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Abstract

In the evolving public cloud environment, RDMA (Remote Direct Memory Access) networks
surpass traditional TCP/IP in performance but face integration hurdles across applications,
hardware, and network stacks. This complexity has even prompted cloud providers to develop
custom NICs and protocols for a better performance-usability balance. This thesis focuses on
how operating system (OS) techniques can enhance RDMA network usability with minimal
performance trade-offs.

A significant hurdle in the usability of RDMA networks is kernel bypass, which removes the OS
from the communication dataplane. While effective in High-Performance Computing, kernel
bypass is problematic in cloud environments, where diverse applications rely on OS support for
resource sharing. Removing kernel bypass, as is done in TCP/IP, is not an option, as it would
nullify the performance benefits of RDMA. Therefore, the challenge is to make the RDMA
network dataplane more controllable with minimal changes to the existing RDMA network
stack.

To address this, the OS can interpose on the RDMA dataplane continuously or intermittently
to enhance overall control over RDMA communication. Continuous interposition redirects
the dataplane through the OS kernel, offering control with minimal impact, enabling tasks
like performance monitoring and rate limiting. Intermittent interposition, ideal for scenarios
demanding low overhead, alternates communication between a high-performance bypass
and an OS-managed manipulation phase, allowing for the implementation of, for example,
transparent live migration for RDMA applications. These methods, continuous and intermittent
interposition, significantly improve OS control over the RDMA dataplane, facilitating wider
adoption and commoditization of RDMA networks in cloud infrastructures.
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1 Introduction

High Performance Computing (HPC) and Cloud architectures are converging: the former
is advancing towards greater elasticity and higher resource utilization, while the latter is
increasingly geared towards handling high-performance workloads. However, current HPC
Cloud systems remain partitioned: vast sections lack high-performance networking support, with
only a few segments offering such capabilities. This thesis studies how Operating Systems (OSs)
can aid in HPC and Cloud convergence by making high-performance networks more accessible
to cloud and data center applications. This approach can significantly enhance performance
within Cloud environments.

The convergence of HPC and Cloud networks is challenging because these networks have very
different architectures. High-performance networks explicitly separate communication into
control plane and data plane operations and take extensive measures to optimize data plane
operations. Control plane operations are responsible for setting up, managing, and tearing down
connections. Although the control plane in high-performance networks looks quite different
from the control plane in traditional networks, the OS still has significant control over the
RDMA control plane.

The situation differs for data plane operations, which are responsible for sending and receiving
messages over the established connections. The primary approach to optimizing the data
plane is to delegate much of the traditional OS functionality to user applications and the
hardware [Pet+14; DPD13; Inf15]. As a result, the OS does not participate in data plane
operations and has little control over them.

Unfortunately, if the OS does not execute a data plane operation, it loses control over the
data plane because it cannot change parameters of the operation for the purposes of resource
allocation or virtualization. As a result, high-performance networks trade off hard properties,
such as latency and bandwidth, for soft properties, such as deployability and usability. This
thesis investigates how the aforementioned shift in performance balance has been addressed so
far and proposes two novel OS architectures for high-performance systems that enhance OS
control over high-performance network communication.

Upon closer inspection, modern high-performance network architectures, such as Remote Direct
Memory Access (RDMA), utilize several techniques such as kernel-bypass, zero-copy, busy

1



1 Introduction

polling, offloading 1, and lossless flow control to enhance data plane performance. Kernel-bypass
allows the application to access the Network Interface Controller (NIC) directly, avoiding
overhead for crossing the user-kernel boundary. Zero-copy enables the NIC to access application
memory directly, avoiding overhead for copying message content between kernel and user
memory. With busy polling, the application continuously checks the NIC’s message queues
to avoid the overhead incurred by interrupt processing. Offloading allows the application to
delegate some operations to the NIC, relieving precious CPU resources for application logic.
Lossless flow control ensures that no message is lost, avoiding the overhead of retransmission.
Together, these techniques impose on the user application a complicated programming model,
forcing existing POSIX-based applications to be rewritten to benefit from high-performance
networking [Enb+22].

However, these techniques circumvent “rich and robust” OS services [AMK22, p. 228], reducing
the OS capabilities to manage applications and enforce policies [He+20]. This approach forces
the OS to rely on the NIC to implement security and resource-sharing policies [Zha+22;
Kim+19; He+20]. Generic hardware-based solutions that rely on IOMMU [Rot+21; Tar+20] or
VXLAN [Sim+20] are inflexible and offer only a fraction of what an OS can do. Vendor-specific
hardware-based solutions improve controllability for the OS [Bur21b; Fir+18], but are not
portable and are not always available [Lin16]. In turn, to achieve high performance, the
application must be rewritten in a new API, bring its own NIC drivers, and perform most of
the scheduling and resource management itself [Yan+17; DPD13; Ope22]. As a result, the
OS’s role becomes almost insignificant for high-performance applications.

The OS community realizes that sometimes a do-nothing OS is the best choice [Ger+16;
Jam+17; Gia+10; WLH19]. Still, many applications need high-performance communication
and also expect the abstractions and services of a full-featured OS [Zhe+13; FSB19; Zha+19;
Sad+21; Mar+19]. The conflict between the need for a classical OS architecture and the need
for high-performance communication is fundamental, so one can only choose the right trade-off
for a specific use case.

To regain OS control over high-performance networks, the OS can interpose on the data plane
and do so either at the software level or with the assistance of the device. Such OS interposition
can be either continuous [Kim+19] or intermittent [Les+17]. Through continuous interposition,
the OS controls the state of the active connection and all messages sent and received over it.
Through intermittent interposition, the OS is in control of the active connections only during
selected phases of the connections’ lifetime. Continuous interposition is more intrusive and
resource-intensive, whereas intermittent interposition allows the OS to enforce fewer policies.

This thesis outlines and generalizes the existing landscape of OS-level interposition techniques
for high-performance network data planes. Then, it studies hardware-supported intermittent
interposition and software-level continuous interposition in the context of two separate real-life
examples. First, software-level continuous interposition helps to implement several OS-level
resource management policies. Second, hardware-supported intermittent interposition enables
the OS to live migrate high-performance applications transparently with zero performance
penalty to the application outside the migration phase. Although continuous interposition is
more intrusive, we show that, in many cases, realistic high-performance applications experience

1One-sided or RDMA communication is a type of offloading.
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only a very small overhead. Overall, both methods demonstrate that fine-grained OS control
can be achieved with little impact on application performance and complexity.

1.1 Continuous interposition

The main idea behind continuous RDMA data plane interposition is to return the OS to
the data plane, but without abandoning other high-performance techniques. In this regard,
continuous interposition is the most straightforward approach to enable an OS-controllable
data plane. Such interposition allows for arbitrary OS policies to be enforced throughout the
entire application runtime.

The existing methods for continuous interposition typically offer novel OS and application
architectures [Wei+21; TZ17]. To adopt any of these approaches, the application must be
rewritten to use a new API. Given that these existing approaches adjust many “knobs”
simultaneously, it is difficult to understand which aspect of the novel architecture is crucial for
efficient continuous interposition. In this context, the question is, what modifications would
minimally impact the application architecture and its performance?

To answer this question, we enabled continuous interposition by redirecting the RDMA
data plane through the OS kernel, providing the OS with the interception point for all
communication operations [Pla+23]. Although the resulting architecture added approximately
1.5 µs of overhead to the RDMA operations, we did not observe performance degradation above
1% in multiple high-performance applications. Considering that in some cases the overhead was
much higher, we also proposed a new OS layer, which allows the OS to interpose on RDMA
communication with less than 100 ns of added overhead [Mie+22]. Overall, we show that a
careful implementation of the interposition mechanism minimally affects the performance of
RDMA operations while providing flexible OS control over the RDMA connections.

1.2 Intermittent interposition

Intermittent interposition splits communication into two phases: bypass and interposition.
During the bypass phase, the OS does not interpose on the communication, allowing the
application to communicate directly with the NIC. During the interposition phase, the
communication either pauses or is routed through the OS, enabling the OS to enforce policies
or change the state of the connection. This approach allows the OS to control high-performance
data plane communication with little to no overhead. On the other hand, not being able to
inspect every message limits the OS’s capabilities.

To demonstrate that intermittent interposition can be effective in complex use cases, this
thesis demonstrates an implementation of transparent live migration of RDMA applications.
By interposing on the RDMA connections only during migration, the application does not
experience runtime overhead. Transparency and zero runtime overhead are crucial to ensure
that non-migrating applications are not penalized, but these properties have been traditionally
challenging to achieve in high-performance networks [Pfe+15; Pic+16].

To ensure transparency, the application should not require modifications and should not get
disrupted by migration. One of the key challenges for transparency is that the OS must

3



1 Introduction

prevent message loss during the migration operation. Such message loss can occur in two
scenarios: during application checkpointing and immediately after migration. When the OS
checkpoints an application, newly arriving messages may concurrently modify the application
state but not be captured in the checkpoint. After migrating the application, the application’s
communication partners may send messages to the old location before learning of the new
location. To maintain zero runtime overhead outside the migration phase, the OS may interpose
on the RDMA connections only during the migration phase.

In this thesis, intermittent OS interposition achieves transparency and zero overhead through
minimal modifications to the RoCE protocol, a popular low-level RDMA communication
protocol [Pla+21]. These protocol modifications allow the OS to place the RDMA connections
of the migrating application into a quiescent state, eliminating the risk of losing messages during
migration. The prototype implementation of the proposed method includes modifications to a
software implementation of the RoCE protocol and modified versions of kernel- and user-level
RDMA device drivers. In our prototype, we added only a few instructions to the critical
path of the RDMA data plane, which did not result in any measurable performance penalty.
Furthermore, we integrated the prototype into the Docker container runtime to demonstrate
that minimal modifications are sufficient for complex use cases.

1.3 Thesis Structure

This thesis is structured as follows: Chapter 2 provides the necessary background information
about existing high-performance network architectures, specifically regarding RDMA commu-
nication. Chapter 3 outlines the landscape of existing continuous interposition techniques and
introduces CoRD, a new continuous interposition technique focused on backward compatibility.
Furthermore, Section 3.3 presents the fastcall architecture, which aims to reduce the overhead
caused by continuous interposition. Chapter 4 presents intermittent interposition and intro-
duces MigrOS, a new OS runtime that uses intermittent interposition to enable transparent
RDMA application live migration. Finally, Chapter 5 concludes the thesis and outlines future
work.
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Among high-performance networks, Remote Direct Memory Access (RDMA) networks are
the fastest and the most well-known. Therefore, in this thesis, we primarily focus on RDMA
networks. This chapter outlines the key concepts of RDMA networks and the performance-
improving techniques they employ.

In a narrow sense, Remote Direct Memory Access (RDMA) networks are networks that support
RDMA read and write operations. These operations allow the application to access the memory
of the remote host directly, without the need for the remote host’s CPU to be involved in the
data transfer. In practice, though, remote read and write operations are just one component
of RDMA networks.

RDMA networks differentiate themselves from traditional TCP/IP-based networks at the
application, OS, device, and network levels. For example, user-level RDMA applications may
use an InfiniBand verbs-based communication API [Mel15], instead of the socket API [POS17].
And at the network protocol level, there is an independent InfiniBand-based communication
protocol [Inf15], instead of Ethernet.

To achieve high performance, RDMA networks rely on a combination of performance-improving
techniques, like zero-copy and kernel-bypass. Although these techniques are not exclusive to
RDMA networks, they require special OS support and also put additional requirements on
the OS, creating a lot of design challenges for OS developers. This chapter considers RDMA
networks from the perspective of an OS developer.

Depending on the circumstances, some of the performance-improving techniques may not be
used in a specific scenario. For example, applications often deliberately avoid RDMA read
and write operations [DNC17; KKA16; KKA19]. On the other hand, traditional network
technologies are often re-engineered to provide a performance similar to that of RDMA
networks [Bel+14; DPD13; Pet+14; Zha+21]. Therefore, in a broader sense, we conflate and
relate RDMA networks to all high-performance networks that rely on the aforementioned
optimizations, regardless of whether they support RDMA operations or not.

This chapter provides a general architectural overview of RDMA networks (Section 2.1),
presents core RDMA techniques (Section 2.2), outlines the general technological landscape
(Section 2.3), and finally introduces the software architecture and the programming model
(Section 2.4).
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2.1 RDMA Networks

This thesis identifies five main techniques that allow RDMA networks to achieve high
performance: zero-copy, kernel-bypass, busy-polling, CPU offloading, and lossless communication.
The first four techniques are directly reflected in the software architecture of the applications
and the OS. Whereas the last one imposes additional design requirements for the software
stack.
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(a) When sending a message in a traditional network, both
control and data planes go through the kernel.
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(b) RDMA networks bypass the kernel when sending and
receiving messages.

Figure 2.1: Comparison of traditional and RDMA networks. Bypassing the kernel opens up multiple
opportunities for optimization.

To understand these main techniques, consider how they compare to commodity socket-based
networks [POS17]. An example in Figure 2.1 depicts two applications running on two different
nodes and connected over a network. The application on the left sends a message to the
application on the right either over a traditional socket-based network (Figure 2.1a) or over an
RDMA network (Figure 2.1b).

When sending a message over a socket-based network (see Figure 2.1a), the application prepares
the message content in the application’s virtual memory. Then, the application makes a system
call ( 1 ) to instruct the kernel to send a message over a socket, representing an already existing
connection. The OS kernel copies the message into the memory ( 1 ) eligible for device-initiated
Direct Memory Accesses (DMAs) (e.g., memory must be pinned) and prepares the message for
sending. For that, the kernel splits messages into packets, looks up routing tables to identify
the right network interface, and schedules the packets for sending. Each packet may need to
pass through a firewall and a packet scheduler [Hub01] to enforce security policies and control
the network traffic. If hardware support is not available, the kernel composes corresponding
packet headers, containing information like the destination address or the packet length. When
the preparation is done, the kernel triggers the NIC by writing into a doorbell register to
initiate the message transfer ( 2 ).

From that point on, the sender NIC transfers the message to the receiver NIC ( 3 ), which
stores the message content inside the host system’s memory ( 3 ). As soon as the transfer
completes, the NIC notifies the OS about the received message by triggering an interrupt1. On
the receiver side, the OS kernel performs many of the same operations as on the sender side,
such as reassembling the message from the packets, looking up routing tables, and scheduling
the message for delivery to the application.

For the message to finally reach the application, the application must also make a system call
to the kernel requesting a message from a specific socket. If the application does not make

1For an interrupt to trigger, the kernel must arm the interrupt. A single interrupt can inform the OS about
multiple messages at once.
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the system call before the actual message arrival, the kernel keeps the message in the kernel
memory until the application requests it. In either case, as soon as the kernel can match the
destination buffer inside the application memory with the arrived message, the kernel copies
the message ( 5 ) and returns the execution control to the application ( 5 ).

Moving the message between the kernel and user buffer is slow not only because of the
additional memory movement but also because creating and destroying kernel buffers involves
a memory allocator. Despite the developers’ best efforts, memory allocation is inherently
problematic for low-latency communication, for example, because the allocator may block to
reclaim memory from other kernel subsystems. Moreover, the allocator is highly concurrent
and can use all the CPU cores, adding additional contention.

RDMA networks improve communication performance as follows. First, the OS maps Memory-
mapped I/O (MMIO) regions of the NIC directly to the application’s address space. Now, the
application does not need to enter the kernel to trigger message transmission ( 1 ). Second, when
transferring the message over the network, the NIC takes the message content directly from
the application memory ( 2 ). For this transfer to work, before actually receiving a message, the
application on the receiving end makes the destination message buffer available to the receiving
NIC. Third, as soon as the message fully reaches the destination ( 3 ), the destination NIC
notifies the application by updating the message status through MMIO. Avoiding interrupts
allows the receiving application to bypass the kernel when receiving a message.

These three techniques are correspondingly referred to as zero-copy, kernel-bypass, and busy-
polling. Kernel-bypass allows the application to access the device directly, avoiding the overhead
associated with crossing the user-kernel boundary. Zero-copy enables the NIC to access the
application memory directly, avoiding the overhead of copying the message content between
kernel and user memory as done with read and write system calls. With polling, the application
continuously checks the NIC’s message queues to avoid the overhead incurred by interrupt
processing, as happens with the epoll system call. The use of these techniques is reflected in
the API design employed by RDMA applications [Mel15; Zha+21; Cra19]. This API is very
different from the traditional socket-based API, meaning that socket-based applications must
be rewritten to fully benefit from high-performance networking. These techniques are referred
to as software techniques.

Correspondingly, the other two performance-improving techniques are hardware techniques.
The first technique is lossless communication, which relies on special network protocols to
minimize the packet loss rate [IEE11; Zhu+15]. A low packet loss rate is important because
retransmitting lost packets is extremely disruptive for high-performance networks. The second
technique is CPU offloading. With CPU offloading, the NIC takes over work from the host
system so that the host CPU can spend more time processing the application logic. In RDMA
networks, one example of offloading is when, instead of the host CPU, a NIC splits messages
into MTU-sized packets at the sender and reassembles the packets into a message at the
receiver.

Another example of offloading is one-sided or RDMA communication. This technique further
reduces the host CPU load by relieving a CPU at one side of the communication from
participating in data transfer entirely. For that, the host enables certain memory regions to be
accessible by the NIC, without the need to provide the NIC with destination buffers for each
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message. Then, the active side can initiate RDMA Read operations to receive data from the
assigned memory region and RDMA Write to send data to the assigned memory region.

Together, these five techniques allow RDMA networks to achieve high performance. Employing
these techniques comes with a cost, though, which we discuss in Section 2.2. For this reason,
existing high-performance networks may not employ all of these techniques to the same extent.
The choice of which techniques to use can also be made at the application or OS level.

2.2 RDMA Techniques

Despite their apparent advantages, RDMA network architectures remain a relatively niche
technology even after decades of research and development [VIT98; Inf15]. The main reason
for this is that each of the RDMA techniques comes with a set of requirements and limitations,
which may not be met in a specific scenario. This section describes each of the RDMA
techniques and their limitations.

2.2.1 Zero-copy

Zero-copy is a technique that allows the application to avoid copying the message content
between the application and the kernel memory. Instead, the application prepares the message
content in the application memory, and the NIC takes the message content directly from the
application memory when sending the message. For this to work, the NIC must be able to
access the message buffer both when sending and receiving the message.

Generally, application memory is not directly accessible to devices because application virtual
memory does not have guaranteed physical memory assigned. Even if, at the moment when the
application initiates the message transfer, the message buffer is backed by physical memory,
the OS may page out this memory by the time the NIC tries to access it. In the unfortunate
case, the NIC will send out memory that no longer belongs to the sender application. And in
the case of receiving the message, the NIC will also overwrite memory that belongs to the OS
or another application.

To avoid these problems, the application must request the OS to pin the message buffer in
physical memory. By pinning, the OS promises that the message buffer will not be paged out
or moved in physical memory, so that the NIC is guaranteed to access the correct memory.
Pinning the memory limits the OS’s ability to manage the memory, for example, for swapping,
Non-Uniform Memory Access (NUMA) rebalancing [vRie14], memory compaction [Cor09],
and memory defragmentation [PPG18].

Another challenge with zero-copy is that to access the message buffer, the NIC uses physical
memory addresses2, whereas the application only knows the virtual addresses of the messages
it wants to send. An application can query the kernel for a specific virtual address to physical
address mapping [DPD13; Bur19], but this approach is often unsuitable because exposing the
physical memory layout to a user application may be a security risk from the OS perspective.

2The Linux kernel calls them bus addresses [MHJ20].
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Instead, RDMA NICs maintain a Memory Translation Table (MTT) with per-process virtual-
to-physical mapping that they use to translate from user-provided virtual addresses to physical
addresses [Mel16].

Non-RDMA NICs do not have such a table but can rely on hardware virtualization instead:
The OS can create a virtual device address space identical to the virtual application address
space by configuring a virtualized NIC and the Input/Output Memory Management Unit
(IOMMU) [Bel+14; Pet+14]. This way, a virtual address passed by the application to the NIC
is automatically translated to the correct physical address by the IOMMU.

As a result, before the application can use certain memory as a zero-copy message buffer,
it needs to register this memory with the OS. During the registration process, the OS pins
the memory, creates a virtual memory mapping for the NIC, or passes the physical address
to the application. Generally, applications try to keep the amount of registered memory as
little as possible to reduce the amount of memory that needs to be pinned and the number of
mappings in MTT. This could be achieved by registering the memory only when the application
actually needs to send a message and deregistering the memory as soon as the message is
sent. However, registering and deregistering memory is a slow operation [Mie+06; Pla+21], so
high-performance RDMA applications try to find a balance between minimizing the amount
of registered memory and the number of memory registration operations.

All the aforementioned considerations also apply to receive message buffers in the same way.
In addition, the application must also make the receive message buffer available to the NIC
before the message arrives [Mel15]. If the receive buffer is not available, the NIC will drop
the message, which will be considered either as packet loss or a network error. In the latter
case, the NIC will notify the OS about the error, terminating the connection and possibly
causing the application to crash. The application must ensure this situation does not occur,
for example, by synchronizing the receive buffer availability with the message sending. This
requirement is also a result of lossless end-to-end flow control, explained in Section 2.2.5.

Although very advantageous for performance, the aforementioned requirements make zero-copy
hard to use because they require the application to follow a quite complex programming
model. There has been an attempt to make zero-copy available for socket-based API [Cor17b],
but the approach is advantageous only for sending large messages and does not work for
receiving at all. Section 4.2 discusses an extension to the RDMA API [Lis13], which trades
performance [TDH21] in exchange for relaxing some of the zero-copy requirements.

2.2.2 Kernel-bypass

Kernel-bypass is a technique that allows applications to access devices directly, without the OS’s
involvement in the data transfer. This technique minimizes the time between an application
preparing a message and the message being sent over the network. However, without the
kernel’s involvement, either the application or the NIC must assume the OS’s responsibilities,
such as preparing low-level device commands or managing concurrent access to the device.

The most common method to implement kernel-bypass is to map the NIC MMIO regions
directly into the application’s address space, enabling direct access to the NIC registers without
entering the kernel. RDMA NICs explicitly support the creation of per-application MMIO
regions [Mel16], whereas non-RDMA NICs are designed for only one active user at a time.
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DPDK addresses the limitation with non-RDMA NICs by taking control of the NIC from the
OS, allowing only a single DPDK application to use a specific NIC [DPD13]. SR/IOV-based
hardware virtualization enables the OS to create multiple virtualized instances from the same
physical NIC and assign them to different applications [PCI19; Bel+14; Pet+14]. The OS
divides the physical NIC’s resources among virtual NICs, with the physical NIC enforcing the
resource allocations imposed by the OS. SR/IOV necessitates the OS allocating resources at
device creation time. Alternatively, Intel proposed Scalable I/O Virtualization [Int20], allowing
more dynamic resource reallocation, compared to SR/IOV, but this technology is not yet
widely available.

Kernel bypass also removes another crucial role from the OS: that of a device driver that
translates between the high-level application API and low-level device commands. Thus,
high-performance applications must integrate user-level device drivers [Mel15], which execute
device-specific data plane operations on behalf of the application. For security reasons, user-level
drivers request kernel-level drivers to perform control plane operations: the kernel establishes
a policy, and the NIC enforces it [Mel16].

Chapter 3 introduces continuous dataplane interposition, an architecture that allows OS
control over the RDMA dataplane through either software stack modifications or the use of
programmable NIC features. This thesis specifically discusses CoRD, a variant of continuous
interposition architecture, which eliminates kernel bypass while maintaining zero-copy. CoRD
aims to provide flexible data plane control while ensuring backward compatibility with existing
RDMA applications (see Section 3.2).

It is also possible to implement kernel bypass without zero-copy. For instance, high-performance
MPI libraries improve performance by copying small user-provided messages to and from pre-
registered message buffers instead of registering user-provided memory [HSG06; Gab+04]. This
method minimizes the overhead associated with memory registration and deregistration.
Similarly, this optimization for small messages is used in InfiniBand verbs for inline
messages [Mel15]. Other approaches, such as io_uring [HA20] and Shenango [Ous+19], seek to
bypass system calls by transferring requests via shared memory, without fully bypassing the
kernel’s role.

In summary, excluding the OS from the data plane necessitates applications to incorporate
their device drivers, while the NIC must enforce OS-specified rules and limits. The OS becomes
more rigid, limited to direct execution only of control plane operations. Nonetheless, kernel
bypass continues to be a significant technique for enhancing performance in latency-sensitive
applications.

2.2.3 Busy-polling

Busy-polling is a technique used to minimize the time between when the message arrives at
the NIC and when the application receives the message. Traditionally, the NIC would generate
an interrupt when the message arrives, and the OS would handle the interrupt to deliver the
message to the application. But for high-performance applications, the interrupt processing
takes too much time [BPH22]. Instead, the application expecting a message continuously checks
the NIC for new messages to arrive. As long as a message does not arrive, the application will
continue polling and will not release the CPU to other applications. This technique works best
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in combination with kernel bypass because then, after learning about the new message, the
application does not need to return from the kernel.

High-performance applications are typically allocated a set of CPU cores exclusively, and
no other application can run on these cores. Moreover, any other activity happening on the
pre-allocated cores is considered disruptive and is avoided [HSL09; Tsa+05; PKP03]. The
expectation is that if a high-performance application receives as much CPU time as possible,
its overall runtime will be shorter, so that overall, the CPUs will be used more efficiently.

Although it is a deliberate performance feature, busy polling is also wasteful and consumes a
lot of CPU cycles. There are use cases when even high-performance applications must share
CPU cores with other applications. For example, Goldrush [Zhe+13] coordinates Message
Passing Interface (MPI) applications to share CPU cores with in-situ visualization applications
while minimizing the impact on the MPI application’s performance. By “harvesting” idle CPU
cycles, it adds functionality, which normally is considered to be performance noise.

Another problem with busy polling is that besides wasting CPU time, it also wastes energy.
Saving energy in a data center is important not only for economic and environmental reasons
but also because the data center’s power consumption is limited by the available power supply
and cooling capacity [BHR18]. Even all cores on the same CPU cannot run at full speed
simultaneously for prolonged periods of time [Hac+15]. This means that if some CPU core is
busy polling, the energy used by this core may not be available for some other, more useful
activity. So, it is important to minimize the time spent busy polling.

An alternative to busy polling is blocking by requesting the OS to notify the application about
the new message upon the arrival of an interrupt. Venkatesh et al. [Ven+15] combine blocking
and busy polling to simultaneously limit the disruption to the application and minimize the time
spent in busy polling. As an alternative, Adagio [Rou+09] uses Dynamic Voltage and Frequency
Scaling (DVFS) to reduce the frequency of specific CPU cores when the application is not
doing important work, thereby reducing energy consumption during busy polling. Therefore,
it is possible to minimize the negative impact of busy polling without impacting application
performance.

2.2.4 CPU offloading

CPU offloading is a set of techniques that allow the NIC to take over work from the host
system, so that the host CPU can spend more time processing the application logic. Offloading
can come in the form of delegation, when the host system instructs the NIC to perform a
specific task, for example, when the NIC forms packet headers when transmitting a message.
Or, the NIC can fully take over the task, for example, when the NIC handles incoming RDMA
read and write requests on behalf of the host system.

There are several reasons for CPU offloading being advantageous. First, some tasks can be
done more efficiently by the specialized hardware of the NIC than by the general-purpose
CPU. Second, the cycles on the CPU are more valuable than the cycles on the NIC. The cost
difference can be explained partially because a NIC can have many more simpler compute
units than a CPU. Finally, the NIC circuitry is closer to the data arriving on the network, so
it can process the data earlier than the CPU.
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In RDMA networks, offloading is used extensively [Inf15]. To send a message, the application
passes a message descriptor to the NIC. The NIC splits messages into packets, forms packet
headers, and schedules the packets for sending. Scheduling is an important step because
multiple applications may request to send more messages than the network can handle at once,
and the NIC must decide on the order of messages to maintain fairness and to avoid congestion.
The NIC needs to keep track of the outstanding messages and retransmit lost packets.

On the receiver side, the NIC needs to authenticate the incoming packet to be a part of an
existing connection, check if writing the packet content into the application memory is allowed,
and drop the packet if not. If the packet is allowed, the NIC must write the packet content
into the application memory and send out an acknowledgment to notify the sender about the
successful delivery.

In the case of RDMA read requests, the responder NIC must send out the requested data
from the application memory without the host CPU being involved. In the case of atomic
operations, the NIC must implement the corresponding operation and send out the result
to the sender. Furthermore, the NIC must monitor network congestion events and send out
congestion notifications on the receiver side and adjust the sending rate on the sender side.

Offloading these operations allows relieving the CPU from most of the communication protocol
implementation and to focus on the application logic. Other offload operations include rate
limiting or performance counters management. In TCP-based networks, normally most, if not
all, of the aforementioned operations are handled by the in-kernel network stack.

More advanced offloading features include packet forwarding [Mel18; HB11], collective
communication acceleration [Gra+16; Pet+01], and network virtualization support [Mah+14;
GGS20]. RDMA NICs can also be extended with programmable hardware, such as
FPGA [NVI20; Fir+18] or general-purpose CPUs [Bur21b; Bro18], which allows arbitrary
operations to be offloaded. Overall, there is a large spectrum of offloading features that can be
used to improve performance in different ways.

Offloading is also an important aspect in TCP-based networks. The features range from simple
checksum offloading and splitting the message into packets [DA23] to more advanced features,
like offloading the entire TCP stack to the NIC [Lin16; Sid+15]. Traditionally, offloading in
TCP-based networks has been less widespread than in RDMA networks because offloading
restrains the OS in controlling communication, adds dependencies on expensive hardware,
risks vendor lock-in, and complicates OS development [Lin16].

Over the past decade, the growth of network performance has outpaced the growth of CPU
performance, so that offloading has become more important and widespread even in TCP-based
networks. These offloadings come in the form of general-purpose programmable SmartNICs
or Data Processing Unit s (DPUs) [Bur21b; Sin20; Nja+22], able to directly communicate
with peripheral devices, like Graphics Processing Units (GPUs) or FPGAs, without the need
to involve the host CPU [NVI24; Com22; PCI19]. A DPU typically also supports RDMA
communication, specifically RDMA over Converged Ethernet (RoCE) [Inf14], so nowadays
RDMA and traditional high-performance networks overlap even more.

This thesis does not cover these advanced offloading features because they are not directly
related to the OS aspects of high-performance networking. However, most of the ideas presented
in this thesis can be applied to DPU-based offloading as well.
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Employing offloading needs to balance between multiple factors. Hardware capable of
sophisticated offloading is expensive, offloading features from multiple vendors may not be
compatible with each other, offloading involves work both at the host and the device, increasing
the complexity of the system. Nevertheless, as RDMA networks demonstrate, carefully designed
and standardized features can significantly improve performance while keeping the system
manageable.

2.2.5 Lossless communication

Lossless communication relies on a combination of flow and congestion control mechanisms
to avoid or minimize packet loss. To achieve this, it is crucial to prevent conditions where
the network must drop packets due to a NIC or switch port lacking buffer space to store the
incoming packet. Designing an RDMA network where flow control can guarantee congestion
never leads to packet loss is possible [IEE11]. However, for many real-world RDMA networks,
this is not sufficient, so they additionally employ congestion control mechanisms to minimize
the negative effects of network congestion.

In the RDMA domain, there are link-level packet flow control and end-to-end message level flow
control. The most reliable type of flow control is provided by InfiniBand networks, combining
link-level with end-to-end flow control [Inf15]. At the link level, InfiniBand utilizes credit-based
flow control, allowing the sender to transmit a packet only if it has sufficient credits. Credits
are replenished by the receiver sending link management packets to the sender when there’s
enough buffer space for an incoming packet, ensuring the sender never sends more packets
than the receiver can handle. Link-level flow control can be more finely grained by dividing
link resources into multiple virtual lanes and service levels, implementing flow control for each
lane and service level separately [Inf15].

RDMA end-to-end flow control ensures the receiver expects a message before sending one on
the level of a connection. For this, NICs maintain a per-receive-queue credit count, which the
sender decreases upon sending a message and the receiver increases when posting a receive
request. The credit system doesn’t control message size, so ensuring messages fit into the
receive buffer is the application’s responsibility.

Hardware-based end-to-end flow control simplifies lossless communication for RDMA
applications but is only effective for limited connection types. If the application uses a
connection type not supporting end-to-end flow control, it must implement its own flow
control mechanism. Failure to synchronize sender and receiver may result in dropped and later
retransmitted messages, disrupting application performance. In the worst case, the network
may interpret dropped messages as a network error and terminate the connection [Gab+04;
HSG06].

RoCE networks, implementing RDMA communication over Ethernet, lack credit-based link-
level flow control, relying on PFC to prevent packet loss [IEE11]. However, PFC is coarse-
grained and disruptive when reacting to network congestion [Zhu+15]. To address this, RoCE
networks employ congestion control mechanisms like Data Center Quantized Congestion
Notification (DCQCN) to prevent situations triggering PFC [Zhu+15].

Congestion can also occur in InfiniBand networks, not resulting in packet loss due to more
efficient flow control mechanisms than PFC, but it can still lead to network underutilization.
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To prevent this, InfiniBand NICs send Explicit Congestion Notifications (ECNs) requesting the
NICs causing congestion to reduce their send rate [STJ03; Inf15]. Other available congestion
control mechanisms for InfiniBand include adaptive routing and multi-path routing [DH16;
Bes+21].

High-performance Ethernet-based networks have also adopted lossless communication,
supporting most flow and congestion control mechanisms except for credit-based link-level
flow control. Despite some differences in specific implementations (like DCTCP [Ali+10]
and DCQCN [Zhu+15]), the general principles closely align with those in RDMA networks.
RoCE, the most popular data center RDMA network, essentially represents a high-performance
Ethernet network with RDMA support.

Lossless communication is a fundamental concept in RDMA networks. For correctness, it must
be implemented at a minimum as message-based end-to-end flow control at the application
level. Therefore, lossless communication introduces additional requirements to the application
programming model, as the application must set up a separate connection to synchronize sender
and receiver before utilizing RDMA communication. While other flow and congestion control
mechanisms are optional, they are vital for ensuring high performance and low latency.

2.3 High-performance Network Architectures

Existing RDMA and non-RDMA high-performance networks have distinct design objectives
and, to strike a balance between functional and non-functional goals, employ RDMA
performance techniques differently [DPD13; Cra19; Mel15; Bar+17a; Mar+19]. It is clear that
there is no “one size fits all” solution [TFH22]. To achieve an optimal balance in specific use
cases, high-performance networks have sometimes set aside techniques such as polling [Ven+15;
BPH22], zero-copy [HSG06; TFH22], lossless congestion control [Lis17; Gar+07], hardware
offloading [Kau+19; Høi+18; Lin16; Pet+14], and one-sided operations [Su+17; KKA14;
DNC17] to enhance flexibility and resource utilization. Therefore, even RDMA networks do
not always utilize all RDMA techniques all the time.

A fine-grained connection interposition architecture must consider the specific implementation
details and design objectives. For instance, if a network architecture emphasizes low latency, the
connection interception should be tailored to minimize latency overhead. Conversely, if designed
for operation in a shared environment, the connection interception must enable fine-grained
resource sharing. Following the description of RDMA techniques and their limitations, this
section outlines how these techniques are combined in existing high-performance network
architectures.

Figure 2.2 categorizes high-performance network architectures into RDMA, data plane, socket,
and memory-based architectures. RDMA architectures have historically developed from the use
of RDMA techniques (see Section 2.2), although they now do not depend on all these techniques
simultaneously. Data plane architectures redesign traditional Ethernet-based network stacks
to integrate the mentioned RDMA techniques. Socket-based architectures aim to boost the
performance of traditional socket-based APIs, while attempting to minimize the need for
substantial application changes. Memory-based architectures extend intranode communication
technologies, like PCIe, to facilitate communication among multiple compute nodes.
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Figure 2.2: Classification of high-performance network architectures with some examples of concrete
architectures.

Another dimension to these categories is whether the network is based on Ethernet or not.
Non-Ethernet-based architectures have often been specifically designed for high performance,
whereas Ethernet-based architectures attempt to upscale Ethernet for high-performance
applications. Among Ethernet-based architectures, data plane architectures are built around a
high-performance software stack, imposing few requirements on the computational and logical
capabilities of the network devices. Such classification reflects historic development, although
nowadays, there exists significant overlap between all the categories.

2.3.1 RDMA Networks

RDMA-based architectures are mostly represented by the InfiniBand protocol stack, which is
supported by the corresponding network switches and cards and is accessible to the applications
through the InfiniBand verbs API [Mel15]. InfiniBand networks offer the highest-available raw
performance, with state-of-the-art NICs being capable of up to 400 Gibit/s throughput [NVI22].
Being designed for high performance from the inception, this network architecture employs
all previously mentioned software and hardware RDMA techniques. On the other hand,
InfiniBand is harder to manage than Ethernet, so it is common for a supercomputer site or
a data center to deploy a low-performance Ethernet-based network in parallel, increasing
the cost of InfiniBand deployment even further. Other examples of non-Ethernet networking
include Cray Aries [Alv+12] and Intel OmniPath [Bir+15], and share many similarities with
InfiniBand networks.

On a hardware level, the main difference between RDMA technologies is the raw performance,
flow and congestion control mechanisms, available offloadings, and support for different network
topologies. These differences are mostly transparent to the application because the application
uses the same RDMA API to communicate with the network regardless of the underlying
network technology.

As an exception, NVIDIA stands apart from other vendors in how many offloading capabilities
its NICs have. For example, while kernel-bypass is a feature of most RDMA NICs, NVIDIA’s
direct verbs API goes one step further by exposing a user-level NVIDIA NIC driver API to
the user application (normally, there is a level of generic InfiniBand verbs API for higher
portability). This approach eliminates some indirection and locking, improving point-to-point
latency even more. Similarly, whereas traditional zero-copy eliminates the need to copy data
to and from NIC-accessible memory regions, NVIDIA makes an extra effort to improve
performance for transferring non-continuous memory regions [Li+15].

Because of better performance, NVIDIA NICs also tend to be more expensive, so for economical
and other reasons, major Cloud providers, like Amazon Web Services (AWS) [Ama20],
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Azure [MM23], and Google Cloud Platform (GCP) [LD23; Sin+20], have developed their
own RDMA network solutions. These solutions are typically based on programmable NICs
and are designed to be more flexible and easier to deploy and manage than traditional
InfiniBand networks. As an example of using this flexibility, when AWS introduced Elastic
Fabric Adapter (EFA) [Ama20], its RDMA NIC, it also introduced a new transport type,
Scalable Reliable Datagram (SRD), which is designed to be more efficient than traditional
RDMA transport types (see Section 2.4.2).

Nowadays, one of the most widespread RDMA-based networking solutions in data centers is
RoCE, which encapsulates InfiniBand packets into UDP packets [Inf14]. Combining RDMA
with Ethernet, RoCE still requires special support from the NIC to provide the RDMA
techniques to the applications but does not need special support from the switches. Although,
generally, InfiniBand-based networks are considered to be faster, the performance of RoCE
has been catching up [NVI22]. Except data centers, RoCE maintains popularity as an
HPC solution [TOP22]. Other examples of Ethernet-based RDMA networks include Intel
iWARP [Gar+07] and Cray Slingshot [Sen+20].

Overall, the current development of RDMA networks goes in two directions. NVIDIA, as a
high-end vendor, focuses on improving performance and adding offloading capabilities to its
NICs. Cloud providers focus on cost-effective and flexible solutions, which improve performance
compared to traditional Ethernet networks. In both cases, there seems to be a trend towards
larger convergence with Ethernet networks.

2.3.2 Data Plane Architectures

Data plane architectures originate from the opposite direction: they aim to incorporate
high-performance features into existing commodity Ethernet-based networks. Data plane
architectures are designed around passing a high-performance NIC directly to the user
application to eliminate the overheads associated with traditionally indirect device access. If
passing the device directly to the application is not feasible, data plane architectures strive to
minimize the frequency with which the application must interact with the OS to access the
device.

Data Plane Development Kit (DPDK), a widely used data plane framework, facilitates the
development of data plane applications for Linux. The framework addresses efficient memory
allocation, low-noise scheduling, and batched packet processing [DPD13]. Utilizing the tools
provided by DPDK, application developers can construct the entire network processing stack
almost entirely in software, without requiring any special hardware features (though available
hardware features can enhance performance). To run multiple DPDK applications on the same
node, a NIC must either support hardware virtualization [PCI19], or the system must possess
multiple NICs.

Arrakis [Pet+14] and IX [Bel+14] take a further step by reorganizing the OS architecture to
focus on data plane applications. From the outset, they depend on hardware virtualization
to grant each application direct access to the NIC. To ensure that the applications achieve
the desired performance, these OSs provide an API similar to the RDMA API. Conversely,
Arrakis also offers a POSIX layer, allowing traditional applications to run with minimal or no
modifications, albeit at a lower performance.
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Data plane architectures can also be relatively high-level. Several approaches provide library-
level data plane primitives to the application, abstracting away the implementation specifics
of the underlying hardware. For instance, Libfabric [Dre+13] is a library that offers data
plane abstractions over multiple network technologies, including RDMA and uGNI [Cra19].
Additionally, Demikernel [Zha+21] is a library that provides data plane abstractions for various
device types, including network and storage.

Data plane architectures often aim to avoid system calls as a source of overhead. To achieve
this, they frequently set up a memory region shared with the kernel or another application and
dedicate a CPU core to manage the data plane operations therein [Cor19; Boy+08; Ous+19;
Mar+19]. Such interposition enables further abstraction from hardware details, although it
may also detract from performance.

Data plane architectures are typically driven by the limitations of socket-based POSIX
API [Enb+22], but do not necessarily require costly hardware features. Therefore, although
data plane applications resemble RDMA applications, they can still operate over commodity
Ethernet networks.

2.3.3 Socket-based Architectures

Socket-based architectures aim to improve the performance of traditional socket-based APIs
without requiring significant application changes. Performance improvement may be completely
transparent to the software level, for example, by employing a lossless flow control [IEE11],
or a better congestion control mechanism [IEE10]. Alternatively, changes can be confined
to the kernel-level network and remain transparent to the application, for instance, by
scheduling network packets more efficiently [HB11], using multiple network links for the
same connection [For+13; Cai+22], or by using hardware offloading [Lin16]. However, these
methods employ RDMA techniques only to a very limited extent and can achieve relatively
limited performance improvements.

It is possible to have more invasive modifications to the application communication while
maintaining backward compatibility with the legacy socket-based POSIX API [Zhu+19].
For example, although Arrakis [Pet+14] is a data plane OS, it also offers a POSIX layer.
Multiple approaches offer a socket wrapper around the InfiniBand verbs API to provide
RDMA-level performance to socket-based applications [Mel19a; Li+19; Hef12; Wan+19]. All
these approaches need to compromise part of the RDMA performance for compatibility but
still can outperform traditional socket-based communication.

2.3.4 Memory-based Architectures

Memory-based high-performance network solutions extend intranode communication, like PCIe
or CXL, to communicate among multiple compute nodes. These architectures aim to make
communication over the network transparent, similarly to how access to local PCIe devices is
transparent for the host CPU. GigaIO FabreX promises to provide point-to-point latency as low
as 200 ns, which is several times lower than what internode-based high-performance network
architectures provide [Gig21]. Other examples of these architectures include CXL-over-Ethernet
[Wan+23] and PCIe-over-Fiber[Bur21a]. As of today, none of these architectures have gained
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popularity or demonstrated scalability beyond a single server rack. Therefore, this thesis does
not discuss intranode-based architectures further.

2.4 InfiniBand Verbs

To communicate over an RDMA network, a distributed RDMA application creates a set of
objects representing communication resources. These objects are created and configured using
the InfiniBand verbs API, implemented by the InfiniBand verbs library. There are various
implementations of the InfiniBand verbs API for different hardware, including InfiniBand [Inf15],
iWarp [Gar+07], and RoCE [Inf10; Inf14]. Although alternative APIs exist, InfiniBand verbs
is the de facto standard for high-performance RDMA communication today. This section
describes the high-level concepts of the InfiniBand verbs API and the concepts it employs.

2.4.1 Objects
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Figure 2.3: Primitives of the InfiniBand verbs library. Each QP comprises a send and a receive queue and has
multiple IDs; node-global IDs (grey) are shared by all QPs on the same node.

A distributed RDMA application consists of many processes spawning over a set of compute
nodes. Each process of the application starts by opening a device context (see Figure 2.3),
which allows the process to access a NIC and to create and configure the InfiniBand verbs
objects. A Protection Domain (PD) is the first object created. It groups all other objects
together and represents the process’s address space to the NIC. Objects that belong to the
same PD can communicate with each other but not with objects from other PDs.

The main object required for communication is a Queue Pair (QP). A QP represents an
endpoint of a connection between two or more communication partners. Each QP is associated
with a Send Queue (SQ) and a Receive Queue (RQ), which are used to send and receive
messages, respectively. The application sends or receives messages by posting Send Work
Request (SR) or Receive Work Request (RR) to a QP as Work Queue Entry (WQE). These
requests describe the message and refer to the memory buffers within previously created
Memory Regions (MRs).

The NIC processes posted send requests to compose and send out message packets. Receive
requests are used to determine where to store the incoming messages. To reduce the memory
footprint, the individual RQs of multiple QPs can be replaced with a single Shared Receive
Queue (SRQ).
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A send or receive request can only point to memory that the NIC can access. For this, the
process registers Memory Regions (MRs), so that the OS can pin the memory and configure
the Memory Translation Table (MTT) of the NIC with a virtual-to-physical address mapping,
enabling direct MR access by the NIC. The process can create and destroy MRs at any time
during application runtime, as long as it ensures that the NIC only accesses the memory that
is part of an existing MR.

When the NIC completes a send, receive, or an RDMA request, it updates the user process by
posting a Work Completion (WC) to a Completion Queue (CQ). A CQ receives completions
from multiple QPs that the process has associated with that specific CQ during QP creation.
The application can poll the CQ for WCs to learn about the status of the communication
requests. A WC contains information about the communication request, like the status, the
number of bytes transferred, or request ID.

To establish a connection, a process needs to know the address of a remote QP. A QP address
comprises a device port address and a Queue Pair Number (QPN). The QPN is a unique
identifier of the QP within the device. A device port address includes multiple identifiers of
the NIC port, unique within the network. A single NIC can have multiple physical ports, and
in the case of hardware virtualization, also multiple virtual ports. Therefore, a single NIC can
have multiple addresses.

A port address consists of a vendor-assigned Globally Unique Identifier (GUID), a routable
Global Identifier (GID), and a non-routable Local Identifier (LID). Only GID and LID are
used for communication. Each port can have multiple GIDs or LIDs, and the application
can choose which one to use for communication. Having multiple addresses can be useful,
for example, for multipath routing [Lu+18]. In InfiniBand networks, the use of GID may be
optional, but in RoCE networks, the GID is mandatory.

When using atomic, RDMA read, and RDMA write operations, in addition to the QP address,
the process needs to know the memory protection key to access remote MR. The remote NIC
checks the memory key passed in atomic or RDMA operations to determine if the incoming
message has permission to access the corresponding MR. Overall, processes need to exchange
GID, LID, QPN, and memory keys to have full-featured RDMA communication.

There are two major ways to exchange this addressing information: either by passing the
addresses over an out-of-band network, like Ethernet, or using RDMA Connection Manager
(CM), a distributed service providing an interface for establishing RDMA connections [Mel15].
The latter approach offers more convenience to the application.

Once the remote process has the addressing information, it can create an Address Handle (AH)
that represents a remote endpoint. When setting up a connection, a process passes the AH
to the QP, instead of raw addressing information. Thus, each is an object AH representing a
distinct remote destination QP.

Separately from the objects created inside a PD, there are also completion event channels
and asynchronous event channels. A process can block on a completion event channel until a
CQ has a new WC. This allows the process to avoid busy polling the CQ and to be notified
about completions only when they occur. An asynchronous event channel is used to notify the
process about asynchronous events, mostly errors.
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2.4.2 Types of service

During the connection setup, each QP is configured for a specific type of service. Reliable
Connection (RC), for example, provides reliable in-order message delivery of up to 2 GiB
size. When configured, an RC QP can communicate only with a single remote QP, using
send-receive, atomic, and RDMA operations. Another popular type of service, Unreliable
Datagram (UD), does not provide reliable in-order delivery. On the other hand, UD QPs can
communicate with multiple remote QPs using only send and receive messages that fit into a
single packet. There are also other types of services, like Unreliable Connection (UC), Extended
Reliable Connection (XRC), and SRD, each with its own set of features and limitations. This
thesis primarily focuses on RC and UD QPs.

2.4.3 QP State Machine
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Init RTR RTS

E SQE

SQD

Figure 2.4: QP State Diagram. Normal states
and state transitions ( , ) are controlled by the
user application. A QP is put into error states ( ,

) either by the OS or the NIC.

During the creation of a QP, the process brings
the QP through a sequence of states, as illus-
trated in Figure 2.4. At each step, the QP is
configured with a specific set of parameters and
linked to other InfiniBand verbs objects. Each
newly-created QP begins in the Reset (R) state.
To send and receive messages, a QP must reach
its final Ready to Send (RTS) state, wherein it is
connected to a remote partner QP. Before reach-
ing the RTS state, the QP traverses the Init and
Ready to Receive (RTR) states. In the event of
an error, the QP transitions into one of the error

states: Error (E) or Send Queue Error (SQE). In the Send Queue Drain (SQD) state, a QP
refrains from accepting new send requests. Apart from this, SQD is analogous to the RTS
state and is not further elaborated in this chapter.

When a QP in the RTR or RTS states receives an incoming packet, it must process it, update
the QP state, and dispatch either a reply or an acknowledgment. For instance, a packet can
constitute a segment of a send, read, write, or atomic operation message. Depending on the
message type, the NIC is required to update internal counters (e.g., QP’s Packet Sequence
Number (PSN)), store the packet content into the receive buffer, and send an acknowledgment.
If the packet is the last packet of the message, the NIC also needs to notify the application of
the received message by updating the receive queue. Moreover, the NIC may need to update
the Completion Queue (CQ) to notify the application of the completion of the receive request.
This scenario exemplifies how the state of a QP and other related objects can be altered by an
incoming packet.

Most of the operations required to establish a connection are control plane operations and end
up in one or multiple system calls. Once a QP reaches the RTR or RTS state, the application
can start posting send and receive requests to the QP using data plane operations. Data plane
operations are optimized for performance and therefore avoid kernel interaction as much as
possible.
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In high-performance computing, especially within RDMA networks, the conventional role
of the OS in network communication has been limited. This chapter seeks to expand this
role by examining the feasibility and benefits of applying continuous interposition in such
environments and how to effectively balance high network performance with comprehensive
OS control.

We re-examine continuous interposition, typically considered too resource-intensive for high-
throughput low-latency applications, and explore its potential for providing control and security
for data plane operations. With efficient continuous interposition, the OS can enforce policies,
such as process-level rate limiting or enable transparent live migration, without hardware
modifications. This approach involves rethinking the standard RDMA communication processes
and strategically introducing modifications to reduce OS-induced overhead while maintaining
high-speed data transmission.

Our investigation centers on software-level interposition, offering a flexible solution applicable
across various systems. While this method consumes valuable CPU cycles, potentially
impacting application performance, we examine its trade-offs and potential in high-performance
environments. We contrast this with hardware-level interposition, which, although efficient,
requires specialized hardware and comes with its own set of limitations.

Software-level continuous interposition is what traditional TCP/IP-based networks rely on,
but they cannot reuse RDMA techniques (see Section 2.2) and, therefore, do not provide
high performance. It would be too detrimental to network performance to take the same
approach. Instead, we dissect the RDMA datapath, studying modifications that aim to
optimize performance and control. This analysis is pivotal for understanding how software-level
modifications can be fine-tuned for performance efficiency and enhanced OS management.

Through our research, we aim to identify the boundaries of practical applicability for continuous
interposition. We implement and analyze several techniques to approximate the lowest
achievable overhead for software-level continuous interposition. This analysis helps determine
the range of high-performance applications that can benefit from this approach, as well as
those for which it remains impractical.

Section 3.2 describes Converged RDMA Dataplane (CoRD), a new continuous interposition
architecture, that adds approximately 1.5 µs of overhead point-to-point latency. But when
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measured with application benchmarks, the overall runtime overhead in most experiments
remained within 1 to 2%, only reaching 30% in one benchmark. For scenarios where the
overhead is excessive, we propose a novel OS layer in Section 3.3, capable of interposing
RDMA communication at the cost of less than 0.1 µs of added overhead, thus facilitating
more cost-effective OS-level control. In summary, this chapter contributes to a more nuanced
understanding of continuous interposition in RDMA networks, paving the way for future
advancements in high-performance network design.

3.1 Background

This section outlines the basic concepts of continuous interposition and reviews the state
of the art in this area. Furthermore, we explain the conceptual problems of implementing
continuous OS-level interposition for RDMA networks. As this chapter focuses on software-
level continuous interposition, we do not delve into the details of hardware-level continuous
interposition. Instead, we pay more attention to how a user application can efficiently pass a
message to its OS, ensuring that the performance of RDMA communication remains as close
as possible to the non-intercepted case.

3.1.1 Architectural Overview

SoCNIC

App

OS

Host

Message

Figure 3.1: Interposition
in the OS kernel

As outlined in the introduction, the most straightforward way to
control each of the application’s messages is to delegate device
access operations to the OS kernel (see Figure 3.1). Once a user
application decides to send or receive a message, it invokes a system
call, transferring control to the OS kernel. This way, the OS kernel
not only provides a convenient way to access the device but also
allows enforcement of policies on the application’s messages.

Such a generic method of continuous interposition enables the
enforcement of very versatile policies, such as scheduling, security,
and resource management. Moreover, the OS can modify the

contents of the message, for example, to implement encryption or compression. For instance,
to decide if a network packet can be sent, Linux checks if the destination IP address is allowed
by the firewall [The23]. The same firewall mechanism can be used to dynamically redirect a
packet to another destination for load balancing. To limit the amount of data sent over the
network, Linux uses traffic control [Hub01] to enforce bandwidth limits. When a packet is
initiated by a user application, it must traverse all the aforementioned subsystems before being
handed over to the actual device driver.

However, this complex architecture is a significant obstacle for high-performance RDMA
communication, as it requires each packet to traverse through many software layers. Additionally,
each kernel network subsystem is designed for concurrent access from multiple user-level
applications, adding further complexity. One possible remedy to this problem is to offload
(delegate) typical network processing operations to a NIC, which can be programmed to enforce
policies on the application’s messages.
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Modern NICs, especially server-grade ones, are equipped with various hardware offloading
operations. In the most basic case, a NIC computes and verifies checksums for TCP and User
Datagram Protocol (UDP) packets. Other common functionality includes splitting and merging
of network packets [DA23] or scheduling incoming packets to specific CPU cores [HB11]. More
advanced NICs can even perform packet filtering and forwarding based on the contents of the
packet header [NEX22; SE19]. In this setting, the OS is responsible for configuring the right
policies on the NIC (see Figure 3.2) and keeping them synchronized with the host system.

Moving functionality from the host system to the NIC can be challenging [Mog03]. First,
the OS must translate the interfaces it provides to the user applications into the interfaces
supported by the NIC, potentially incurring performance penalties. Second, hardware-level
protocol implementations generally offer less flexibility and are harder to change than software
implementations. For example, an OS can maintain as many active connections as its RAM
allows, but scaling the RAM size on a host system is much easier than on a dedicated NIC.
Modern solutions, like memory pooling, may alleviate this problem, but are not yet widely
deployed [Com22]. Third, identifying and fixing bugs in hardware implementations is much
more challenging than in software implementations. Finally, different hardware implementations
may not be compatible with each other, complicating the development of an architecture that
incorporates all existing offloading implementations [Lin16]. Despite its controversy in the
TCP/IP world [Cor05], hardware offloading is standard for RDMA networks, as it is the most
straightforward way to achieve maximum performance [Inf15].

One way to combine the flexibility of software-level interposition with the performance of
hardware-level interposition is to move the interposition logic to an OS service running on a
dedicated CPU core (see Figure 3.3). Such an OS service can be implemented as a user-level
application, further reducing development and maintenance costs. The important part of
this architecture is that the OS service is still capable of employing the same performance
techniques as traditional RDMA networks (see Section 2.2). For example, to avoid unnecessary
movement of message content and context switches, the OS service can share a memory region
(SHM) with the user application. To avoid interrupt latency, the OS service can poll the
NIC and the shared memory region for new messages on a dedicated core. This technique
is available for TCP/IP-based networks [Høi+18] as well as for RDMA networks [Kim+19;
Zha+22]. Compared to offloading network processing to a System on Chip (SoC) of a NIC,
this approach is more flexible but takes valuable resources from the host system and adds
measurable latency to each message [Kim+19; Pla+21].
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Considering that one of the key limitations of offloading continuous interposition to the NIC
is the inflexibility of hardware implementations, several vendors have proposed the Data
Processing Unit (DPU) architecture. The first variant of this architecture (see Figure 3.4)
places an off-path general-purpose compute core (e. g., ARM) [Mel19b; Bro18; Sin20] into
a DPU. Either the host or an off-path core can configure the SoC of the NIC to forward
packets for further processing at the general-purpose NIC cores. This allows developers to
write portable code and avoid vendor lock-in. Although the cost of a DPU is higher than
that of a traditional NIC, the DPU can offer a more cost-efficient architecture overall. First,
the general-purpose cores of a DPU can perform the same tasks as more expensive host
cores equally fast and, second, the overall DPU architecture reduces data movement in the
system [Sin20]. However, as a practical limitation, continuously interposing RDMA traffic may
be either infeasible of very slow with some DPUs [Hoe+17].

FPGA

SoC
NIC

AppOS
Host

PacketConfigure

Figure 3.5: Interposition with a on-path
FPGA

The off-path DPU architectures with general-purpose
cores still require back-and-forth packet movement, com-
pared to a traditional NIC (see Figure 3.2). There-
fore, as an alternative, a DPU can include an on-path
programmable chip (e. g., FPGA) to intercept all the
traffic between the host system and the NIC (see Fig-
ure 3.5) [NVI20]. FPGAs are often more efficient with
packet processing than general-purpose cores, although
they are harder to program, because the OS needs to
enforce policies on the host system, the NIC’s SoC, and
the NIC’s FPGA. With the right abstractions, the soft-

ware engineering aspect of this architecture can become manageable [KRA20] and has even
been proven in practice [Fir+18]. Finally, one can combine the on-path DPU architecture with
the off-path DPU architecture to achieve the best of both worlds [Bur21b].

The described architectures attempt to find a balance between flexibility, performance, and
cost. A flexible and cheap option is to implement continuous interposition in the host system,
but it is also the slowest. High performance at low cost can be achieved by offloading specific
network processing operations to a NIC, but this approach lacks flexibility. Alternatively, a
fully programmable DPU can offer both flexibility and high performance, but is typically
more expensive and requires more development effort. Finally, continuous interposition can be
offloaded to the network (e.g., switches), but this option is not considered in this thesis due to
our focus on host-local OSs.

Further in this chapter, we concentrate on continuous interposition fully implemented in the
host system. This is because hardware offloading is a way to achieve higher performance at
a higher cost. Such a tradeoff is reasonable when the cost of OS interposition is too high
for the application. However, this thesis studies OS-level continuous interposition, firstly, to
understand the limits of software-level continuous interposition and, secondly, to discover
what types of applications can benefit from it and which cannot use it at all. In this context,
hardware offloading is a topic that is orthogonal to our research.
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3.1.2 Software-level Interposition

As discussed in Section 3.1.1, continuous interposition can be achieved through a combination
of hardware and software techniques. In this section, we focus on software-level continuous
interposition because it provides valuable insights into how continuous interposition can be
implemented and utilized in practice. Moreover, software-level interposition does not depend
on specialized hardware and, therefore, much easier to deploy.

At a high level, software-level continuous interposition implies that once a user application
prepares a message for network transmission, the message must be processed by the OS. To
ensure safety and security, the OS must process the message in a compartment isolated from
the application. The isolated compartment can be either the kernel or in a dedicated userspace
service. Regardless of the location, the processing can occur either on the same or on a different
CPU core. In the first case, the OS must context switch from the user application to the OS
service (see Figure 3.1). In the second case, the OS must transfer the message to the OS service
and notify it of the new message (see Figure 3.3).

In scenarios where a separate core is used, the notification to the OS service can be implemented
as an Inter-Processor Interrupt (IPI) or as a message sent over a shared memory region. In
the latter case, the OS service must poll the shared memory region for new messages, which
results in a CPU core being permanently allocated to the busy-polling OS service. These two
options allow for a trade-off between the latency of invoking the OS service and more efficient
CPU core utilization.

The challenge of interposing the network data plane by the OS has also been studied in the
context of high-performance TCP/IP-based networks. IX [Bel+14] and Arrakis [Pet+14] are
two examples of data plane architectures that rely on OS-bypass, zero-copy, and polling to
enable high-performance communication. Unlike RDMA networks, these OSs do not require
the NIC to provide RDMA capabilities. Instead, they use hardware virtualization (e. g.,
Single Root I/O Virtualization (SR/IOV)) to provide each user application with a separate
virtual NIC [PCI19]. To enforce OS-level policies, Arrakis fully relies on the available hardware
offloading capabilities of the NIC. If certain functionalities are not available, Arrakis reduces
the degree of continuous interposition and opts for providing the highest possible performance.
This approach aligns with the philosophy of traditional RDMA networks (see Figure 3.2).

In contrast to Arrakis, IX relies on system calls from the outset, albeit with several techniques
implemented to minimize system call overhead. This approach allows IX to implement a more
flexible continuous interposition architecture, but at the cost of lower performance.

The Linux community has also recognized the shortcomings of the traditional POSIX API in
the context of high-performance networking. A Linux application can use io_uring to benefit
from a zero-copy API [HA20]. In interrupt-driven mode, io_uring reduces the number of
context switches between the application and the OS by batching multiple Input/Output (I/O)
operations (see Figure 3.1). In kernel polling mode, io_uring avoids context switches altogether
but requires a kernel thread to busy-poll on the request queue shared between the application
and the OS (see Figure 3.3).

Furthermore, Linux provides eXpress Data Path (XDP) [Høi+18], a framework for implementing
high-performance packet processing in the kernel. With XDP, a user-level application can load
an extended Berkeley Packet Filter (eBPF) program [Tig23] into the kernel, which is then
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executed for each packet received by the NIC. Compared to io_uring, XDP offers a lower-level
but higher-performing API. XDP programs can be used to implement a firewall, load balancer,
or packet filter.

RDMA networks have been evolving towards a similar architecture from the opposite direction.
For example, FreeFlow [Kim+19] exemplifies an RDMA network, enabling continuous dataplane
interposition by creating a proxy OS service to inspect and modify messages before passing
them to the NIC. To reduce the overhead of context switches, the FreeFlow service runs on a
separate CPU core and communicates with the user application through a shared memory
region for incoming and outgoing messages. Thus, FreeFlow can inspect communication on
a per-message basis and implement policies such as firewalls or load balancing. Google has
implemented a very similar architecture for TCP/IP-based networks [Mar+19].

To reduce overhead from an intermediate OS service for small messages, Justitia [Zha+22]
proposes sending small messages over an uninterrupted RDMA plane. Whereas for large
messages, Justitia uses a separate OS service, which allows improvement in resource utilization
and congestion control at the software level. Although this separation improves performance,
the application is expected to be cooperative and not circumvent the OS policies.

To minimize the overhead of continuous interposition in a separate OS service, the OS must
run this service on a dedicated CPU core. Moreover, this service must busy-poll the message
queues shared with the user application. This architecture diverts precious resources from the
user application, which could otherwise be used for computation. Alternatively, the OS can
implement continuous interposition inside the kernel. Then, to send a message, the application
invokes a system call.

Several architectures enable continuous interposition by moving the RDMA dataplane into the
kernel. Among these, LITE [TZ17] and KRCore [Wei+21] focus on resource sharing, which even
allows for improved communication performance in some common use cases. The concept of
continuous interposition in this thesis aligns closely with these approaches. Section 3.2 presents
CoRD, a continuous interposition architecture, which, unlike LITE and KRCore, focuses on
backward compatibility with existing RDMA applications. Although not explicitly designed
for improving performance, CoRD can aid in congestion control and improve application
performance in some cases.

Overall, continuous data plane interposition is already seen to be useful for high-performance
data center networks. However, there is no good understanding of how to integrate such
interposition into the existing software stack with minimal performance impact, high
deployability, and backward compatibility. Therefore, this thesis specifically focuses on these
aspects.

3.1.3 System Calls

For most continuous interposition architectures, control transfer from the user application
to the OS occurs through a system call. Although it is possible to bypass the system call
layer, as in FreeFlow [Kim+19], which uses a busy-polling OS service and does not require
system calls, in most other cases, the overhead introduced by system calls directly influences
the communication data plane. Therefore, the exact mechanism of system call invocation is a
key component of the continuous interposition architecture.
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Conceptually, a system call is a straightforward operation, akin to a function call, but in
reality, the process of transitioning from user space to kernel space is complex. A system
call involves changing privilege levels, optionally switching address spaces, setting up the
kernel stack, sanitizing system call arguments, dispatching the correct system call handler, and
potentially many other steps. After processing the system call, most of these steps must be
reversed. However, in the case of a complex system call, all these steps constitute only a small
fraction of the overall work done by the kernel. For example, a message sent over a socket will
traverse several kernel subsystems, which communicate with each other through asynchronous
channels. Although the system call layer provides a very convenient instrument for continuous
interposition for both the OS and applications, RDMA networks typically avoid them for data
plane operations.

System Call Performance

In TCP/IP-based networks, the user application can invoke a read or write system call to send
or receive a message. Architectures like LITE [TZ17], CoRD [Pla+23], and KRCore [Wei+21]
employ this straightforward approach. However, the downside of being straightforward is that
even stripped-down Linux system calls may not provide the lowest possible overhead. This
section provides an overview of the existing system call mechanisms .

There are several reasons why system calls in Linux are costly. Firstly, depending on the
CPU model, the cost of transitioning to the kernel can vary. Secondly, for every system call
invocation, the kernel must set up the environment for the system call handler. This process
includes, but is not limited to, saving the user application’s registers, setting up the kernel stack,
and dispatching the call to the appropriate device driver [Kul23]. Thirdly, almost every modern
CPU is vulnerable to at least some side-channel attacks [Lip+20; Koc+19a], necessitating
mitigations by the kernel. Fourthly, passing arguments between the kernel and user space may
involve serialization and deserialization of data structures, which can be resource-intensive.
Finally, dispatching system call arguments that reference specific kernel objects may also entail
additional work.

The challenge of reducing the cost of system calls has been specifically explored in the context
of microkernel-based OSs. In these systems, Inter-Process Communication (IPC) performance
is crucial. Microkernels provide only a few system calls, with most system services being
provided by other user-level processes through IPC invocations. The scope of IPC functionality
is limited to the bare minimum. For instance, the Fiasco microkernel offers only synchronous
IPC with a limited maximum message size [Här+97; EH13]. The architecture of microkernels
demonstrates the feasibility of reducing system call costs through structural modifications.

Besides changing the software architecture, existing approaches also try to use Instruction
Set Architecture (ISA) of a CPU more efficiently. One such approach is Simurgh [Mot+21],
which proposes the concept of protected user space functions. These functions allow the user
application to securely execute privileged operations without entering the kernel or changing
the address space [MSB22]. Protected user space functions, provided by the kernel, can be
safely invoked by the application using two new CPU instructions proposed by Simurgh. This
mechanism is similar to the protected control transfer instructions in Exokernel [EKO95].
Simurgh has demonstrated the viability of this method by implementing an in-memory file
system that allows avoiding much of the kernel overhead typical for file system interactions.
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To evaluate the performance characteristics of privileged user functions, Simurgh implemented
the new instructions in the gem5 simulator [Bin+11]. Conceptually similar, albeit more
complex, call gates in Intel’s x86 [Int22] and Itanium [Gra+05] architectures have shown mixed
performance results and were later discontinued [Gra+05; SB05].

The basic assumption of Simurgh is that the existing system call mechanism is inherently
slow and proposes the use of new, faster instructions. We challenged this basic assumption
by proposing a new system call mechanism that leverages the existing CPU instructions
but changes the low-level system call implementation. Specifically, we proposed the fastcall
architecture, which separates system calls into fast and slow paths [Mie+22]. The slow path is
the traditional system call mechanism, whereas the fast path branches out into specialized
fastcall handlers, which execute privileged operations on behalf of the user application. Fastcall
handlers are conceptually similar to application-specific safe handlers in Exokernel [EKO95].
We discuss the fastcall architecture in more detail in Section 3.3.

There are other techniques that can make the exact mechanism of transitioning into the kernel
or invoking an IPC faster. For example, SkyBridge [Mi+19] uses the VMFUNC instruction to
reduce IPC latency by 85% for several L4Re Microkernel [Här+97] instances and by 60%
for seL4 [Kle+09]. In absolute numbers, SkyBridge achieved an IPC latency of 396 cycles
independent on the kernel, which would take less than 100 ns on the CPU used for evaluation.
Such a dramatic improvement has been possible because VMFUNC allows bypassing the kernel
and switching directly to the target of the IPC call.

Unfortunately, SkyBridge comes with a set of deployability, usability, and security limitations,
preventing it from fully replacing the traditional system call mechanism. For example, unlike
the SYSCALL instruction, VMFUNC allows the calling process to jump into an arbitrary location in
the target address space, enabling a malicious caller to bypass any security checks a callee
might have. SkyBridge proposes the use of software verification to prevent malicious IPC
invocations.

Even more extreme ideas for reducing the degree of isolation have been tried with unikernels.
A unikernel is an OS architecture designed for virtual environments and implements one of the
most extreme interpretations of microservice architecture by compiling the entire application
stack into a single address space [Kue+21]. The resulting process has everything it needs to
run, ranging from device drivers up to user application logic1. When everything the application
needs runs inside the same address space, no system calls or IPC are needed. In this case, a
function call would be equivalent to a system call and would take only a couple of cycles.

Unfortunately, by compiling the entire software stack into a single address space, unikernels
increase the attack surface of the applications exposed to potentially malicious inputs. Even
ignoring the security aspect, removing boundaries between software components makes it
easier for failures to propagate. To alleviate this problem, FlexOS [Lef+21] attempted to
reintroduce boundaries between software components of a unikernel application using Intel
Memory Protection Keys (MPK) [Par+19] technology. MPK allows parts of the application
address space to be isolated into separate compartments, which can only be accessed by code
running in the same compartment. The transition between the compartments is faster than an
address space switch, but the security properties are similar to those of SkyBridge [Mi+19].

1The host OS can provide device access to a VM through hardware virtualization or paravirtualization, resulting
in a different balance between isolation and performance properties.
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SkyBridge [Mi+19] and FlexOS [Lef+21] create “soft” isolation boundaries and rely on
verification to enforce them. Another direction of research has considered creating isolation
boundaries without strict guarantees. KLOS [VYC05] leveraged i386 segmentation registers
to separate address spaces from each other within the same physical address space. Similarly
to SkyBridge, KLOS cannot enforce fixed entry points into other applications’ address spaces.
Instead, KLOS relies on the need for a malicious application to guess the correct index in
the segment descriptor table. Unfortunately, the size of this table is relatively small, and the
likelihood of successful guessing is high.

As part of the fastcall architecture, we built upon the ideas of non-strict isolation guarantees by
employing new CPU features. This approach allowed us to significantly decrease the probability
of a malicious application guessing the secret. We explain this approach in more detail in
Section 3.3.3.

In summary, system call performance can be improved either with a different software
architecture or by leveraging new CPU features. In both cases, the performance improvement
comes at the cost of reduced isolation or fewer available features. In this chapter, we explore
both new software architectures and new system call mechanisms.

System Calls in RDMA Dataplane

A B

send recv

poll

Figure 3.6: Example of a
roundtrip message exchange

Consider a case of sending a message from node A to node B
(see Figure 3.6). The process of sending a message from node
A to node B consists of three data plane operations: posting a
receive request (recv), sending a message (send), and checking
the completion queue for incoming messages (poll). In the most
optimistic case, the critical path of the message exchange consists
of send and poll operations. If each of these operations needs to
make system calls, then the message exchange will incur two system
calls.

Just the transition from the user application to the kernel and back may take up to
300 ns [Mie+22]. Considering that the system call overhead needs to be accounted for multiple
times per message and the fact that RDMA latency can be as low as 1 µs [Pla+23], the system
call overhead can be significant.

The aforementioned numbers may create the impression that the system call overhead
exhibits prohibitively high overhead, but a closer look reveals that this is not the case
for modern systems. For example, a 300 ns overhead has been observed for a CPU which is
vulnerable to the Meltdown attack [Lip+20], and therefore had an expensive Kernel Page Table
Isolation (KPTI) [Cor17a] mitigation enabled. Modern CPUs are not vulnerable to Meltdown
and do not require KPTI mitigation, which means that the system call overhead can be less
than 100 ns [Mie+22].

On the other hand, a 1 µs latency has been measured for 2-byte messages between RDMA
NICs connected back-to-back [Pla+23]. This setup, of course, does not reflect the real usage of
RDMA networks, because in most cases there are multiple hops between two NICs and the
messages are larger. For example, some HPC networks at AWS and GCP have demonstrated
point-to-point latency in the order of tens of microseconds [Sen+22].
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Such discrepancy between worst-case and real-case numbers makes it hard to draw definite
conclusions from microbenchmarks about the feasibility of continuous interposition. Therefore,
in this thesis, we go in two directions simultaneously. First, we try to minimize the system
call overhead as much as possible, which we discuss in more detail in Section 3.3. Second, we
try to understand what types of applications would not experience significant performance
degradation from continuous interposition, which we discuss in Section 3.2.

3.2 Converged RDMA Data Plane

The existing RDMA dataplane bypasses the OS kernel and therefore cannot be interposed
by the OS. There also exists a kernel-level RDMA dataplane, which is functionally almost
identical to the user-level RDMA dataplane. The kernel-level RDMA dataplane has mostly
been used for high-performance access to storage devices [KN14], but it could also be used for
other forms of communication. Therefore, the simplest way to put the OS on the user-level
data plane is to redirect the user-level requests to the existing kernel-level RDMA stack. In
this section, we describe the design of Converged RDMA Dataplane (CoRD), which unifies
user-level and kernel-level RDMA data planes to enable OS-level continuous interposition.

CoRD augments the existing RDMA architecture, while maintaining compatibility with existing
RDMA applications. This allows providing OS functionality to the RDMA dataplane without
the need for application modifications. Although our initial motivation for CoRD was to have
a software-level architecture that would allow the live migration of RDMA applications, we
show that CoRD can be useful for other purposes as well.

3.2.1 Design

KernelUser

NIC 2

1

Figure 3.7: CoRD data-
plane.

Figure 3.7 shows the CoRD dataplane, which resembles the classical
RDMA architecture (see Figure 2.1b). The control plane of CoRD
works in the same way as with traditional RDMA applications,
including connection lifecycle and memory management. In contrast
to traditional RDMA, CoRD requires an application to make a
system call to execute RDMA dataplane operations.

For example, to send a message, the application invokes the kernel-
level NIC driver ( 1 ) by making a system call. Once invoked, the
driver triggers the NIC to perform the corresponding operation.

To access the message content, the NIC accesses the application memory ( 2 ), because the
message content still resides in the pinned memory ( ), as was the case in traditional RDMA.
Other operations function in a similar way.

To maintain high performance, CoRD requires OS functions implementing kernel-level message
processing to be lightweight and non-blocking. We believe this requirement is easily achievable,
as the OS can leverage more powerful RDMA offloading capabilities, compared to those in
TCP/IP-based networks. Nevertheless, being non-blocking is not stringent, as we demonstrate
in an example of a rate limiter (see Section 3.2.4).
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OS functions are sufficiently capable to implement QoS, security, and isolation, similarly to
other dataplane interception techniques [Kim+19; TZ17; Wei+21]. There is no prescribed
location for implementing a function, but we believe the most natural place is within one of the
core RDMA drivers, such as ib_core. Functions can be directly implemented by modifying driver
logic in the corresponding loadable kernel module. Alternatively, the kernel may establish
hooks to dynamically install functions using eBPF [Tig23].

The overhead from enforcing OS functions varies based on the specifics of the implemented
interposition functionality. For a simple profiling operation, the overhead might be in the
order of tens of nanoseconds. However, due to user-kernel switching, CoRD inevitably
introduces additional per-message latency which is fixed and difficult to avoid. Therefore, when
implementing OS functions, it is important to consider the total overhead.

3.2.2 Implementation

The RDMA API [Mel15] defines three main dataplane operations: sending a message, posting
a receive buffer, and polling for incoming messages. To implement CoRD, we modified the
user-level NIC driver to forward these operations to the kernel-level RDMA stack. For this
purpose, we reused the existing private API of the RDMA stack, which is normally used for
control plane operations. We also modified the kernel-level driver to add support for kernel-level
objects used from user space. For our implementation, we specifically modified the mlx5 device
driver for NVIDIA’s ConnectX-series NICs.
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Figure 3.8: The flow of a dataplane operation in CoRD.

In CoRD, there are several additional steps for each of the dataplane operations compared to
traditional RDMA [Mei23]. Figure 3.8 shows these additional steps, starting from the moment
when the application invokes the user-level NIC driver.

First, to make a system call, the user-level driver needs to serialize the system call arguments
into a dedicated buffer. This step is required because generally a kernel driver needs to copy
the arguments into kernel memory [Cor+05], and the easiest way to do this is when all the
arguments are already in a contiguous memory region. An alternative would be to pass the
parameters for the RDMA operations through the CPU registers. However, this is not possible
because the Linux system call interface allows only six arguments to be passed in the registers,
which is insufficient for the RDMA operations.

After preparing the arguments, the user-level driver invokes the kernel using a syscall instruction.
This instruction transfers execution to the kernel entry point. The entry point switches the
execution context from the user application to the kernel and forwards the execution to the
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corresponding system call handler. In our case, the system call handler is the ioctl callback of
the ib_uverbs driver.

The ib_uverbs driver is a part of the kernel-level RDMA stack. It is responsible for deserializing
the arguments and dispatching user-initiated operations to the corresponding RDMA kernel
modules. In particular, ib_uverbs copies the arguments from user memory into kernel memory.
Then, it extracts the method and object identifiers from the arguments and dispatches the
operation to the corresponding kernel module. Interestingly, method and object dispatch
can be relatively expensive because the kernel needs to perform a lookup in a tree-like data
structure. Although this method has been optimized for fast lookup, especially in the case
of a large number of objects, on the scale of RDMA networks, the dispatch overhead is still
non-negligible. Having all the required arguments, ib_uverbs calls into the device-specific driver,
which, in our case, is mlx5.

The mlx5 driver is responsible for executing the actual RDMA operation. It begins by acquiring
the lock on the corresponding object (a QP or a CQ). This action, however, is optional and
decided at compile time in the user-space driver because the driver can assume that the
application will not modify the object concurrently. Then, the mlx5 driver performs the actual
operation, such as sending a message or posting a receive buffer. The implementation of the
operation is essentially identical to that in the user-space driver. Finally, the mlx5 driver
releases the lock and returns control to the ib_uverbs driver.

The ib_uverbs driver is responsible for copying the results of the operation back to user space.
In our case, this is relevant for the CQ polling operation, which returns work completion
objects. For send and receive operations, the results are passed back to user space as a return
value of the system call. The kernel exit routine switches the execution context back to user
space. The user-level driver deserializes the results of the operation and returns control to the
application.

3.2.3 Evaluation

Our goal is to evaluate how the CoRD architecture impacts both raw communication
performance and end-to-end application performance. Additionally, we aim to identify potential
avenues for reducing the overhead associated with CoRD communication.

We conduct experiments on two cloud systems. The first system comprises 8 bare-metal
BM.Optimized3.36 nodes in the Oracle cloud. Each node is equipped with two hyperthreading-
enabled 18-core Intel 6354 CPUs, operating at 3 GHz, and 100 Gbit/s NVIDIA ConnectX-5 Ex
RoCE NICs. The system runs vanilla 6.2-rc7 Linux, either with or without our patch to support
CoRD communication in the mlx5 driver. Side channel attack mitigations are set to their
default values2, which, in particular, means that KPTI [Cor17a] is disabled. We also disable
Turbo Boost, pin all benchmark processes to dedicated cores, and set the CPU power governor
to the highest performance mode.

The second system comprises two virtualized HB120 nodes deployed in the Azure cloud. Each
node has two 64-core AMD EPYC 7V73X CPUs, with only 120 cores passed to the VM, and
virtualized 200 Gbit/s NVIDIA ConnectX-6 InfiniBand NICs. Similar to the Oracle system,
2The Linux kernel enables only those mitigations, which protect against vulnerabilities a specific CPU actually
has.
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we keep the default side channel attack mitigations (KPTI is disabled) and use core pinning.
However, due to the cloud provider’s policy, hyperthreading is disabled, and dynamic frequency
scaling is enabled. We employed the second system because, in contrast to Oracle, it features
an InfiniBand network.

Microbenchmarks

We begin by evaluating the performance of CoRD communication in isolation. Our objective is to
understand the overhead that CoRD communication imposes on individual RDMA operations.
We employ the perftest 4.5 benchmark [per20] to measure the latency and throughput of
one-sided (RDMA read and write) and two-sided (send/receive) operations.

Table 3.1: Latency of point-to-point operations in µs on the Oracle system when lossless flow is enabled.

Message size
Baseline kernel CoRD kernel

RC UD RC UD

Read Write Send Send Read Write Send Send

1 B 3.1 1.7 1.7 1.7 4.5 2.8 3.4 3.2
8 B 3.1 1.7 1.7 1.7 4.6 2.8 3.4 3.3

64 B 3.1 1.7 1.7 1.7 4.6 2.8 3.6 3.6
512 B 3.3 2.3 2.3 2.3 4.6 3.4 4.0 3.8

4 KiB 3.9 3.0 3.0 3.0 5.4 4.0 4.7 4.5
32 KiB 7.0 6.1 6.1 — 8.3 7.2 7.8 —

256 KiB 25.7 24.9 24.8 — 27.1 25.9 26.5 —
1 MiB 89.9 89.2 88.9 — 91.6 90.3 90.6 —

Table 3.1 displays the latency of point-to-point operations on the Oracle cloud with both the
baseline and CoRD kernels. For UD transport, the table does not include results for large
messages and one-sided operations, because UD supports only send operations and messages
only up to 4 KiB. Overall, it is evident that, regardless of message size, the CoRD kernel adds
approximately 1 µs to 1.9 µs of latency to the baseline kernel.
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Figure 3.9: Latency overhead on the Oracle system when lossless flow control is disabled.
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To understand how CoRD interacts with other RDMA performance techniques, we conduct
some experiments in this chapter with deactivated lossless flow control by disabling Priority
Flow Control (PFC) [IEE11] for RDMA traffic on the NICs. PFC helps to avoid packet loss
in case of network congestion in Ethernet-based networks, which is crucial for the lossless
operation of RoCE. The exact configuration of PFC-controlled flows has been set up by
Oracle [BV22] and is based on DCQCN [Zhu+15]. Figure 3.9 shows that disabling PFC also
adds 1 µs to 2 µs to point-to-point latency, except for the RDMA Read operation, which adds
around 3 µs. We observe this behavior even when the network is not congested.

Another contributing factor to higher point-to-point latency is the location of communicating
applications in the network topology. In our experiments, a 1.7 µs latency is only possible
because the communication partners reside on the same rack and share a Top-of-the-Rack
switch. If communication needs to go over multiple switches, the latency increases. Brar and
Vincent report that for larger setups, the latency can be as high as 10 µs [BV22]. Therefore,
we also disable PFC to simulate a situation where the communication partners are located in
different parts of the data center and are subject to congestion caused by unrelated network
flows. Such a situation can often occur in a data center setting.
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Figure 3.10: Small-message point-to-point communication latency on the Azure system when communicating
over different transports (RC/UD) using one-sided (Read/Write) or two-sided (Send) communication.

To understand if our result reproduce with a different CPU and network, we repeated the
same experiment on a different cloud provider. Figure 3.10 shows the latency overhead on the
Azure cloud for small messages. This system has different CPUs (AMD instead of Intel) and
an RDMA protocol (InfiniBand instead of RoCEv2). We do not have influence over the flow
control settings on this system. On this system, the baseline latency is lower than that on
the Oracle cloud. For very small messages (< 64 B), the per-message overhead from CoRD
is slightly higher, because the version of CoRD we used for this experiment did not support
inline messages, an optimization that saves the NIC from accessing a separate message buffer.
Otherwise, the per-message overhead is similar to that on the Oracle cloud and is around
1.5 µs.

Overall, depending on the system, point-to-point latency can range from 1.5 µs to 10 µs for
small messages. Whereas the overhead from CoRD is approximately 1.5 µs. In relative terms,
the overhead ranges from 15% to 100%, which, for some applications, can be unacceptable.
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3.2 Converged RDMA Data Plane

For larger messages, the relative overhead significantly decreases. For example, we measured
30 % to 50 % overhead for 4 KiB messages and < 2% overhead for 1 MiB messages. So, to
understand if CoRD is applicable, we need to know the latency requirements of the application
and the baseline latency a particular system offers.
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Figure 3.11: Latency overhead on the Oracle system when communicating over different transports (RC/UD)
using one-sided (Read/Write) or two-sided (Send) communication. Client and server can independently run
baseline (BL) or CoRD kernels, “→” indicates the direction of communication (from client to server).

To alleviate part of the overhead, the CoRD architecture can be enabled independently on
either the sender or the receiver. In Figure 3.11, we examine how each side contributes to the
absolute latency overhead compared to baseline-to-baseline communication, measured with a
message size of 4 KiB. When the client does not run CoRD, there is no overhead for RDMA
read operations, as the CoRD data plane is never triggered on the server side. With RDMA
write operations, each side contributes almost equally to the overhead because perftest utilizes
two writes to exchange data: One from the client to the server for synchronization, and another
from the server to send the data to the client. During the send operation, both sides contribute
equally as well because both the sender and the receiver execute a corresponding data plane
operation.

Constant per-message overhead results in lower maximum throughput when messages are
small and the message rate is high. Figure 3.12 corroborates this statement because, with
larger messages, bandwidth degradation becomes insignificant (UD supports only up to 4 KiB
messages). For example, baseline kernels exchange approximately 3 million 4 KiB messages
per second using send/receive, and we observed a 55% bandwidth degradation. Whereas,
for 32 KiB messages exchanged using send/receive, perftest measured approximately 370k
messages per second with only a 1% bandwidth degradation. This behavior is similar for all
types of communication (RC/UD, Send/Read/Write) as the per-message overhead is similar.
These results indicate that CoRD performs worst when an application sends a large number of
small messages.
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Figure 3.12: Throughput on the Oracle system with CoRD communication over RC or UD using one-sided
(Read/Write) or two-sided (Send) communication relative to baseline communication. The overlayed lines show
the message rate (right axis) in the baseline configuration.

MPI Microbenchmarks

To better understand the impact of CoRD on real applications, we scaled up the experiment to
include the evaluation of collective communication operations 3. Collective operations enable
efficient data exchange between multiple processes. For example, the MPI standard [MPI15]
defines several dozen collective operations and their variations, including Broadcast, Scatter,
Gather, Reduce, All-to-all, and others. These operations frequently appear in real distributed
applications and are often targets of intensive optimization efforts.

We tested collective operations using the OSU Micro-Benchmarks [Pan23] 7.1-1 to measure
the latency of individual MPI collective operations. Each run of the benchmark executed an
MPI operation with a specific message size over 1000 iterations with 100 warm-up iterations.
We report the average latency across 3000 iterations measured over 3 distinct runs. To report
variation, we also show a region of standard deviation measured across 3000 iterations for each
data point.

We linked the benchmark against the OpenMPI [Gab+04] version 4.1.5rc4, a popular open-
source MPI implementation. Normally, OpenMPI communicates with the processes running
on the same node using shared memory. To highlight the performance impact of CoRD, we
disabled shared memory communication. We ran each benchmark on eight nodes of the Oracle
system.

Collective operations are typically implemented using point-to-point communication. In most
cases, the processes organize themselves into one or multiple logical trees and exchange data
along the edges of these trees during multiple steps of a single collective operation [TRG05].
For the purpose of this experiment, we selected five collective operations with varying
communication intensity:

Reduce operation reduces data from all processes using a predefined function (e.g., sum) to a
single process called root. In the end, the root process holds the result of the reduction

3Also known as group communication operations.
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operation (e.g., the sum of all values). To make the data exchange more efficient, non-leaf
processes perform a partial reduction and send the result to their parent.

All-reduce operation is similar to reduce, but the end result is known to all processes. The need
to send the result to all processes makes this operation more communication-intensive.

Gather operation collects data from all processes to the root process. Unlike reduce, in each
subsequent step of the operation, a process passes on all the data it has received in the
previous step from multiple processes. Therefore, each subsequent step of the collective
operation is more data-intensive.

All-gather operation is similar to gather, but the end result is known to all processes.
All-to-all operation exchanges data between all processes. Unlike Gather, each process sends

different data to every other process, making this operation the most data-intensive.

Figure 3.13 compares the latency of individual collective operations with the baseline and
CoRD Linux kernels. We tested the five aforementioned collectives executed with different
operand sizes. The figure shows the results of a run with 288 processes, where hyperthreads
were not used. The results for the run with hyperthreads are similar, except that the benchmark
omitted the largest operand size due to high memory consumption.

To explain the results, we categorize operand sizes into three groups: small (≤ 128 B), medium
(≤ 8 KiB), and large (> 8 KiB). Recall that for large point-to-point message throughput, CoRD
was able to achieve near-baseline performance. The same is true for Reduce and All-reduce
operations. For example, a reduction operation with a 16-byte operand takes 3.7 µs with the
baseline kernel and 7.8 µs with CoRD, constituting a ≈ 2× overhead. However, for a 16 KiB
operand, the baseline kernel achieves 71 µs and CoRD 79 µs, which is only a 11% overhead. The
overhead for small operands is low relative to single point-to-point message latency because
the MPI library can mask the overhead by sending many small messages in parallel.

Counterintuitively, CoRD sometimes outperforms the baseline kernel for certain operand
sizes. This happens because kernel bypass makes it easier for multiple processes to create
a large message burst and congest the network. On the other hand, CoRD adds overhead
to communication, making it harder to congest the network. We expect this effect to be
stronger for RoCE-based networks, compared to InfiniBand networks, because they do not
have link-level congestion control [Inf15; Zhu+15]. Disabling PFC-based flow control, makes
this effect even stronger, as we elaborate later in this section.

The All-reduce operation has a more complex communication pattern compared to Reduce and
Gather operations. As a result, latency masking becomes less effective: for 16 B operands, the
baseline kernel achieves 22 µs, whereas CoRD achieves 55 µs, which is a 2.5× overhead. However,
for large operands, CoRD can sometimes even outperform the baseline kernel, because of
the aforementioned network congestion effect. For instance, for 16 KiB operands, the baseline
kernel achieves 307 µs, whereas CoRD achieves 297 µs.

When comparing collective operations with medium-sized operands, we observe that CoRD
catches up with the baseline kernel much earlier for Gather and All-gather operations than for
Reduce. This is due to the actual size of the messages exchanged during Gather and All-gather
operations increasing with each step of the operation. For example, for 256 B operands, the
baseline kernel achieves 142 µs for the All-gather operation, whereas CoRD achieves 153 µs.

If a communication pattern is complex, as in the All-to-all operation, the difference between
baseline and CoRD almost disappears. For example, with 16 B operands, the baseline kernel
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achieves 81 µs, while CoRD achieves 90 µs. However, with 16 KiB operands, both CoRD and
the baseline kernel achieve 20 ms latency. These experiments demonstrate that, that CoRD’s
disadvantage becomes less significant with more complex the communication patterns.

Overall, the experiments with MPI collective operations show that the baseline RDMA
communication is faster or on par with CoRD. To our surprise, in some cases, CoRD outperforms
the baseline RDMA communication by a significant margin that cannot be explained by
experimental variability. Two examples in Figure 3.13 are the reduction operation with 4 KiB
messages and the Gather operation with 1 KiB messages. Similar effects appear systematically
across various runs and different compute node allocations.
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Figure 3.14: PFC influence on latency

When analyzing collective operations, we observed
their performance could degrade due to two factors:
network configuration and host configuration. First,
consider the impact of network configuration. Fig-
ure 3.14 illustrates the latency of a 1 KiB-Gather
operation with PFC-based flow control enabled and
disabled. In this specific case, although lossless com-
munication does not lose packets, it still suffers
from congestion more than lossy communication,
and CoRD offers even lower latency compared to
both baseline configurations. Our interpretation of
this performance anomaly is the following. Besides
the protocol itself, the different network configura-
tions also change the size of receive buffers allocated
to each port on the switches. Lossy traffic has larger
receive buffers but no guarantee of buffer space being available. Whereas lossless traffic has
guaranteed receive buffer space, the size of the buffers is smaller. Unfortunately, we do not
have access to the exact configuration of the network switches to confirm this hypothesis.

Host side configuration can also impact latency, for example, by using hyperthreads.
Figure 3.15 shows the latency of 1 KiB-sized Gather and All-to-All operations with and
without hyperthreading. We ran the benchmark with 288 processes with PFC disabled on 8
nodes without hyperthreads and on 4 nodes with hyperthreads. Considering the fact that the
benchmark does not use shared memory, hyperthreading should increase the latency because
each NIC handles more processes, and processes on the sibling hyperthreads share the same
core resources. This is what happened with the all-to-all operation (see Figure 3.15b) for both
the baseline and CoRD kernels. On the other hand, the Gather operation (see Figure 3.15a)
shows the opposite effect: hyperthreading decreases the latency on the baseline kernel.

Considering our focus on the OS aspect of RDMA communication, we did not investigate
these effects further. Nevertheless, these results demonstrate that the performance of RDMA
communication is influenced by many factors, and the performance of specific operations
can change in unexpected ways. In this context, CoRD, despite adding to the latency of
point-to-point operations, may not have a proportional impact on the performance of larger
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Figure 3.15: Latency influenced by hyperthreading

operations. Overall, the less predictable the system is, the less likely it is for CoRD to be the
bottleneck.

Impact of Network Congestion

To understand the effect of network congestion on collective operations, we conducted an
experiment where we modified the baseline user-space RDMA library to artificially delay the
posting of new send requests. Such a delay reduces the rate at which the application can post
messages and in a way emulates the behavior of CoRD.
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Figure 3.16: Timeouts increase average la-
tency.

The benchmark ran all-to-all operation with 4 KiB
operands over 288 MPI processes, varying the delay
from 0 to 20 µs. To make the results more pro-
nounced, we disabled PFC-based prioritization of
RDMA traffic on the NICs. During the experiment,
we first ran 2000 warm-up iterations to congest the
network, and then we measured the latency of the
operation over 100 iterations. We repeated each ex-
periment 5 times and calculated the average of the
results. Additionally, we added up the values of the
performance counters reported by the NICs across
all the nodes to quantify network congestion.

Theoretically, adding delays should have an adverse
effect on performance, but that is not what we
observed. Figure 3.16 shows that until a certain
point, increasing the send delay decreases the
average all-to-all latency. This period of high latency
coincides with a large number of timeouts triggered

by missing Acknowledgement (ACK) packets. The ACK packets go missing due to network
congestion, which is also indicated by a high number of Congestion Notification Packets (CNPs)
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sent by the NICs. As soon as the number of timeouts reaches zero, the average latency reaches
its minimum at a send delay of 12 µs. We identify the period with a send delay below 12 µs as
the period of high network congestion, and the period with a send delay above 12 µs as the
period of low network congestion.

For comparison, CoRD achieves an average latency of 10.5 ms for the same benchmark. At this
latency, CoRD results in 20 million CNP packets sent by all the NICs, but only 0.1 million
timeouts. The number of timeouts with CoRD is much lower than the number observed during
the period of high network congestion with the baseline kernel, but the number of CNP packets
is higher with CoRD. Nevertheless, CoRD is still faster than the baseline kernel without send
delays, though it is higher than the minimal latency. This demonstrates that congestion is the
primary source of latency overhead in our experiments.

Earlier in this section, we measured the latency overhead of CoRD in point-to-point operations
to be around 1.5 µs, which is significantly lower than the optimal send delay of 12 µs. On the
other hand, CoRD adds latency in several places, whereas send delay only affects the latency
of the send operation. Therefore, these two numbers are not directly comparable.
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Figure 3.17: High congestion impacts maxi-
mum latency.

High network congestion has an even more adverse
effect on maximum latency, which is shown in Fig-
ure 3.17. In contrast to average latency, maximum
latency correlates more with the number of CNP
packets handled by the NICs. The difference be-
tween sent and received CNP packets comes from
the fact that, in addition to dedicated CNP pack-
ets, a NIC can report congestion by setting the
ECN bit in the header of regular packets. There-
fore, the observed performance improvements in
CoRD are just an unintended side effect of adding
latency. The optimum send delay depends on the
number of processes, the size of the operands, the
exact benchmark, and even differs from allocation
to allocation. Nevertheless, we always observed that
sending packets at the highest possible rate is re-
producibly detrimental to the performance of some
specific operations.

Although less frequent, congestion remains a problem, even in lossless networks (i.e. when
PFC is enabled). Figure 3.18 shows the average latency of the Gather operation with a 1 KiB
operand over 576 MPI processes using hyperthreads with PFC enabled. Similarly to previous
experiments, we artificially delayed the posting of new send requests with the baseline RDMA
communications, increasing the delay up to 14 µs. Increasing send delay reduces the average
latency up to a certain point, after which the average latency rapidly increases.

In this experiment, we did not observe acknowledgment timeouts at all, indicating that
the network indeed did not drop packets. Nevertheless, we observed a large number of
ECN-marked packets, which indicates that the network was congested. Explicit Congestion
Notification (ECN) is a mechanism that allows switches to notify endpoints about congestion
without dropping packets by setting the ECN bit in the headers of packets passing through
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the congested switch ports [Zhu+15]. The ECN bit is set when the switch’s buffer utilization
exceeds a certain threshold. In response to receiving an ECN-marked packet, the NIC should
send a CNP packet to the sender, which should then reduce the rate of sending packets.
Correspondingly, the number of CNP packets is proportional to the number of ECN-marked
packets.
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Figure 3.18: Lossless flow control is also
subject to congestion.

In contrast to PFC-disabled flow control, with
lossless flow control, the congestion is character-
ized by the number of ECN-marked packets, not
by the number of timeouts. Nevertheless, in both
cases, send delay emulates per-flow rate limit-
ing. Similar rate limiting is also implemented by
hardware-level congestion control algorithms, like
DCQCN [Zhu+15]. Curiously, congestion control
algorithms are designed to react to network con-
gestion events on the scale of dozens of microsec-
onds [Zhu+15], otherwise the algorithm may be
prone to oscillations. Such time scales are also man-
ageable for host-side software, particularly the OS.
Therefore, experiments in this section indicate that
it may be possible to implement RDMA congestion
control at the OS and host level.

Application Benchmarks

To estimate how CoRD performs with real-world applications, we measured the performance
of several MPI applications. First, we measured the performance of the popular NAS Parallel
Benchmarks (NPB) suite [Bai+94] of size class D. Then, we looked at the performance of
Gromacs [Hes+08], a popular molecular dynamics application.
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Figure 3.19: Relative runtime of the NPB benchmarks on Azure system.
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We begin by evaluating the performance of the NPB benchmarks on the Azure system 4. We
compare communication over the bypass network, the CoRD network, and the IPoIB network.
We selected IPoIB for comparison because it communicates over InfiniBand NIC and offers
fine-grained control over data-plane operations, making it a functionally equivalent competitor
to our CoRD architecture. At the same time, we did not assess the performance over the TCP
protocol, as it is unavailable on InfiniBand networks. Each benchmark has limitations on the
number of processes allowed for a run, which in our case ranged from 128 to 240 for different
benchmarks.

For all benchmarks, the CoRD architecture incurs nearly zero overhead over baseline kernel-
bypass communication, whereas IPoIB is up to 2× slower. IPoIB performs slowest with the
IS (integer sorting) and SP (matrix factorization) benchmarks, which are simultaneously
data-intensive, each process sends 72 Gbit/s and 34 Gbit/s, respectively, and message-intensive,
both send around 1300 messages/second per process. EP (embarrassingly parallel), which
communicates very little, and CG (conjugate gradient), which communicates using a few
large messages, run slightly faster with CoRD communication. This behavior suggests that
congestion control is also a factor in InfiniBand networks, albeit less pronounced than in RoCE
networks.
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Figure 3.20: Relative runtime of NPB suite on Oracle system.

Figure 3.20 illustrates the relative runtime of the NPB benchmarks on the Oracle system
with PFC-enabled flow control for CoRD and TCP-based communication5, compared to the
kernel-bypass version. The benchmarks were conducted on 8 nodes, utilizing hyperthreads,
which yielded higher performance for all benchmarks except for FT. The number of processes
used for each benchmark varied between 512 and 576 to accommodate the limitations of the
respective benchmarks.

Similar to the Azure system, CoRD exhibited very low overhead compared to kernel-bypass
communication. The most significant slowdown observed was 2.5% for the LU benchmark.
Surprisingly, TCP-based communication demonstrated considerable performance variability.
In the worst case, the LU benchmark ran 52% slower over TCP than over kernel-bypass
communication. Conversely, in the best case, the FT benchmark ran 4× faster over TCP

4Our available resources permitted experiments only with two nodes and solely with NPB benchmarks.
5IPoIB is not available on RoCE networks.
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than over kernel-bypass communication. While it is evident why TCP-based communication is
slower than kernel-bypass communication for some benchmarks, the unexpected performance
improvement warrants an explanation.
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Figure 3.21: Runtime of NPB FT benchmark on Oracle system. Whiskers show the range of standard deviation
centered around the mean.

There are two reasons why the FT benchmark ran faster over TCP-based communication.
First, loopback communication over TCP operates entirely within the kernel, whereas loopback
communication over an RDMA network passes through the NIC and necessitates more data
movement. Second, when the FT benchmark runs with hyperthreads, it experiences congestion,
resulting in overall performance degradation. Figure 3.21 displays the runtime of the FT
benchmark with 4 and 8 nodes, with and without hyperthreads, with and without PFC-
enabled flow control.

It is evident that the FT benchmark suffers from congestion, because it shows the worst runtime,
when allocated the most resources: 8 nodes with hyperthreads. Among all configurations, the FT
benchmark ran the fastest (30.5 s) with CoRD on 8 nodes without hyperthreads communicating
over a lossy network. The second and third best configurations were TCP-based communication
on 8 nodes with hyperthreads, with or without PFC-enabled flow control, which ran for 30.7 s
and 31.4 s, respectively. Only then did baseline lossless RDMA communication on 8 nodes
without hyperthreads follow, running for 33.8 s. CoRD achieves such good performance because
it is less susceptible to congestion than the baseline kernel, as shown in the previous section.
TCP-based communication is fast because it can bypass the physical network for loopback
communication.

Finally, we measured the performance of Gromacs [Hes+08]. For this experiment, we utilized
8 nodes with hyperthreads and lossless communication, as this configuration delivered higher
performance for all benchmarks, except benchRIB. Figure 3.22 presents the average runtime
across 5 runs for Gromacs with four different data sets. Given that Gromacs is notably network-
intensive, TCP-based communication is up to 4× slower than kernel-bypass communication.
CoRD communication was also slower than kernel-bypass communication, but the disparity
was considerably less.
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Figure 3.22: Runtime of Gromacs benchmarks on Oracle system. Annotations show average per-process
throughput and packet rate of the baseline version, and the runtime overhead of CoRD and TCP communication,
compared to the baseline RDMA communication (relative runtime is 1).

CoRD experienced the most significant slowdown of 30% for the benchMEM dataset, which is
the shortest of the four datasets: it ran for 18.3 s with kernel-bypass communication and 23.9 s
with CoRD communication. Whereas, other benchmarks took at least 200 s to complete, and
the slowdown ranged from 0.7% to 3.7%. While being the smallest problem, benchMEM is also
the most message-intensive, sending 478 Mibit s−1 and 56 kpacket s−1 per process. Together,
all processes on one node send 33.6 Gibit s−1, which is a third of the NIC’s line rate. The other
benchmarks reached only around a third of benchMEM’s the data rate, and up to one-eighth
of the packet rate.
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Figure 3.23: Congestion control impact on
benchRIB. The Y-axis does not start at zero.

As we observed with other benchmarks, hyperthreads
can have detrimental effects on the application per-
formance. Specifically, for benchRIB, when hyper-
threads are enabled, kernel-bypass ran for 240 s and
CoRD ran for 249 s. Disabling hyperthreads reduced
the runtime to 142 s and 141 s for kernel-bypass and
CoRD communication, respectively. TCP-based com-
munication also improves with hyperthreads disabled,
but not as much as RDMA-based communication,
running for 217 s and 193 s with and without hyper-
threads, respectively. Disabling lossless flow control
reduces performance for all configurations; however,
the impact is relatively small (see Figure 3.23). This
benchmark is similar to NPB FT (see Figure 3.21),
in the way it reacts to configuration changes. Overall, when comparing the best available
configurations for benchRIB, the performance of CoRD remains on par with the baseline
kernel, and is significantly better than TCP-based communication.

The only application benchmark that showed a significant performance degradation with
CoRD was benchMEM. The reason for this is that benchMEM is the most message-intensive
benchmark and benefits from lossless networks, as well as from additional CPU resources. If
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Figure 3.24: Performance of benchMEM with varying configurations. Annotations show runtime overhead of
CoRD, compared to the baseline RDMA communication. Whiskers show standard deviation centered around
the mean.

the configuration is not optimal, the performance gap between the baseline and CoRD shrinks
dramatically.

Overall, our results show that in most circumstances, CoRD communication incurs a small
overhead compared to kernel-bypass communication. In some cases, CoRD communication
even outperforms kernel-bypass communication. We also observed the case when CoRD has
been at a significant disadvantage compared to the optimal configuration of the baseline kernel,
but finding such a configuration in the real world is not straightforward because it depends
on the application, its communication patterns, host and network configuration, and other
factors.

3.2.4 Use Cases

To demonstrate the usefulness of CoRD, we implement three use cases. The first use case is a tool
for monitoring per-process RDMA traffic. The second use case is a rate-limiting mechanism for
RDMA communication. The third use case demonstrates how CoRD can be used to implement
congestion control for RDMA communication. All the use cases are implemented in the OS
kernel and provide functionality not available in the baseline kernel-bypass implementation.

Traffic Monitoring

In traditional RDMA networks, the NIC is responsible for sending/receiving packets and
reporting statistics about the traffic. However, a NIC typically reports only aggregated statistics
for all processes running on the same node. This limitation makes it difficult to understand
the traffic patterns of individual processes.

Some per-process traffic statistics are available through the iproute2 tools [Hem+23].
Unfortunately, these statistics do not include the number of sent bytes or packets 6. Applications
may use the ibv_read_counters API to query their own traffic statistics [Ros17]. However, this
API is designed for use by the application itself, and the OS does not have easy access to these

6The set of available counters is defined in drivers/infiniband/hw/mlx5/counters.c.
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statistics. Moreover, both approaches are available only for advanced NVIDIA NICs and not
for NICs from other vendors.

To address this shortcoming, we added a Linux kernel tracepoint [Ros11] to the ib_core driver
right before it invokes a device-specific function to send a message. A tracepoint allows to
attach a user-defined function to a specific place in the Linux kernel, but when the tracepoint
is not in use, the overhead is virtually zero. In our case, the user-defined function is provided
by a user-level system service that records the number of bytes and packets sent by each
process. We developed a simple user-level service that uses the Aya [Dec+21] framework to
attach an eBPF [Tig23] program to the newly defined tracepoint.

An eBPF program can introduce significant overhead to a microsecond-scale operation. To
reduce this overhead, we accumulated the data for each send request in an eBPF map and
only shared the aggregated data with the user-level service. The user-level service then checks
the map for new data every 1 s and reports the results to the user. With such a careful
implementation, we ensured that the impact on application performance was negligible.
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Figure 3.25: Monitoring per-process traffic of Gromacs.

Figure 3.25 shows the monitoring results from one of the four nodes running the Gromacs
benchmark with the benchMEM data set and dynamic load balancing enabled. In total, our
tool observed 72 threads belonging to 36 different MPI ranks. Each MPI rank has two threads:
one for the main thread and one for the asynchronous helper thread. From the figure, we
can see that there are two groups of main threads: one group with 12 high-traffic threads
and another group with 24 low-traffic threads. This separation corresponds to the Gromacs
architecture, which assigns threads to two dedicated roles [Hes+08]. A sudden drop in traffic
from 11 s to 21 s corresponds to work rebalancing among the threads.

Compared to hardware-offloaded monitoring, the advantage of our approach is that we can
deploy arbitrary monitoring logic without modifying the application. If necessary, we can also
create new tracepoints or attach to other probe points. CoRD-based monitoring is aware of
high-level OS concepts, like processes and threads, making it more flexible than hardware-
offloaded monitoring. Finally, CoRD is portable because it does not require any special
hardware support.
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Rate Limiting

When multiple applications share the same node, to ensure fairness it can be desirable to
enforce a limit on the amount of traffic each process can send. Existing RDMA solutions offer
two main approaches to rate limiting. In the first approach, the application itself implements
rate limiting by relying on the InfiniBand verbs API [Mel15] to set a per-flow packet rate. In
the second approach, the OS employs hardware virtualization to enforce rate limits [NVI23].

The disadvantage of the first approach is that the OS has no influence over what the application
sets as the rate limit. Therefore, it is hard for the OS to manage and coordinate multiple
applications running on the same node. The disadvantage of the second approach is that
it is coarse-grained because it allows setting only a single limit per Virtual Machine (VM)
or application instance. Moreover, similar to the traffic monitoring case, some rate-limiting
features are only available for advanced NVIDIA NICs [RW18].

In contrast, CoRD allows for a fine-grained, vendor-agnostic rate limiting implementation. To
demonstrate this, we implemented a simple rate-limiting mechanism as a CoRD function. Our
rate limiter enforces a specific throughput limit at the level of Linux cgroups [Heo15]. Such an
interface allows the OS to enforce a limit on the amount of traffic each process can send.
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Figure 3.26: CoRD overhead with and
without rate limiting support.

For each cgroup, the rate limiter maintains a counter
of the number of bytes sent by all the processes
belonging to the cgroup within a 200 ms sliding
window. If the process attempting to send a new
message is about to exceed the limit allocated for its
cgroup, the rate limiter puts the process to sleep for
a short period of time. The sleep time is calculated
based on the current throughput of the cgroup and
the amount of data the process is trying to send. The
cgroup interface allows for the creation of hierarchical
resource limits, so the rate limiter needs to ensure
that the limit is enforced for every cgroup in the
hierarchy.

Previously, we stated that OS functions must have
minimal overhead for CoRD to be useful. Figure 3.26
shows the overhead of CoRD with and without the
rate limiter. In contrast to traffic monitoring, the rate

limiter has a latency overhead of around 300 ns, even when rate limiting is not enforced. We
attribute this overhead mostly to the need to grab a mutex to access the cgroup data structure.
We believe that using a faster mutual exclusion mechanism would reduce this overhead, but
from our point of view, the convenience of the cgroup interface outweighs the overhead.

To demonstrate how our rate limiter works, we conducted an experiment on two Oracle Cloud
nodes. Each node was running 18 instances of the ib_send_bw benchmark, split into two groups
of 9 processes. The benchmarks on one node were sending 64 KiB messages to the benchmarks
on the other node. A process in the first group (group A) sends messages over a single QP,
whereas a process in the second group (group B) sends messages over 64 QPs at once. Every
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10 s, each process reports its observed throughput. Approximately every 180 s, we change the
configuration of the rate limiter to observe how the benchmarks react to the change.
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Figure 3.27: Throughput of rate-limited processes. The group has either no limit (∞), a per-process limit (e.g.
4/P), or an aggregate limit (e.g. 40/G).

Figure 3.27 shows the throughput observed by each individual process. We changed the rate
limiter configuration 6 times, creating 7 periods with different configurations. The benchmarks
start by sending at full speed (phase I) without any intervention from the rate limiter. Processes
in group B receive a disproportionate share of the bandwidth because the NIC implements
load balancing on a per-QP basis. The aggregate throughput of all the processes is 98.4 Gbit/s
(see Figure 3.28), which is just a little short of the theoretical maximum of 100 Gbit/s.

Next, we attempt to prioritize processes in group A over the processes in group B. For that,
we set the rate limit to 4 Gbit/s for each process in group B, so that group A can claim the
remaining available bandwidth. To set the rate limit for each process in group B precisely, we
created an individual cgroup for each process. As a result, in phase II, processes in group A
receive approximately 6.9 Gbit/s throughput, and the aggregate throughput of all the processes
remains the same as in phase I.

In phase III, we set the rate limit for each process in group A to 6 Gbit/s. Considering that
the aggregate throughput of all the processes is limited to 90 Gbit/s, the observed aggregate
throughput also drops (see Figure 3.28). In phase IV, we set the rate limit for each process in
group B to 8 Gbit/s and for each process in group A to 3 Gbit/s. In all these cases, all the
processes observe the expected throughput.

In phase V, we moved all the group B processes to a single cgroup and set the rate limit for this
cgroup to 30 Gbit/s. Figure 3.28 shows that the aggregate throughput of all the processes in
group B is indeed 30 Gbit/s, but Figure 3.27 shows significant variation between the processes
within the group. Although we correctly implemented the rate limiting, our algorithm does not
guarantee fairness between the processes within the same cgroup. As a result, some processes
in the cgroup are blocked more often by the rate limiter than others. A better algorithm
would also provide fairness [Rad+14], but rate limiting algorithms are beyond the scope of
this thesis.
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Figure 3.28: Aggregate throughput with rate limiting. The group has either no limit (∞), a per-process limit
(e.g. 4/P), or an aggregate limit (e.g. 40/G).

In phase VI, we set the aggregate rate limit for group A to 40 Gbit/s and for group B to
60 Gbit/s. In this case, most of the processes within group A observe equal throughput, but
there is even more variation in group B. Again, as in the previous case, we do not guarantee
fairness between the processes within the same cgroup. Finally, in phase VII, we remove the
rate limit for all the processes, and the bandwidth distribution returns to the state of phase
I.

Congestion Control

The final use case demonstrates how CoRD can be used to implement congestion control for
RDMA communication. We expand on the congestion control experiment from Section 3.2.3,
where we added a send delay to see how rate limiting impacts the performance of MPI
collectives. In this experiment, we add send delay as an OS function and study its impact on
the performance of Gromacs.
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Figure 3.29: Reducing network congestion with CoRD
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Figure 3.29 shows the run of Gromacs with the benchRIB dataset with hyperthreads and
lossless flow control. Although the baseline RDMA configuration suffers from congestion,
CoRD still runs slower. However, when we add a send delay to CoRD, the performance of the
application improves by up to 10%. This result suggests that CoRD can be used to implement
congestion control for real-world applications.

When running Gromacs with the benchPEP and benchPEP-h datasets, we observed no
significant changes in the performance of the application when adding a send delay. On the
other hand, when running Gromacs with the benchMEM dataset, adding any send delay
increased CoRD overhead even further, in addition to the already existing 30% overhead
(see Figure 3.24).

Our demonstration shows that the OS has the potential to control congestion in RDMA
networks. Typical criticism of employing the OS for such a task is that it cannot react to
congestion events in a timely manner [Bar+17b], therefore this task is better left to NICs and
switches. Our results suggest that there are high-level sources of congestion, which can be
controlled by the OS quickly enough. This role can be even more important if applications
running on the same host do not coordinate their communication patterns, and therefore the
NIC and switches cannot help alleviate the congestion.

3.2.5 Summary

CoRD is a novel continuous RDMA dataplane interposition architecture emphasizing
interoperability with existing RDMA applications. Despite a measured overhead of 1.5 µs
in latency microbenchmarks, we demonstrate that this overhead is very small for real-
world applications. Benchmarking of MPI collectives shows that, despite adding overhead to
communication, CoRD can still use the network very efficiently overall. In particular, CoRD
has been able to achieve near-baseline performance for many operations because the actual
communication bottleneck was not the CPU overhead, but the network congestion. However,
it is clear that CoRD has room for improvement in reducing network congestion on the host
side by coordinating all RDMA processes running on the same node. So far, the focus of our
network congestion control study has been on the RoCE protocol, leaving a similar study with
the InfiniBand network for future work. We also demonstrate that CoRD can be employed to
implement a range of functions without necessitating modifications to the application code.

3.3 Fast System Calls

Although CoRD demonstrates that the overhead of system calls is not necessarily a bottleneck
for high-performance applications, there is still room for improvement. To understand how much
room for improvement there is, we take a bottom-up approach by constructing a minimalistic
continuous interposition mechanism. This mechanism strips down the traditional system call
mechanism to the bare minimum. Such an approach allows us to understand the fundamental
limitations of software-level RDMA dataplane interposition.

The main idea of the minimalistic approach is to remove all the unnecessary overhead from the
system call mechanism. Unfortunately, naively removing instructions from the Linux kernel
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system call implementation would result in a system being insecure, unsafe, and dysfunctional.
To address this challenge, we propose fastcalls, a fast path system call implementation.

Fastcalls reside in fastcall space, a software layer that logically lies between user and kernel
space. Fastcalls are guaranteed to have very low overhead, compared to traditional system
calls, and can be employed for high-performance applications with extremely high performance
demands. Fastcalls build on the ideas of the Exokernel [EKO95] architecture, but apply them
to modern systems in the context of contemporary security threats.

Among the main concerns for the fastcall architecture are side-channel attacks, like
Meltdown [Lip+20] and Spectre [Koc+19a]. These attacks allow leaking sensitive information
from the kernel to a malicious user space application, without triggering any security checks.
Different modern CPUs are vulnerable to various side-channel attacks, but the fastcall
architecture requires a guaranteed level of protection for all of them.

3.3.1 Fastcall Architecture

Fastcalls provide a low-latency alternative to system calls by minimizing the transition overhead
between user space and fastcall space. To achieve this low overhead, each fastcall implements
only the fast path of an application-specific use case, like sending a network packet of a
predefined protocol type and with a fixed destination address. Fastcalls trade off the generality
and some of the security of system calls for a faster implementation of privileged operations.

The first design goal is to incur minimal latency overhead when invoking a fastcall function.
To this end, the code of a fastcall function is very simple and highly application-specific. To
enable such a requirement, each user-space process has its own private fastcall space.

The second goal is to enable secure enforcement of OS policies. For that, a user application
must not be able to manipulate a fastcall’s code or data. In modern CPUs, such isolation is
achieved by making the fastcall code accessible only from within a privileged CPU mode. Then,
to access the required service, similarly to system calls, the user application enters privileged
mode through fixed entry points defined by the OS.

User Application
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Kernel FCP

NIC SoC
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2 2
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Figure 3.30: Fastcall architecture.

To better understand the fastcall architecture, consider an
example where an application aims to send packets over the
network using fastcalls (see Figure 3.30). We create a fastcall
space by allocating a portion of the application’s virtual
address space. When a process spawns, its fastcall space
is initially empty, meaning the application has no access
to any fastcalls. The application begins by requesting ( 1 )
the fastcall provider (FCP) to register a fastcall (FC)
function for the application process. The fastcall provider, a
kernel component, is responsible for creating and managing
fastcalls. The provider may contact user-level OS services
to make policy decisions or compose fastcall code.

After the creation of the fastcall code, it includes OS-defined policies, such as filtering the
destination address for outgoing packets or conditionally switching to the kernel for more
complex processing on selected packets. Fastcalls are strictly controlled by the fastcall provider,
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preventing the application from bypassing or removing these checks. Finally, the provider maps
the fastcall into the application’s fastcall space ( 2 ), along with the resources necessary for the
fastcall to fulfill its task. In this example, such a resource could be an MMIO doorbell register,
which is used to trigger the NIC data transmission.

Now, if the application seeks to use the NIC for sending a packet, it directly invokes the
fastcall function ( 3 ). The fastcall interacts with the MMIO region ( 4 ) of the NIC to initiate
the corresponding I/O operation ( 5 ). Should the application invoke a fastcall with parameters
that violate the OS policies established for that fastcall (such as sending a network packet to
an unauthorized address), the fastcall function will reject the operation and return to user
space. The application can then either revise its request or resort to the standard OS stack by
making a system call.

The kernel is responsible for ensuring that the fastcall is self-contained in terms of memory
accesses and the code it executes. This stipulation implies that the fastcall must neither
conduct memory operations outside its dedicated region nor execute any code not explicitly
part of it, such as external functions. There are two reasons for these restrictions: First, to
facilitate maximum performance and straightforward implementation, the fastcall should not
trigger CPU exceptions like page faults. Second, to enable the fastcall provider to verify the
fastcall’s logic, all potential execution paths of a fastcall must be observable. While this thesis
does not delve into fastcall verification, we anticipate that fastcalls would be automatically
verified in a manner akin to eBPF [Tig23] functions.

To ensure that a fastcall does not cause page faults, each fastcall is allocated a block of
scratchpad memory for use as a stack. Additionally, the kernel sets up a pinned memory region
shared between the fastcall and the application. Part of this shared region is writable by the
application, while another part is read-only. The application can transfer data to a fastcall
only through CPU registers or via this shared memory region.

To reduce the latency of fastcall invocation, the fastcall space does not incorporate software-
based side-channel-attack mitigations. Specifically, the fastcall space exists within the same
virtual address space as the application and is not safeguarded by measures like KPTI [Cor17a].
Therefore, although applications cannot alter data within the fastcall space, such data should
not be considered confidential in the event of side-channel vulnerabilities like Meltdown [Lip+20].
This implies that the fastcall space should be designed as though the user application had read
access to its own fastcall space. Consequently, the fastcall space must exclude any information
that must remain confidential from a user application.

Furthermore, fastcall functions do not interact with the OS kernel in any way. A fastcall
provider must verify that the code of a fastcall neither accesses kernel data nor calls any kernel
functions; therefore, fastcalls must be self-contained (for security reasons, calling into user
functions is also forbidden). As a side effect, this means that on systems running their kernel
in a separate address space, there is strong isolation between fastcall space and kernel space.

For our primary implementation of the fastcall framework (see Section 3.3.2), which we call
privileged, the CPU mode in which the fastcall space resides is equal to the standard kernel
mode. However, this is not fixed by design. For example, Section 3.3.3 explores an unprivileged
fastcall implementation, keeping the fastcall space in user space to further reduce the fastcall
invocation latency.
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Privileged fastcalls require the kernel to keep KPTI enabled, even if the CPU is not vulnerable
to a Meltdown [Lip+20] attack. The reason for this is that from the CPU’s perspective,
fastcalls run in the same CPU mode and the same address space as the kernel code. Existing
hardware- and software-based side-channel mitigations must be employed at the boundary
between trusted and untrusted code. Fastcalls remove this boundary, so the kernel must ensure
that the fastcall space is not used to leak sensitive information. One way to achieve this is to
treat fastcall code as untrusted and keep fastcalls and kernel in different address spaces. As a
result, privileged fastcalls slow down the performance of traditional system calls.

3.3.2 Privileged Fastcalls

Privileged fastcalls are the primary implementation of the fastcall architecture in this thesis.
This implementation resembles a significantly stripped-down version of the traditional system
call mechanism. Compared to unprivileged fastcalls (see Section 3.3.3), privileged fastcalls
have a different invocation mechanism and run inside the kernel. This section describes the
implementation of the creation and invocation of privileged fastcalls for the Linux kernel on
the x86-64 architecture7.
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Figure 3.31: Registration (left) and invocation (right) of privileged fastcalls in x86-64 implementation.

To add a new fastcall, the application makes a request to the Fastcall Provider (FCP) via
the ioctl system call ( 1 in Figure 3.31). In our implementation, FCPs are loadable kernel
modules that interact with the fastcall infrastructure built into the kernel. If the application is
authorized to use the requested fastcall, the fastcall provider sets up the fastcall handler and
inserts it into the application’s per-process fastcall space ( 2 ). The per-process fastcall space
hosts the data structures required for the fastcalls’ runtime environment.

Each fastcall space contains a Fastcall Table (FCT), which includes entries for the metadata
required to execute individual fastcalls. This fastcall metadata contains a pointer to the code
of a fastcall function, configuration parameters, or pointers to memory regions associated with
the fastcall. Additionally, the fastcall space hosts a memory region shared between the user
application and the fastcalls for exchanging fastcall arguments, which are too large to fit into
CPU registers. This shared region is similar to User-level Thread Control Block (UTCB) in
the L4Re Microkernel [Lac04]. Depending on the requirements of specific fastcalls, the fastcall
space also includes MMIO mappings and fastcall-private memory pages (e.g. for locks and
counters) required by specific fastcalls. Finally, to support fastcall functions written in C,
7The source code is available at https://github.com/planeta/linux/tree/mplaneta/fastcall/dev.
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fastcalls require a stack. To avoid concurrency issues, there is one dedicated stack per CPU,
and interrupts are kept disabled during fastcall execution.

When the application invokes a fastcall, it first puts the fastcall arguments into the shared
memory ( 3 ), and then executes the syscall instruction with a special value in the rdi register
( 3 ). This instruction transitions the CPU into privileged mode (ring 0), where the entry point
handler dispatches the execution either to the fastcall dispatcher ( 4 ) or to the standard system
call handler ( 6 ). Distinguishing between fastcalls and standard system calls right at the kernel
entry allows for minimizing fastcall overhead. The fastcall dispatcher locates the requested
fastcall function in the fastcall table ( 4 ) and executes it with the arguments passed either
through CPU registers or through the shared memory region ( 5 ).

1 // kernel entry point
2 entry_SYSCALL_64:
3 cmpq $NR_fastcall, %rax
4 // jump to fastcall dispatcher
5 je fastcall
6 /* original kernel entry
7 * sequence [...] */
8
9 // fastcall dispatcher
10 fastcall:
11 cmpq $NR_TABLE_ENTRIES, %rdi
12 // table index out of bounds
13 jae error
14 movq $TABLE_ADDR, %rax
15 imulq $TABLE_ENTRY_SIZE, %rdi
16 addq %rdi, %rax
17 // &some_fastcall_function
18 jmpq *(%rax)
19
20 // example fastcall
21 some_fastcall_function:
22 /* fastcall function body
23 * [...] */
24 movq <RETVAL>, %rax
25 // return to user space
26 sysretq

Figure 3.32: Fastcall entry and dispatch.

Figure 3.32 shows the code of the fastcall entry
point called entry_SYSCALL_64 in the Linux kernel. Line
3 checks if the system call number corresponds to a
fastcall, and line 5 jumps to the fastcall dispatcher
if that is the case. The %rdi register holds the index
of the invoked fastcall. Lines 12 to 16 compute the
address of the fastcall function using the fastcall
number as an index into the fastcall table. Line 18
jumps to the fastcall function. Finally, the fastcall
returns to the application via sysret.

Fastcalls do not execute operations common to sys-
tem call entry and exit. For example, to avoid po-
tentially unnecessary saving of processor state, we
assume all registers to be callee-saved (i. e., saved
by the fastcall function). On x86-64, fastcalls avoid
setting up and tearing down the kernel environ-
ment (e. g., swapgs) and mitigating side-channel
attacks like Spectre [Koc+19a], Meltdown, and
Microarchitectural Data Sampling (MDS) [Can+19;
Van+19]. Fastcalls also avoid storing and restor-
ing general-purpose registers, the system call table
lookup, and consistency checks unnecessary for the
fastcall environment. These savings enable fastcalls
to have an overall lower latency than system calls.

During execution, fastcalls have privileges similar to those of the kernel and, except for the
shared region, fastcall space memory is not accessible from user mode. However, because
KPTI [Cor17a] must be enabled, fastcalls cannot access kernel memory, thus they can neither
read nor write kernel data, nor call kernel functions.

To simplify implementation, the kernel resets the fastcall space after fork [POS17], so no special
care is needed to handle fastcall data structures, including actively used locks. The handling
of forked processes is a known, albeit solvable, problem for RDMA applications [Mel15], which
is beyond the scope of this thesis.

In essence, the presented design enables fastcalls to perform privileged operations without
fully entering the kernel, which results in reduced latency compared to system calls. Even in
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the presence of currently known side-channel attacks, an application cannot interfere with or
actively manipulate memory in the fastcall space. Therefore, although not confidential, fastcall
space is safe even in the presence of malicious user applications.

3.3.3 Unprivileged Fastcalls

Despite removing most of the expensive operations, the privileged fastcall implementation
described in the previous section still relies on a relatively slow syscall instruction to enter
the kernel. In this section, we consider what would be required to remove this instruction
and make fastcalls even faster. For that, we explore an implementation of a fastcall transition
mechanism, which relies on the relatively recent ability of several modern CPUs to create
executable non-readable pages [Jin21]. Our goal is to devise a mechanism that would allow
invoking fastcalls almost as fast as a regular function call.

On a high level, executable non-readable pages work as follows. The OS maps an executable
non-readable page into the address space of an application. The application can execute
instructions located inside the non-readable page by jumping or calling into an arbitrary
location in the non-readable page. When the control flow is already inside such a page, the
CPU can also proceed to the next instruction without causing a CPU exception. Even if an
instruction inside the non-readable page has an immediate value stored as an opcode, this
operation still succeeds. On the other hand, data movement instructions, where one of the
operands points to the executable non-readable page, would result in a CPU exception. We
use this property to store secrets as immediate values in the instruction stream without the
user application being able to read them directly. Then, a fastcall can be designed in such a
way that its execution path depends on knowing the secret value.

For this architecture, we introduce two new page types, which are mapped into the fastcall
space. The first page is a protected page with a secret, which is mapped as executable non-
readable. The second page is a hidden page, which is mapped to a randomized location in the
fastcall address space. A hidden page is readable and writable for the user application, but the
user application does not know the address of the hidden page. Our goal is to design a fastcall
in such a way that only the code inside the fastcall can access the hidden page, without leaking
the address of the hidden page to the user application.
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Figure 3.33: Successful invocation
of an unprivileged fastcall.

Figure 3.33 shows the successful invocation of an unpriv-
ileged fastcall. The user application starts by invoking a
fastcall ( 1 ). The fastcall first jumps into the protected re-
gion ( 2 ) to load the secret into a CPU register ( 3 ). After
setting the secret for fastcall use, the code in the protected
region jumps unconditionally back into the fastcall. This
way, the secret is only accessible to the fastcall. Having the
secret, the fastcall can check if the request from the user
application follows the OS functions. If the request is per-
missible, the fastcall uses the secret ( 4 ) as an address to the
hidden page ( 5 ), thereby executing a privileged operation.
During its execution, the fastcall is not allowed to write the

secret into the memory accessible by the user application. Finally, before returning to the user
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application, the fastcall erases the register containing the secret and then returns to the user
application.

jmp

Application
jmp

User
space

Fastcall
space

SecretFastcall

MMIO

1

?

2
3

Figure 3.34: Malicious invoca-
tion of an unprivileged fastcall.

The application could try to bypass the OS functions in a
fastcall and jump into the part of the fastcall code that accesses
the protected page ( 1 in Figure 3.34). Such an attempt would
fail, because the fastcall code does not know the address of the
protected page ( ? ). Alternatively, the application may jump
into the protected page ( 2 ) in the hope of extracting the secret.
Then, after loading the secret into a CPU register, the code in
the protected region will still jump into the fastcall ( 3 ), which
will erase the secret before returning to the user.

In addition to the measures described above, it is important
that the Linux kernel does not leak the address of the hidden MMIO region through some
kernel API. In our implementation, we randomize the addresses of the hidden pages inside the
fastcall space and remove hidden page mapping from application-accessible process metadata,
like the /proc/self/maps file. Otherwise, the application could circumvent the trampoline routine
and access protected memory directly.

As we mentioned before, protected pages can be implemented in several ways. On Intel x86-64

CPUs, this feature can be implemented using either the Intel MPK [Par+19] extension or the
Intel Extended Page Table (EPT) [Int22, Section 29]. Apple M1 CPUs allow for protected
pages through the Guarded Exception Levels (GXF) feature [Sve21]. Despite the available
hardware, for the purpose of this thesis, we assumed the protected page to be executable
non-readable, but we did not employ any of these techniques. The reason for such simplification
is that our main focus has been the performance evaluation of unprivileged fastcalls and not
the exact implementation details8.

1 // example fastcall
2 some_fastcall_function:
3 jmp load_secret_1
4 return_from_secret_1:
5 /* fastcall function body
6 * [...] */
7 // erase secret
8 xor %rdi, %rdi
9 // set return value
10 movq <RETVAL>, %rax
11 ret
12
13 // Starts from the next page
14 load_secret_1:
15 /* load the address of
16 * the hidden region */
17 movq <SECRET_1>, %rdi
18 jmp return_from_secret_1

Figure 3.35: Unprivileged fastcall entry.

Figure 3.35 shows the code of the unprivileged fastcall
entry point. When a user application invokes the
example fastcall, the fastcall dispatcher (similar to the
one described in Section 3.3.2) eventually jumps to
Line 2. The fastcall starts by jumping to the protected
page (Line 14), which, in our implementation, is located
immediately after the fastcall code page. After loading
the secret (Line 17), the control returns back (Line
18) to the fastcall (Line 4) and continues similarly to
privileged fastcalls. The secret has been written by the
OS into the protected page as an immediate argument
of the mov instruction during the fastcall creation. Before
returning, the fastcall erases the secret (Line 8) and
sets the return value (Line 10).

To ensure the confidentiality of the secrets, we imple-
mented unprivileged fastcalls in Assembly language
because the C language does not allow marking certain

8We tried to implement unprivileged fastcalls for M1 CPUs, but at the time, Linux kernel support for the M1
architecture had been limited, and we did not complete our prototype.

57



3 Continuous Interposition

registers as containing a secret. Overall, unprivileged fastcalls offer very low overhead for privi-
lege invocation in exchange for secret-based isolation. We study how secure such secret-based
isolation on modern CPUs is in Section 3.3.4.

3.3.4 Evaluation

Fastcall space allows the OS to provide user applications with very low-overhead access to
privileged operations. Considering that overhead is a priority, the goal of this section is to
provide a quantitative performance comparison with other similar mechanisms. Additionally,
we will provide a quantitative analysis of the security properties of unprivileged fastcalls.

The overall time required to execute a privileged operation consists of three parts. The first
part is the time required to transition to and from the privileged mode. The second part is
the time required to sanitize the arguments of the privileged operation and conduct necessary
security checks. The final part is the time required to execute the privileged operation itself.
The last two parts are very use-case-specific, and therefore, it is hard to provide a general
estimate of their runtime. Therefore, we focus only on the overhead coming from the transition
mechanism.

To evaluate fastcalls, we chose several comparison points. The fastest way to implement a
kernel-supplied function is the vDSO library that is mapped into each user application [Fry23].
Effectively being normal function calls without any mode transitions, vDSO functions serve as
a lower bound for the overhead introduced by any of the mechanisms used in our experiments.
Special-purpose system calls or ioctl-based handlers do run in privileged mode, so they serve
as the upper bound for fastcalls.

Table 3.2: CPU models used for latency measurements.

CPU Model Short Name Clock Rate Cores Released Meltdown

Intel Core i7-4790 Intel 4790 3.6 GHz 4 2014 Vulnerable
Intel Xeon Platinum 8252C Intel 8252C 3.8 GHz 12 2019 Vulnerable
AMD Ryzen 3700X AMD 3700X 3.6 GHz 8 2019 Secure
AWS Graviton2 (ARM) Graviton2 2.5 GHz 64 2020 Secure
Intel Xeon Gold 6354 Intel 6354 3.0 GHz 18 2021 Secure
Intel Xeon Platinum 8375C Intel 8375C 2.9 GHz 32 2021 Secure

Table 3.2 lists the CPU models on which we conducted our experiments. The selection covers
the ISAs prevalent in today’s data centers — Intel/AMD x86-64 and ARM aarch64. For the
benchmarks on ARM, we ported our privileged fastcall implementation to that architecture.
Two of the systems are vulnerable to the Meltdown [Lip+20] attack and therefore require
KPTI [Cor17a] to be enabled. Intel has been releasing such systems until 2019. Comparing
the performance of fastcalls on vulnerable and secure systems allows us to understand the cost
of privilege transitions better.

We used a Linux kernel of version 5.11 for all experiments in this section and, if needed,
modified it to support fastcalls. However, to prevent the in-kernel fastcall implementation
from skewing the results of vDSO, system calls, and ioctl, these measurements used a vanilla
kernel. Moreover, simultaneous multithreading (“Hyperthreading”) and dynamic overclocking
(“Turbo Boost”) were switched off. Any CPU frequency scaling has been disabled by selecting
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the “performance” CPU governor. The source code used for running the experiments described
herein is available online9.
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Figure 3.36: Fastcall performance on a
Meltdown-vulnerable system.

80

67

49

1.3 4.3
0

25

50

75

vDSO FC (U) FC (P) Syscall ioctl
Mechanism

T
im

e
(n

s)
Figure 3.37: Fastcall performance on a
Meltdown-secure system.

Initially, fastcalls were motivated by the need to reduce system call overhead in the presence
of KPTI. Nowadays, most CPUs have hardware mitigations for Meltdown [Lip+20] and
Spectre [Koc+19a] attacks, rendering KPTI unnecessary. Nevertheless, if there is a new
attack of a similar nature, KPTI remains the most secure and generic way to isolate sensitive
kernel data from a malicious user application. Therefore, we start the evaluation with a
Meltdown-vulnerable system.

Figure 3.36 shows the latency of invoking an empty function using different mechanisms on an
Intel 4790 with side-channel mitigations enabled and disabled. When mitigations are enabled,
the kernel chooses only those interventions that mitigate vulnerabilities known for a specific
CPU model. To gather the data, we used the Google microbenchmark support library [Fis+23],
which, in particular, automatically runs as many iterations as required to achieve a statistically
significant result.

The invocation latency of a vDSO function is less than 2 ns, comparable to the overhead of a
function call and representing the fastest possible way to invoke a kernel-supplied function. A
privileged fastcall requires 24 ns to execute, which is much faster than a dedicated system call
or an ioctl handler, even when side-channel mitigations are disabled. Both vDSO and fastcall
are not affected by enabled side-channel mitigations, as they return to the application before
potential mitigations are applied. In contrast, system calls and ioctl handlers become much
slower with the mitigations enabled. In the most optimistic case, the overhead of a privileged
fastcall is 17× lower than that of an ioctl handler and 14.8× lower than the overhead of a
system call.

When running the same benchmark on a Meltdown-secure system, the difference between
fastcalls and system calls becomes less pronounced. Similar to the previous experiment,

9https://github.com/planetA/fastcall-benchmark-results/tree/thesis
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Figure 3.37 shows the latency of invoking an empty function using different mechanisms on an
Intel 6354 CPU. This CPU yielded identical results when mitigations were either enabled or
disabled, so the figure only shows the case with enabled mitigations. The latency of a privileged
fastcall is only 1.36× lower than the latency of a dedicated system call, indicating that only a
few low-overhead mitigations are enabled for this system. On the other hand, by not switching
privilege modes, unprivileged fastcalls are able to achieve more than 10× lower latency than
privileged fastcalls and are very close to a vDSO function call.

Table 3.3: Median latency for invoking an empty function with default side channel mitigations.

CPU Model vDSO Fastcall Syscall ioctlUnprivileged Privileged
[ns / cycles] [ns / cycles] [ns / cycles] [ns / cycles] [ns / cycles]

Intel 4790 1.7 / 6 −11 24 / 86 356 / 1281 411 / 1478
Intel 8252C 1.6 / 6 −11 35 / 132 56 / 215 97 / 368
AMD 3700X 1.4 / 5 −11 26 / 92 55 / 198 72 / 260
AWS Graviton210 3.2 / 9 −11 36 / 97 95 / 258 129 / 349
Intel 6354 1.3 / 4 −11 49 / 147 67 / 202 80 / 239
Intel 8375C 1.7 / 5 4.3 / 13 51 / 147 87 / 251 98 / 284

Table 3.3 summarizes the average latency of empty, kernel-supplied functions across several
CPUs available to us. We left mitigations at their default values. We make several observations.
First, the privileged fastcall latency on Meltdown-secure systems is higher than on Meltdown-
vulnerable systems. Second, even after disabling mitigations on an ARM system, the privileged
fastcall latency offers a 2.5× performance improvement compared to system calls. This
improvement is greater than on any Meltdown-mitigated x86-64 systems, where the privileged
fastcall latency is only 2.1× lower than the syscall latency on an AMD CPU and 1.7× lower on
Intel CPUs. Compared to a dedicated system call, ioctl adds between 13% and 70% overhead,
which might not be significant for some applications.
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Figure 3.38: Privileged fastcalls on differ-
ent Intel CPUs.

When we focus solely on Intel CPUs, curiously, we
observe a degradation in fastcall latency when compar-
ing Meltdown-vulnerable and Meltdown-secure systems.
Two of the systems shown in Figure 3.38 are vulner-
able to the Meltdown [Lip+20] attack, whereas the
other two are not. The fastcall latency is almost double
on Meltdown-secure systems compared to Meltdown-
vulnerable systems. For this experiment, we specifically
disabled all side-channel attack mitigations and mea-
sured the latency in CPU cycles to account for the
differences in CPU base frequency among various CPU
models.

Fastcalls are implemented such that the main contrib-
utor to their latency is the transition to and from priv-
ileged mode, triggered by the syscall and sysret instruc-
tions. Therefore, we conclude that the performance

10We disabled mitigations for this CPU.
11Measurements for this system are not available.
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difference arises from these two instructions, which have apparently been hardened to pre-
vent side-channel attacks on the OS kernel. Such hardening is not required for fastcalls, but
unfortunately, there is no opt-out option.

As part of our research, we also attempted to use the GXF feature [Sve21] of the Apple
M1 ARM-based CPU. This feature allows the setting up of executable, non-readable pages,
which can be used to implement unprivileged fastcalls. To estimate their performance, we
measured the overhead of the associated mode transition instruction. Our early measurements
found that the round-trip latency for using the alternative privilege modes of GXF is only
69 cycles, compared to the 87 cycles required for svc/eret, ARM’s equivalent of the syscall/sysret
instructions. Given that unprivileged fastcalls would allow us to save only 18 cycles when
transitioning to fastcall space, we did not pursue this implementation further. Such a small
performance gain is most likely explained by the side-channel attack mitigations embedded in
the mode transition instructions.

Our measurements show that fastcalls can be implemented with low overhead on most modern
CPUs. However, the overhead of the privileged fastcalls on newer systems is higher compared
to that on older, Meltdown-vulnerable systems. On the one hand, this indicates that fastcalls
offer little room for performance improvement. On the other hand, it demonstrates that the
performance of raw system calls is close to what is theoretically possible on modern CPUs.

Fastcall Space Control Plane

The implementation of fastcalls requires several changes to other kernel subsystems, such
as memory management and the fork handler. Hence, we need to ensure that introducing
fastcalls does not adversely affect the overall performance of the application. In this section,
we examine the fastcall registration and deregistration costs, as they are the main fastcall
control plane operations. We also investigate how the existence of the fastcall space influences
process manipulation operations, like fork.
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Figure 3.39: Fastcall registration and
deregistration.

In our first experiment, we measure the registration and
deregistration latency for privileged and unprivileged
empty fastcalls. Through registration and deregistration
operations, the application requests a kernel driver
to correspondingly map and unmap a fastcall inside
the process’ fastcall space. The application may pass
additional arguments to the kernel driver, which would
allow the driver to specialize the fastcall for the
application. In this specific experiment, empty fastcalls
do not require any additional specialization.

Figure 3.39 shows the median latency across 10 000
measurements for the registration and deregistration
operations. To reduce the effect of OS noise (e. g.,
context switches), we filter out 1% of the slowest mea-
surements. When registering a fastcall, the unprivileged
fastcall registration latency is almost 2 µs higher than
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that of the privileged fastcall registration. We attribute this difference to the fact that unprivi-
leged fastcall needs to perform more work. The unprivileged fastcall driver maps the fastcall
into the fastcall space and allocates a hidden page, which is protected from user-level access.
Additionally, the unprivileged fastcall needs to allocate and populate a secret page, which
allows the fastcall to access the hidden page. When creating a secret page, the driver needs to
generate several random numbers, which adds to the registration latency. On the other hand,
the most time-consuming part of privileged fastcall registration is the mapping of the fastcall
page into the fastcall space. Other operations take very little time.
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Figure 3.40: Fork operation.

Deregistration of privileged fastcalls takes 3 µs longer than
deregistration of unprivileged fastcalls. This contradicts our
expectations because both operations are very similar in nature.
We believe that the difference is merely an implementation
detail, as both operations were developed independently.
However, considering that such a difference should not affect
the overall application performance, we did not investigate this
discrepancy further.

The second control plane operation we examine is process
creation. Adding fastcall space changes the memory layout of
the process, which may adversely affect fork performance. If
a process has no fastcalls registered, the fork latency changes
negligibly compared to a vanilla kernel. Figure 3.40 shows

the impact of fastcalls on fork performance when a process registers 100 fastcalls. In this
case, the fork latency increases by 7% and 2% for privileged and unprivileged fastcalls,
respectively, because the memory mappings involved in the fastcall mechanism must be reset
when spawning a new process. Note that the mitigation settings have no significant impact on
fork performance. Overall, we conclude that fastcall control plane operations have a negligible
impact on application performance.

Security of Unprivileged Fastcalls

The security of unprivileged fastcalls relies on two assumptions. First, it is assumed that
accessing the data in the secret page from user space is impossible. Second, the secret address
must be sufficiently difficult for an attacker to guess. We begin our discussion by evaluating
the second assumption first.

To estimate whether an attacker can guess the secret address, we need to know the size of the
key, how many guesses the attacker can make, and how long it takes to check a guess. The
key’s length is determined by the hardware architecture, while the other two parameters are
dependent on the specific system design. For further analysis, we will present several techniques
an OS can employ to make the attack more challenging.

The key protecting the location of the hidden page is its 64-bit virtual address. Unfortunately,
not all 64 bits of the address are used as part of the key. First, the minimum size of the hidden
region is a 4 KiB page, so the attacker would need to guess only a page-granular address,
instead of a byte-granular one. Therefore, the lowest 12 bits of the address are not part of the
secret. Similarly, some of the most significant bits of the address are also unused. For example,
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on an x86_64 CPU with 5-level paging, the top 7 bits must have the same value as the 57th
bit. Additionally, we map the fastcalls only in the user space, losing another bit, because in
Linux the user space is limited to the lower half of the virtual address space. Accounting for
all the aforementioned parts of the virtual address, the effective key size is reduced to 44 bits.
In this case, if k is the key size, the probability of a single successful guess P (1) is

P (1) = 1 − 2k − 1
2k

= 1
2k

Now, consider the scenario where the attacker makes n guesses in succession. If the attacker can
assume that the secret address remains unchanged between the guesses, then the probability
of making at least one successful guess Ps(n) out of n independent guesses is:

Ps(n) = 1 − 2k − 1
2k

· . . . · 2k − n

2k − n + 1 = 1 − 2k − n

2k
= n

2k

The OS could make the attack more challenging by periodically changing the secret address,
forcing the attacker to make repeated guesses. It is unlikely that the OS can remap the hidden
page after every potential guess, as this would be too resource-intensive. However, we can
estimate a lower bound for such a probability. Then, the probability of making at least one
successful guess out of n independent guesses Pi(n) becomes:

1 −
(

2k − 1
2k

)n

≤ Pi(n) < Ps(n)

To understand how secure these probabilities can be in practice, consider the following possible
attack. The attacker process sets up a signal handler for the SIGSEGV signal, which is triggered
when the process tries to access an unmapped memory location. Then, the attacker probes
random addresses in the fastcall region as long as the signal handler is triggered. A successful
guess means that the attacker has found a valid hidden region. The OS could protect against
such an attack by killing the process after access to the fastcall region because the user space
should never access the unmapped part of the fastcall space.

The attacker could potentially work around this protection by employing a fork-bomb [Ray03].
The attacker process forks itself, and the child process tries to access the fastcall region, while
the parent process waits for the child to terminate. The OS could protect against this attack
by introducing a small delay into the creation of the fastcall space, so that each fork operation
takes longer. This way, the attack can be slowed down to the point where it becomes too long
to be practical.

Considering that these measures do not completely prevent the attack, there remains a
possibility of a successful guess by the attacker. In other words, the attacker can calculate
the amount of time to reach certain target probabilities of a successful attack. The longer the
attacker tries to guess the secret address, the higher the probability of a successful attack
becomes. On the other hand, the OS can also estimate the time required to reach a target
probability by the attacker and use this estimation for further mitigations. Figure 3.41 shows
the time required to reach a certain target probability of a successful attack, depending on
how long a single guessing attempt takes.
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Figure 3.41: Attack on unprivileged fastcall.

For example, assume a situation where the OS
wants to ensure that the attacker has less than
a 10−6 probability of guessing the secret address
during an attack. Then, if the attacker can make
one guess per 1 s, the attacker will reach the target
probability roughly after a month of continuous
trying. If the attacks can happen more often, the
attacker can reach the target probability in minutes
or even seconds. Therefore, the OS should ensure as
low a rate of attack attempts as possible. If the OS
regularly remaps the hidden region, the attacker can
exploit access to the hidden region only for a limited
time. Combined with OS-level suspicious activity
monitoring, the above-mentioned setup might be
an acceptable trade-off.

Now consider our first assumption, where the attacker cannot leak the key from the secret
page. In our current implementation, this is unfortunately not the case, because unprivileged
fastcall space is vulnerable to Spectre-like attacks even in modern CPUs. We believe that this
limitation can be overcome by using a different mechanism for storing secrets, such as Model
Specific Registers (MSRs), which are not subject to speculative execution.

3.3.5 Summary

The fastcall space is a new concept that allows the OS to provide user applications with very low-
overhead access to privileged operations. Unlike traditional kernel-level device drivers, fastcalls
are not designed to provide full driver functionality. Instead, a fastcall is a small, specialized
function that can be called by a user-level driver to give the OS an opportunity to enforce
specific conduct on behalf of the application. We did not follow up on the fastcall architecture
with an implementation of a full-fledged use case, like we did for CoRD (see Section 3.2.4),
because it turned out that for the current CPU architectures, privileged fastcalls offer only a
marginal performance improvement over system calls.

The main contribution of the fastcall architecture we have demonstrated so far is that it
provides a lower bound estimate for the system call overhead. We found that existing privilege-
switching mechanisms are designed purely for security and do not attempt to minimize mode
transition overhead. Of course, we do not propose building less secure systems. Instead, what
we believe our research shows is that there is a need for more than two privilege levels in the
CPU to accommodate the needs of modern high-performance applications.

In contrast to the old privilege levels of the x86-32 architecture [Int22], the new privilege
levels should differ not only in the level of access to memory and instructions but also in the
level of side-channel protection. Then, the OS can make a trade-off between security against
side-channel attacks and the performance of system calls.

Historically, privilege-switching mechanisms did not have stable performance characteristics,
and their performance degraded over time. In our opinion, this happened because there was
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no clear motivation for maintaining such high performance. The fastcall architecture provides
motivation for having fast mode switching and the basic framework on how to use it.

3.4 Summary

For RDMA networks to become more widespread in the Cloud environment, their design
priorities must prioritize sharing and multi-tenancy. These properties are hard to achieve
without active and dynamic OS-level involvement to enforce security and resource management
policies. Therefore, the OS must be able to have full control over application communication.
In this chapter, we present several software techniques for OS-level interception of traditional
RDMA network dataplane. We show that despite such interception, the end-to-end overhead
for the user applications is negligible.

In fact, depending on the exact use case, the OS may choose which interception mechanism to
use. In Section 3.2, we presented CoRD, which builds upon the existing RDMA network
dataplane. CoRD intercepts the network traffic at the NIC driver level and allows for
manipulating it in a flexible way. CoRD is straightforward to implement and easy to use.
Despite up to 1.5 µs overhead per message, we show that CoRD’s overhead is negligible, even
for applications known for being latency-sensitive.

If the CoRD overhead is still too large for some applications, we propose the use of fastcalls,
which are presented in Section 3.3. Fastcalls can easily reduce the per-message overhead to less
than 100 ns, but have a more complex programming model. We pushed the fastcall concept to
the extreme with unprivileged fastcalls, which allow for providing privileged operations to user
applications without an expensive privilege mode switch. Ultimately, unprivileged fastcalls are
almost as fast as function calls.

Both privileged and unprivileged fastcalls require certain compromises regarding security
assumptions and cannot be used as drop-in replacements for traditional system calls. On the
other hand, fastcalls demonstrate the need for further development of CPU architectures,
specifically, the need for new privileged transition mechanisms. Such new modes could be
used to provide user applications with privileged operations, but have a thinner isolation layer
compared to the kernel mode. For example, Roitzsch et al. proposed hardware modifications,
enabling software-defined CPU modes, which could be used to tune the exact behavior of the
CPU mode switch [Roi+23]. Then, a mode switch could be configured to tune the isolation
level suitable for a specific use case.

We propose an alternative to the seemingly inevitable trend of offloading every possible
operation to the NIC. Naturally, the more functions are offloaded to the NIC, the more
complex, expensive, and slow the NIC becomes. Therefore, additional offloading risks moving
past the point of diminishing returns, especially because the less loaded the CPUs are, the
more likely the network is to become a bottleneck.

Instead, we aim to keep the door open for OS-level continuous dataplane interposition,
independent of the exact interception mechanism. Continuous interposition can be used for
on-demand resource allocation, network virtualization, resource sharing, and other use cases.
All these use cases are not intended to eliminate CPU offloading but rather to complement
it.
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4 Intermittent Interposition

For RDMA applications, any form of communication interception is typically undesirable due
to the additional latency and disruption it can introduce. In this context, intermittent control
strikes a balance between the need for peak performance in latency-sensitive applications and
the necessity for the operating system to control its applications’ communication. Exerted
only when necessary, intermittent control offers an efficient solution to avoid the additional
overhead associated with constant control. This chapter generalizes the basic principles of
intermittent RDMA dataplane interposition and examines its specific applications, which can
enable, for example, the transparent live migration of containerized applications.

Bypass Manipulation

Interception

Resumption

Figure 4.1: Phases of intermit-
tent interposition

Intermittent interposition divides the connection state into two
distinct phases: bypass and manipulation (see Figure 4.1). In
the bypass phase, the application uses the network without any
interruption or added overhead, ensuring optimal performance.
In the manipulation phase, the connection state is under full
control of the OS. The OS intercepts the connection to move
it into the manipulation phase, or it can configure the NIC
to intercept the connection when necessary. As soon as the
manipulation phase is over, the connection resumes normal
operation, returning to the bypass phase.

Implementing and effectively using intermittent interposition comprises three major steps. The
first step is connection interception, which ensures a smooth transition between the bypass
and manipulation phases without hampering performance. The second step is connection
manipulation, where the OS changes the state of the intercepted connection. Finally, connection
resumption moves the connection into the bypass phase and notifies the remote communication
partners about the change.

The contributions of this chapter are as follows: Generalized interposition architecture described
in Section 4.1; Design and implementation of a pause-resume protocol (see Section 4.3),
extending the RoCE protocol with the ability to intercept and resume RDMA connections;
Design and implementation of MigrOS (see Section 4.4), enabling transparent live migration
for containerized RDMA applications; And, finally, a discussion of the inherent limitations
of intermittent interposition with the example of a virtual RDMA network in Section 4.5.
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Additionally, Section 4.2 discusses the general applicability of intermittent control with the
example of known use cases.

4.1 Architecture

While being the key operations in intermittent interposition, connection interception and
resumption have the same general structure for existing use cases. These operations enable
a smooth transition between the high-performance bypass phase and the controllable
manipulation phase, and back. From the design perspective, this transition must create
minimal disruption to maintain optimum application performance. In this section, we describe
our generalization of the connection interposition architecture.

In contrast to interception and resumption operations, connection manipulation is use-case
specific. The manipulation phase may either halt communication completely or reroute it over
a slower path that is under the operating system’s full control. In both cases, the manipulation
phase must be short and infrequent to minimize disruption to the application. Moreover, in
the manipulation phase, the OS may need access to connection information stored within the
device, potentially requiring certain use-case-specific device modifications.

Interception
gate

Request buffer Port

NIC

App OSHost

Resume

Back-pressure notification

Packets

Packets Configure

Figure 4.2: Key components of intermittent interposition architecture.

The process of intercepting and resuming the connection consists of multiple steps
(see Figure 4.2). It begins with the activation of an interception gate, a hardware component
that suspends send and receive operations on the intercepted connection transparently for the
user applications. Subsequently, new in-flight messages are unable to reach the application,
and the application is prevented from sending any new messages until the OS concludes the
manipulation phase. The interception gate is configured by the OS to intercept the connection
either immediately or when certain conditions are met. Once the interception gate is activated,
the connection moves into the manipulation phase.

During the manipulation phase, the NIC may receive new messages intended for the manipulated
connection. If possible, the in-flight messages should not be dropped because retransmission
may be costly, delaying the resumption of communication. Therefore, the NIC needs to have a
request buffer to store incoming messages temporarily. After the OS completes the manipulation
phase, the NIC can replay the messages from the request buffer to the application.

To reduce network noise and prevent request buffer overflow, the manipulated connection
can send back-pressure notifications in response to newly arriving messages. Back-pressure
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notifications signal the sender’s NIC to temporarily halt communication with the suspended
connection. Additionally, this notification ensures that the sender does not transition into an
error state due to perceived connection issues. Once the connection transitions back to the
bypass phase, the OS dispatches resume notifications to inform remote parties about resumed
communication.

The exact implementation of these connection interception and resumption components depends
on the use case and the underlying hardware. The remainder of this section describes each of
these components in more detail. Section 4.2 discusses how this architecture enables several
real-world use cases. Section 4.3 describes our specific implementation of the connection
interception and resumption protocol.

4.1.1 Interception Gate

An interception gate prevents communication over a specific connection based on a condition
configured by the OS. The interception gate can be either part of the NIC (as Figure 4.2
shows) or part of the host system. In the latter case, some IOMMUs can serve as interception
gates. In this section, we discuss both scenarios.

Port

MTT
NIC

AppOS
Host

DataControl

Figure 4.3: Interception
gate in the MTT of the NIC

Depending on the use case, the interception operation can be
initiated by the OS or by the NIC. For instance, in the case
of full virtual memory support, the OS configures a specific
component in InfiniBand NICs known as Memory Translation
Table (MTT) [Mel16] (see Figure 4.3). MTT is a part of the NIC
SoC and is responsible for translating virtual addresses to physical
addresses, similarly to how a Memory Management Unit (MMU)
in the host system translates host virtual memory addresses to
physical. In a situation where the mapping for a specific virtual
address does not exist, the NIC intercepts the communication and
sends a page fault interrupt to the OS. The OS then resolves the
page fault, updates the configuration of MTT, and resumes communication.

During live migration, the application state should not change until the entire application
has been moved to another compute node. To guarantee this constraint, the NIC should not
inadvertently deliver new data into the RDMA application. When starting live migration, the
OS requests the NIC to intercept all connections belonging to the migrating application. So,
instead of configuring an interception condition at the NIC, the OS simply requests the NIC
to intercept a set of connections unconditionally.

The host system can also be responsible for connection interception by employing the IOMMU
as an interception gate (see Figure 4.4). The IOMMU essentially shares the same role as
the MTT within a NIC’s SoC, as they both translate from virtual to physical addresses and
back [Mel16]. In the event of a missing corresponding mapping, the IOMMU triggers a page
fault interrupt, which is then handled by the OS through the allocation of a new physical page
and the creation of a new mapping.
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Figure 4.4: IOMMU as an inter-
ception gate

Unfortunately, not all IOMMUs support this workflow, so
an IOMMU page fault may become an irrecoverable error
for the NIC. To recover from the page fault transparently
from the application, the IOMMU needs to support the Page
Request Service (PRS) feature on Intel CPUs [Int23] and
Peripheral Page Request (PPR) on AMD [AMD21]. These
features implement PCIe Address Translation Service (ATS)
and Page Request Interface (PRI) extensions that enable
recoverable page faults for PCIe devices [PCI19].

In contrast to a device and vendor-specific SoC-based approach,
the IOMMU offers a more portable interception gate. Moreover,
IOMMU-based interception is easier to map to devices other
than RDMA NICs. However, it is important to note that

utilizing the IOMMU might introduce overhead to system performance [PCI19, Section 10.1.2],
as ATS complicates memory coherency protocols. Additionally, the address now needs to
undergo translation not once (at the MTT), but twice (at both the MTT and the IOMMU).

In summary, both the IOMMU and SoC provide a similar interception gate mechanism. They
both shield the application from changes in the connection state, enabling the OS to manipulate
the application or connection state. On the other hand, the activation of an interception gate
can lead to dropped messages, which must not result in the failure of user applications.
Therefore, while the interception gate is necessary for intermittent control, it is not a sufficient
condition on its own.

4.1.2 Request Buffer

During the connection manipulation phase, a NIC may receive new messages intended for the
suspended connections. One way to handle these messages and reduce network disruption
is to store them temporarily in a buffer for later processing. Once the connection resumes
normal operation during the bypass phase, the buffered messages can speed up communication
recovery.

The request buffer might store either the entire messages or merely the metadata, thereby
conserving the resources required for intermittent control. For instance, to improve virtual
memory support, Lesokhin et al. [Les+17] chose not to store entire messages, as doing so
would necessitate approximately 125 MiB of buffer space per NIC port. Instead, they changed
the NIC to retain only the address translation requests, which the OS can then process in
batches. After resolving the page faults, the NIC depends on the retransmission protocol to
recover the missing messages.

Psistakis et al. [Psi+22] utilized the IOMMU to implement request buffer functionality in the
form of a Page Request Queue (PRQ). The PRQ is a buffer in the host memory, allocated by
the OS, where the IOMMU stores page translation requests arising from page faults [Int23].
In other respects, an IOMMU-based request buffer parallels its SoC-based counterpart.

Certain RDMA communication protocols, like UD, lack a retransmission protocol to resume
communication. To address this, Lesokhin et al. modified the NIC to store complete incoming
messages in a backup buffer located in pinned host memory. After a page fault is resolved,
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the OS moves messages from the backup buffer to the original memory destination. Despite
the additional resource demands, this approach still does not guarantee that the NIC will not
drop packets, because the OS may take so much time that the backup buffer still overflows.

The inability to store all incoming messages in the request buffer is an inherent limitation, as
the OS intrinsically cannot process page faults at the same rate the NIC receives messages. In
the context of live migration, we did not even use a request buffer (see Section 4.4), because it
did not offer a substantial reduction in the message loss rate. The live migration process lasts
much longer than, for example, page fault handling, so that message dropping is inevitable.
Furthermore, the presence of a request buffer merely increases the state data that needs to be
transferred to the destination host [Pla+21; Han+21]. Hence, we regard the request buffer as
an optional component of connection interception.

4.1.3 Back-Pressure Notification

During the connection manipulation phase, new incoming messages must either be temporarily
stored in the request buffer (see Section 4.1.2) or dropped. Given that the manipulation
phase is relatively slow compared to the bypass phase, it is ultimately not feasible to store
all unprocessed in-flight messages. Otherwise, the request buffer would become impractical.
However, RDMA protocols, which are designed for lossless networks, struggle to handle large
volumes of dropped messages effectively. In the worst case, the sender may interpret the
dropped messages as a sign of network failure and terminate the connection, while the receiver
still remains in the manipulation phase. Therefore, it is important to minimize the message
drop rate.

Simply dropping messages that cannot be processed during the connection manipulation phase
is an unsophisticated and insufficient approach for several reasons. Firstly, if the sender on the
remote end remains uninformed about the paused state of the connection, they will continue
to dispatch more messages. This exacerbates the load on the host OS, with a compounding
number of entries being added to the request buffer. Secondly, this uninformed communication
results in unnecessary network traffic, which is destined to be dropped. Lastly, the sender may
misinterpret the dropped messages as an indication of a network failure, and consequently,
flag an unrecoverable error to the application.

To overcome this problem, current connection interception methods [Les+17; Psi+22; Pla+21]
cleverly repurpose the existing Negative Acknowledgement (NACK) mechanism. Upon the
generation of a page fault interrupt by the NIC, a NACK of type Receiver Not Ready (RNR)
is dispatched to the sender. This NACK informs the sender to pause sending further messages
either for a predefined period [Psi+22] or until further notice [Pla+21], thereby reducing the
likelihood of message drop occurrences. Although at a surface level back-pressure notification
appears to only reduce the number of dropped messages, it is also crucial to maintain failure-free
execution of user applications.

4.1.4 Resume Notification

Upon completion of the connection manipulation phase, the OS may decide to notify the sender
to resume communication [Psi+22]. This proactive approach accelerates the restoration of
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communication, making it more efficient than simply waiting for a Receiver Not Ready (RNR)
Negative Acknowledgement (NACK) timeout to expire. Additionally, it relieves the OS from
the burden of setting an optimal RNR timeout.

A user application may also set the timeout to infinity, making sending a resume notification
mandatory [Pla+21]. Another reason for having an explicit resume notification is to inform
the remote NIC about additional information required to continue the communication, such
as the updated location of a migrated application.

4.1.5 Connection Manipulation

The connection manipulation phase begins after intercepting a connection. During this phase,
the OS changes the connection in a consistent manner, as it has exclusive access to its state.
Here, the OS holds the power to retrieve or modify the connection state or even replace it
with another.

Nonetheless, the manipulation capabilities may be limited due to the inaccessibility of certain
connection state data from the host. This limitation can be mitigated by modifying the hardware
or firmware of the NIC to expose the necessary state. Often, elements of the connection state
are not initially present due to a lack of use cases, and these can be made available with minor
hardware modifications. Alternatively, if the NIC incorporates a programmable component,
such as an FPGA, modifications to the RDMA NIC can be much simpler [Psi+22].

The range of possible connection manipulations is not boundless. While the OS can intercept
and process incoming messages during the manipulation phase, processing them at line rate is
not feasible. Thus, the manipulation phase primarily offers a snapshot of the connection state,
and it does not equip the OS with the ability to maintain communication on behalf of the
application. As a result, most approaches aim to complete the connection manipulation swiftly
to resume bypass communication as quickly as possible.

In the context of full virtual memory support, the connection state that the OS needs to
manipulate involves the mapping between virtual and physical addresses of RDMA message
buffers. When handling page faults, the OS assigns a free physical memory page to the
respective RDMA buffer. Subsequently, the OS configures the MMU, MTT of the NIC, and
IOMMU to make the mapping accessible to the user application, the NIC, and to translate
between device virtual and host physical addresses, respectively. This comprehensive procedure
constitutes the connection manipulation phase.

The process of connection manipulation becomes more intricate in the case of live migration.
The primary goal for the OS here is to preserve the connection state and later reproduce it in
a manner that allows seamless communication, without notifying the remote communication
partners of any alterations. To accomplish this, the OS must extract all necessary connection
state information from the NIC and mask any changes induced by the migration from the user
application.

The connection state encompasses the application-visible state, OS-visible state, and hardware-
internal state (see Figure 4.5). For instance, the application-visible state includes messages
that have already been written into the receive buffers of the application. It is crucial that
changes in physical resources do not affect the application-visible state. Some connection state
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attributes, such as the destination address of the remote connection, can only be retrieved
by the application through queries to the OS. Changes in these attributes are more easily
concealed from the application. The hardware-internal state includes those aspects that are
typically inaccessible to the OS, like the state of the retransmission engine. If a use case
necessitates access to the hardware-internal state, the NIC must be adapted.

A O HNIC

OS

App

Host

Figure 4.5: Connection state can
be directly accessible by the ap-
plication (A), accessible through
the OS (OS), and application-
inaccessible hardware internal
state (H).

Additionally, some of the connection state is unique to a specific
device where the connection is established. In InfiniBand
networks, such state usually consists of physical identifiers
in the network, like the GUID of a device and physical ports.
For instance, after live migration, the OS must ensure that the
migrated application does not detect changes in these physical
identifiers, otherwise, the application may enter an undefined
state.

In summary, connection manipulation is a crucial step in
intermittent control. During this phase, the OS has exclusive
access to the connection state, allowing it to modify the state
in a controlled manner. The specific processes within this phase
can vary significantly depending on the use case requirements.
The primary challenge is to adjust the state in such a way that neither the application nor
the remote communication partners perceive any changes. Section 4.4 details how connection
manipulation can facilitate live migration. Conversely, Section 4.5 discusses a use case of a
virtual RDMA network where connection manipulation alone is not sufficient.

4.2 Use Cases

The two primary use cases for intermittent control are full virtual memory support and
live migration. In both scenarios, the OS needs to manipulate the connection state, but the
motivation and the exact operations differ. In the case of live migration, the OS must save
and restore the complete state of a connection. In the case of virtual memory support, the OS
needs to update the memory map so that the NIC can access the application’s memory. This
section elaborates on both use cases in more detail.

Virtual Memory Support

Simple virtual memory support has been available in RDMA networks since their incep-
tion [Inf15]. When an application sends or receives a message over an RDMA network, it
must provide the NIC with an address to the corresponding memory buffers in the virtual
address space of the application. As such, the NIC must maintain a virtual-to-physical address
mapping for each user application. On the other hand, if the mapping is not present when
the NIC accesses the application’s memory, the NIC cannot continue communication on the
connection where a page fault occurred. Additionally, the NIC cannot afford to wait for the
OS to handle the page fault because more messages may arrive over the same connection, and
the NIC cannot buffer them. Therefore, traditional OS-level on-demand page fault handling is
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not feasible for RDMA networks. Instead, to prevent this potentially irrecoverable error, the
application must pin the memory buffers accessible by the NIC, so no faults occur.

The requirement to pin all the memory accessible by the NIC disables many virtual memory
features, such as memory overcommitment, memory swapping, copy-on-write, or transparent
huge pages support [Les+17]. Some RDMA NICs and the underlying communication protocol
have been updated to enable efficient support for page faults caused by missing memory
mappings [Les+17; Lis13]. With this support, the host OS has time to resolve a page fault
without the underlying network connection being considered irrecoverably broken. For user-level
RDMA applications, Liss [Lis13] implemented a feature, known as On-Demand Paging (ODP),
which allows the applications to avoid pinning NIC-accessible memory.

In terms used by this thesis, ODP employs intermittent interposition to enable full virtual
memory support. First, the NIC generates a page fault and moves into the manipulation phase.
Then, the OS manipulates the connection state by creating a new memory mapping to resolve
the page fault. Finally, the OS returns to the bypass phase, resuming communication on the
connection.

Live Migration

Node Node Node

REDO

SAVE PLAY

Figure 4.6: Live migration consists of saving
the application state ( SAVE ), restoring it at the

destination node ( PLAY ), and reconfiguring the

network ( REDO ).

The objective of live migration is to transfer a run-
ning application from one host to another without
disrupting the application. Furthermore, the migra-
tion should be transparent to both the application
and its communication partners. The process of live
migration (see Figure 4.6) includes saving the state of
the application, restoring it on the destination host,
and reconfiguring the network, enabling the commu-
nication partners of the application to locate it on the
destination host. Intermittent interposition grants the
OS the ability to live migrate applications without

compromising normal communication performance.

Intermittent interposition aids the OS in pausing communication without terminating it.
This characteristic is vital, as it renders live migration transparent to RDMA applications.
When the connection is in the manipulation phase, the OS can capture the state of the
connection for saving and later restoring it on the destination host. Additionally, the OS can
manipulate the state of the connection to refresh the network configuration, ensuring that
the communication partners of the application can locate it on the destination host. After
the migration concludes, the connections of the migrated application can revert to the bypass
phase, resuming communication.

Summary

In summary, connection interposition is a sophisticated process that requires meticulous
coordination between the OS and the NIC. Triggered by the interception gate, this process
facilitates the transition from the bypass to the connection manipulation phase. During the
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manipulation phase, a request buffer temporarily holds incoming messages, while a back-
pressure notification mechanism assists in managing the communication flow, preventing
network disruptions, and safeguarding against possible application failures. Following the
completion of the manipulation phase, a resume notification is sent, accelerating the restoration
of communication. Overall, the connection interception process strives to concurrently
minimize the impact on application performance and the resource demands within the system
architecture.

4.3 Pause-Resume Protocol

This section introduces a pause-resume protocol, which augments the RoCE RDMA
communication protocol and enables intermittent control over RDMA connections. The
pause-resume protocol encompasses a back-pressure notification mechanism and a resume
notification. Collectively, these mechanisms empower the OS to temporarily halt network
communication on specific connections. The pause-resume protocol has been showcased for
transparent live migration of RDMA applications (see Section 4.4), but its utility extends to
other use cases as well. Notably, analogous protocols have been utilized for enhancing virtual
memory support for RDMA NICs [Psi+22] and for the live migration of virtual machines in
VMWare vMotion [Han+21].

An RDMA connection is represented by a Queue Pair (QP). Consequently, the pause-resume
protocol is integrated into the QP state machine (see Section 4.3.1). The pause-resume
protocol introduces two new QP states: Paused (P) and Stopped (S), which influence the
NIC’s transmission protocol (see Section 4.3.2). A specific implementation of the pause-resume
protocol is detailed in Section 4.3.4.

InfiniBand networks support multiple transport types 1, but this discussion primarily focuses
on RC connections, as they, along with UD, constitute the most prevalent types of connections.
Differing from UD, RC connections, akin to other connection-oriented RDMA transport types
(e.g., UC and XRC), incorporate a retransmission protocol, which forms the basis of our
pause-resume protocol. The adaptation of the pause-resume protocol for datagram-oriented
transport types, like UD, is addressed in Section 4.6.

4.3.1 Queue Pair States

The QP state machine (see Section 2.4) governs the progression of a connection through various
states, each of which represents a distinct phase of the connection’s lifecycle. To safeguard
against these undesired changes during the manipulation phase, we introduce two new QP
states, invisible to the user application (see Figure 4.7): Stopped (S) and Paused (P). For
instance, when the OS is preparing for the live migration of an RDMA application, the OS
initiates the transition of the application’s QPs into the Stopped state. In the event of a page
fault, the NIC itself moves the QP into the Stopped state. A stopped QP neither receives nor
sends any messages, except for back-pressure notifications, and remains stopped until either
the OS destroys it or transitions it back into the previous state.

1These include RC, UD, RD, UC, and XRC.
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Figure 4.7: QP State Diagram. Normal states and state
transitions ( , ) are controlled by the user application.
A QP is put into error states ( , ) either by the OS
or the NIC. New states ( , ) are used for intermittent
connection control.

An active QP transitions into the Paused
state after receiving a back-pressure notifica-
tion from a stopped QP, acknowledging that
its remote destination has been stopped. A
paused QP neither sends nor receives mes-
sages, as its sole communication partner is
stopped. A QP remains paused until it re-
ceives a resume notification, either from the
original QP which has returned to the RTS
state or from a new QP at a new location.
The latter scenario occurs during live mi-
gration, necessitating that the paused QP
also records the new address of the restored

QP. After receiving the resume notification, the paused QP reverts to the RTS state, and
communication can resume. For the prototype implementation detailed in Section 4.3.4, we
permit transitions to the Stopped or Paused states exclusively from the RTS state.

4.3.2 Pause and Resume Notifications

When a connection is in a manipulation phase, the remote communication partner must not
confuse paused communication with a network failure. Moreover, in the case of live migration,
the partner of the migrated connection must learn its new physical address. For this, we
implement back-pressure and resume notifications at the level of the RoCE protocol.
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Figure 4.8: To migrate from host N0 to host N2, the state
of the QP changes from RTS ( R ) to Stopped ( S ). Finally,
the QP is destroyed ( D ). If the partner QP at host N1 sends
a message during migration, this QP gets paused ( P ). Both
QPs resume normal operation once the migration is complete.

Figure 4.8 illustrates how the new noti-
fications help to transparently migrate
a connection from one compute node
(N0) to another (N2). As soon as the
OS decides it is time to make a check-
point of an application, it moves all of
the application’s QPs into the Stopped
state, thereby initiating the manipu-
lation phase. While the OS is saving
the application state, the NIC drops all
messages coming to the stopped QPs

and instead replies with a new negative acknowledgement type, NAK_STOPPED. This acknowl-
edgement is passed in the ACK Extended Transport Header (AETH) along with the sequence
number of the last packet completed before the QP transitioned to the paused state. This
protocol is part of the low-level packet transmission protocol and is typically implemented
entirely within the NIC. When the partner QP receives this negative acknowledgement, it
transitions to the Paused (P) state and refrains from sending further packets until receiving a
message of the new resume type.

After migration is complete, the new host of the migrated process restores all QPs to their
original state and sends resume messages. Resume messages are sent unconditionally, even
if the partner QP has not been paused previously. For the resume notification, we defined a
new opcode in the Base Transport Header (BTH), a RoCE header. Any recipient of a resume
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message updates its QP’s destination address to the source address of the resume message,
i.e., to the new location of the migrated QP.

Each pause and resume message carries source and destination information. Thus, if multiple
QPs migrate simultaneously, there can be no confusion about which QPs must be paused or
resumed. However, if a source and destination QPs migrate concurrently, their corresponding
resume messages may contain old and outdated addresses of their communication partners.
If at any point the migration process fails, the paused QPs will remain stuck and will not
resume communication. This scenario is not unique to RDMA connection migration and is
completely analogous to a failure during TCP connection migration. In both cases, the host
OS is responsible for coordinating the migration process and cleaning up the resources.

When handing over a connection to a new host, there is also a possibility that the remote
communication partner sends a message to the old location of the migrated QP. If the QP at
the old location has already been destroyed, the NIC will silently drop the message. InfiniBand
networks allow the user to configure a QP in a way that any missing positive or negative
acknowledgement will be interpreted as a network failure after a timeout. This way a user
application may become aware of ongoing live migration.

It is possible to avoid this issue by destroying the old QPs only after sending a resume message
from the new location. Alternatively, negative acknowledgements can be sent preemptively
from the old location. However, in the prototype for our case study (Section 4.4), to
simplify the implementation we neither synchronized QP destruction nor preemptively sent
acknowledgements. Such simplification allows communication to resume faster and in most
cases does not compromise correctness. Nonetheless, interpreting a single packet loss as a
network failure is not recommended for production systems anyway [Bar13].

The pause-resume protocol is much simpler in the case of full virtual memory support because
in this scenario the QP does not change its physical location. After a page fault, the NIC puts
the QP into the Stopped state and sends a negative acknowledgement to the remote partner.
After the OS resolves the page fault, it sends a resume message to the remote partner, and
communication can resume.

4.3.3 Transmission Engine Changes

The pause-resume protocol must be implemented in an RDMA NIC because most packet-level
RoCE protocol implementations are executed in hardware. A typical RDMA NIC independently
performs all packet-level operations, including transmitting packets and acknowledgements. As
a result, the OS is not able to independently compose and process arbitrary packets, including
those introduced by the pause-resume protocol. An RDMA NIC running the RoCE protocol is
responsible for adding and removing packet headers. These headers are not exposed at the
software level unless the full protocol is implemented in software.

Therefore, to enable the pause-resume protocol, modifications to RDMA NICs are necessary.
The NIC appends different packet headers based on the service (RC, UD, etc.) and the type
of message (RDMA read, send, etc.). Our modifications only affect two headers: BTH and
AETH. The BTH is the initial RDMA-specific header, coming right after the IP and UDP
headers. Additionally, the NIC needs to manage two new flags for each QP to indicate pause
and resume states. The NIC must be capable of transitioning a QP into the Stopped or Paused
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state, processing a send request with a resume message issued by the OS, and managing pause
and resume packets.

Our changes affect three existing workflows in the underlying RoCE protocol: 1. Processing
a send request WQE (Figure 4.9), 2. receiving a packet (Figure 4.10), and 3. receiving an
acknowledgement (Figure 4.11). The NIC must account for the two new states of the QP in
all these workflows. This alteration of logic is minor and does not modify the packet layout, as
it only pertains to the internal state of the QP. The workflows mentioned above are activated
when the user triggers the NIC through a doorbell register, when a message arrives, or due to
a timeout.

SR

Paper-Plane Send{PSN: Ack}

Door-openExit

Paper-Plane Send{PSN: Sent}
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Figure 4.9: A QP in the Stopped
( P ) or Paused ( S ) state does
not process requests and goes
to the idle state (Door-open). A resume
message carries the PSN from
the last acknowledgement. “*”
represents “else” branch.

The NIC processes a send request when the user application
posts a new Work Queue Entry (WQE) (Figure 4.9) to the
QP. For this, the application’s user-level RDMA driver adds
a new entry to the send queue and triggers the NIC by writing
to the doorbell register. Under normal circumstances, the NIC
handles the send request by dispatching a series of packets to
the remote QP. One of the fields the NIC sets for the outgoing
packets is the PSN field, which is used to maintain the sequence
of the packets.

We suggest the following modifications to the processing of
send requests. First, the NIC should either construct the new
resume message or allow the OS to do so. Unlike a typical
message, the resume message derives the PSN from the last

acknowledged message rather than the last sent message. A receiver identifies the resume
message by a new opcode in the BTH header. Introducing a new message type does not
necessitate changes in the message structure thanks to the availability of unused opcodes.
Second, if the QP is in the Stopped or Paused state, the NIC should not process the send
request and should instead enter the idle state.

The rationale for incorporating the resume message into the BTH header is that the
retransmission protocol is executed by RoCE at the BTH packet level. This integration
enables us to make resume messages reliable with minimal additional effort.

Similarly, the back-pressure notification, transmitted as a new negative acknowledgement of the
PAUSE type, utilizes an unused value of the syndrome field in the AETH header. Consequently,
the new pause NACK also does not require alterations to the current packet structure.

Normally, the NIC receives packets and processes them by updating the QP state and sending
back an acknowledgement (Figure 4.10). However, if a QP is in the Stopped or Paused state,
this procedure is modified. A QP in the Stopped state responds solely with a PAUSE NACK,
utilizing a previously unused value in the AETH packet’s syndrome field. On the other hand,
a QP in the Paused state disregards all messages until it receives a RESUME message. Upon
receipt of a RESUME message, the NIC updates the QP’s destination address based on
the RESUME message’s source field and processes pending tasks, such as outstanding send
requests, to fully resume communication.

The final workflow we need to modify is the processing of acknowledgements (Figure 4.11).
Normally, the NIC receives acknowledgements and processes them by updating the outstanding
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Figure 4.10: Pause-resume protocol changes packet
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Figure 4.11: Handling acknowledgements with pause-
resume protocol. “*” represents “else” branch. LIST-UL Type
checks packet type.

send requests and the QP state. An outstanding send request is a Send Work Request (SR)
for which the NIC sent out messages, but has not yet received acknowledgements. Once a send
request is completed, the NIC notifies the application by updating the CQ and removes the
send request from the send queue. After completing a single send request, the NIC checks
for more outstanding send requests with a lower PSN; therefore, a single ACK may complete
multiple send requests one by one.

With the addition of the pause-resume protocol, if a QP is in the Stopped or Paused state, it
ignores all acknowledgements until receiving a RESUME message. The reason a paused QP
may receive acknowledgements is that a QP may have sent such acknowledgements before
being stopped. Dropping such late acknowledgements is necessary because they may have a
PSN higher than that of the upcoming RESUME message. The RoCE protocol dictates that
old messages must be ignored to avoid duplicating messages, which may result in RESUME
messages being ignored. Therefore, a QP with an outstanding RESUME send request does
not process more send requests until it receives an acknowledgement for the RESUME
messages. Only then does a resumed QP fully resume communication. Receiving a PAUSE
acknowledgement is much simpler: the NIC puts the QP into a paused state.

For the sake of brevity, our description omits some details, such as additional timeout reaction
logic. Overall, the changes in logic are straightforward and largely reuse existing functionality.
Because we change only the AETH and BTH headers, our modifications are equally applicable
to other RDMA protocols (e. g., InfiniBand) that use these headers in the same manner. We
believe that neither the new logic nor the new states incur prohibitive design or implementation
costs.

4.3.4 Implementation

The exact implementation of the pause-resume protocol is device- and driver-specific. In
this work, we chose to avoid direct hardware modifications because existing open-source
FPGA-based RDMA NICs [Psi+22; Sid+20] offer limited support for high-level applications.
Considering that our goal is to provide services for high-level applications, we opted
to implement the pause-resume protocol in a software implementation of the RDMA
communication protocol, called SoftRoCE.

SoftRoCE is a Linux kernel-level software implementation (not an emulation [Lis17]) of the
RoCE protocol [Inf14]. RoCE facilitates RDMA communication by tunnelling InfiniBand
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packets through a well-known UDP port. The SoftRoCE driver implements this functionality
atop a kernel-level UDP socket. Its capabilities include splitting a message into packets,
formatting packet headers, and ensuring message order and reliable delivery. Unlike other
RDMA-device drivers, SoftRoCE allows the OS to inspect, modify, and fully control the state
of InfiniBand verbs objects.
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Figure 4.12: Resuming a connection in SoftRoCE. The figure
depicts a snapshot of an immediate state, whereas the arrows
indicate the flow of data over time. A send queue comprises multiple
SRs, each expected to send multiple packets. Packets 8 and 9 ( )
are to be processed by the requester. Packets 5 – 7 ( ) are yet to
be acknowledged. Packet 4 ( ) is already acknowledged. A receive
queue contains RRs with received ( ) and not yet received ( )
packets. QPb expects the next packet to be 7. A resume packet has
the PSN of the first unacknowledged packet ( ). QPb replies with
an acknowledgement of the last received packet.

Figure 4.12 outlines the basic op-
eration of the SoftRoCE driver,
which creates three concurrent
tasks for each QP: requester, re-
sponder, and completer. When an
application posts a Send Work Re-
quest (SR) or a Receive Work Re-
quest (RR) to a QP, it is processed
by the requester and responder cor-
respondingly. A work request may
be split into multiple packets, de-
pending on the Maximum Trans-
mission Unit (MTU) size. When
the entire work request is complete,
the responder or completer notifies

the application by posting a work completion to the completion queue.

The tasks process all requests packet by packet. Each task maintains the PSN of the next
packet. A requester sends packets for processing to the responder of its partner QP. The
responder replies with an acknowledgement sent to the completer. The completer generates
a Work Completion (WC) after receiving an acknowledgement for the last packet in a send
request. Similarly, the responder generates a work completion after receiving all packets of a
receive request.

When transferring QPa back into the bypass phase, the NIC sends a resume message to
QPb with the new address. Upon receiving the resume message, the responder of QPb learns
the new location of QPa. Then, the responder replies with an acknowledgement of the last
successfully received packet. If some packets were lost during the connection manipulation
phase, the next PSN at the responder of QPb is smaller than the next PSN at the requester of
QPa. The difference corresponds to the lost packets. Simultaneously, the requester of QPb can
already start sending messages. At this point, the connection between QPa and QPb is fully
recovered.

The presented protocol ensures that both QPs recover the connection without irrecoverably
losing packets. If packets were lost during the connection manipulation, the QP can determine
which packets were lost and retransmit them as part of the normal RoCE protocol. As part
of the SoftRoCE implementation, the pause-resume protocol runs transparently for the user
applications.
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4.3.5 Evaluation

We implemented the pause-resume protocol in SoftRoCE as part of the live migration support,
which we describe in more detail in Section 4.4.3. The aim of our evaluation is to estimate
the cost of adding the pause-resume protocol to a NIC and to compare it with the cost of
continuous interposition. In this section, we evaluate only the performance of the bypass phase,
while in Section 4.4.5, we assess the performance of the manipulation phase as part of the live
migration operation.

For all the experiments in this section, we use the following two-node system: Each machine is
equipped with an Intel i7-4790 CPU, 16 GiB RAM, an on-board Intel 1 Gb Ethernet adapter, a
Mellanox ConnectX-3 VPI adapter, and a Mellanox Connect-IB 56 Gb adapter. We exclusively
used Mellanox VPI adapters, which are set to 40 Gb Ethernet mode. The SoftRoCE driver
also communicates over this adapter. The machines run Debian 11 with a custom Linux 5.7-
based kernel. When comparing against DMTCP [Cao+14] and FreeFlow [Kim+19], we use
Ubuntu 14.04.
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Figure 4.13: Communication latency
over SoftRoCE

To estimate the effect of the pause-resume protocol on
the potential performance of the bypass phase, we used
gprof to record the coverage of pause-resume support
code outside the migration phase. Out of all the changes
made to the QP tasks, only 28 lines were affected while
application communication was active. Among these, 3
lines are variable assignments, one is an unconditional
jump, and the rest are newly introduced if-else conditions
checking a QP state that occur at most once per packet
sent or received. Additionally, we modified the QP state
to include binary flags to encode paused and stopped QP
states. The rest of the code changes to the QP task run
only during the connection manipulation phase and do
not affect the performance of the bypass phase.
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Figure 4.14: Communication throughput over
SoftRoCE

We anticipate that such minor changes will not
have any measurable effect on the performance
of the bypass phase. To validate this hypothesis,
we measured the performance of SoftRoCE’s by-
pass phase before and after integrating the pause-
resume protocol. Unfortunately, the original ver-
sion of the SoftRoCE driver (vanilla kernel, with-
out any modifications on our part) proved to be no-
toriously unstable2. The original driver contained
numerous concurrency bugs and necessitated sig-
nificant restructuring. After rectifying these issues,
we ended up with three versions of the driver: the
original buggy version, a baseline (fixed) version,
and a baseline version enhanced with the pause-
resume protocol. Consequently, fixing the race conditions led to significant restructuring,

2SIGINT to a user-level RDMA application caused the kernel to panic.
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resulting in approximately 20% higher latency (see Figure 4.13) and an even more pronounced
degradation in throughput (see Figure 4.14). Nevertheless, for the remainder of this chapter,
we had to rely on a fixed version.

Fortunately, when comparing the baseline with the version incorporating the pause-resume
protocol, we observed no significant difference in latency or throughput. Although, compared to
traditional InfiniBand implementations, the substantial communication overhead introduced by
SoftRoCE may obscure the potential performance impact of the pause-resume protocol. On the
other hand, given that we expect the overhead to be minimal, even an FPGA implementation
might not accurately reflect the performance of a commercial RDMA NIC, due to the significant
differences between an FPGA and a real hardware implementation. Therefore, considering the
scale of the changes and the measured results, we conclude that the pause-resume protocol
introduces no runtime overhead during the bypass phase.

It is also essential to note that the pause-resume protocol offers an advantage over software-level
continuous interposition methods, which are easier to deploy. For comparison, we utilized
two existing solutions 3: DMTCP, a checkpoint/restart library for MPI applications [AAC09;
Cao+14], and FreeFlow, a software-level RDMA virtual network [Kim+19]. These approaches
intercept all InfiniBand verbs library calls and rewrite both work requests and completions
before forwarding them to the NIC. Both DMTCP and FreeFlow persistently intercept RDMA
dataplane, even if the connection never enters the manipulation phase. In contrast, the pause-
resume protocol does not intercept communication operations on the critical path, thereby
introducing no measurable overhead.

Latency, µs Bandwidth, Gb/s

Size, B Unmod. FF DMTCP Unmod. FF DMTCP

20 0.8∗ 1.2∗ 1.4∗ 0.09 0.02 0.01
24 0.8∗ 1.2∗ 1.4∗ 1.41 0.24 0.20
28 1.1∗ 1.6∗ 1.8∗ 22.31 3.95 3.25
212 2.3 2.7 2.9 36.50 36.57 36.49
216 15.8 16.2 16.5 36.59 36.59 36.59
220 230.8 231.2 231.4 36.59 36.59 36.59

Table 4.1: Comparing execution without modifications against DMTCP and FreeFlow. The variation over 30
runs was small, except,∗ when 0.05 < σ/µ < 0.1.

We expect that continuous interposition will incur significant overhead because it intercepts
all communication operations. To test this assumption, we used the latency and bandwidth
benchmarks from the perftest benchmark suite [per20]. We ran each experiment 30 times with
10 000 iterations each with ConnectX-3 40 Gibit NICs.

Both frameworks perform additional processing for each InfiniBand verbs work request, resulting
in near-constant overhead on latency (see Table 4.1). Each work request corresponds to a
single message, not a single packet; therefore, the overhead diminishes for larger message
sizes. Table 4.1 demonstrates that bandwidth is directly affected by the increased latency, and
thus it is lower only for small messages. We expect such a reduction in bandwidth to be a
minor disadvantage for realistic applications, whereas a near 50% increase in latency may be

3At the time of conducting these experiments, CoRD had not been available.
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critical for some latency-sensitive applications [Shi+16]. Generally, these results align with our
expectations and are similar to those described in Section 3.2.

4.4 Live Migration of RDMA Applications

The primary use case for intermittent control in this thesis is the live migration of RDMA
applications. With the aid of the pause-resume protocol (Section 4.3), we can transparently
migrate RDMA connections from one node to another. To migrate the entire application,
we must also save and restore the state of each RDMA connection, as well as the entire
application. This section details how we integrate the modifications to the low-level RoCE
protocol into the high-level software stack to enable fast and transparent live migration of
RDMA applications.

To begin, we anticipate that end users run RDMA applications containerized, using tools such
as Docker [Mer14] or Singularity [KSB17]. These tools have already become widespread in
both cloud and HPC environments. Therefore, we build upon modern container runtimes and
repurpose much of the existing infrastructure for live migration with minimal alterations. This
approach allows us to focus predominantly on migration support for RDMA networks.

4.4.1 CRIU

For the live migration of containerized applications, we depend on CRIU [Eme+11]. CRIU is a
software framework designed for transparently checkpointing and restoring the state of Linux
processes. It facilitates live migration, snapshots, and remote debugging of processes, process
trees, and containers. To extract the user-space application state, CRIU employs conventional
debugging mechanisms [Ker20b; Ker20a]. However, CRIU relies on specialized Linux kernel
interfaces to extract the state of process-specific kernel objects.

To restore a process, CRIU initializes a new process that initially runs the CRIU executable.
This executable reads the image of the target process and reconstructs all OS objects on its
behalf. This method enables CRIU to utilize the existing OS mechanisms to conduct most of
the recovery without necessitating significant kernel modifications. Finally, CRIU eliminates
any signs of its own presence from the process.

CRIU is also capable of restoring the state of TCP connections, which is crucial for the live
migration of distributed applications [Cor12]. For this purpose, the Linux kernel introduced
a new TCP connection state, TCP_REPAIR. In this state, a user-level process can change the
state of the send and receive message queues, get and set message sequence numbers and
timestamps, or open and close connections without notifying the other side. Once a connection
is restored, the host must retain its original IP address. Containers with separate network
namespaces running in an overlay network maintain this property when a process migrates to
another host.

Without our modifications, if CRIU attempted to checkpoint an RDMA application, it would
detect InfiniBand verbs objects and refuse to proceed. Discarding InfiniBand verbs objects in
the naive hope that the application will be able to recover is failure-prone: once an application
encounters an erroneous InfiniBand verbs object, it will, in most cases, hang or crash. Thus,
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the core of our live migration support is providing explicit support for InfiniBand verbs objects
in CRIU.

4.4.2 Software Stack

To make live migration transparent, we must not require modifications to the software running
inside the container. To achieve this goal, we have devised an architecture that allows any
containerized application to run unmodified and still be migrated transparently. Typically,
access to the RDMA network is concealed deep within the software stack. Figure 4.15 provides
an example of a containerized RDMA application. The container image comes with all the
necessary library dependencies, such as libc, but not the kernel-level drivers. In this example,
the application utilizes a stack of communication libraries, including Open MPI [Gab+04],
Open UCX [Sha+15] (not shown), and InfiniBand verbs. Normally, to migrate, a container
runtime would require the application inside the container to terminate and later recover all
InfiniBand verbs objects. This process undermines the transparency of live migration.

RDMA ULD

ibverbs-user

OpenMPI

Application
Container

RDMA ULD

m-ibverbs-user

CRIU

docker

Host

m-ibverbs-kern

RDMA KLD

User
Kernel

Figure 4.15: Live migration architecture. Software inside the container, including the user-level driver (ibv-user,
grey), is unmodified. The host runs CRIU, kernel- (m-ibv-kern) and user-level (m-ibv-user, green) drivers
modified for migratability.

Instead, we operate a parallel stack, which is controlled by the container engine, alongside the
application container. This parallel stack comprises the container runtime (e.g., Docker [Mer14]),
CRIU, and the InfiniBand verbs library. We have adapted CRIU to recognize InfiniBand verbs,
enabling it to preserve InfiniBand verbs objects when traversing the kernel objects associated
with the container. We have augmented the InfiniBand verbs library (m-ibv-user and m-ibv-kern)
to facilitate the serialization and deserialization of InfiniBand verbs objects. Significantly, the
API extension maintains backward compatibility with the InfiniBand verbs library operating
inside the container. Consequently, both m-ibv-user and ibv-user interact with the same kernel
version of InfiniBand verbs. All the InfiniBand verbs components (ibv-user, m-ibv-user, m-ibv-
kern) consist of a generic and a device-specific part. As a result, the container engine depends
on the modified kernel and user parts (m-ibv-user and m-ibv-kern), but does not require any
modifications to the software inside the container.

Checkpoint/Restore API

To enable CRIU to checkpoint and restore processes and containers, we have extended the
InfiniBand verbs API with two new calls (see Listing 4.1): ibv_dump_context and ibv_restore_object.
CRIU utilizes the standard InfiniBand verbs API, supplemented by these two new calls, to
save and restore the InfiniBand verbs state of applications.
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The ibv_dump_context call returns a dump of all InfiniBand verbs objects within a specific
InfiniBand verbs context, an object representing the connection between a process and an
RDMA NIC. The creation of a dump runs almost entirely in the kernel for two primary
reasons: Firstly, certain links between the objects are only visible at the kernel level. Secondly,
creating a dump inside the kernel allows to make it atomic, which is crucial to get a consistent
checkpoint.

int ibv_dump_context(struct ibv_context *ctx, int *count,
void *dump, size_t length);

int ibv_restore_object(struct ibv_context *ctx, void **object,
int object_type , int cmd, void *args, size_t length);

Listing 4.1: Checkpoint/Restore extension for the InfiniBand verbs API. ibv_dump_context creates an image of
the InfiniBand verbs context ctx with count objects and stores it in the caller-provided memory region dump of
size length. ibv_restore_object executes the restore command cmd for an individual object (QP, CQ, etc.) of
type object_type. The call expects a list of arguments specific to the object type and recovery command. args is
an opaque pointer to the argument buffer of size length. A pointer to the restored object is returned via object.

Although the existing InfiniBand verbs API allows the creation of new objects, it is not
expressive enough for restoring them. For instance, when restoring a CQ, the current API does
not permit specifying the address of the shared memory region for this queue. Instead, the
kernel assigns this address. Moreover, it is impossible to recreate a QP directly in its original
state, such as RTS. Instead, the QP must traverse all intermediate states to reach the desired
state.

We introduce the fine-grained ibv_restore_object call to restore InfiniBand verbs objects one by
one, for situations where the existing API is insufficient. During recovery, CRIU reads the
object dump and applies a specific recovery procedure for each object type. For example, to
recover a QP, CRIU calls ibv_restore_object with the command CREATE and transitions the QP
through the Init, RTR, and RTS states using ibv_modify_qp. The memory regions or QP buffers
are recovered using standard file and memory operations. Finally, when a QP reaches the RTS
state (representing an active connection), the new host executes the REFILL command using the
ibv_restore_object call. This command restores the driver-specific internal QP state and sends a
resume message to the partner QP.

4.4.3 Implementation

We implement a pause-resume protocol and transparent live migration support by modifying
CRIU, the InfiniBand verbs library, the RDMA-device driver (SoftRoCE), and the packet-
level RoCE protocol. To migrate an application, the container runtime invokes CRIU, which
checkpoints the target container. CRIU stops active RDMA connections and saves the state of
InfiniBand verbs objects (see Section 4.4.1). SoftRoCE then transitions the connections to the
manipulation phase. After transferring the checkpoint to the destination node, the container
runtime at that node invokes CRIU to recover the InfiniBand verbs objects and restore the
application. SoftRoCE then resumes all paused communication to complete the migration
process.

Live migration comprises two crucial steps: the pause-resume protocol and the connection-state
extraction and recovery. We described the former in Section 4.3; now, we focus on the latter.
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State extraction begins when CRIU discovers that its target process has opened an
InfiniBand verbs device. We modified CRIU to use the API presented in Section 4.4.2 to
extract the state of all available InfiniBand verbs objects. CRIU stores this state, along with
other process data, in an image. Later, CRIU recovers the image on another node using the
new API.

When CRIU recovers an MR or a QP of the migrated application, the recovered object must
maintain its original unique identifiers. These identifiers are system-global and assigned by
the NIC (in our case, the SoftRoCE driver) sequentially. We augmented the SoftRoCE driver
to expose the IDs of the last assigned MR and QP to CRIU in userspace. These IDs are
Memory Region Number (MRN) and QPN, respectively. Before recreating an MR or QP,
CRIU configures the last ID appropriately. If no other MR or QP occupies this ID, the newly
created object will maintain its original ID. This approach is analogous to how CRIU maintains
the process ID of a restored process using the ns_last_pid mechanism of Linux, which exposes
the last process ID assigned by the kernel.

It is possible for some other process to occupy an MRN or QPN that CRIU intends to
restore. Two processes cannot use the same MRN or QPN on the same node, resulting in a
conflict. In the current scheme, we avoid these conflicts by globally partitioning QP and MR
IDs among all nodes in the system before application startup. CRIU encounters a similar
problem with process ID collisions. This problem has only been solved with the introduction
of process ID namespaces. To address the collision problem for InfiniBand verbs objects, a
similar namespace-based mechanism, along with a virtual RDMA network [He+20], would be
required. We discuss this issue in Section 4.5.

Additionally, recovered MRs must maintain their original memory protection keys. The
protection keys are pseudo-random numbers [Rot+21] provided by the NIC and are used by a
remote communication partner when sending a packet. An RDMA operation succeeds only if
the provided key matches the expected key of a given MR. Apart from that, the key’s value
does not carry any additional semantics. Thus, no collision problems exist for protection keys.
CRIU sets all protection keys to their original values before communication restarts by making
an ibv_restore_object call with the IBV_RESTORE_MR_KEYS command.

4.4.4 Implementation Effort

We try to demonstrate that our changes are indeed feasible for real-world NIC implementation
in two ways. First, we give a detailed explanation of the changes required, so that the reader
could use their own judgement about the actual complexity of the changes. We, for example,
show that all the additions to the protocol executed during the bypass phase access only the
simple state of InfiniBand objects and run only once per packet. Our second argument is that
the actual implementation of the changes is also small, especially in parts that are specific to
the NIC implementation.

To quantify the changes, we count the newly added or modified Source Lines of Code (SLOC)
in different components of the software stack (see Table 4.2). Out of approximately 4 k SLOC,
only about 10% apply to the kernel-level SoftRoCE driver. These changes primarily focus on
saving and restoring the state of InfiniBand verbs objects. We separately counted changes to the
requester, responder, and completer QP tasks responsible for the active phase of communication
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Level Component Original ∆

Kernel InfiniBand verbs 30,565 719
SoftRoCE 9,446 872
QP tasks 1,112 249

User InfiniBand verbs 12,431 339
SoftRoCE 1,004 332
CRIU 61,616 1,845

Total 4,137
Table 4.2: Development effort in SLOC. We specifically show the magnitude of changes done to the QP tasks
(see Figure 4.12).

(see Figure 4.12). These tasks would be implemented in the NICs for hardware-based RDMA
implementations. Therefore, we ensure that the changes to QP tasks are simple and minimal,
as these changes must be reflected in firmware or hardware. In our implementation, changes to
QP tasks accounted for only about 6% of the overall changes.

Object Features required State (bytes)

PD None 12
MR Set memory keys and MRN 48
CQ Restore ring buffer metadata 64
SRQ Restore ring buffer metadata 68
QP + QP tasks state, set QPN 271
QP w/ SRQ + Current WQE state 823

Table 4.3: Additional features implemented in the kernel-level SoftRoCE driver to enable recovery of
InfiniBand verbs objects. We provide the size that each object occupies in the dump.

Besides additional logic in the QP tasks, saving and restoring InfiniBand verbs objects
necessitates the manipulation of implementation-specific attributes. Some of these attributes
cannot be set through the original InfiniBand verbs API. For example, to recover an MR, it
is necessary to have the additional ability to restore the original values of memory keys and
the Memory Region Number (MRN). Some other attributes are not exposed by the original
InfiniBand verbs API at all. The queues (CQ, SRQ, QP) implemented in SoftRoCE require
the capability to save and restore the metadata of ring buffers backing the queues. If a QP uses
an SRQ, the dump of the QP also includes the full state of the current WQE. We identified
all the required attributes for SoftRoCE, calculated their memory footprint (see Table 4.3),
and implemented all the features required by these attributes.

In conclusion, the changes to RoCE implemented in SoftRoCE are minimal and affect the
critical path of communication only marginally outside of the migration phase 4. We believe
that for RDMA NICs, the same changes to RoCE will remain just as minimal, or can even be
implemented in the NIC’s firmware5.

4Our implementation can be found here: github.com/TUD-OS/migros-atc-2021.
5The hardware and firmware boundary will differ for FPGA and ASIC.
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4.4.5 Evaluation

We evaluate the live-migration capability from two main aspects. First, we estimate the
fine-grained cost of migration for individual InfiniBand verbs objects. Second, we measure the
migration latency in realistic RDMA applications.

For most experiments, we use a system with two machines (the same as in Section 4.3.5): Each
machine is equipped with an Intel i7-4790 CPU, 16 GiB RAM, an on-board Intel 1 Gb Ethernet
adapter, a Mellanox ConnectX-3 VPI adapter, and a Mellanox Connect-IB 56 Gb adapter.
The Mellanox VPI adapters are configured in 40 Gb Ethernet mode. The SoftRoCE driver
communicates over this adapter. The machines run Debian 11 with a custom Linux 5.7-based
kernel. We refer to this setup as the local setup. When comparing against DMTCP and
FreeFlow, we use Ubuntu 14.04.

Short Full name Location

SR SoftRoCE local
CX3/40 ConnectX-3 40 Gb Ethernet local
CX3/56 ConnectX-3 56 Gb InfiniBand cluster
CIB ConnectIB local
BIB Bull Connect-IB cluster

Table 4.4: RDMA-capable NICs used for the evaluation.

We conduct further measurements on a cluster comprising nodes with two-socket Intel E5-
2680 v3 CPUs and Connect-IB 56 Gb NICs deployed by Bull. We refer to this setup as the
cluster setup. Two nodes, similar to those in the cluster, were used in a local setup and equipped
with Mellanox ConnectX-3 VPI NICs, configured to 56 Gb InfiniBand mode. We describe all
NICs used in the evaluation in Table 4.4 and refer to them by their short names.

Microoperation Costs

With the added support for migrating InfiniBand verbs objects, the container migration time
will increase proportionally to the time required to recreate these objects. Our goal is to
estimate the additional latency for migrating RDMA-enabled applications. This subsection
presents the cost for migrating connections created by SoftRoCE, as well as the cost for
connection creation with hardware-based InfiniBand verbs implementations.

This benchmark allows us to project the time required to establish RDMA communication in a
real application. For instance, to establish a single Reliable Connection (RC), the application
needs to create several InfiniBand verbs objects (see Section 2.4): a Protection Domain (PD),
a Completion Queue (CQ), a Memory Region (MR), and a Queue Pair (QP). A typical
application can be expected to create a single PD, a CQ per core, hundreds of MRs, and one
QP per communication partner.

To measure the cost of creating individual InfiniBand verbs objects, we modified ib_send_bw

[per20] to create additional MR objects. We created one CQ, one PD, 64 QPs, and 64
1 MiB-sized MRs per run. Figure 4.16 shows the average time required to create each object
across 50 runs. Each tested NIC is represented by a bar. We draw two conclusions from this
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Figure 4.16: Object creation time for different RDMA devices. To send a message, a QP needs to be in the
state RTS, which requires the traversal of three intermediate states (Reset, Init, RTR). Error bars show the
interval of the standard deviation (σ) around the mean (µ), if σ/µ ≥ 0.05.

experiment. First, there is a significant variation in the time required for all operations across
different NICs. Second, the time required for most operations falls in the millisecond range.
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Figure 4.17: MR registration time depend-
ing on the region size.

The migration time of an RDMA application is
influenced by two factors: the number of QPs and the
total amount of memory allocated to MRs [Mie+06].
Both factors are specific to the application and can
vary widely. Therefore, we demonstrate how each of
these parameters affects the migration time. First,
Figure 4.17 illustrates how the MR registration time
depends on the size of the region. Additionally, we
fit the memory registration time of all the measured
NICs into a linear model, which is represented by
a dashed line. This time is divided between the OS
and the NIC components. The OS is responsible for
pinning the memory, and the NIC establishes the
mapping between the physical and virtual addresses
of the registered region. SoftRoCE does not incur the “NIC-part” of the cost, making MR
registration with SoftRoCE faster than with RDMA-enabled NICs. For this experiment, we do
not take into account the cost associated with transferring the contents of the MRs during
migration.

The number of QPs is the second variable influencing live migration time. Figure 4.18 displays
the time required for migrating a container running the ib_send_bw benchmark. This benchmark
involves two single-process containers operating on two separate nodes. Three seconds after
the initiation of communication, the container runtime migrates one of the containers to a
different node. The migration time is recorded as the maximum message latency observed
by the container that remained stationary. The checkpoint is transmitted over the same
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network link that the benchmarks use for communication. As the number of QPs increases,
the benchmark’s memory consumption also grows, ranging from 8 MiB to 20 MiB. To provide
context, we estimated the migration time for actual RDMA devices by calculating the time
needed to recreate InfiniBand verbs objects for RDMA-enabled NICs. We deducted the time
required to create InfiniBand verbs objects with SoftRoCE from the measured migration time
and added the time necessary to create InfiniBand verbs objects with RDMA NICs (as shown
in Figure 4.16). We present these estimations with the coloured dashed lines and illustrate the
model fitting all the data with the black dashed line.

As the memory footprint of a container increases, so does the cost of migration. At a certain
point, the migration may become excessively costly. To mitigate this issue for large containers,
we employ iterative checkpointing.

Iterative checkpointing entails the container runtime creating a preliminary dump of the
application’s memory prior to the actual migration. The destination node receives this
preliminary dump while the application continues to run. Simultaneously, the OS on the
source node monitors the memory modifications made by the application after the preliminary
dump. To finalize migration, the container runtime merely transfers the portions of memory
that have been modified since the preliminary dump, rather than the entire state.

Figure 4.19 shows that for large containers, the migration time is directly proportional to
the application’s memory size. For this benchmark, we modified the ib_send_bw benchmark to
allocate additional memory during its runtime. We were interested in the best case latency
improvement, thus the additional memory is not modified after initialization, and we used
different network links for the checkpoint transfer and the application communication.

Overall, through a set of microbenchmarks, we show how the migration time depends on
the characteristics of the RDMA application. The most significant bottlenecks incurred for
RDMA applications are the costs of creating InfiniBand verbs objects and transferring the
memory contents, particularly of memory regions. This limitation can be overcome by iterative
checkpointing and by improving the performance of object creation at the NIC level.
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MPI Application Migration

For evaluating the transparent live migration of real-world applications, we chose to migrate
NPB 3.4.1 [Bai+94], an MPI benchmark suite. The MPI applications run on top of
Open MPI 4.0 [Gab+04], which in turn uses Open UCX 1.6.1 [Sha+15] for point-to-point
communication. We configured UCX to use InfiniBand verbs communication over reliable
connections (RC). This setup corresponds to Figure 4.15.

We containerized the applications using our self-developed runtime konyk, based on
libcontainer [run20]. Unlike Docker, our runtime facilitates faster live migration by sending the
image directly to the destination node, instead of to the local storage, during the checkpoint
process. Additionally, konyk stores checkpoints in RAM, further reducing the migration latency.
Like any other container runtime, konyk internally uses CRIU for checkpointing and restoring
containers. A further description of our container runtime is beyond the scope of this work.

To measure the application migration latency, we start each MPI application with four processes
(ranks). Approximately in the middle of the application’s progress, one of the ranks migrates
to another node. Each benchmark has a size (A to F) parameter, which we chose such that
each benchmark runs between 10 and 300 seconds. We excluded the “dt” benchmark because
it runs for only around a second. Figure 4.20 shows container migration latency and standard
deviation around the mean, averaged over 20 runs of each benchmark.
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Figure 4.20: MPI application migration.

We break down the migration latency into three parts: checkpoint, transfer, and restore. Konyk
first stops the target container and prepares the checkpoint. Almost immediately, and in
parallel with checkpointing, konyk starts to transfer the checkpoint data to the destination
node. The transfer occurs over the network link used by the benchmarks for communication.
This overlap of checkpointing and data transfer minimizes the time exclusively devoted to data
transfer. After the transfer is complete, konyk restores the container at the destination node.
Overall, the benchmarks experience a runtime delay proportional to the migration latency,
which in turn, is proportional to the checkpoint size.

MPI applications (Figure 4.20) migrate slower than microbenchmarks (Figure 4.18), even
when accounting for the checkpoint size, due to the difference in measurement methodology.
For the microbenchmark, we calculate the migration time based on the maximum message
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latency observed by the non-migrating process. For the MPI benchmarks, we calculate the
migration time from the increase in the total execution time of the entire benchmark. This
discrepancy suggests that the migration of parallel applications may cause a larger disruption
to application performance than what the simple state transfer time can explain.
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Figure 4.21: Migration speed of Docker and konyk
with optimizations (konyk) and without (konyk)

To demonstrate the interoperability of our
approach with other container runtimes,
we measured the migration costs when us-
ing Docker 19.03 (see Figure 4.21). We
had to implement the end-to-end migration
flow ourselves because Docker only provides
checkpoint and restore features. To our dis-
appointment, Docker does not implement
some important optimizations and requires
significantly more time to complete a migra-
tion. To better understand the performance
difference, we disabled certain optimizations
in konyk: saving checkpoints to main mem-
ory (instead of the hard disk), sending check-

points during dumping, and using an optimized method for transferring the checkpoint. Despite
this, the performance of Docker still did not match that of konyk. Further investigation revealed
that Docker unnecessarily moves checkpoint images across the file system, demonstrating
the importance of explicit live migration support within a container runtime. Nevertheless,
we successfully demonstrated the fundamental feasibility of containerized RDMA-application
migration using Docker.

4.4.6 Related Work

Live migration of VMs has a long history of use in cloud computing [NLH05; Cla+05; Des+14;
HDG09; Pan+12]. With the emergence of new computing paradigms like disaggregated and
fog computing [Pat+18; Gu+17; WHW19; Osa+17], we anticipate an even greater reliance
on live migration to move computation closer to data. However, past techniques for live VM
migration with RDMA NICs depended on migration-aware, paravirtualized drivers inside the
VMs [Hua+07; Pic+16].

Concurrently with MigrOS [Pla+21], Hansen et al. [Han+21] introduced a pause-resume
protocol akin to our approach, but aimed at enabling virtual machine migration. Their method
relies on SR/IOV-based hardware virtualization, which simplifies the migration of NIC LID
and GID addresses. We chose not to use SR/IOV because hardware virtualization requires
static partitioning of NIC resources, thus limiting the flexibility of the system. Given that
a typical system is likely to run many more containers than VMs, SR/IOV could become a
bottleneck for containerized applications rather than for VMs. Moreover, our approach allows
for migrating a container from one VM to another, while the method of Hansen et al. would
necessitate nested virtualization to achieve the same objective.

Transparent live migration of processes [Smi88; MDW99; BS85], containers [MYL17; MKK08;
Nad+17], or virtual machines [NLH05; Cla+05; Des+14; HDG09; Pan+12; Han+21] has
long been a topic of active research. The primary challenge of this technique lies in the
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Legion Nomad PS MPI DMTCP MOSIX-4 MOSIX-3 vMotion This thesis

RDMA 3 3 3 3 7 7 3 3

Overhead N N N Y Y Y N N

Runtime 3 3 3

User-OS 3 3

Kernel-OS 3 3 3 3

NIC 3 3

Units O VM P P P P VM C

Reference [Bau+12][Hua+07] [Pic+16] [AAC09] [BS16] [BGW93] [Han+21] [Pla+21]

Table 4.5: Selected checkpoint/restore systems handle either VMs, processes (P), containers (C), or application
objects (O). Runtime-based systems naturally introduce no additional communication overhead for migration
support.

checkpoint/restore operation. For processes and containers, this operation can be implemented
at three levels: application runtime, user-level system, or kernel-level system. Table 4.5 compares
a selection of existing checkpoint/restore systems.

Runtime-based systems require the user application to access all external resources through
the runtime’s API. This requirement resolves two significant issues with resource migratability:
First, the runtime system precisely controls when the underlying resource is used and can
readily stop the application from doing so to serialize the state of the resource. Second, the
runtime can maintain sufficient information about the state of the resource to facilitate resource
serialization and deserialization. Such interception is efficient because it occurs within the
application’s address space.

Nearly all attempts to provide transparent live migration in conjunction with RDMA networks
involve modifications to the runtime system [Gua+15; Pic+16; AAC09; Hua+07; Jos+13;
GPC19]. Some runtimes operate on application-defined objects (tasks, agents, lightweight
threads) for even more effective state serialization and deserialization [Bau+12; KK93; WPM99].
However, all runtime-based approaches tether the application to a specific runtime system.

Kernel OS-level checkpoint/restore systems [BGW93; HD06; Osm+03; Edg09; KS09] either
interpose at the kernel level or extract the application state from the kernel’s internal data
structures. Although these systems support a wider spectrum of user applications, they incur
a significantly higher maintenance burden. BLCR [HD06] has been eventually abandoned.
CRIU [Eme+11], currently the most successful OS-level tool for checkpoint/restore, keeps the
necessary Linux kernel modifications at a minimum and does not require interposition at the
user-kernel API. We describe this tool in more detail in Section 4.4.1. Kadav and Swift [KS09]
implemented kernel-level shadow objects to enable the live migration of virtual machines with
several types of direct-access devices. Besides lacking support for RDMA networking, shadow
objects also caused continuous performance overhead, similarly to DMTCP. Zap [Osm+03]
intercepts system calls to virtualize process resource identifiers and creates virtual proxy-devices
to control access to the hardware. Both MOSIX-4 [BS16] and Zap support InfiniBand only
through the BSD socket API, which adds a large performance penalty.

Finally, user OS-level systems interpose the user-kernel API, providing the same transparency
and generality as kernel-based implementations. Such systems use the LD_PRELOAD mechanism to
intercept system calls from applications and virtualize system resources, like file descriptors,
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process IDs, and sockets. In version 4, MOSIX has been redesigned to work entirely at the user
level [BS16]. DMTCP [AAC09] is a transparent fault-tolerance tool for distributed applications
with support for InfiniBand verbs. To extract the state of InfiniBand verbs objects, DMTCP
maintains shadow objects, which act as proxies between a user process and the NIC [Cao+14].
The latest version of DMTCP is not in sync with current libraries providing RDMA support.
Instead, the core developers of DMTCP moved the connection migration support inside the
MPI library [GPC19]. In Section 4.4.5, we show that maintaining these shadow objects has a
non-negligible runtime overhead for RDMA networks.

Furthermore, live migration may employ RDMA networks to improve the speed of the
checkpoint transfer [NR18; Ibr+11]. These techniques allow for reducing the downtime from
migration and could be combined with our technique to improve the migration time of RDMA
applications.

SoftRoCE [Lis17] and SoftiWarp [TMS11] are open-source software implementations of
RoCE [Inf14] and iWarp [Gar+07] respectively. Both provide no performance advantage
over socket-based communication but are compatible with their hardware counterparts and
facilitate the development and testing of RDMA-based applications. We chose to base our
work on SoftRoCE because RoCE has found wider adoption than iWarp.

There are also open-source FPGA-based implementations of network stacks. NetFPGA [Zil+14]
does not support RDMA communication. StRoM [Sid+20] provides a proof-of-concept RoCE
implementation. However, we found it unfit for running real-world applications (for example,
MPI) without further significant implementation efforts. Nowadays, there also exist commercial
IP cores implementing high-performance RDMA NIC capabilities, like ERNIC [Xil22], but at
the time of the work on the pause-resume protocol, they were unavailable for our research and
development.

4.4.7 Summary

We employed intermittent control in an architecture enabling transparent live container
migration without sacrificing RDMA network performance. We are convinced that this
architecture can be useful for dynamic load balancing, efficient prepared fail-over, and live
software updates in cloud or HPC settings.

We believe that limited hardware changes are worthy of consideration and have already
been proven feasible [Koc+19b; Fir+18; Koc+19b; Moo+20; Han+15], even for RDMA
protocols [Lis13; Inf09; Les+17]. Nevertheless, propositions to modify hardware often meet
criticism because they are hard to validate and evaluate for an OS designer. To overcome
this difficulty, we have modified SoftRoCE. It turned out that adding only a few states
to the state machine and two new message types were necessary. As a result, we enabled
transparent live migration of containerised RDMA applications without affecting the critical
path of communication. Lesokhin et al. [Les+17] have demonstrated that RDMA protocol
changes can be achieved just through firmware updates, obviating the need to replace NICs.
Furthermore, our design maintains full backward compatibility with the existing RDMA
network infrastructure at every level and can be adopted by other RDMA protocols (e. g.,
InfiniBand and RoCE) verbatim. Moreover, an idea very similar to ours has been proposed by
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Hansen et al. [Han+21] at the same time and implemented in commercial hardware for the
purpose of live migration of virtual machines.

Previous live migration techniques require cooperation on the application’s behalf, because
they regard RDMA NICs as black boxes. Our work considers an RDMA NIC as a white box
for the purpose of live migration. We categorize the device state as 1. public state, observable
through the InfiniBand verbs API, 2. device-driver-visible state, visible by kernel- and user-level
drivers, 3. internal state, invisible outside the device. The device must expose its internal state
to the OS at the time of migration. We hope these findings can be useful when implementing
live migration for other devices, e.g., GPUs.

We believe that the pause/resume protocol can find other uses, like efficient fail-over, congestion
control, or load balancing. For example, consider MasQ [He+20], a virtual RDMA network with
firewall capabilities. MasQ can shut down RDMA connections but, unlike TCP/IP firewalls,
cannot block them temporarily. Our protocol could return control over RDMA connections to
the OS and replicate TCP/IP-like behavior to RDMA firewalls as well.

4.5 Virtual RDMA Network

When developing live migration capabilities for RDMA applications, we encountered several
limitations of our approach 6. First, the physical addresses of the RDMA NICs are visible
to the user applications but change transparently during the live migration process. This
could lead to certain inconsistencies. For instance, the application could learn the physical
address of the remote partner before migration and attempt to establish a connection after
the partner migrates. Second, we demonstrated how to conduct live migration of RDMA
applications for connection-oriented transports, like RC, but not for connectionless transports,
like UD. A migrating UD QP does not have a designated remote sender QP, so it cannot send
a pause message in advance and may need to broadcast a resume message throughout the
entire network.

The goal of a virtual RDMA network is to create a virtual network topology on top of the
physical network topology. Applications communicate with each other using virtual addresses,
which are independent of the physical addresses of the RDMA NICs. Therefore, when an
application migrates, the virtual addresses remain the same. A virtual network could also help
with connectionless transports, like UD, because it could ensure that packets are delivered to
the correct QP even after migration.

App1 App2 App3 App4

LID: 1
QPN: 1

LID: 3
QPN: 1

LID: 4
QPN: 1

LID: 2
QPN: 2

LID: 1
QPN: 3

LID: 1
QPN: 4

LID: 2
QPN: 4

LID: 2
QPN: 5

Nodes

Virtual
network

Physical
network

Figure 4.22: Virtual and physical networks. The dashed line separetes physical nodes.

6Some of these limitations could be overcome using SR/IOV, which we also wanted to avoid.
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Figure 4.22 illustrates a scenario with two hypothetical InfiniBand verbs-based virtual RDMA
networks, isolating App1 and App4 from App2 and App3. Each application has two addresses
(for brevity, InfiniBand verbs defines more, see Section 2.4): an LID, and a QPN. LID identifies
a compute node (like a MAC-address), whereas QPN identifies an endpoint on the node (like
a port number). Applications running on the same node must have the same physical LID
and different physical QPN. A virtual network allows the virtualization of QPN and LID by
replacing physical addresses with virtual addresses in control plane operations.

The InfiniBand verbs API is designed such that all requests for physical addresses are
implemented by control operations. Data plane operations operate with opaque handles, which
are similar to file descriptor numbers. Therefore, we attempted to implement a virtual RDMA
network, which either intercepts control plane operations or employs intermittent control for
the data plane. Our expectation was that applications could only see virtual addresses but
transparently use physical addresses for the data plane. Together with intermittent interposition,
the virtual network can also enable transparent live migration for UD QPs with zero overhead
for the bypass phase. As it turned out, our approach was unfeasible, demonstrating the
limitations of intermittent control.

4.5.1 Architecture

Our virtual RDMA network must hide and replace the physical network identifiers, which
applications may request through the InfiniBand verbs API. Furthermore, it must be able to
intercept communication and bring it into a quiescent state. Such interception can assist with
live migration. To avoid overhead during the bypass phase, all virtualization steps, except for
interception, must run at the control plane.

App
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vNetD vNetD App
ULD

vNetC

vKLD

KLD

NIC

User
OS

HW
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3 34 4
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Figure 4.23: The data-plane ( ) remains unobstructed. The virtual network kernel-level driver (vKLD)
intercepts the control-plane ( ) operations (1), forwards them (2) to a local virtual network daemon (vNetD).
The daemon may query (3) the global virtual network coordinator (vNetC) to resolve virtual addresses to
physical ones. Afterwards, the vKLD populates the parameters of the control-plane operation with physical
addresses and forwards the operation to the RDMA NIC kernel-level driver.

To virtualize the RDMA network, we need to virtualize several network identifiers:

1. QPN identifies an endpoint on the node (like a port number).
2. LID is a non-routable network identifier (like a MAC address).
3. GID is a routable network identifier (like an IP address).
4. GUID is a number that uniquely identifies a device or a component in RDMA networks,

including ports and switches.
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The application accesses all the identifiers through the InfiniBand verbs library. Moreover,
the application learns about all these identifiers through the control-plane operations of
the InfiniBand verbs library [He+20]. This means that we can virtualize the identifiers by
intercepting the control-plane operations inside the kernel.

We devised an architecture (see Figure 4.23) that intercepts the control-plane operations
and forwards them to a central virtual network daemon. These control-plane operations
include operations for querying the addresses of the RDMA NICs, such as ibv_query_device, and
operations for creating and modifying QPs, like ibv_create_qp and ibv_modify_qp. We created a
virtual network kernel-level driver (vKLD) that creates a virtual RDMA network interface,
used by the application. Therefore, when the application calls control-plane operations, they
are intercepted by the vKLD and forwarded to the virtual network daemon. The daemon
maintains a map between virtual and physical identifiers by assigning and resolving virtual
identifiers.

The virtual kernel-level driver directly passes to the application all the memory normally shared
between the application and the RDMA NIC. This allows RDMA applications to execute
all data-plane operations, like sending or receiving messages, unobstructed. The applications
continue using the same user-level device driver (ULD) as before. We also maintain a small
virtual user-level driver (vULD), which is responsible for opening the virtual device and setting
up the correct user-level driver for the application.

Now, if there is a need to migrate one of the applications in the virtual network, we can
query the virtual network daemon about which other applications can communicate with
the application to be migrated. This would allow us to enable live migration support for the
applications using UD transport, because before sending a message to a UD QP, the application
must resolve the address of the destination QP, which is a control operation. The daemon
could remember every application that ever resolved the address to the migrated application
and request the host OS of these applications to preemptively pause the applications from
sending messages to the migrated one. This would allow us to migrate the application without
losing any messages.

Unfortunately, it turned out that QPN cannot be fully virtualized in the architecture described
above. The problem is that the QPN is used in the data-plane operations and the applications
get direct access to the QPN at the level of the user-level driver. Specifically, when the
application polls a CQ, the Mellanox user-level driver will read the flow_tag field as a physical
QPN from the Completion Queue Entry (CQE) and use it to dispatch the CQE to the correct
QP [Mel16, Table 67]. In other words, the NIC passes the physical QPN to the user-level
driver, which then passes it further to the application logic.

For example, when an application polls a CQ, the InfiniBand verbs API returns a Work
Completion (WC) which informs the application logic about which QP has received a message.
In the case of the Mellanox driver, this WC contains the physical QPN of the QP that received
the message. Sooner or later, the application notices the discrepancy between the virtual QPN
obtained from the control plane and the physical QPN obtained from the data plane, which
results in an error.

Alternatively, the virtual networks could virtualize only the LID, but not the QPN. The issue
with this approach is that the QPN is a node-local identifier. This means that if the application
migrates to another node, its current QPN might be used by some other application. One
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possible solution to this issue is to statically partition the QPN space between the applications
in the same virtual network, but this would limit the scalability of the virtual network because
QPN is a 16-bit number. Moreover, existing Mellanox NIC drivers assign QPNs sequentially,
starting from 2 (0 and 1 are reserved) and do not support arbitrary QPN assignment.

4.5.2 Related Work

TCP/IP network virtualization is an essential tool for isolating distributed applications
from the underlying physical network topology. Even though network virtualization enables
live migration, it introduces overhead due to the additional encapsulation of network
packets [Niu+19; Zhu+19]. Live migration depends on network virtualization to ensure that
a change in physical location does not affect the application’s connectivity. Several new
approaches attempt to address these performance issues [Pet+14; Bel+14; Zhu+19; Niu+19].
However, these approaches do not consider RDMA networks.

RDMA-network virtualization approaches focus on implementing connection control policies
in software but do not support live container migration [Kim+19; He+20; TZ17]. As an
exception, Nomad [Hua+07] utilizes InfiniBand address virtualization for VM migration and
implements the connection migration protocol inside an application-level runtime. LITE [TZ17]
also virtualizes RDMA networks but offers no migration support and requires an application
rewrite. Using paravirtualization on the control path helps to mitigate the overhead of hardware
virtualization [Pfe+15; Mou+17; Liu+06].

It is possible to offload network virtualization to hardware using VXLAN technology [Mah+14].
For that purpose, the NIC must be able to create an RDMA NIC Virtual Function (VF) for
each containerized application [PCI10]. This would allow each application to have a separate
network address so that the application could migrate to another node and maintain its old
address. As an additional requirement, the host system needs to support IOMMU to be able
to pass the VF to the container. All these technologies have small but measurable performance
overheads [ABY11]. In contrast, our goal was to investigate whether it is possible to implement
a virtual RDMA network without any overhead and special hardware support by relying on
the interposition of the RDMA control plane or through the use of intermittent control.

4.5.3 Summary

In our experiment with virtual RDMA networks, we developed an architecture that allows
network virtualization without any overhead during the bypass phase. Unfortunately, our
experiment has not been fully successful, as it turned out that not all identifiers can be
virtualized in real-world systems 7. This experiment exposed the limitations of intermittent
control because if the underlying hardware exposes physical identifiers to the user level, the
OS becomes limited in what it can achieve during the manipulation phase.

On the other hand, our experiment indicates that it is still possible to build a virtual RDMA
network, albeit with limitations on what can be virtualized. One could employ hardware-level
technologies, such as Virtual Extensible LAN (VXLAN), to virtualize the RDMA address

7Our implementation can be found here: github.com/planeta/ovey/tree/dev and github.com/planetA/lin-
ux/tree/mplaneta/ovey/v5.15-single.
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space [Mah+14]. Alternatively, one could modify the binary interface between the user-level
driver and the NIC to hide the real QPN from the application and dispatch QPs in some other
way. Or, one could virtualize the QPN space inside the user-level driver. However, our main
goal was to explore intermittent control, so we did not pursue these alternatives.

4.6 Conclusion

This chapter presented an intermittent interposition architecture for OS-level control over the
RDMA network dataplane. The key components of this architecture are the interception gate,
a temporary request buffer, a back-pressure notification, and a resume notification. Together,
these components allow for the interception of RDMA connections and the manipulation of their
state without affecting the performance of the bypass path. We demonstrated live migration
for containerized RDMA applications as a successful use case for intermittent interposition. It
turned out to be possible to migrate RDMA applications without any performance overhead
during the bypass phase and without any changes to the application code.

This chapter also highlighted the limitations of intermittent control: It may not be possible to
implement desired functionality for the manipulation phase if the underlying hardware exposes
too much information to the application during the bypass phase.

In summary, we showed that intermittent control is a viable approach for implementing
certain OS-level functionalities for RDMA networks. On the other hand, we also demonstrated
that implementing such functionalities often requires careful consideration of the underlying
hardware and software architecture. In the use cases we studied, careful hardware-software
co-design was necessary to achieve the desired functionality.
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5 Conclusion and Future Work

This thesis presents an approach for fine-grained OS-level control over RDMA communication.
The OS can achieve such control by continuously or intermittently interposing on the RDMA
data plane. A careful design of the continuous interposition architecture ensures that the RDMA
application experiences low or sometimes negligible overhead. In fact, we have demonstrated a
whole range of continuous interposition mechanisms with progressively lower overhead. If the
application cannot allow even the slightest overhead, then intermittent interposition can offer
such properties.

On the other hand, each interposition approach has its own set of limitations. For example,
lower overhead continuous mechanisms also require a progressively more complex programming
model for implementing OS functions. And intermittent interposition approaches require
hardware modifications. Moreover, for intermittent interposition to really have zero overhead
during the bypass phase, the interception gate must not add any measurable latency. As
Chapter 4 shows, this constraint can be satisfied in some use cases, but clearly not in all,
limiting the applicability of zero overhead intermittent interposition.

Both continuous and intermittent interposition have their own separate set of design
considerations. The main design consideration for continuous interposition is its four inherent
sources of overhead, which need to be minimized to make the interposition mechanism practical.
The first is the latency of transition from the application to the OS and back. This latency
results either from a system call, like in CoRD, or a hypercall, like in MasQ [He+20]. The
first source of overhead can be entirely eliminated by assigning the OS service to a dedicated
core, like in FreeFlow [Kim+19]. The second is the overhead of passing the arguments to
and from the OS service. The third is the synchronization overhead, which appears when a
service is shared by multiple applications. These two sources cannot be eliminated, but can be
reduced by using more efficient serialization and synchronization mechanisms, as shown by
Meignan–Masson [Mei23]. Finally, the last source of overhead is the actual execution of the
OS service. Service overhead can be quantified by comparing its latency to a best available
alternative, which can be not having the service at all, or implementing the service in the
hardware or application logic. When minimizing these sources of overhead, the system designer
must be aware of a trade-off between performance and other factors, such as maintainability
or resource utilization.
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Intermittent interposition, on the other hand, operates under the constraint that the overhead
is zero or near-zero. Little tradeoff is possible here because if the interception gate adds
any significant latency, continuous interposition could be used instead. Therefore, the design
consideration is the need for the manipulation phase to be fast and seldom activated, otherwise,
the application’s performance will suffer. The second design consideration is that intermittent
interposition is less generalizable than continuous interposition, because the interception gate
is not a dedicated module in a NIC. More likely, it is an existing component, like MTT, that
monitors connection state to stop communication in the manipulation phase and inspects
packets to trigger the manipulation phase when the right condition is met. Turning a NIC
component into an interception gate is case-specific and requires expertise to do the hardware
modifications.

Overall, a system designer must decide what trade-off is acceptable in each individual case.
The decision may depend on the exact application, how stakeholders benefit from the added
functionality, the underlying hardware architecture, desired security properties, etc. This thesis
provides a mental framework for a system designer to make the right decision.

We expect that the regular need for data plane interposition becomes more apparent with
wider use of high-performance networking in the cloud computing setting. The reason for our
expectation is that one of the cornerstones of cloud computing efficiency is multi-tenancy
and resource sharing, which is not tolerated by traditional RDMA networking. Ideally, an
RDMA application does not share a network with other applications, least compute nodes.
Therefore, for expanding the applicability of RDMA networks, it is imperative to make sharing
tolerable.

As Chapter 3 demonstrated, if a latency-sensitive application experiences even a small increase
in communication latency, its performance may degrade significantly. So, it is important that
the cloud application is robust towards certain network disruptions such as congestion or
packet loss. On the positive side, we have observed that one source of network disruption can
mask other sources of disruption. As a consequence, if the application moves from an extremely
low noise HPC environment into a noisy cloud environment, continuous interposition may be
unnoticeable, as Chapter 3 also shows.

With these considerations, CoRD can be a good starting point for integrating RDMA
applications into data centers, because it is flexible and backward compatible with existing
RDMA applications. If the application’s performance suffers, the system designer can
then consider either lower overhead continuous interposition mechanisms, like fastcalls, or
intermittent interposition, like MigrOS. To support a variety of applications, the data center
can partition its resources into different tiers and offer different types of interposition to
applications based on their requirements. Ultimately, if the application cannot tolerate even
the slightest noise in the network or compute node, then, maybe, the cloud setting is not the
right place for such an application.

5.1 Future work

This work has been driven by the vision that RDMA networking is extremely beneficial for
future data center applications. We already see the trend of ubiquitizing RDMA networks, but
there is a gap between software-level expectations and what hardware provides. For software
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developers and software infrastructure operators, properties like maintainability, deployability,
and efficient resource sharing are of utmost importance. But these properties are very hard to
provide purely at the hardware level. Our answer to this challenge is careful hardware-software
co-design that can balances functional and performance properties.

For our vision to come true, as a precondition, we consider it necessary to have a fully
virtualizable RDMA network. An RDMA application should be oblivious to its physical
location and physical network identifiers. We have shown that in its current state, intermittent
interposition is not by itself sufficient to virtualize the RDMA network data plane. On the
other hand, using CoRD may not be the best solution for all applications, because it adds
constant per-message overhead, which some applications would really like to avoid. Existing
hardware-level virtualization solutions, such as SR/IOV, work well for VMs but are too
coarse-grained for microservice-sized applications.

We believe that the solution for a virtual RDMA network is to combine intermittent and
continuous interposition within a single approach. Lightweight continuous interposition, such
as with fastcalls, can be utilized for low-overhead data plane virtualization, while intermittent
interposition can be employed to implement the required OS-level functionality. We anticipate
this example to be an intriguing use case for fastcalls, which will demonstrate the practicality
of the fastcall programming model.

This thesis discussed smart and programmable NICs only in passing because in the context
of this work, the use of these new devices does not change the overall OS-level architecture.
Nevertheless, smart NICs can be used for both continuous and intermittent interposition. For
example, Data Path Acceleration (DPA) introduced in the new Bluefield 3 NICs [Bur21b] can
be used to virtualize the RDMA data plane with low overhead, which we expect to be similar
or even faster than fastcalls. Therefore, we believe that applying our findings to programmable
NICs is an exciting future direction of our research.

Although smart NICs will definitely experience growth in their use, we do not expect them to
become ubiquitous in the foreseeable future. So, we see value in building upon the research
conducted by Meignan–Masson [Mei23], where he analyzed the sources of overhead in CoRD
and follow up upon his recommendations. From our experience and observations, if the per-
message overhead can be reduced to less than 0.5 µs, then the overhead is negligible for most
applications.

Having a low overhead RDMA network virtualization solution can enable multiple use cases
relevant to the cloud computing setting. For example, one use case could be to employ
DNAT-type load balancing for RDMA-enabled services [Ban+17]. Another use case could
be transparent failover for RDMA-enabled client applications. Overall, fine-grained OS-level
control over RDMA communication will allow the integration of RDMA applications into
cloud container orchestration systems, such as Kubernetes.
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A ChatGPT Prompt

To improve the quality of presentation, I created a custom GPT prompt with the following
instructions. The prompt was used to enhance the grammar and stylistic presentation of the
text in this document.

’Latex Grammar Fixer’ is meticulously designed to correct grammar in LaTeX-
formatted scientific texts, with a paramount emphasis on preserving the exact
formatting from the user’s input, including line breaks. Your essential role is to
ensure grammatical accuracy while maintaining every element of the user’s LaTeX
formatting - commands, spacing, alignment, special characters, and notably, line
breaks. When users submit LaTeX texts, your objective is to apply grammatical
corrections only, without modifying any part of the LaTeX formatting or structure.
This commitment includes preserving the original form and placement of LaTeX
commands like \ac, \acp, or \cite, as well as maintaining the exact line breaks
as in the original input. The aim is to deliver a grammatically polished version of
the text that mirrors the user’s original formatting in every detail.
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B Data Archive

The data archive for this thesis is available at the following URLs.

https://doi.org/10.5281/zenodo.10947946

or

https://opara.zih.tu-dresden.de//handle/123456789/559

This archive contains the source code, scripts, and data used in this thesis. The directory
comprises the data from three projects: MigrOS, CoRD, and Fastcalls.
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