Motivation O	Processes 00	Selection Criteria and Regions	Systematics O	Expected Limits	Summary ○

Search for a light CP-odd Higgs boson with the ATLAS detector DPG Spring Meeting 2024, T 21: BSM Higgs 1

Manuel Gutsche, Asma Hadef, Tom Kresse, Christian Schmidt, Arno Straessner Institute of Nuclear and Particle Physics, TU Dresden

Karlsruhe, March 4, 2024

Motivation ●	Processes	Selection Criteria and Regions	Systematics O	Expected Limits	Summary O

Motivation

- Motivation: up to 5 σ deviation in anomalous magnetic moment of the muon a_{μ} between experiment and Standard Model (SM)
- flavour-aligned two-Higgs-doublet model (2HDM)
- 4 new Higgs bosons, one of them being the CP-odd A boson

FSP

- free parameters such as masses and scaling factors ζ :
 - \Rightarrow leptons: $\zeta_{I} \approx 50$
 - \Rightarrow up-type quarks: $\zeta_{\rm u} \approx 0.5$
 - \Rightarrow down-type quarks: $\zeta_{\rm d} \approx 0$
- deviation explained for large ζ_{I} & light A

NSTITUTE OF

 \Rightarrow this search: $m_A = 20, 30, \ldots 110 \,\mathrm{GeV}$

Motivation O	Processes ●O	Selection Criteria and Regions	Systematics O	Expected Limits	Summary O

Signal Process

- production of A via ggF and top quark loop
- cross-section calculated via ggHiggs
- decay 100 % to τ pairs
- only leptonic channels because of trigger thresholds
 - \Rightarrow mainly boosted topology
- restriction to electron-muon final state to reject $Z \rightarrow II$ events

$$\Rightarrow A \rightarrow \tau \tau \rightarrow e + \mu (+\nu_e \nu_\mu \nu_\tau \nu_\tau)$$

Motivation O	Processes ⊖●	Selection Criteria and Regions	Systematics O	Expected Limits	Summary O

Background Processes

- largest background is $Z/\gamma^* + {\rm jets} \rightarrow \tau\tau$
- fake lepton background(s)

 $\Rightarrow\,$ particles reconstructed as prompt leptons, but are e.g. misidentified jets

- \Rightarrow deficiently modeled by Monte Carlo
- $\Rightarrow\,$ estimated via data-driven matrix method
- other MC backgrounds

Motivation O	Processes	Selection Criteria and Regions ●00000	Systematics O	Expected Limits	Summary O

Selection Criteria

- 1 electron and 1 muon, opposite charge
- Medium ID and Tight isolation
- electron:

 $p_{
m T}>7\,{
m GeV},\ |\eta|<$ 2.47, $|\eta|
otin(1.37,1.52)$ muon:

FSP

Erforschund

on Universu

und Matorio

 $p_{\mathrm{T}} > 7 \, \mathrm{GeV}$, $|\eta| < 2.7$

 overlap removal prioritizing muons over electrons over jets

INSTITUTE OF

UCLEAR AND

3 electron-muon triggers

Motivation O	Processes	Selection Criteria and Regions 0●0000	Systematics O	Expected Limits	Summary ○

Selection Cuts Defining Regions

$$\label{eq:mtot} \begin{split} {}^{a}m_{\rm T}^{\rm tot} &= \sqrt{\left(p_{\rm T}^{e} + p_{\rm T}^{\mu} + E_{\rm T}^{\rm miss}\right)^2 - \left(\vec{p}_{\rm T}^{\,e} + \vec{p}_{\rm T}^{\,\mu} + \vec{E}_{\rm T}^{\,\rm miss}\right)^2} \\ {}^{b} \Delta R_{\ell\ell} &= \sqrt{(\Delta \Phi_{\ell\ell})^2 + (\Delta \eta_{\ell\ell})^2} \end{split}$$

• high missing transverse momentum $E_{\mathrm{T}}^{\mathrm{miss}}$

 \Rightarrow expecting neutrinos

• low transverse mass $m_{
m T}^{
m tot}$

 \Rightarrow diboson & top suppression

- low angular separation^b
 ΔR_{ℓℓ}
 - $\Rightarrow Z \rightarrow \tau \tau$ suppression
- no *b*-tagged jets
 - \Rightarrow top suppression

◆□▶ ◆□▼ ◆目▼ ◆目▼ ◆□▼

 $\Rightarrow m_{
m MMC}$ is Higgs mass reconstructed via Missing Mass Calculator, which estimates neutrino energy with likelihood approach

Motivation O	Processes	Selection Criteria and Regions 000●00	Systematics O	Expected Limits	Summary O

 $Z \to \tau \tau \ CR$

- separated from SRs by inverted $\Delta R_{\ell\ell}$ cut
- validate (main) background modeling
- reweight Z
 ightarrow au au MC in dependence on $n_{
 m jets}$
- used as control region for fit

Motivation O	Processes	Selection Criteria and Regions 0000●0	Systematics O	Expected Limits	Summary ○

Fake (Lepton) VR

- same cuts as Z
 ightarrow au au CR, except $q_e \cdot q_\mu = 1$
- calculation of fake lepton efficiencies for matrix method
- validate fake lepton background modeling

Motivation O	Processes	Selection Criteria and Regions	Systematics O	Expected Limits	Summary O

Top CR

- separated from SRs by requiring at least 2 b-jets
- validate Top background modeling
- used as control region for fit

Motivation O	Processes 00	Selection Criteria and Regions	Systematics ●	Expected Limits	Summary O

Systematics

- experimental systematics on efficiencies, detector calibration, missing transverse momentum, pileup reweighting, luminosity
- uncertainties of MC samples
 - \Rightarrow cross-section uncertainties
 - \Rightarrow generator uncertainties for $Z \rightarrow \tau \tau$, Top, Diboson, Signal
- uncertainties of fake background modeling
 - $\Rightarrow\,$ statistical uncertainty of efficiencies, parametrizations, composition
- uncertainties of $Z \rightarrow \tau \tau$ reweighting

ECHNISCHE NIVERSITÄT RESDEN NUCLEAR AND PARTICLE PHYSICS

$Z \to \tau \tau$ generator systematics

・ロト・白下・ 小田・ 小田・ シック・

Motivation O	Processes	Selection Criteria and Regions	Systematics O	Expected Limits ●0	Summary O

Expected Cross-section Limits

- binned likelihood fit of $m_{\rm MMC}$ distribution for each mass hypothesis
- fit and limit calculation done via TRExFitter
- pruning and smoothing applied
- asymptotic CLs method
- discontinuity at $80\,{\rm GeV}$ due to transition from low-mass to high-mass SR

Motivation O	Processes	Selection Criteria and Regions	Systematics ○	Expected Limits ○●	Summary ○

Expected $|\zeta_u|$ Limits

- binned likelihood fit of $m_{\rm MMC}$ distribution for each mass hypothesis
- fit and limit calculation done via **TRExFitter**
- pruning and smoothing applied
- asymptotic CLs method
- discontinuity at 80 ${\rm GeV}$ due to transition from low-mass to high-mass SR
- signal cross-section uncertainties only considered for |ζ_u| limits
- current $|\zeta_u|$ limit at pprox 0.5

Motivation O	Processes	Selection Criteria and Regions	Systematics O	Expected Limits	Summary ●

Summary

- a_{μ} deviation could be resolved by CP-odd Higgs boson A
- low-mass $A \rightarrow \tau \tau$ search in $e \mu$ channel
- selection criteria finalized
- all systematics evaluated
- fake estimation via matrix method implemented
- expected exclusion limits presented
 - $\Rightarrow\,$ analysis almost complete, currently in unblinding approval process

Outlook:

- unblinding
- aiming for ATLAS publication in summer

- シック・ 単則 (中国・(明・(日・)

15/14

BACKUP

- うゃの 単則 (川田) (川) (山) (山)

Selection Criteria	Matrix Method	Reweighting	Distributions
●	0000	O	

Selection Criteria

		SR		Top CR	$Z \to \tau \tau \ \mathrm{CR}$	Fake VR
		low-mass	high-mass			
		20 to 80 ${ m GeV}$	80 to $110{\rm GeV}$			
$E_{\mathrm{T}}^{\mathrm{miss}}$ cut	$\textit{E}_{\mathrm{T}}^{\mathrm{miss}}$	$> 50{ m GeV}$	$> 30{ m GeV}$	$> 30{ m GeV}$	_	-
Mass cut ¹	$m_{ m T}^{ m tot}$	$< 45{\rm GeV}$	$< 65{\rm GeV}$	$< 65{\rm GeV}$	$< 65{\rm GeV}$	$< 65{\rm GeV}$
Angular cut ²	ΔR_{ll}	< 0.7	< 1.0	< 1.0	> 1.4	> 1.4
MMC cut	$m_{ m MMC}$	$> 0 { m GeV}$	$> 35{ m GeV}$ &	$> 0 { m GeV}$	$> 0 { m GeV}$ &	$> 0 { m GeV}$ &
			$<130{\rm GeV}$		$< 130{\rm GeV}$	$< 130{\rm GeV}$
b-tag	$n_{b-{ m jets}}$	0	0	> 1	0	0
Charge cut	$q_e \cdot q_\mu$	-1	-1	-1	-1	1

 ${}^{1}m_{\rm T}^{\rm tot} = \sqrt{\left(\rho_{\rm T}^{\rm e} + \rho_{\rm T}^{\mu} + \mathcal{E}_{\rm T}^{\rm miss}\right)^{\rm 2} - \left(\vec{\rho}_{\rm T}^{\rm e} + \vec{\rho}_{\rm T}^{\,\mu} + \vec{\mathcal{E}}_{\rm T}^{\,\rm miss}\right)^{\rm 2}}, \ {}^{\rm 2}\Delta R = \sqrt{(\Delta\Phi)^{\rm 2} + (\Delta\eta)^{\rm 2}}$

Selection Criteria	Matrix Method	Reweighting	Distributions
O	●000	0	

Matrix method in the low-mass $A \rightarrow \tau \tau$ search

for 1 electron (1^{st} index) and 1 muon (2^{nd} index):

$$\begin{pmatrix} N_{\mathrm{XX}}^{\mathrm{TT}} \\ N_{\mathrm{XX}}^{\mathrm{TT}} \\ N_{\mathrm{XX}}^{\mathrm{TT}} \\ N_{\mathrm{XX}}^{\mathrm{TT}} \end{pmatrix} = \begin{pmatrix} r_e r_\mu & r_e f_\mu & f_e r_\mu & f_e f_\mu \\ r_e \bar{r}_\mu & r_e \bar{f}_\mu & f_e \bar{r}_\mu & f_e \bar{f}_\mu \\ \bar{r}_e r_\mu & \bar{r}_e f_\mu & \bar{f}_e r_\mu & \bar{f}_e f_\mu \\ \bar{r}_e \bar{r}_\mu & \bar{r}_e \bar{f}_\mu & \bar{f}_e \bar{r}_\mu & \bar{f}_e \bar{f}_\mu \end{pmatrix} \cdot \begin{pmatrix} N_{\mathrm{LL}}^{\mathrm{LL}} \\ N_{\mathrm{RF}}^{\mathrm{LL}} \\ N_{\mathrm{FF}}^{\mathrm{LL}} \end{pmatrix}$$

 \rightarrow inverting matrix gives 3 fake backgrounds:

$$\begin{split} N_{\rm RF,\,est}^{\rm TT} &= \frac{r_e f_\mu}{(r_e - f_e)(r_\mu - f_\mu)} \left[-\bar{f}_e \bar{r}_\mu N_{\rm XX}^{\rm TT} + \bar{f}_e r_\mu N_{\rm XX}^{\rm TT} + f_e \bar{r}_\mu N_{\rm XX}^{\rm TT} - f_e r_\mu N_{\rm XX}^{\rm TT} \right], \\ N_{\rm FR,\,est}^{\rm TT} &= \frac{f_e r_\mu}{(r_e - f_e)(r_\mu - f_\mu)} \left[-\bar{r}_e \bar{f}_\mu N_{\rm XX}^{\rm TT} + \bar{r}_e f_\mu N_{\rm XX}^{\rm TT} + r_e \bar{f}_\mu N_{\rm XX}^{\rm TT} - r_e r_\mu N_{\rm XX}^{\rm TT} \right], \\ N_{\rm FF,\,est}^{\rm TT} &= \frac{f_e f_\mu}{(r_e - f_e)(r_\mu - f_\mu)} \left[+\bar{r}_e \bar{r}_\mu N_{\rm XX}^{\rm TT} - \bar{r}_e r_\mu N_{\rm XX}^{\rm TT} - r_e \bar{r}_\mu N_{\rm XX}^{\rm TT} + r_e r_\mu N_{\rm XX}^{\rm TT} \right]. \end{split}$$

• can be converted to event weights via IFF Fake Bkg Tools

Calculation of Efficiencies

- Normally: measure assumingly independent efficiency = #tight leptons #loose leptons
 ⇒ IFF Fake Efficiency Tool
- Here: parametrize probe lepton's efficiencies in tagged lepton's tightness
 - \Rightarrow leptons no longer assumed to be independent!
- real efficiencies calculated in signal region using MC only

FSP

$$\Rightarrow r_e(\mu) = \begin{cases} \frac{N_{\rm RX}^{\rm TT}}{N_{\rm RX}^{\rm LT}}, & \mu \text{ tight} \\ \frac{N_{\rm RX}^{\rm TT}}{N_{\rm RX}^{\rm TT}}, & \mu \text{ not tight} \end{cases} r_\mu(e) = \begin{cases} \frac{N_{\rm XR}^{\rm TT}}{N_{\rm XR}^{\rm TL}}, & e \text{ tight} \\ \frac{N_{\rm RX}^{\rm TT}}{N_{\rm RX}^{\rm TL}}, & \mu \text{ not tight} \end{cases}$$

• fake efficiencies from same-sign ZVR, using data, subtracting MC with real lepton

$$\Rightarrow f_e(\mu) = \begin{cases} \frac{N_{\text{Data}}^{\text{TT}} - N_{\text{RX}}^{\text{TT}}}{N_{\text{Data}}^{\text{LT}} - N_{\text{RX}}^{\text{LT}}}, & \mu \text{ tight} \\ \frac{N_{\text{Data}}^{\text{TT}} - N_{\text{RX}}^{\text{TT}}}{N_{\text{Data}}^{\text{LT}} - N_{\text{RX}}^{\text{TT}}}, & \mu \text{ not tight} \end{cases} \qquad f_{\mu}(e) = \begin{cases} \frac{N_{\text{Data}}^{\text{TT}} - N_{\text{XR}}^{\text{TT}}}{N_{\text{Data}}^{\text{TL}} - N_{\text{XR}}^{\text{TT}}}, & e \text{ tight} \\ \frac{N_{\text{Data}}^{\text{TT}} - N_{\text{RX}}^{\text{TT}}}{N_{\text{Data}}^{\text{Dat}} - N_{\text{RX}}^{\text{TT}}}, & \mu \text{ not tight} \end{cases}$$

Calculation of efficiencies

Best agreement with:

- same combined e- μ -triggers as in analysis
- loose ID & loose isolation vs. medium ID & tight isolation
- efficiencies binned in $p_{\rm T}$ and tightness of tagged lepton

Calculation of efficiencies

Best agreement with:

- same combined e- μ -triggers as in analysis
- loose ID & loose isolation vs. medium ID & tight isolation
- efficiencies binned in $p_{\rm T}$ and tightness of tagged lepton

Distributions

Distributions

Matrix Method

Reweighting

Distributions ○○●

Distributions

