations of the flat mirror with inclination an- i
glesd = +45°, 0 = 0, andf = —-45°. Figure[3 shows the aber- )
ration patterns obtained with= 45° (again for a large angular
velocity of Q = 5x107 /s (100 times lower than for Fifll 2) was
used in order to make thefects visible). The same 9 combina-
tions ofa_ andac, and the same size and centering of the axes
are used for each pane as described above foiFig. 2. The up-
per pane is again for the aberration patterns for a noningtat
instrument 2 = 0). These patterns are identical to those on
the left pane of Figl. Clearly, the aberration patternstier
rotating instrument (the middle and the lower pane) look dif
ferently compared to Fidll 2. Numerical values of the shifts o
the photocenterga, andsac for Q = 60" /s are presented in
Table[2.

As for the one-mirror system for any value #the shifts
due to the light propagation delays exceed the level pa4
and amount t#a’ ~ 2uas. For the two-mirror systeda’ is
significantly lower than for the one-mirror system sinceefie N B £
fects of the motion of the primary mirror and the motion of the S N
focal plane largely compensate each other if just one irgerm '
diate mirror is present.

For & = 0 the shifts due to the relativistic deflection law_.

are again very small as was the case for the one—mirrorsyst%n%]:' 450: non-rotating instrument (upper pane), rotating in-

The situation with these shifts isftBrent forg = +45° where L . : .
the mean shiftal ~ 0.3uas. The latter number can be easilyoment can|der|ng_the light propagation delays anc_jgjsfln
. ¥he Newtonian reflection law (middle pane), and rotating in-

understood. Fof = +45° all the light rays hit the flat surface at L . !
an angle of about = +45° with respect to the normal and thestrument considering both the light propagation delaysthad

) L . relativistic reflection law (lower pane). An angular vekyci
factor|sina| appearing in[[A.87) is of the order of ¥/2 ~ 0.7. ~ P ; . -
Each light ray of the grid hits the mirror at a slightlyfirent Q = 5x 10" /s is used to make the distortion clearly visible.

an tavt for fiirther evnlanatinne

Aberration patterns for the two-mirror system with
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9=-45: 03 =17422uas oa) = -0.2776uas i = 1is the parabolic mirroM; andi = 2 is the flat mirrorv.
sa, x 10%as sac x 10-3uas The_anglepi i_s the angle between_ the veloci_ty and_the surf_ace at
ac\& | —30 o 430 | —30 o0 430 the mtersecpon of the _m|rrdv1i with the pptlcal axis applying
the conventions described on Hig. AdLis the angle between
-30 46 00 -45| 48 49 49 the optical axis and the normal to the surface at the point of
o 45 -01 -46| 00 00 0.0 intersection. The quantity; is the distance from the center of
30 46 00 -45)| -48 -49 -49 the focal planeC to the point where the optical axis crosses
thei-th mirror. As defined above is the focal distance of the
0=0: o3l =20246uas oa = 0.0006uas optical system.
s . The presence of the factdy; /ds in @) and [2) can be ex-
da x 107pas dac x 107pas plained easily: a small perturbatianof the propagation direc-
ac \& | -30 o +30 | -30 0 +30 tion of a light ray by a mirror located at a distarg;e from the
_30 0.0 00 00 0.0 00 00 focal plane causes a linear shift on the chal pldné\ which
o 0.0 00 00 0.0 00 00 is efficiently interpreted as an angular shiftayf/ds A. In the
30 00 00 00! 00 00 00 more general case when the intermediate reflecting suréaees

not flat, Eq.[[R) is no longer valid, but gives a reasonable wfe
the magnitude of theffect provided that all reflecting surfaces
are not too dierent from a flat mirror. The cumulativefect
da, x 10%uas dac x 10%uas of a series of (almost) flat mirrors will not be a direct adufiti
ac \& | -30 O +30 | =30 O +30 of all 6; since the relativistic perturbation may occur atet-
ent planes. An analytic expression in vectorial form cande d

0=+45: ¢a =1.7422uas 63 = —0.2776uas

—30 -45 00 46| -49 -49 -48 rived for the combinedfeect, but since the resulting formula is
0 -46 -01 45, 00 00 00 rather complicated and still a rough approximation it wiitn
30 -4.5 00 4.6 4.9 49 48

_ o ) ) be discussed here. Ef] (2) has been checked also for some othe
Table 2. S_pemal-rel_atlwsnc a_ngular shifts for the optical SYSoptical systems involving more reflecting surfaces dfeent
tem described on Figl 3 rotating@t= 60" /s and for diferent ghapes, sizes and velocities. A good agreement with the num-

inclination angles) = 45°,0°, —45°. The mean constant shiftpers from numerical ray tracing was obtained in all cases.
63 of the patterns due to the light propagation delaysdajd

due to the relativistic reflection law are given at the topaxtte _
table. Each of the tables shows the part of the total shifiede 4- Concluding remarks

dent on the field angles. Let us note that the position-degndwe have considered in detail the main relativistieet on the
effects insa’ andsa/ have diferent signs and are 2-3 timesmaging by a rotating optical system which is produced by the
larger then in the total shiffa, = 6a’ + 6a. On the contrary, rejativistic modification of the reflection law. We have cishs
the efects insad andsa(. are of the same sign and are about gred two simple optical systems containing one and two mir-
times less than in the susac = 6ag + 6a(. rors. Although the size of the primary mirror, the focal lémg
and the angular velocity of rotation of both systems were de-
fined to agree with the corresponding parameters of Gaia, it
value ofe, but the main perturbation due to the relativistic rés not clear how big theseffects will be for the real optical
flection law can be estimated considering the light ray goif§heme of Gaia. We have seen that thieats are utterly small
along the optical axis. Using{Ab7) we obtain for the one-mirror system and that they may amount of@s8
for the two-mirror system. For a real Gaia optical scheme the
effect may be much larger because of the presence of several in-
Sy~2 v dor sir? 6, (1) clined mirrors. The two examples of a rotating optical syste
c d considered above do not allow to predict the relativitytioeld
photocenter shifts for a real optical system like Gaia. fadet
calculation of the photocenter shifts can be in principlealo
using the ray tracing software developed for this invesitga
{Again the part of the féect which does not depend on the
ition in the focal plane can béfectively interpreted as a
onstant change in the orientation of the satellite (asudised
at the end of the previous Section for propagation delay ef-
fects). Moreover, if a satellite (like Gaia) has two optigalif-
ferent telescopes, theftirence in the mainfiects for these
two telescopes can be interpreted as a change in the angle be-
tween the two instruments.
In this paper we confined ourselves to ray tracing in the ge-
The indexi is used to enumerate the surfaces along the lightnetric optics limit. A more strict way to analyze the imagin
path,i = 1 corresponding to the primary mirror. In our casby a rotating optical system is to apply wave optics and cal-

whered,s is again the distance betweepndhd the focal plane
center as shown on Fifll 3, ands the velocity of the point
of the mirror lying on the optical axis/(= Q (d;2 — r) for the
case depicted in Fif 3). One can check that the mean cons
shifts 6a] as shown in TablEl2 can be recovered frdin (1)
most exactly. If more flat (or almost flat) mirrors are addbd, t
expression can be generalized by

|6i] = 2%' d#ff sing; sing; |. (2)
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culate corresponding intensity patterns (PSF or similarch — The symbole;j is the fully antisymmetric Levi-Civita symbol

acteristics). The intensity patterns would then allow tedict (6123 = +1).
the observable shifts of the photocenters more reliably tha  — Repeated indices imply Einstein summation rule irrespea
aberration patterns used in this paper. Preliminary cafior their positions (e.gai bi = a;by + &b, + agbs).

with a simplified model fosters the hope that at optical wave= "€ spatial components of a quantity considered as a 3ivaxo
lengths the dferences in the photocenter shifts calculated from setin boldfacea=a. .

. . . — The absolute value (Euclidean norm) of a 3-veet@® denotedal
ray tracing and from wave optics are negligible. Howeveg, th ) ) 11 os  a g\l/2
effects of propagation delays due to the rotation of the tefesco 2 is defined byal = (arat+ata? +a®a?) ",

- . . — The scalar product of any two 3-vectarsand b with respect to
may play a role. This may deserve a separate investigation. the Euclidean metris, is denoted bya - b is defined bya - b =

6ijai bl=db.
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Sov.Phys.Usp., 32, 813, 2003 __A.2. Coordinate representation of an arbitrary moving
de Boer, K. S., Gilmore, G., E., H., et al. 2000, GAIA: Comiosi,

Formation and Evolution of the Galaxy, Concept and Tectmplo mirror

Study Report (ESA-SCI) Let us consider an inertial reference system of Special tRitja
Einstein, A. 1905, Ann. Physik, 17, 891 (t, X'). We define an arbitrary mirror in arbitrary motion by a buendf
GjUrChinOVSki, A. 2004, AmJPhyS, 72,1316 partides moving a|ong worldlines
Gouda, N., Tsujimoto, T., Kobayashi, Y., et al. 2002, Ap&380, 89 _
Hickson, P., Bhatia, R., & lovino, A. 1995, A&A, 303, L37 Xt é,m) = (t, Xm(t; &, 77)). (A1)
Jackson, J. D. 1975, Classical Electrodynamics (John \&libeySons)
Klioner, S. A. 2003, AJ, 125, 1580 Here¢ andn are two parameters “numbering” the particles. These pa-
Klioner, S. A. 2004, Phys.Rev.D, 69, 124001 rameters can be though of as some non-degenerated “coerdiys

Lightman, A. P., Press, W. H., Richard, H. P., & TeukolskyAS1975, tem” on the surface of the mirror which is describedxXjyt; &, 1) for

Problem book in Relativity and Gravitation (Princeton Ustsity 2Ny fixed timet. On the other hand, fixing and we fix a particle on
the surface of the mirror and,(t; £, n) is the worldline of that particle

Press) h " . : S
Pauli, W. 1958, Theory of Relativity (Pergamon Press) in coordinates t(x). Further, we assume thaf(t; £,7) is differen-
Perryman, M. A. C., de Boer, K. S., Gilmore, G., et al. 2001,/4& tiable with respect to all its three parameters. This meampaiticular
369, 339 that the surface of the mirror is assumed to be smooth.
Perryman, M. A. C., Lindegren, L., Kovalevsky, J., et al. I98&A, Here we do not pay attention to any physical properties offrtine
323, L49 ror as a “physical body” (elasticity, deformations, et®\je just con-
Ragazzoni, R. & Claudi, R. U. 1995, A&A, 297, L53 sider that[[A1) formally defines the position of each poiinthe mir-
Shao, M. 1998, in Proc. SPIE Vol. 3350, p. 536-540, Astromaii Or at €ach moment of time. The source of informationxgft; £, 1)
Interferometry, Robert D. Reasenberg; Ed., 536-540 for realistic mirrors and the plausibility of these repmsgion of an
Sofel, M., Klioner, S. A., Petit, G., et al. 2003, AJ, 126, 2687 arbitrarily shaped and arbitrarily moving mirror is dissed in Section

P above.

Starting from [A1) it is easy to see that for any fixed titnat
any fixed point of the mirror characterized by some values afidn
we have two three-dimensional vectors tangent to the siidéthe
mirror at the considered point as

Appendix A: Reflection of a light ray by an
arbitrarily moving mirror

A.1. Notation and conventions

0
, . : : _ I'= — Xu(t; £.7), (A2)

Let us first summarize the most important notation and cdiwes o¢
used throughout the paper: m = 0 X (6 €,1) (A.3)

— cis the velocity of light in vacuum. on
— Lowercase latin indices, i, j, ...take values 1, 2, 3 and refer toThen a coordinate vector normal to the surface of the mirtdhat

spatial components of corresponding quantities. point can be defined as
— Index 0 is used for time components.

— Greek indicesy, y, v, ...take values 0, 1, 2 and 3 and refer to ali = Sijk 1 mk. (A.4)

space-time components of corresponding quantities. _ _
— The Minkowski metric is denoted by = diag(-1, +1, +1, +1). The order of vector$ andm' in (&3) is arbitrary and corresponds
— All latin indices are lowered and raised by means of the uiit mto a choice of the sign in the definition of (if n' is a normal vector
trix &;; = o' = diag(1 1, 1), and therefore the disposition of suctthen—n' is also a normal). Not restricting the generality we assume
indices plays no roled’ = &;. below that[A%) defines that which is directed toward the “working
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surface” of the mirror, that is for any incoming light ray which
hits the mirror at the considered point one lsasn < 0. Let us note
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Let us now relate the vectot$, M?, N andV{ to the correspond-
ing ones in the reference systetnx). This this end we consider the

immediately that this normal vectarhas clearly no physical meaningcoordinate transformation of the events definedyl(A.1) @a20)

since it is defined in some arbitrary coordinate systend); It is,
however, straightforward to computif X, (t;£,7) is given. Below

we show how to relaté' to a physically meaningful normal vector atX3(T; &, 7) = A0 ct+ Aa

some point of the mirror as observed by an observer instaatesty
co-moving with the considered point of the surface.

The coordinate velocity of any point of the mirror reads
Vi, =

A.3. Transforming the mirror surface from one inertial
reference system to another
Let us now define another reference syst@nX®) moving with con-

stant velocityv with respect to t{ X¥). The coordinatesT X?) and
(t, x) are related by a Lorentz transformation of the form

ct=tJcT +£IX3 (A.6)
X =thcT +LL X2 (A.7)
The £ matrix codiicients are given by
Lo=7. (A8)
=k, (A.9)
Li=Ky, (A.10)
=g 17+ - K ke, (A.11)
y=(L-k-KZ, (A.12)
1
k= p V. (A.13)
The inverse transformation reads
cT=AJct+A%X, (A.14)
X3 = Adct+ AP X (A.15)
with
Kg =y, (A.16)
Al =Ky, (A.17)
A2 =—ky, (A.18)
— . ')’2 .
A =6+ mk‘k"‘. (A.19)

Clearly, in the reference systef, (X?) the mirror can be also rep- N* =

resented in the same form as in Secfionl A.2

Xn(Ti&m) = (T, X4(T;&.m)), (A.20)

cT =AJct+A? (A.25)

(A.26)

X(t € m),
Xt &€, m).

The functionX3(T,&,7) is thus defined by[{AZ5)E(A26) implicitly
since [A25) should be inverted to givas function ofT, £ andn and
thatt should be substituted intbTAIR6) to give the explicit degemce

of X2 onT, £ andz. Clearly, that inversion cannot be done explicitly
for any X, (t; £, 77). However, the partial derivatives o8 (T; &, 7) rep-
resenting-?, M2 andV can be calculated as derivatives of an implicit
function. A straightforward algebra gives

A3+ A2K,
%207K0+K;)kln’ (A.27)
_ o
L2 =S8l (A.28)
=Sm (A.29)
Sa- A8 _ Ow (A.30)
1 1 .
'AY+ A? ki
or inverting
L' +ELK2
m= o oKa’ (A-31)
I'=s! L3 (A.32)
m =S M3, (A.33)
o bl KD
SL=t, -2 2= (A.34)

apo Okb’
£O+ EOKD

with ki, = ¢ vi, andK2 = ¢ V3. Equations[[A2A7) and{AB1) coin-
cide with the law for velocities addition in Special ReléiyOne can
also check by direct calculation th‘é;Sa &, andS?s|, = 7.

Using [A330) and[[A34) one can see that

— — 1 .

b —
SJ SESabC = m Slagijk, (A35)
S} Skeij =7 (1 - K- Kn) Steae. (A.36)

Now using these formulas, definitiolS{Al23) ahd{A.4) arldtiens
E29)-[E29) and [A3R)HAI) one can prove tHdt andn' are

related as

where fixed values faf andrn should correspond to one and the same

surface particle in both coordinate systems. The vectomgetat and
normal to the surface read

La= = xa(T &), (A.21)
M2 = — xa(T &), (A.22)
N? = ganc Lb M. (A.23)

1 i A
Y@k " #37)
n=y(1-k-kp) SN (A.38)
To proof [A3%)-A36) we used the identity
Eajc 6kb + Ekac 5jb + Ejke 5ab = &ajk 5bc. (A39)

A.4. Observable and coordinate normal vectors

Let us consider an infinitely small element of the mirror whis char-
acterized by infinitely small intervals around some fixedueal of¢
andn. The velocity of the element ig,(t; £, 7) in the laboratory ref-
erence systent,(x). Let us now identify the constant velocity of

Here againN? is a coordinate normal vector which has, generallihe reference systenT (X?) relative to ¢, xX') with Vi (t; &,7) of the

speaking, no physical meaning. The coordinate velocity mdiat of
the mirror is given by

VA =

Xa(T: &) (A.24)

considered point given by andn and at some fixed moment of time:
Vi = Vi (t; £, 7). Then [T, X?) is a momentarily co-moving inertial refer-
ence system of the considered infinitesimal element of theomiThe

coordinates basis off( X?) gives an orthonormal tetrad of an observer
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co-moving with the considered element of mirror. That refee sys- law is valid (in an inertial reference system of Special Reiky for a

tem can be used to describe the results of instantaneoupsratises
made by that observer.

In particular,N? is the observable normal vector which will beF =F,

used below to formulate the reflection law for the light ragsitas

seen by the co-moving observer. From now NA,is always used in

this sense (that is, from now on we always git= k). Normalizing
the vectors one can see that the normal unit vebtos N/IN| to
the surface as seen by an observer instantaneously co-gneitima
particular point of the mirror relates to the normal unitteg@ = n/|n|
seen by an observer at rest relativettod] as

N 1 R oy
N=——(A- (k- i) == k]|, A.40
Jl—(k-ﬁ)z(n ( n)1+7 ) (A40)
f= = (N+(k- N)y—zk). (A.41)
1+y

J1+92(k- N)2

It is illustrative to see that this transformation of normattors
can be derived by the transformation rule of 4-vectors. lssagain
consider a certain surface element in its instantaneousiynaving

inertial coordinate systenT(X?). In that system we consider the 3-
components of the surface normal vedibas spatial components of
the covariant 4-vectoN, = (0, N%). A Lorentz transformation of this

mirror at rest)

(A.48)

¥=x-2(N-2)N, (A.49)
whereN is the observable unit normal vector to the surface of the mir
ror at the point of reflection as discussed in Sedfiof A.4 abdhe
reflection law [AZP) means simply that the componenEqgferpen-
dicular to the surface changes its sign. This is automéfigabrantees
that the angle of incidence is equal to the angle of refleciiwh that
the incoming rayz, the reflected raf’ and the normall are coplanar.
The same equationSTAM8) afid(A.49) are valid for, respelgtitime
and space components of wave vectors before and after reflect

We consider this reflection law as given, but it is well knovawh
to derive it from Maxwell equations for electromagnetic didbr a
mirror at restl(Jacksbn 1975). In the instantaneously ceimgoref-
erence systemT( X?) the coordinate velocity of the reflecting point
vanishes but its acceleration mayfdr from zero. However, the accel-
eration cannot ffiect the instantaneous process of reflection in virtue
of the equivalence principle as long as the conditions fangetrical
optics are satisfied (see also SecfionA.10 below).

4-vector to coordinated,(X) leads to resuli{&A41) after normaliza- A. 7. Reflection as seen by a laboratory observer

tion.

A.5. Wave vectors in the two inertial reference
systems

In order to consider the light reflection from the mirror wesfineed

to relate the wave vectors of the incoming and outgoing lights in
the two considered coordinate system. In the referencersygix)
the incoming light ray is characterized by its null wave weqy”
(n. PP = 0). The unit light ray directionr' (o - o = 1) in that

reference system is related p aso” = p'/pC. In the reference sys-
tem (T, X?) the null wave vector of the same light rayRs, and the

unit light ray directionz?® = P3/P° (£ - £ = 1). The frequencies

andF of the light in the corresponding reference systems aratipe

proportional top® andP°, respectively.

The wave vectorg” and P are related by the Lorentz transfor-

mation
PY =AY P, (A.42)
p‘=LtL Pe, (A.43)
which means that the frequencies and unit light ray direstiare re-
lated as
—a —a .
A+ A o
R ik R (A.44)
Ao+ A o
oAb+ ALY
o= ﬁ (A.45)
ot ARZ
F= (KS A (ri) f, (A.46)
f=(AJ+A3Z%) F. (A.47)

A.6. Reflection as seen by an instantaneously
co-moving observer

For an observer instantaneously co-moving with the eleroéthe
mirror where the light ray is reflected the following simpégflection

Now combining the reflection law in reference syst@mX®) with the

transformations discussed in SectibnsIA33A.5 one getseflection

law as seen in reference systetyw{) where the mirror is arbitrarily
moving

f,:f1+(k-n)[n-(Ak2—20-)]’ (A50)

1-(k-n)
(1-(k-P?)o+2(k-n-o-n)h
o’ = = — — . (A.51)
1+(k-f)—2(k- ) (c-n)

Here,f’ ando” are the frequency and the unit direction of the reflected
light ray in the reference syster X). These expressions are valid at
each point of the mirror surface in arbitrary motion. Let esind
that k = vy/c, wherevy, is the coordinate velocity of the reflecting
point of the mirror at the moment of reflection. Velocigy can be
computed from any mathematical representation of the msudface
(for example, from[[AD)).

The same way can be used to derive the 4-momentum or 4-
velocity of a particlep* after a completely elastic collision with a
surface of infinite mass:

. ~A—k-np°
po=p°—2k-f (W) (A.52)
o . (phA-k-Ap°
p'=p -2A (—pl_(k. ﬁ)zp ) (A.53)

wherep is wave vector of the particle before the collision. Recagjli
the relations between wave vectors and frequencies anctidine for
a photon it is easy to see that EJS._{A.5P)=(A.53) are equivab
(BEXD)-AR]).

Let us note two important properties BE{AI5@)={A.51), adgpli-
cable to[[A5R)-HADR):

1. Also in the reference systert ) the reflected direction” lies
in the plane defined by the incoming rayand the normal vector
.

2. The reflected ray is onlyfizected by the projection of the velocity
Vi, On the vecton?
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The latter property implies that the relation betweehand o co-
incides with the usual reflection laM_{AK9) if the velocity, is
perpendicular ton.” This case is relevant for liquid (rotating) mir-
rors and was discussed by Lightman et al. (1975, problem),1.19
Ragazzoni & Claudil(1995) and Hickson e al. (1995). Our ligso
relativistic dfects on reflection law in that case) coincides with that of
Lightman et al.l(1975) ard Hickson ef al. (1995).

Multiplying both sides of[[A5l1) bynand use the following defi-
nitions for the angles between vectors

— o - N=cosa, (A.54)
o’ -h=cosa, (A.55)
k-fh= kCOS((p - %) =k sing, (A.56)

(k = |K| = |vml/c) one obtains a relation between the angle of incidence
a and angle of reflection’

1+ 2k sing cosa + k2 sirf ¢
1-K2 sirf g

2k sing + (1+ K2 sir o) cosa
cosa’ = .

fr="1

, (A.57)

A.58
1+ k2sirf ¢ + 2k sing cosa (A-58)

The latter equation can be also re-written into an equatiating Fig- A.1. Vectors and angles at the point of reflection. Vector ~
sina and sine’: is a coordinate unit vector perpendicular in the Euclidesarss
5 to the surface of the mirror at the reflection point. Vectors
1-K sirf ¢ , Lo . . .

s e (A.59) ando’ are unit directions of propagation of the incoming and
1+2k sing cosa + ¢ reflected light rays, respectively. Vectgyis the velocity of the
Comparing[[ARV) and{A39) one can see thatna = 7 sine’. point of the mirror at which the reflection occurs. Anglde-

Anglesa, o’ andy are illustrated on Fid_Al1. The anglelies tween the directioro toward the source of the incoming light
between 0 and/2 (sjnce we always cqnsider Fhat the incoming Iigh,tay and vectonis 0 < a < /2. Anglea’ between the propaga-
ray comes to the mirror from one particular side of the tabgéme  tjon directiono” of the reflected light ray and vectaris again
to the mirror’s surface at the point of reflection). For theneaeason 0<a <nx/2.Finallyp (-7/2 < ¢ < n/2) is the angle between
we hgve .OS @ < mj2. Angle g “?.S between-n/2 andz/2. 'F S the velocity vectomy, and the plane tangential to the mirror at
negative if the angle betwednandriis greater tham/2 and positive . . . L
otherwise. the point of reflecjuon. The latter angle is neg{;\tlve if thg!an

betweenvy,, and i is greater thamr/2 and positive otherwise.
Because of the special-relativistiffects angler anda’ are in
A.8. Particular case of a flat mirror moving with a general diterent.
constant velocity

sina’ = sina

As a particular example let us apply the developed schemeflat @ Note that the central resultlof Gjurchinovski (2004) coitesi with
mirror moving at constant velocity in reference frantex(. The the formula derived by_Einstéin (1905) in the particularecas a
mathematical expression for that is a worldline equatiodl{4n the  flat mirror moving with constant velocity directed perpendar to
form the surface when sip = 1 (see also_Lightman etlal. (1975, problem
1.18)).Bolotovskii & Stolyaravi(1989) have derived the saralation
as|Einsteinl(1905) by solving Maxwell field equations dikeat the

wherel, m, v, andx,o are constant vectors defining position, veloccoordinates where the mirror is moving.

ity and orientation of the mirror. It is easy to see that inrcliwates
(T, X®) one gets

Xm(t, &,77) = Xmo + 1 £ + M7 + Vit (A.60)

A.9. Low velocity limit

Xn(T.£,1) = Xno + L&+ Mg + Vi T, (AB1)  |tis useful to derive the first-order expansion[GF{A.50LEA) in pow-

where vectors/m, L and M are related to, | and m by @&27), €S ofvm/c since i_n practicg the velocity of the mirror will be small
(&28) and [A2D), respectively, ankf,, = S_Ia X'mo Eq. [AB1) implies compared to the light velocity. One gets
that a flat surface remains flat in any inertial referenc st , " o >

Since for a flat mirrot andm areyconstants, the ur?i?r?ormal vec-f =f (1 —2(@f(k-N+0(c ))’ (A-62)
tor A is also a constant. Sincs, is also time-independent the sam¢ =0 —2(c-n)n
reflection law described b {Ab1) di{AK8) is valid for angipt of +2 (k- ) [(1 -2(o- ﬁ)z) A+ (o - N) 0']
the mirror and at any moment of time. One can check fhaf{AcB8) +0(c?) (A.63)
incides with the results of Gjurchinoviski (2004). We betighiowever, ’ '
that our framework is more general than that of Gjurchind(a804)
since we do nobassume the vectorsr, f, k ando” to be coplanar, and
our derivation is valid for an arbitrary mirror in arbitranyotion. fr=f (1 + 2k sing cosa + O(c’z)), (A.64)
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cosa’ = cosa + 2K sing sirf a + 0(c7?), (A.65)
sina’ = sine — k sing sin 2y + O(c™?). (A.66)

The first two terms in the right-hand side bf (Al 63) repregest the
usual reflection law and the rest contains the largest vedtit effects.

Eg. [AB3) shows that
o —a = -2k sing sina + O(c?). (A.67)

This expression can be used to estimate tffe@incer’ — o for many
realistic situations.

A.10. Derivation of results by means of Maxwell’s
equations

It is illustrative to see how the resulE{AI5T=(A58) cam derived
directly from Maxwell's equations. It is well known that thesual
reflection law can be obtained from Maxwell’s theory by a pifhe

of phase matching: the phase of the incoming wévshould agree

with the phase of the outgoing wad@ on the mirror surfacen (e.g.,
Jacksani (1975, Section 7.3)):

Ol = Oy . (A.68)

The central result§ (A7) E(AB8) can simply be derivedrftbe prin-
ciple of phase matching in case of a flat mirror moving withstant

way for plane mirrors and plane waves that mathematicalyiar

finitely extended both in space and time. Such a treatmentever,

is meaningful for any mirror as long as the conditions forrgetrical

optics are satisfied, i.e., as long as amplitude, poladragnd wave
vector do not change significantly over a distance detemininethe

wavelength. This implies that the acceleratanof the mirror should
satisfy a constrain of the formy,, < ¢?/1, whereA is the wavelength
of the radiation.

velocity vy, with respect to inertial coordinateg where the observer
is at rest. The mirroK, is given in this case by TA®0). The constant
(time- and position-independent) unit normal vector isiagnoted
asn. Maxwell's equations in inertial coordinates lead to the tdsual
wave equation of the form

1
—(§ﬁ+A)‘P_O (A.69)
that is solved, e.g., by a monochromatic plane wave of tha for
W =aexp(ip, x“) = a exp(i ©) (A.70)
with a wave vectop* = (p°, p) satisfying the usual null condition
-p°p°+p-p=0. (A.71)

The principle of phase matching{Al68) then determines Huth
law of reflection and the Doppler shifts of “photon” frequasss Let
us decompose the wave vectointo a tangential and a normal part
with respect to the surface normal:

pP=pr+pni, (A.72)
pr = Ax (px A, (A.73)
pn=p- 0. (A.74)

Then phase matching on the mirror surface leads to
Pr=pr (A.75)
1 o 1
po_EVm'npn:po_EVm'npn- (A.76)

or using the null condition the two matching equations fegfrencies
f andf’ and direction angles anda’ (see FigCAL) take the form

f sina = f’ sina’ (A.77)
1 R , 1 R ,
f 1+Evm-nc05a =f 1—Evm~n005a . (A.78)

Straightforward algebra then leads to the resiISTA.57) @59)
above. Note, that this phase-matching argument works imalsi
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