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Abstract
The paper deals with a special kind of problems that appear in solutions of Einstein’s field

equations for extended bodies: many structure-dependent terms appear in intermediate calculations

that cancel exactly in virtue of the local equations of motion or can be eliminated by appropriate

gauge transformations. For a single body at rest these problems are well understood for both

the post-Newtonian and the post-Minkowskian cases. However, the situation is still unclear for

approximations of higher orders. This paper discusses this problem for a “body” of spherical

symmetry to post-linear order. We explicitly demonstrate how the usual Schwarzschild field can be

derived directly from the field equations in the post-linear approximation in the harmonic gauge and

for an arbitrary spherically symmetric matter distribution. Both external and internal solutions are

considered. The case of static incompressible fluid is then compared to the well-known results from

the literature. The results of this paper can be applied to generalize the well-known post-Newtonian

and post-Minkowskian multipole expansions of the metric in the post-linear approximation.
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I. INTRODUCTION

There might be several reasons for an interest in the post-linear Schwarzschild prob-
lem. Our main interest for that comes from the problem of high-accuracy astrometry in
the framework of General Relativity. Recently a series of high-accuracy astrometric space
missions were proposed such as Gaia [1] with accuracies of a few microarcsecond (µas) or
the Nearby Earth Astrometric Telescope (NEAT) proposed to ESA [2], for which accura-
cies around 50 nanoarcseconds (nas) are under discussion. For all of these missions the light
propagation has to be calculated at a very high level of accuracy that lies beyond the level of
1 µas in observed directions. Already for a mission like Gaia the influence of the oblateness
(quadrupole moment) of the bodies as well as their barycentric motion cannot be neglected.
Largest post-post-Newtonian effects in the light propagation also have to be taken into ac-
count [3]. Astrometric missions with angular accuracies beyond 1 µas will certainly come in
the near future and also the day, when the subtle effects of higher post-Newtonian level will
be required. For those reasons it is of great importance to have a metric tensor for a system
of N gravitationally interacting arbitrarily shaped and composed, deformable and rotating
bodies to second post-Newtonian or second post-Minkowskian order (keeping all terms in
the velocities but only linear and quadratic terms in the gravitational constant). Such a
metric will form the basis for the modeling of light trajectories. Some first steps toward
such a metric have been done [4, 5]) but the problem is far from being solved. Clearly,
further work is needed.

Tremendous work in General Relativity has been done with the harmonic gauge that
was found to be a useful and simplifying gauge for many kinds of applications. It is logical
to continue using the harmonic gauge for further refinements of the theory needed for the
high-accuracy astrometry and celestial mechanics. The harmonic condition is defined by the
following equation (g = det(gαβ) is the determinant of the metric tensor gαβ):

∂

∂xα

(

(−g)1/2gαβ
)

= 0 . (1)

Several equivalent forms of the harmonic conditions can be found e.g. in Section 7.4 of [6].
For some ’body’ (which in principle can be composed of a whole set of individual ’bodies’)

at rest the external metric in the harmonic gauge that is fully specified by two families of
multipole moments, mass and spin moments (ML and SL) is known for both, the post-
Newtonian [7] and the post-Minkowskian cases [8]. For a system of point-like masses the
whole post-Minkowskian problem, the metric in harmonic coordinates as well as the light-
ray trajectories was solved in [9]. This work was extended by including the spin-monopoles
of the bodies by Kopeikin & Mashhoon [10]. Kopeikin et al. [11] found an analytical post-
Minkowskian solution for the light propagation in the field of an extended body at rest; here
the full multipole structure was taken into account.

Problems arise that are related with the internal structure of the bodies. For a single
body at rest these problems are well understood for both the post-Newtonian and the post-
Minkowskian cases [7, 8] in which many structure dependent terms appear in intermediate
calculations that cancel exactly in virtue of the local equations of motion or can be eliminated
by corresponding gauge transformations. However, for the post-linear case the situation is
still unclear. In the course of our studies for the general problem mentioned above we found
that even for the spherically symmetric case of a single body the complete derivation of the
external metric (the Schwarzschild metric) is interesting.
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We use fairly standard notations: G is the Newtonian constant of gravitation, c is the
vacuum speed of light. We use the signature (− + ++) throughout this paper. Lower-case
Latin indices i, j, . . . take values 1, 2, 3. Lower-case Greek indices µ, ν, . . . take values 0, 1,
2, 3. Repeated indices imply the Einstein’s summation irrespective of their positions (e.g.,
ai bi = a1 b1+a2 b2+a3 b3 and aα bα = a0 b0+a1 b1+a2 b2+a3 b3). We use two special objects:
δij = diag(1, 1, 1) is the Kronecker delta, εijk is the fully antisymmetric Levi-Civita symbol
(ε123 = +1). The 3-dimensional coordinate quantities (“3-vectors”) referred to the spatial
axes of the corresponding reference system are set in boldface: a = ai. The scalar product
of any two “3-vectors” a and b with respect to the Euclidean metric δij is denoted by a · b
and can be computed as a · b = δij a

i bj = ai bi. A comma before an index designates
the partial derivative with respect to the corresponding coordinates: A,µ = ∂A(t,x)/∂xµ,
A,i = ∂A(t,x)/∂xi. For partial derivatives with respect to the coordinate times t we use
A,t = ∂A(t,x)/∂t. A dot over any quantity designates the total derivative with respect to

the coordinate time of the corresponding reference system: e.g. Ȧ = dA/dt. Parentheses
surrounding a group of indices denote symmetrization, e.g., A(ij) = 1

2
(Aij + Aji). Angle

brackets surrounding a group of indices or, alternatively, a caret on top of a tensor symbol
denote the symmetric trace-free (STF) part of the corresponding object, e.g., Âij ≡ A〈ij〉 ≡
STFijAij = A(ij) − 1

3
δij Akk. For sequences of spatial indices we shall use multi-indices: a

spatial multi-index containing l indices is denoted by the same Latin character in the upper
case L (K for k indices, etc.): L = i1 . . . il, where each Cartesian index takes values 1, 2, 3.
We use also L − 1 = i1 . . . il−1, etc. A multi-summation is understood for repeated multi-
indices: AL BL ≡ ∑

i1...il
Ai1...il Bi1...il. For a spatial vector vi we denote vL ≡ vi1 vi2 . . . vil.

For an L-order partial derivative we denote ∂L ≡ ∂i1 . . . ∂il . For true tensorial quantities
like the energy-momentum tensor T µν or the metric tensor gµν the position of each index
(spatial or not) is of great importance. For certain other quantities, like e.g. wi, σij, or qij

introduced below, the position of indices (upper or lower) is irrelevant (e.g., wi = wi).

In Section II we deal with the most generic case of an arbitrary spherically symmetric
mass distribution. The special case of a static spherically symmetric incompressible matter
distribution will be treated in Section III and the results will be compared to those known
from the literature in Section IV. Conclusions are formulated in Section V.

II. THE GENERAL SPHERICALLY SYMMETRIC CASE

In this Section we deal with the most general case. Our goal is to derive the external
metric in the post-linear approximation for a general spherically symmetric compact matter
distribution. From Birkhoff’s theorem it is clear that this external metric will be the usual
Schwarzschild metric that is determined by a single parameter, the mass of the central body.
The central point of this paper is to demonstrate how other terms related with the structure
of the body (e.g., its radius R) that appear in intermediate calculations cancel exactly or
can be removed by a suitable gauge transformation. Other aspects of the problem related
with the usage of harmonic coordinates are also of general interest.
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A. Metric tensor and field equations

The post-linear metric tensor in harmonic coordinates will be written in the form

g00 = −1 +
2

c2
w − 2

c4
w2 +O(c−6) , (2)

g0i = − 4

c3
wi +O(c−5) , (3)

gij = δij

(

1 +
2

c2
w +

2

c4
w2

)

+
4

c4
qij +O(c−5) . (4)

Here, the metric potentials w, wi and qij obey the equations (see, e.g., [5])

∆w − 1

c2
w,tt = −4πGσ +O(c−4) , (5)

∆wi = −4πGσi +O(c−2) , (6)

∆qij = −w,iw,j − 4πGσij +O(c−1) , (7)

where

σ =
T 00 + T ss

c2
, σi =

T 0i

c
, σij = T ij − δij T

ss (8)

and T µν are the components of the energy-momentum tensor. The metric potentials w and
wi in (2)–(4) are needed to orders O(c−2) and O(c0), respectively.

B. Formal solution of the field equations

We consider an isolated compact matter distribution and, as usual, require space-time to
be asymptotically flat and covered by one single global coordinate system xµ = (ct, xi) with

lim
|x|→∞
t=const.

gµν = ηµν , (9)

where ηµν = diag(−1,+1,+1,+1) is the flat metric tensor of Minkowski space-time. For
this reason the field equations should be solved with the boundary conditions

lim
|x|→∞
t=const.

w(t,x) = 0 , lim
|x|→∞
t=const.

wi(t,x) = 0 , lim
|x|→∞
t=const.

qij(t,x) = 0 . (10)

The solution of (5)–(7) satisfying these boundary conditions that will be used in the following
reads:

w(t,x) = G

∫

V

σ(t,x′)

|x− x′|d
3x′ +

1

2c2
G

∂2

∂t2

∫

V

σ(t,x′)|x− x′|d3x′ +O(c−4) , (11)

wi(t,x) = G

∫

V

σi(t,x′)

|x− x′|d
3x′ +O(c−2) , (12)

qij(t,x) =
1

4π

∫

V

w,i(t,x
′)w,j(t,x

′)

|x− x′| d3x′ +G

∫

V

σij(t,x′)

|x− x′| d
3x′ +O(c−1) . (13)

Here V is the support of the matter distribution.
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C. Spherically symmetric compact matter distribution

In the following we consider a matter distribution for which T µν has compact support,
that is in our reference system (t,x) there exists a quantity R > 0 so that for r ≡ |x| > R
the energy-momentum tensor vanishes, T µν(t,x) = 0. In the following the matter located
within the area |x| ≤ R will be often called ’body’. Moreover, we will consider a spherically
symmetric matter distribution for which at an arbitrary point one has

σ =
T 00 + T ss

c2
= σ(t, r) (14)

σi =
1

c
T 0i = B(t, r)ni, B(t, r) =

1

c
T 0i ni , (15)

T ij = A(t, r) n̂ij + δij C(t, r) , A(t, r) =
3

2
T ijn̂ij , C(t, r) =

1

3
T kk , (16)

σij = A(t, r) n̂ij − 2 δij C(t, r) . (17)

This form of the energy-momentum tensor is in agreement with the most general form of
the spherically symmetric metric tensor (see e.g., Section 13.5 of [6]) and the corresponding
field equations. Thus, matter is fully characterized by 4 independent scalar functions of time
t and radial coordinate r = |x|: σ(t, r), A(t, r), B(t, r), and C(t, r). No further assumptions
on these four functions are made. The body might be non-static, it can oscillate or collapse
etc. In the calculations below the time t plays a role as an additional parameter and we will
often omit the explicit dependence of these functions on time.

D. Computation of the gravitational potentials w and w
i

The gravitational potentials w and wi in the required approximation have been extensively
discussed in the literature. Here we summarize the results needed for our further work. We
specialize Eqs. (11)–(12) for the case of the spherically symmetric matter distribution from
Section IIC:

w(t,x) = Gr2
∫ 2π

0

dλ′

∫ π

0

dθ′ sin θ′
∫ R/r

0

dz
z2 σ(t, z r)√

1 + z2 − 2z n′ · n

+
1

2c2
Gr4

∂2

∂t2

∫ 2π

0

dλ′

∫ π

0

dθ′ sin θ′
∫ R/r

0

dz z2σ(t, z r)
√
1 + z2 − 2z n′ · n

+O(c−4) , (18)

wi(t,x) = Gr2
∫ 2π

0

dλ′

∫ π

0

dθ′ sin θ′ n′i

∫ R/r

0

dz
z2 B(t, z r)√

1 + z2 − 2z n′ · n
+O(c−2) . (19)

The computation of these and similar integrals discussed below is straightforward and
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can be performed by using

1√
1 + z2 − 2z x

=













∞
∑

n=0

Pn(x) z
n , |z| < 1 ,

∞
∑

n=0

Pn(x) z
−n−1 , |z| > 1 ,

(20)

√
1 + z2 − 2z x =













∞
∑

n=0

C(−1/2)
n (x) zn , |z| < 1 ,

∞
∑

n=0

C(−1/2)
n (x) z−n+1 , |z| > 1 ,

(21)

where Pn(x) are Legendre polynomials, C
(α)
n (x) are Gegenbauer polynomials, and

∫ 2π

0

dλ′

∫ π

0

dθ′ sin θ′ n̂′L Ps(n
′ · n) = 4 π

2l + 1
n̂L δls , l ≥ 0 , (22)

∫ 2π

0

dλ′

∫ π

0

dθ′ sin θ′ C(−1/2)
s (n′ · n) = 4 π

(

δ0s +
1

3
δ2s
)

, s ≥ 0 . (23)

Eq. (22) can be demonstrated in different ways: e.g., by using the representation of n̂L in
terms of spherical functions and the symmetric trace-free (STF) basis tensors and noting that
Ps(n

′ ·n) can be represented as a sum of associated Legendre polynomials depending on the
spherical coordinates of n and n′. The orthogonality of the associated Legendre functions
can then be used. Eq. (23) follows e.g., from the explicit formulas for the Gegenbauer

polynomials C
(−1/2)
s (x).

1. Internal part

For an internal point (t,x) with r = |x| ≤ R the formal solution of (5)–(6) reads

w(t,x) =
4πG

r

∫ r

0

dy y2 σ(t, y) + 4πG

∫ R

r

dy y σ(t, y)

+
2πG

c2
∂2

∂t2

(

r

∫ r

0

dy y2 σ(t, y) +
1

3r

∫ r

0

dy y4 σ(t, y)

+

∫ R

r

dy y3 σ(t, y) +
1

3
r2
∫ R

r

dy y σ(t, y)

)

+O(c−4) , (24)

wi(t,x) =
4πG

3

(

xi

r3

∫ r

0

dy y3B(t, y) + xi

∫ R

r

dy B(t, y)

)

+O(c−2) . (25)
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2. External part

For an external point (t,x) with r = |x| ≥ R the formal solution of (5)–(6) can be
simplified so that

w(t,x) =
4πG

r

∫ R

0

dy y2 σ(t, y)

+
2πG

c2
∂2

∂t2

(

r

∫ R

0

dy y2 σ(t, y) +
1

3r

∫ R

0

dy y4 σ(t, y)

)

+O(c−4) , (26)

wi(t,x) =
4πG

3

xi

r3

∫ R

0

dy y3B(t, y) +O(c−2) . (27)

3. General multiple expansions for the external part

As is well known the solution of (5)–(6) outside an arbitrary compact matter distribution
admits an expansion in terms of multipole moments (e.g., [7]). Such an expansion takes the
form

w = G

∞
∑

l=0

(−1)l

l!

[

ML ∂L
1

r
+

1

2c2
M̈L ∂L r

]

+
4

c2
Λ,t +O(c−4), (28)

wi = −G
∞
∑

l=1

(−1)l

l!

[

ṀiL−1∂L−1
1

r
+

l

l + 1
εijkSkL−1∂jL−1

1

r

]

−Λ,i +O(c−2), (29)

where

Λ = G
∞
∑

l=0

(−1)l

(l + 1)!

2l + 1

2l + 3
PL ∂L

1

r
. (30)

The Blanchet-Damour moments, ML and SL, are given by

ML =

∫

V

σ x̂Ld3x+
1

2(2l + 3)

1

c2
d2

dt2

∫

V

σ x̂L x2 d3x

− 4 (2l + 1)

(l + 1) (2l + 3)

1

c2
d

dt

∫

V

σix̂iL d3x, l ≥ 0, (31)

SL =

∫

V

εij〈alx̂L−1〉i σj d3s, l ≥ 1. (32)

The additional moments PL are defined by

PL =

∫

V

σi x̂iL d3x, l ≥ 0 . (33)

Here V again denotes the support of the matter distribution.
Since we consider an isolated matter distribution of compact-support it is well known

that according to the local equations of motion the lower multipole moments satisfy the
equations [12, 13]:

Ṁ = O(c−4) , M̈i = O(c−4) , Ṡi = O(c−2) . (34)

It is also clear that Mi can always be chosen to be identically zero by the choice of the origin
of the reference system as the post-Newtonian center of mass.
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4. General skeletonized harmonic gauge

The terms containing Λ can be eliminated from (2)–(3) by a transformation of the time
coordinate

t′ = t− 4

c4
Λ , x′ = x . (35)

This coordinate transformation obviously retains the harmonics gauge. This transformation
changes the metric tensor as

g′00 = g00 −
8

c4
Λ,t +O(c−5) , (36)

g′0i = g0i −
4

c3
Λ,i +O(c−5) , (37)

g′ij = gij +O(c−5) . (38)

This gauge is called skeletonized harmonic gauge [12] in which Λ-terms do not appear in
the post-Newtonian metric: neither in (2), (3), nor in the terms O(c−2) of (4). In this
approximation, the metric is “skeletonized” by the Blanchet-Damour moments ML and SL.
However, it is important to understand that the transformation (35) does not change gij
and, therefore, terms depending on Λ are still present in the terms O(c−4) in gij.

5. Multipole moments for a spherically symmetric matter distribution

For the spherically symmetric matter distribution (14)–(17) one can easily show that

M =

∫

V

σ d3x− 1

2 c2
d2

dt2
N = 4π

∫ R

0

dy y2 σ(t, y)− 2π

c2
d2

dt2

∫ R

0

dy y4 σ(t, y) , (39)

N =

∫

V

σ r2 d3x = 4π

∫ R

0

dy y4 σ(t, y) , (40)

P =

∫

V

σi xi d3x =
1

2
Ṅ +O(c−2) = 4π

∫ R

0

dy y3B(t, y) +O(c−2) , (41)

ML = 0, l ≥ 1 , (42)

SL = 0, l ≥ 1 , (43)

PL = 0, l ≥ 1 . (44)

In this case the Blanchet-Damour mass M coincides with the Tolman mass [13] and thus
coincides with the mass parameter of the Schwarzschild metric as discussed e.g., in [6]. The
relation P = 1

2
Ṅ + O(c−2) holds for an arbitrary matter distribution and follows from

the Newtonian equation of continuity (see Eq. (67) below) and the Ostrogradsky-Gauss
theorem.

It is easy to see that w and wi from (26)–(27) admit multipole expansions (28)–(30) with
multipole moments given by (39)–(44).

In the following we work only with the skeletonized harmonic gauge and drop the primes
over the coordinates. Thus, the metric tensor in this gauge at the external point (t,x) with
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|x| ≥ R takes the form

g00 = −1 +
2

c2
GM

r
− 2

c4
G2M2

r2
+O(c−5) , (45)

g0i = O(c−5) , (46)

gij = δij

(

1 +
2

c2
GM

r
+

2

c4
G2M2

r2

)

+
4

c4

(

qij + δij
GN̈

3r

)

+O(c−5) . (47)

E. Computation of qij

We now come to the computation of qij , as a solution of (7), which can be split according
to

qij = qwij + qσij , (48)

where

∆qwij = −w,iw,j +O(c−1) , (49)

∆qσij = −4πGσij +O(c−1) . (50)

1. Computation of qwij

The gravitational potential w in the Newtonian approximation is determined by (24)
where the terms O(c−2) are omitted. Since w = w(t, r) we get

∂w

∂xi
=

xi

r

∂w

∂r
,

∂w

∂r
=







−GMr

r2
, r ≤ R

−GM

r2
, r ≥ R

, (51)

where Mr is the mass contained in a sphere of radius r

Mr =

∫

|x|≤r

σ d3x = 4π

∫ r

0

σ(t, y) y2 dy , (52)

and M ≡ MR is the total mass of the body. Note, that Mr is some unknown function of r,
while M does not depend on r. Therefore, one gets

∆ qwij = −w,iw,j = −G2M2 f 2(r)
xixj

r6
, (53)

where
f(r) ≡ Mr/M , (54)

so that f(0) = 0 and f(r) = 1 for r ≥ R. The solution for qwij can be written as

qwij = G2M2 (Iij + Eij) , (55)

10



where Iij = Iij(t,x) is the potential with the source defined by the gravitational potential
w(t, r) inside the body (for r ≤ R):

Iij =
1

4π

∫

|x′|≤R

f 2(r′)
x′i x′j

r′6
1

|x− x′| d
3x′

=
1

4π

1

r2

∫ 2π

0

dλ′

∫ π

0

dθ′ sin θ′ n′i n′j

∫ R/r

0

dz
f 2(zr)

z2
√
1 + z2 − 2z n′ · n

(56)

and Eij = Eij(t,x) is the potential with the source defined by the gravitational potential
w(t, r) outside the body (for r ≥ R):

Eij =
1

4π

∫

|x′|≥R

x′i x′j

r′6
1

|x− x′| d
3x′

=
1

4π

1

r2

∫ 2π

0

dλ′

∫ π

0

dθ′ sin θ′ n′i n′j

∫ ∞

R/r

dz
1

z2
√
1 + z2 − 2z n′ · n

=
1

4π

1

r2

∫ 2π

0

dλ′

∫ π

0

dθ′ sin θ′ n′i n′j

∫ r/R

0

dz
z√

1 + z2 − 2z n′ · n
, (57)

where r′ = |x′|, r = |x|, n′ = x′/r′, n = x/r. Both potentials Iij and Eij are non-zero
both inside and outside of the matter distribution. For each of these two integrals, Iij(t,x)
and Eij(t,x), two cases should be considered: the external case with |x| = r ≥ R (labeled
by a superscript ’+’) and the internal case for |x| = r ≤ R (labeled by a superscript ’−’).
Straightforward calculations show that

I−ij =
1

3 r2
δij
(

r

∫ r

0

dy
f 2(y)

y2
+ r2

∫ R

r

dy
f 2(y)

y3

)

+
1

5 r2
n̂ij

(

1

r

∫ r

0

dy f 2(y) + r4
∫ R

r

dy
f 2(y)

y5

)

, (58)

I+ij =
1

3 r
δij
∫ R

0

dy
f 2(y)

y2
+

1

5 r3
n̂ij

∫ R

0

dy f 2(y) . (59)

E−
ij =

1

6

1

R2
δij +

1

20

r2

R4
n̂ij , (60)

E+
ij =

1

3

1

R r
δij − 1

6

1

r2
δij +

1

4

1

r2
n̂ij − 1

5

R

r3
n̂ij . (61)

Note, that the integrals in (59) do not depend on r. Therefore, the dependence of I+ij on r
is explicitly found.

2. Computation of qσij

We now turn to the computation of qσij determined by (50). Using (17) we have:

qσij = G

∫

|x′|≤R

σij(t,x′)

|x− x′| d
3x′

= Gr2
∫ 2π

0

dλ′

∫ π

0

dθ′ sin θ′ n̂′ij

∫ R/r

0

dz
z2 A(zr)√

1 + z2 − 2z n′ · n

−2Gr2 δij
∫ 2π

0

dλ′

∫ π

0

dθ′ sin θ′
∫ R/r

0

dz
z2 C(zr)√

1 + z2 − 2z n′ · n
. (62)

11



Here we do not specify explicitly that A and C may also depend on time t. Again two cases
r ≥ R and r ≤ R should be considered using (20)–(22). For an internal point with r ≤ R
the integral expression for qσij reads

qσ,−ij =
4πG

5

n̂ij

r3

∫ r

0

dy y4A(y) +
4π G

5
r2 n̂ij

∫ R

r

dy
A(y)

y

−8πG

r
δij
∫ r

0

dy y2C(y)− 8πG δij
∫ R

r

dy y C(y) . (63)

For an external point with r ≥ R the integral expression for qσij can be simplified to

qσ,+ij =
4π G

5

n̂ij

r3

∫ R

0

dy y4A(y)− 8π G

r
δij
∫ R

0

dy y2C(y) . (64)

Again the integrals on the last line of (64) do not depend on r and the dependence of qσ,+ij

on r is explicitly given by (64).

For the general spherically symmetric case considered here, f = f(r), A(r) and C(r) are
arbitrary functions and no further simplification of the internal potentials I−ij and qσ,−ij can

be done. Clearly, the internal potentials I−ij , E
−
ij and qσ,−ij are not needed for the derivation

of the external metric. They will be used below for comparisons in the special case of a
body composed of an incompressible fluid.

F. External metric

Gathering all the partial results we can now write the following expression for the potential
qij(t,x) at an external point with |x| ≥ R:

q+ij = G2M2
(

I+ij + E+
ij

)

+ qσ,+ij

=
G2M2

3 r
δij
∫ R

0

dy
f 2(y)

y2
+

G2M2

5 r3
n̂ij

∫ R

0

dy f 2(y)

+
G2M2

3R r
δij − G2M2

6 r2
δij +

G2M2

4 r2
n̂ij − G2M2R

5r3
n̂ij

+
4πG

5

n̂ij

r3

∫ R

0

dy y4A(y)− 8πG

r
δij
∫ R

0

dy y2C(y) . (65)

All integrals in (65) are constants characterizing the matter distribution under consideration
in addition to the mass M . Such additional constants do not appear in usual forms of the ex-
ternal Schwarzschild metric and either can be eliminated by some coordinate transformation
or vanish in virtue of the local equations of motion.

The dependence of q+ij = q+ij(t,x) on x in (65) is fully explicit. There are terms of the

following type: i) δij/r, ii) δij/r2, iii) n̂ij/r2 and iv) n̂ij/r3. The additional constants appear
in terms of types i and iv. We demonstrate first that the terms of type i cancel with the
term in (47) proportional to N̈ and coming from Λ,t in (28). Collecting all terms of this

12



type in (65) one gets

q+ij

∣

∣

∣

∣

∣

1/r

=
δij G

3r

(

−24 π

∫ R

0

dy y2C(y) +GM2

∫ R

0

dy
f 2(y)

y2
+

GM2

R

)

= −8π
δij G

3r

∫ R

0

dy
(

3y2C(y)−GM σ(y) y f(y)
)

= −8π
δij G

3r

∫ R

0

dy

(

3y2C(y) + y3 σ(y)
dw(y)

dy

)

= −8π
δij G

3r

d

dt

∫ R

0

dy y3B(t, y) = −δij G

3r
N̈ , (66)

where we used the Newtonian local equations of motion

∂

∂t
σ +

∂

∂xi
σi = O(c−2) , (67)

∂

∂t
σi +

∂

∂xj
T ij = σ

∂

∂xi
w +O(c−2) . (68)

The second equation, in the case of spherical symmetry (14)–(17), can be simplified to

2

3

∂

∂r
A(t, r) +

2A(t, r)

r
+

∂

∂t
B(t, r) +

∂

∂r
C(t, r) = σ

∂

∂r
w(t, r) +O(c−2). (69)

The quantity N appearing in the final result in (66) is just the moment of inertia of the
body defined by (40). Comparing (66) with the last term in (47) we conclude that the 1/r
terms of order O(c−4) in gij cancel exactly.

Finally, let us note that the terms of type iv in (65) can be eliminated by a gauge
transformation:

t′ = t , x′i = xi +
1

c4
∂ih . (70)

This transformation changes the metric tensor according to

g′00 = g00 +O(c−5) , (71)

g′0i = g0i +O(c−5) , (72)

g′ij = gij −
2

c4
∂ijh+O(c−5) . (73)

One can see that the coordinate gauge remains harmonic if the function h satisfies the
condition ∂kkh = O(c−1). Taking

h =
1

30

G

r

(

GM2

∫ R

0

dy f 2(y)−GM2R + 4π

∫ R

0

dy y4A(y)

)

(74)

one can eliminate the terms of type iv in (65) and in the metric. The transformation
(70) with h given by (74) augments the definition of the skeletonized harmonic gauge for
a spherically symmetric matter distribution in the post-linear approximation. Note, that
both Λ appearing in (35) and h in (70) depend on the internal structure of the body, while

13



the resulting external metric does not. Indeed, omitting the primes again, we can see that
the metric tensor at the external point (t,x) with |x| ≥ R takes the form

g00 = −1 +
2

c2
GM

r
− 2

c4
G2M2

r2
+O(c−5) , (75)

g0i = O(c−5) , (76)

gij = δij

(

1 +
2

c2
GM

r
+

1

c4
G2M2

r2

)

+
1

c4
G2M2

r2
ninj +O(c−5) . (77)

This metric fully agrees with the well-known external Schwarzschild metric in harmonic
coordinates in the corresponding approximation.

III. THE CASE OF A STATIC INCOMPRESSIBLE FLUID

The case of a static body composed of an incompressible fluid is often discussed in the
literature when dealing with the internal Schwarzschild solution [6]. It is well known that
for a static incompressible fluid the four functions describing the matter distribution in
(14)–(17) are time-independent and read

σ(r) = κ

(

1 +
1

c2
(2w + 3p)

)

+O(c−4) = κ

(

1 +
1

2c2
GM

R

(

9− 5η2
)

)

+O(c−4) , (78)

A(r) = O(c−2) , (79)

B(r) = O(c−2) , (80)

C(r) = p+O(c−2) =
1

2

GM

R

(

1− η2
)

κ+O(c−2) , (81)

where η ≡ r/R, κ = const is the invariant density (rest mass plus internal energy density),
p = p(r) is the isotropic pressure that can be computed from the condition of hydrostatic
equilibrium dp/dr = κ dw/dr + O(c−2) with the boundary condition p(R) = 0. The well-
known Newtonian formula for the internal potential, w = 1

2
GM
R

(3− η2) +O(c−2), was used
here and in (78).

The equations that define the gravitational potentials simplify for the static incompress-
ible fluid case to

w(t,x) =









1

2

GM

R

(

3− η2
)

+
3

8c2
G2M2

R2

(

1− η2
)2

+O(c−4) , r ≤ R ,

GM

r
+O(c−4) , r ≥ R ,

(82)

wi(t,x) = O(c−2) , (83)

qij(t,x) = G2M2

×









1

R2
η2
(

3

20
− 1

14
η2
)

n̂ij − 1

2R2

(

1− η2 +
1

3
η4
)

δij +O(c−1) , r ≤ R ,

1

4r2

(

n̂ij − 2

3
δij
)

− 2

35
R∂ij

(

1

r

)

+O(c−1) , r ≥ R ,

(84)
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where the mass M is defined by

M = 4π

∫ R

0

dy y2 σ(t, y) +O(c−4) =
4

3
π R3 κ

(

1 +
3GM

c2R

)

+O(c−4) . (85)

Here we used the fact that for static incompressible fluid f(r) = η3 +O(c−1).
It is important to see that for a static incompressible fluid P = 0 and therefore Λ = 0

(see Eqs. (41) and (30) ). It means that no additional time transformation (35) is needed
to bring the external metric in the usual form of the Schwarzschild solution in harmonic
coordinates. In the gauge transformation of spatial coordinates (70)-(74), one should take

h = −G2M2R
35 r

. This eliminates the last term in (84) for qij for an external point. In this way
the metric outside of the body again coincides with (75)–(77) and agrees with the well-known
Schwarzschild solution.

For a point inside the body with r ≤ R, Eqs. (82)–(84) together with the definitions
(2)–(4) allow us to write

g00 = −1 +
1

c2
GM

R
(3− η2)− 1

4c4
G2M2

R2

(

15− 6η2 − η4
)

+O(c−5) , (86)

g0i = O(c−5) , (87)

gij = δij

(

1 +
1

c2
GM

R
(3− η2) +

1

12c4
G2M2

R2

(

39− 30η2 + 7η4
)

)

+
1

35c4
G2M2

R2
η2
(

21− 10η2
)

n̂ij +O(c−5) . (88)

As expected we see that the internal metric depends on the radius of the body R as it is the
case also in the Newtonian limit.

IV. DERIVATION OF THE METRIC FROM THE EXACT SOLUTION IN THE

CASE OF A STATIC INCOMPRESSIBLE FLUID

It is well known that both internal and external Schwarzschild solutions for the case of
the static incompressible fluid can be written as exact solutions. In this Section we will
compare our results (82)–(88) for the static incompressible fluid case with those that can be
found in the literature (e.g., [6] where standard Schwarzschild coordinates are used).

A. Metric tensor in standard coordinates

For this Schwarzschild problem the metric tensor in standard coordinates (t, ρ, ϑ, λ) is of
the form

ds2 = −B(ρ)c2dt2 +A(ρ)dρ2 + ρ2(dϑ2 + sin2 ϑdλ2) . (89)

Let the radius of the body be at ρ = a. Then the internal metric for ρ ≤ a is given by (e.g.,
see Sections 8.2 and 11.9 of [6]):

A−(ρ) =

(

1− 2mρ2

a3

)−1

, (90)

B−(ρ) =
1

4

[

3

(

1− 2m

a

)1/2

−
(

1− 2mρ2

a3

)1/2
]2

, (91)
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and the external metric for ρ ≥ a reads

A+(ρ) =

(

1− 2m

ρ

)−1

, (92)

B+(ρ) = 1− 2m

ρ
. (93)

Here m = GM/c2 and

M = 4π

∫ a

0

κρ2dρ =
4π

3
κa3 . (94)

Below we will show that this expression for M is in accordance with Eq. (85) above.

B. Transformation to harmonic coordinates

Our goal now is to transform this solution into harmonic coordinates. It is well known
that the transformation between standard and harmonic coordinates only affects the radial
coordinate r = r(ρ). The transformation of the radial coordinate brings the metric (89) into
the form:

g00 = −B , (95)

g0i = 0 , (96)

gij = D δij +N ninj , (97)

where

D =
ρ2

r2
, N =

[

(

dr

dρ

)−2

A− ρ2

r2

]

. (98)

The transformation from the standard radial coordinate ρ to some harmonic coordinate
r = r(ρ) is determined by the second-order differential equation (e.g., Section 8.1 of [6]):

d

dρ

(

ρ2 B1/2 A−1/2 dr

dρ

)

= 2A1/2 B1/2 r . (99)

Clearly this gives two distinct differential equations for ρ ≤ a and ρ ≥ a according to (90)–
(91) and (92)–(93). We will now determine the function r(ρ) satisfying these two equations
such that both r(ρ) and its derivative dr/dρ are continuous at the stellar surface at ρ = a
or r(a) = R. According to (99) this is needed to keep the metric in harmonic coordinates
continuous at r(a) = R. In the following we will consistently neglect all terms proportional
to m3 (or equivalently c−6).

For both internal and external solutions we start with the ansatz

r = ρ
(

1 +mb(ρ) +m2 c(ρ)
)

+O(m3) , (100)

where b(ρ) and c(ρ) are unknown functions to be determined from the differential equation
(99) and boundary conditions.
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For the external case we substitute the external metric (92)–(93) and the ansatz (100) into
(99), expand in powers of m, neglect terms O(m3) and get the following general solutions
of the resulting second-order differential equations for b(ρ) and c(ρ):

b+(ρ) = C+
2 − 1

ρ
− C+

1

3ρ3
, (101)

c+(ρ) = C+
4 − C+

2

ρ
− C+

3

3ρ3
− 2C+

1

3ρ4
, (102)

where C+
i are four arbitrary constants. A similar procedure for the internal metric (90)–(91)

gives

b−(ρ) =
ρ2

2 a3
+ C−

2 − C−
1

3ρ3
, (103)

c−(ρ) =
15

28

ρ4

a6
− 3

20

ρ2

a4
+

C−
2

2

ρ2

a3
+ C−

4 +
C−

1

3 a3 ρ
− C−

3

3ρ3
, (104)

where C−
i are four arbitrary constants (generally speaking different from C+

i ). Note that
both C−

i and C+
i are not dimensionless. Any values of C−

i and C+
i can be taken to satisfy

the differential equation (99). However, all these constants can be fixed from four boundary
conditions:

1. r(ρ) is equal to ρ at spatial infinity: lim
ρ→∞

r(ρ) = ρ or, equivalently lim
ρ→∞

b+(ρ) = 0 and

lim
ρ→∞

c+(ρ) = 0;

2. r(ρ) is regular for ρ = 0: r(0) = 0 or, equivalently, lim
ρ→0

ρ b−(ρ) = 0 and lim
ρ→0

ρ c−(ρ) = 0;

3. r(ρ) is continuous at ρ = a: b−(a) = b+(a) and c−(a) = c+(a);

4. the derivative of r(ρ) is continuous at ρ = a: db−(ρ)
dρ

∣

∣

∣

ρ=a
= db+(ρ)

dρ

∣

∣

∣

ρ=a
and dc−(ρ)

dρ

∣

∣

∣

ρ=a
=

dc+(ρ)
dρ

∣

∣

∣

ρ=a
.

With these boundary conditions we have:

r− = ρ

(

1− 3

2

m

a
+

1

2

mρ2

a3
+

1

4

m2

a2
− 9

10

m2ρ2

a4
+

15

28

m2ρ4

a6

)

+O(m3) , (105)

r+ = ρ

(

1− m

ρ
− 4

35

a

ρ

m2

ρ2

)

+O(m3) . (106)

This also determines the relation between a (the stellar radius in ρ) and R (the stellar radius
in r):

R = a−m− 4

35

m2

a
+O(m3) ,

a = R +m+
4

35

m2

R
+O(m3) . (107)

From this we see that both definitions for the mass M , (85) and (94) are in accordance with
each other.
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Note that the first derivative of A is not continuous at ρ = a: dA+

dρ

∣

∣

∣

ρ=a
6= dA−

dρ

∣

∣

∣

ρ=a
.

Interestingly, this is compensated by a discontinuity of the second derivative of r(ρ) at
ρ = a so that the resulting harmonic metric and its first derivatives are continuous.

Here we have only worked in an approximation neglecting terms O(m3). Let us note that
the differential equation (99) outside the star has the solution (e.g., [14])

r = C1(ρ−m) + C2F (ρ) , Ci = const , (108)

F (ρ) ≡ [(ρ−m) ln(1− 2m/ρ) + 2m] = −m
∞
∑

i=2

2i(i− 1)

i(i+ 1)
(m/ρ)i . (109)

Inside the star (99) can be transformed into a Heun equation for which the solutions are
also known (see also [15]).

Using the coordinate transformations (105)–(106) and the metric tensor (95)–(98) we can
now derive the explicit expressions for the metric tensor in harmonics coordinates.

C. Internal metric

With these results the internal metric is given by

g−00 = −B− = −1 +
m

R
(3− η2)− m2

4R2
(15− 6η2 − η4) +O(m3) , (110)

from which we derive (82) for r ≤ R in virtue of w/c2 = −1
2
ln(−g00) +O(m3). Here again

η ≡ r/R. Furthermore,

D−(r) = 1 +
m

R
(3− η2) +

m2

2R2

(

13

2
− 27

5
η2 +

19

14
η4
)

+O(m3) (111)

N−(r) =
1

35

m2

R2
η2(21− 10η2) +O(m3) . (112)

These equations and (97) allows one to recover our previous result (88).

D. External metric

The metric component g+00 = −B+ coincides with (45) and

D+(r) = 1 +
2m

r
+

m2

r2

(

1 +
8

35

R

r

)

+O(m3) , (113)

N+(r) =
m2

r2

(

1− 24

35

R

r

)

+O(m3) . (114)

These equations and (97) agree with our previous result (77). It is easy to see that the
metric in harmonics coordinates and its first derivative is continuous at r = R.
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E. Computation of qij

It is interesting to check if we can also recover our expression (84) for qij for a static
incompressible fluid. From the definition of qij , Eq. (4), one obtains

qij =
c4

4

[(

D − 1− 2w

c2
− 2w2

c4

)

δij +N xixj

r2

]

+O(m3) . (115)

which immediately gives (84).

V. CONCLUSIONS

We have treated the gravitational field of some spherically symmetric matter distribution
in harmonic coordinates to post-linear order. We started with the general case in which the
matter distribution might be time dependent and left the form of the energy-momentum
tensor open. The metric tensor was derived explicitly for both the interior and the exterior
region. In the exterior region the metric tensor can be expanded in terms of the Blanchet-
Damour mass and it is demonstrated explicitly how the usual external Schwarzschild field
can be derived from the field equations. Terms depending on the internal structure appear
in several places in intermediate calculations and it was shown how they can be removed
with additional gauge transformations or how such terms cancel exactly in virtue of the local
equations of motion.

The results of this paper should be considered as an intermediate step in the derivation
of the post-linear metric (2)–(4) for a body possessing full multipole structure, i.e., having
arbitrary mass and spin moments, ML and SL. This would be a generalization of the well-
known post-Newtonian multipole expansions of Blanchet and Damour [7] (discussed also
in Section IID 3) and the post-Minkowskian ones derived by Damour and Iyer [8]. Such a
metric is e.g., required for relativistic modeling of future space astrometric projects aiming
at nanoarcsecond accuracies.
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