
Towards a Fault-Injection Benchmarking Suite
Tianhao Wang, Robin Thunig and Horst Schirmeier

Chair of Operating Systems, TU Dresden, Germany
tianhao.wang2@mailbox.tu-dresden.de

{robin.thunig, horst.schirmeier}@tu-dresden.de

Abstract—Soft errors in memories and logic circuits are known
to disturb program execution. In this context, the research
community has been proposing a plethora of fault-tolerance
(FT) solutions over the last decades, as well as fault-injection
(FI) approaches to test, measure and compare them. However,
there is no agreed-upon benchmarking suite for demonstrating
FT or FI approaches. As a replacement, authors pick benchmarks
from other domains, e.g. embedded systems. This leads to little
comparability across publications, and causes behavioral overlap
within benchmarks that were not selected for orthogonality in
the FT/FI domain.

In this paper, we want to initiate a discussion on what a
benchmarking suite for the FT/FI domain should look like, and
propose criteria for benchmark selection.

I. INTRODUCTION

Soft errors have been posing threats to modern computer
systems, particularly in mission-critical applications such as
satellites. Software-implemented hardware fault tolerance is
a cost-effective way of mitigating soft errors. Researchers
typically demonstrate their fault-tolerance (FT) mechanisms
or fault-injection (FI) frameworks with a set of benchmarking
programs. While there exists abundant research on FT and FI, to
the best of our knowledge, there is no dedicated benchmarking
suite for the FT/FI domain.

To test their FT and FI mechanisms, researchers usually
resort to benchmarking suites from other domains such as
TACLeBench [1] for Worst-Case Execution Time (WCET)
research or MiBench [2] for embedded systems. These bench-
marking suites are designed for different purposes and metrics
than those relevant in the FT/FI domain. This leads to three
major shortcomings:

(1) Little Comparability across FT/FI Papers. It is hard to
compare the effectiveness of different FT/FI mechanisms when
they are tested with different benchmarking programs. We also
show in Sec. III that even the same benchmarking program
could have a dramatically different fault space when built with
different runtime.

(2) Overlapping Benchmarks. It is difficult to select a
minimal set of benchmarks from other domains that achieves a
full coverage of FT/FI relevant properties. Researchers usually
pick as many benchmarks as possible to deliver a convincing
demonstration, regardless of the potential overlap within the
benchmarks. This leads to inefficiency as each additional
benchmark could cost a huge amount of computing resources
and time, particularly in the FI experiments.

(3) Limited Configurability. Technically, the out-of-the-box
benchmarks from other domains are usually not optimal for

FI campaigns. For example, we often need programs to meet
certain requirements such as a minimal amount of memory-
access events or a maximal execution time. However, in most
cases – if at all – we can only adjust the scale of the input.

Therefore we would like to open a discussion whether the
FT/FI domain needs its own benchmarking suite, and which
requirements it should meet.

II. PREFERABLE BENCHMARK PROPERTIES

As an example, Guthaus et al. [2] select benchmarks for
MiBench on a basis of their relevance in industrial embedded
systems, and primarily focus on the system performance as a
benchmarking metric. Falk et al.’s TACLeBench [1] is apt for
WCET research. The focus is on the metrics of WCET analysis
tools. The authors further differentiate usage-type categories
like kernel, sequential, application, test and parallel.

While these domain-specific criteria and metrics could also
be important for FT/FI research, they provide us with very
limited insight when analysing the fault tolerance of programs.
Some benchmarks could also be totally undesired by FT/
FI experiments, such as the test group in TACLeBench or
MiBench’s basicmath benchmark, which are designed to stress
test the system under test with a repeated and simple workload.

From the experience and observations in the literature, we
would like to propose several preferable properties for a FT/FI
benchmarking suite.

A. Different Granularities. We observe that the FT/FI litera-
ture uses both simple, bare-metal algorithm implementations
and complex system compositions for demonstration purposes.
Therefore we suggest to include benchmarks in different
granularities, e.g. 1) isolated algorithm implementations and
program parts for a more targeted analysis and 2) integrated
systems that demonstrate more realistic use cases.

B. Selection of Relevant Benchmarks. We suggest that
it should be possible to classify benchmarks into different
groups that can be utilized by FT/FI researchers to achieve
a representative and preferably minimal experiment setup.
Currently we have two categorizations in mind which are
1) categorizing benchmarks with respect to their program char-
acteristics, which might include memory usage, runtime, fault
space characteristics, etc., with which redundant benchmarks
could be avoided and 2) categorizing benchmarks into specific
domains, like possibly MiBench [2] in the embedded systems
domain.

C. Resource-Efficient Fault Injection. An FI benchmarking
suite should be designed with heavy FI evaluations in mind.

ar
X

iv
:2

40
3.

20
31

9v
1 

 [
cs

.S
E

] 
 2

9 
M

ar
 2

02
4



In this regard, we aim for a benchmark suite that 1) relies
on a lightweight infrastructure and 2) is configurable to meet
requirements such as execution time and memory usage. These
properties would be helpful to adjust the fault-space size to
specific needs, e.g. to reduce the number of necessary injections,
enabling large-scale FI experiment campaigns.

D. Self-contained Runtime. Besides being lightweight, we
propose that the benchmarking suite should also be self-
contained and portable. On one hand, FI frameworks such
as FAIL* [3] run the benchmarks in an instrumented virtual
machine. This requires target programs to bring their own
runtime, including a barebone operating system and in most
cases, a standard library. On the other hand, the dependency on
uncertain external runtime support also makes experiment re-
sults less comparable across different studies. TACLeBench [1]
shows a good example of portability in this regard.

III. EVALUATION OF SELECTED PROPERTIES

In this section, we exemplarily explore some of the afore-
mentioned benchmarking suite properties in more detail. For
this fast abstract, we try to find criteria to classify benchmarks
based on their characteristics and demonstrate what benefit a
lightweight infrastructure could bring to speed up FI.

The plot in Fig. 1 shows some of the aforementioned
properties derived from an FI campaign with MiBench [2] and
TACLeBench [1], [4]. As a preliminary study, it includes the
number of dynamic instructions, the number of memory-access
locations1, and the Silent Data Corruption (SDC) count. From
a bird’s eye view, the benchmarks fill in three quadrants, and
exhibit some clustering patterns. This may suggest that 1) we
are missing benchmarks that have very high data throughput
(e.g., using SIMD instructions), 2) some benchmarks may be
overlapping in terms of their fault-space characteristics, and
3) the outliers may be interesting targets.

Interesting program characteristics beyond those shown are,
e.g., stack and heap usage, branching behavior, or memory-
access granularity.

To highlight the relevance of program granularities, we
measured the runtimes of a subset of MiBench benchmarks
compiled (1) in a full-system setting with the eCos [6] OS, and
(2) in a bare-metal setting based on picolibc [5]. The results
show that for the MiBench benchmarks dijkstra, susan, crc
and cutcp, the eCos variants have 37%–128% more dynamic
instructions. The number of dynamic memory accesses is
increased by the same order of magnitude. In the same
experiments, the FI results are also vastly different across
the two variants: Notably the full-system setting is more prone
to failure modes such as timeout. For example, the eCos variant
of crc has 97% more SDCs, 801% more timeouts and 1491%
more CPU exceptions compared to the picolibc variant.

IV. CONCLUSION

To start a discussion on a potential dedicated FT/FI-specific
benchmarking suite, we demonstrated how this domain could

1The number of unique memory locations where at least one memory read
or write event is recorded during the FI campaign.

103 104 105 106 107

Number of Dynamic Instructions

102

103

104

105

106

Nu
m

be
r o

f U
ni

qu
e 

M
em

or
y 

Ac
ce

ss
 L

oc
at

io
ns

mibench:

0 dijkstra
1 crc
2 mri-gridding
3 adpcm
4 blowfish
5 basicmath
6 tpacf
7 susan
8 stencil
9 sad
10 rijndael
11 fft
12 gsm
13 histo
14 mri-q

TACLeBench:

15 binarysearch
16 adpcm_dec
17 bitcount
18 bitonic
19 countnegative
20 bsort
21 h264_dec
22 insertsort
23 jfdctint
24 ludcmp
25 huff_dec
26 matrix1
27 minver
28 lms
29 ndes
30 statemate
31 g723_enc
32 cubic
33 lift
34 filterbank
35 dijkstra

0

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

2829

30

31

32
33

34

35

mibench
TACLeBench

Fig. 1. Number of dynamic instructions, unique memory-access locations
and SDCs (circle sizes) of MiBench [2] benchmarks compiled with picolibc
[5] and TACLeBench [1] as used by Borchert et al. [4], measured with the
FAIL* fault-injection framework.

benefit. Such a benchmarking suite should have a full coverage
in terms of both practical applicability and program charac-
teristics, include benchmarks in different granularities, ship a
self-contained and lean runtime, and expose rich configurability.
Nevertheless, it still remains an open question what the most
relevant program properties for FT/FI would be.

REFERENCES

[1] H. Falk, S. Altmeyer, P. Hellinckx, et al., “TACLeBench: A benchmark
collection to support worst-case execution time research,” in 16th
International Workshop on Worst-Case Execution Time Analysis (WCET
2016), M. Schoeberl, Ed., ser. OpenAccess Series in Informatics
(OASIcs), vol. 55, Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2016, 2:1–2:10. DOI: 10.4230/OASIcs.WCET.
2016.2.

[2] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” in IEEE Int. W’shop on Workload Characterization
(WWC ’01), Washington, DC, USA: IEEE, 2001, pp. 3–14, ISBN: 0-
7803-7315-4. DOI: 10.1109/WWC.2001.15.

[3] H. Schirmeier, M. Hoffmann, C. Dietrich, M. Lenz, D. Lohmann, and
O. Spinczyk, “FAIL*: An open and versatile fault-injection framework
for the assessment of software-implemented hardware fault tolerance,”
in 11th Europ. Depend. Comp. Conf. (EDCC ’15), (Paris, France),
Piscataway, NJ, USA: IEEE, Sep. 2015, pp. 245–255. DOI: 10.1109/
EDCC.2015.28.

[4] C. Borchert, H. Schirmeier, and O. Spinczyk, “Compiler-implemented
differential checksums: Effective detection and correction of transient
and permanent memory errors,” in 53rd IEEE/IFIP Int. Conf. on Dep.
Sys. & Netw. (DSN ’23), (Porto, Portugal), Piscataway, NJ, USA: IEEE,
Jun. 2023. DOI: 10.1109/DSN58367.2023.00021.

[5] Keith Packard, Picolibc: C Libraries for Smaller Embedded Systems,
https://keithp.com/picolibc/, 2023.

[6] A. Massa, Embedded Software Development with eCos. Upper Saddle
River, NJ, USA: Prentice Hall, 2002, ISBN: 0130354732.

https://doi.org/10.4230/OASIcs.WCET.2016.2
https://doi.org/10.4230/OASIcs.WCET.2016.2
https://doi.org/10.1109/WWC.2001.15
https://doi.org/10.1109/EDCC.2015.28
https://doi.org/10.1109/EDCC.2015.28
https://doi.org/10.1109/DSN58367.2023.00021
https://keithp.com/picolibc/

