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Summary Splits (decompositions) of the mechanical energy potential for regularised fracture models, like phase-field fracture and
eigenfracture, are frequently motivated by the statement that crack nucleation and crack growth have to be prevented at compression
loads. The intention of the talk is to show that this energy decomposition is an essential part of such fracture models, and to
investigate the underlying mathematical statement and its physical interpretation. Finally, a general framework for the derivation of
physically based energy splits is presented, which is not limited to certain bulk material models. Illustrative examples with crack
face friction, inelasticity and multi-physics are used to present the versatility of the approach.

THE FREE DISCONTINUITY PROBLEM

Griffith’s energetic description of brittle fracture processes can be formulated as variational problem

Epu,Γq “

ż

BzΓ

ψpDuq dV `Gc

ż

Γ

dAÑ Min, (1)

where B is the domain of the body, Γ Ď B the domain of the crack, Gc the fracture toughness and u the displacement
field with the weak derivative Du. This variational problem belongs to the free discontinuity problems, in which the
unknown field u can exhibit discontinuities at the unknown (free) domain Γ of the crack.

Regularised formulations for the domain Γ have been proposed as an alternative to the variable integration domains
with discrete bounds at the discontinuities. Well known regularised formulations for the free discontinuity problem of
brittle fracture are for instance

phase-field for fracture Epu, pq “

ż

B

rψ´ ` gppqψ`s dV `Gc

ż

B

γlppq dV Ñ Min (2)

and eigenfracture Epu, pq “

ż

B

ψpε´ εeigq dV `Gc
Bεeig‰0

2 l
Ñ Min, (3)

where l is the regularisation parameter and Bεeig‰0 the domain of the crack neighbourhood, compare Fig. 1.

a) b)

Figure 1. a) Profile of the phase-field field through a crack and b) the crack neighbourhood definition in eigenfracture.

In both formulations, the deformation energy potential is expressed by an integration on the entire domain B, which
also includes the crack Γ. On the one side, the discretisation does not need to be adjusted nor to follow the cracks,
which allows to apply common schemes of computational mechanics, like the Finite Element Method. On the other
side, the deformation energy potential is not exclusively evaluated at points of solid material without cracks, compare
Fig. 2a). Hence, it is further evaluated at locations, where the crack is present in Eqs. (2) and (3). At those cracked
material points, the derivative of (discontinuous) displacement field does not represent the deformation of the solid
material nearby the crack, because it also includes a portion caused by the relative displacements between the crack
surfaces, see Fig. 2a).

The discontinuous functions of the free discontinuity problem can be described in the space of Special functions
of Bounded Variation (SBV). The properties of this space are intensively studied, e.g. by De Giorgi at al. [1] and
Ambrosio et al. [2]. It is shown that the weak derivative Du at the discontinuity additively decomposes into an
absolutely continuous part Dau and a jump part Dju as Du “ Dau ` Dju. The physical interpretation of this
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Figure 2. a) Decomposition of the weak derivative Du and b) the crack neighbourhood definition in eigenfracture.

decomposition in the context of brittle fracture relates the absolutely continuous part Dau to the solid deformation
and the jump part Dju to the contribution of the crack, compare Fig. 2a). Then, the free discontinuity problem of
Eq. (1) can be rewritten as

Epu,Γq “

ż

B

rψpDuq ´ ψpDjuqs dV `Gc

ż

Γ

dA

“

ż

B

ψpDauq dV `Gc

ż

Γ

dAÑ Min. (4)

The comparison of this formulation to the regularised formulations in Eqs. (2) and (3) shows that the used energy
decompositions are realisations of the weak derivative decomposition.

PHYSICAL SPLITS MODELS

Having the mathematical basis and physical interpretation of the splits identified, artificial split approaches can be
overcome and replaced by physical models. The combination of a discrete crack model for a small crack portion and
the established concept of computational homogenisation yields the variational framework of Representative Crack
Elements (RCE), which allows to derive the energy decomposition through the determination of Dau as H|x “

H̄ ` 1
l1 vūw bN1 for mechanical problems (compare Fig. 3).

a) b)

Figure 3. a) Realisation for a representative crack element and b) its deformed state.

Finally, the RCE can be treated as an ordinary problem of solid mechanics with contact at the crack surface. Con-
ventional material models for the bulk can be applied to the RCE. Moreover, the solution of the problem is cheap,
because the entire problem can be formulated w.r.t. the unknown jump of the displacement field vūw. The RCE frame-
work has been successfully applied for instance to anisotropic elasticity [3, 4, 5], crack face friction and dissipative
materials [6], thermo-mechanics [7] and electro-mechanics [8].
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