
ar
X

iv
:2

40
7.

04
92

4v
1

 [
m

at
h.

R
A

]
 6

 J
ul

 2
02

4

Symmetric Linear Arc Monadic Datalog

and Gadget Reductions

Manuel Bodirsky and Florian Starke∗

Institut für Algebra, TU Dresden

July 9, 2024

A Datalog program solves a constraint satisfaction problem (CSP) if and

only if it derives the goal predicate precisely on the unsatisfiable instances of

the CSP. There are three Datalog fragments that are particularly important

for finite-domain constraint satisfaction: arc monadic Datalog, linear Data-

log, and symmetric linear Datalog, each having good computational proper-

ties. We consider the fragment of Datalog where we impose all of these re-

strictions simultaneously, i.e., we study symmetric linear arc monadic (slam)

Datalog. We characterise the CSPs that can be solved by a slam Datalog pro-

gram as those that have a gadget reduction to a particular Boolean constraint

satisfaction problem. We also present exact characterisations in terms of a

homomorphism duality (which we call unfolded caterpillar duality), and in

universal-algebraic terms (using known minor conditions, namely the exis-

tence of quasi Maltsev operations and k-absorptive operations of arity nk,

for all n, k ≥ 1). Our characterisations also imply that the question whether

a given finite-domain CSP can be expressed by a slam Datalog program is

decidable.

Contents

1 Introduction 2

1.1 Arc Monadic Datalog . 3

1.2 Linear Datalog . 4

1.3 Symmetric Linear Datalog . 4

∗Both authors have been funded by the European Research Council (Project POCOCOP, ERC Synergy
Grant 101071674). Views and opinions expressed are however those of the authors only and do not
necessarily reflect those of the European Union or the European Research Council Executive Agency.
Neither the European Union nor the granting authority can be held responsible for them.

1

http://arxiv.org/abs/2407.04924v1

1.4 Our Contributions . 4

1.5 Related Results . 5

2 Preliminaries 6

2.1 Structures and Graphs . 6

2.2 Homomorphisms and CSPs . 6

2.3 Primitive Positive Constructions . 7

2.4 Datalog . 8

2.5 The Incidence Graph . 9

2.6 Dualities . 10

2.7 Minor conditions . 13

2.8 Indicator structures . 15

3 Results 16

3.1 Symmetrizing Linear Arc Monadic Datalog 17

3.2 Proving Unfolded Caterpillar Duality . 20

3.3 Using Unfolded Caterpillar Duality . 22

3.4 Proof of the main result . 26

4 Decidability of Meta-Problem 28

5 Remarks on Related Results 28

6 Conclusion and Open Problems 30

1 Introduction

Datalog is an important concept linking database theory with the theory of constraint

satisfaction. It is by far the most intensively studied formalism for polynomial-time

tractability in constraint satisfaction. Datalog allows to formulate algorithms that are

based on iterating local inferences, aka constraint propagation or establishing local con-

sistency ; this has been made explicit by Feder and Vardi in their groundbreaking work

where they also formulate the finite-domain CSP dichotomy conjecture [25]. Following

their convention, we say that a Datalog program Π solves a CSP if Π derives the goal

predicate on an instance of the CSP if and only if the instance is unsatisfiable.

The class of CSPs that can be solved by Datalog is closed under so-called ‘gadget

reductions’ (a result due to Larose and Zádori [33]). In such a reduction, the variables

in an instance of a constraint satisfaction problem are replaced by tuples of variables

of some fixed finite length, and the constraints are replaced by gadgets (implemented

by conjunctive queries; a formal definition can be found in Section 2.3); many of the

well-known reductions between computational problems can be phrased as gadget re-

ductions. Datalog is sufficiently powerful to simulate such gadget reductions; this has

2

been formalised by Atserias, Bulatov, and Dawar in [2] and the connection has been

sharpened recently by Dalmau and Opršal [21].

Feder and Vardi showed that Datalog cannot solve systems of linear equations over

finite fields, even though such systems can be solved in polynomial time [25]. They

suggest that the ability to simulate systems of linear equations should essentially be

the only reason for a CSP to not be in Datalog. This conjecture was formalised by

Larose and Zádori [33]: they observed that if systems of linear equations admit a gadget

reduction to a CSP, then the CSP is not in Datalog, and they conjectured that otherwise

the CSP can be solved by Datalog. This conjecture was proved by Barto and Kozik in

2009 [3], long before the resolution of the finite-domain CSP dichotomy conjecture by

Bulatov [13] and by Zhuk [37, 38].

Datalog programs can be evaluated in polynomial time; but even a running time in

O(n3) on a sequential computer can be prohibitively expensive in practise. This is one

of the reasons why syntactic fragments of Datalog have been studied, which often come

with better computational properties.

1.1 Arc Monadic Datalog

In monadic Datalog, we restrict the arity of the inferred predicates of the Datalog pro-

gram to one (i.e., all the IDBs are monadic). In arc Datalog we restrict each rule to a

single input relation symbol (i.e., the body contains a single EDB ; for formal definitions,

see Section 2.4).

An important Datalog fragment is arc monadic Datalog, which is still powerful enough

to express the famous arc consistency procedure in constraint satisfaction. The arc

consistency procedure has already been studied by Feder and Vardi [25], and has many

favorable properties: it can be evaluated in linear time and linear space. It is used

as an important pre-processing step in the algorithms for both of the mentioned CSP

dichotomy proofs, and it is also used in many practical implementations of algorithms

in constraint satisfaction. The arc consistency procedure is still extremely powerful, and

can for instance solve the P-complete HornSat Problem.

Feder and Vardi characterised the power of the arc consistency procedure in terms of

tree duality (see Section 2.6), a natural combinatorial property which has been studied

intensively in the graph homomorphism literature in the 90s (see, e.g., [26, 27]). Their

characterisation has several remarkable consequences: one is that also the class of CSPs

that can be solved by an arc monadic Datalog program is closed under gadget reductions.

Another one is a collapse result for Datalog when it comes to finite-domain CSPs, namely

that monadic Datalog collapses to arc monadic Datalog: in fact, if a finite-domain CSP

can be solved by a monadic Datalog program, then it can already be solved by the arc

consistency procedure (i.e., by a program in arc monadic Datalog). This statement is

false without the restriction to finite-domain CSPs; in fact, there are infinite-domain

CSPs that can be solved by a monadic Datalog program, but not by a program in arc

monadic Datalog (Bodirsky and Dalmau [10]).

3

1.2 Linear Datalog

Besides arc monadic Datalog, there are other natural fragments of Datalog. The most

notable one is linear Datalog, introduced by Dalmau [19]. Linear Datalog programs

can be evaluated in non-deterministic logarithmic space (NL), and hence cannot express

P-hard problems (unless P=NL). Dalmau asked whether the converse is true as well,

i.e., whether every finite-domain CSP which is in NL can be solved by a linear Datalog

program [19]. This is widely treated as a conjecture, to which we refer as the linear

Datalog conjecture; it is one of the biggest open problems in finite-domain constraint

satisfaction.

There are some sufficient conditions for solvability by linear Datalog (see Bulatov,

Kozik, and Willard [5] and Carvalho, Dalmau, and Krokhin [16]) and some necessary

conditions (Larose and Tesson [32]) but the results still leave a large gap. For examples

of CSPs of orientations of trees that fall into this gap, see Bodirsky, Buĺın, Starke, and

Wernthaler [8]. Again, linear Datalog is closed under gadget reductions [35]. And indeed,

if HornSat has a gadget-reduction in a finite-domain CSP, then the finite-domain CSP

cannot be solved by a linear Datalog program [1].

1.3 Symmetric Linear Datalog

A further restriction is symmetric linear Datalog, introduced by Egri, Larose, and Tes-

son [23]. symmetric linear Datalog programs can be evaluated in deterministic logspace

(L). Egri, Larose, and Tesson conjecture that every finite-domain CSP which is in L can

be be solved by a symmetric linear Datalog program [23]; we refer to this conjecture

as the symmetric linear Datalog conjecture. Also symmetric linear Datalog is closed

under gadget reductions [35]. Since directed reachability is not in symmetric linear

Datalog [24], it follows that every CSP that admits a gadget reduction from directed

reachability cannot be solved by a symmetric linear Datalog program. Egri, Larose, and

Tesson also suggest that this might be the only additional condition for containment in

symmetric linear Datalog, besides the known necessary conditions to be in linear Data-

log. Kazda [30] confirms the symmetric linear Datalog conjecture conditionally on the

truth of the linear Datalog conjecture, i.e., he shows that if a finite-domain CSP is in

linear Datalog and does not admit a gadget reduction from a CSP that corresponds to

the directed reachability problem, then it can be solved by a symmetric linear Datalog

program (generalizing an earlier result of Dalmau and Larose [20]).

1.4 Our Contributions

In this paper, we study the Datalog fragment that can be obtained by combining all the

previously considered restrictions, namely symmetric linear arc monadic (slam) Datalog.

Before stating our result we illustrate this fragment with some examples. For n ≥ 1, let

Pn be the directed path with n vertices an n− 1 edges. An example of a slam Datalog

4

program which solves CSP(P2) is

A(x) :− E(x, y) goal :− E(x, y), A(y)

(in this case, the program is even recursion-free). An example of a slam Datalog program

which solves CSP(P3), this time with recursion and IDBs A and B, is

A(x) :− E(x, y) B(x) :− A(y), E(x, y)

A(y) :− B(x), E(x, y) goal :− B(y), E(x, y).

It follows from our results that the class of CSPs that can be solved by slam Data-

log programs is closed under gadget reductions, despite the many restrictions that we

imposed.

We provide a full description of the power of a Datalog fragment in terms of gadget

reductions: we show that a CSP can be solved by a slam Datalog program if and only

if it has a gadget reduction to CSP(P2).
1 The particular role of the structure P2 is

explained by the fact that it is a representative of the unique class of CSPs which is non-

trivial and weakest with respect to gadget reductions – a formalisation of this can be

found in Section 2.3. This shows that slam Datalog is the smallest non-trivial fragment

of Datalog that is closed under gadget reductions.

Our main result (Theorem 3.1) establishes a tight connection between the power of

slam Datalog and various central themes in structural combinatorics and universal alge-

bra. Specifically, the power of slam Datalog can be characterised by a new combinatorial

duality which we call unfolded caterpillar duality (restricting the concept of caterpillar

duality of Carvalho, Dalmau, and Krokhin [17]), and by the existence of a quasi Maltsev

polymorphism (a central concept in universal algebra) in combination with kn-ary k-

absorbing polymorphisms for every k, n ≥ 1 (introduced in [17] as well). Our result also

implies that the following meta-problem can be decided algorithmically: given a finite

structure B, can CSP(B) be solved by a slam Datalog program?

1.5 Related Results

Solvability of finite-domain CSPs by (unrestricted) Datalog was first studied by Feder

and Vardi; they proved that CSP(B) can be solved by Datalog if and only if B has

bounded treewidth duality, and they showed that CSPs for systems of linear equations over

finite Abelian groups cannot be solved by Datalog. Larose and Zadori [33] showed that

solvability by Datalog is preserved by gadget reductions and they asked whether having

a gadget reduction from CSPs for systems of linear equations is not only a sufficient,

but also a necessary condition for not being solvable by Datalog. This questions was

1The statement even holds for infinite-domain CSPs, since being solved by an arc monadic Datalog
program implies the existence of a finite template [10] and admitting a gadget reduction to a finite-
domain CSP implies the existence of a finite template as well [21].

5

answered positive by Barto and Kozik [4]. Kozik, Krokhin, and Willard [31] gave a

characterisation of Datalog in terms of minor conditions.

Linear (but not necessarily symmetric) monadic arc Datalog has been studied by

Carvalho, Dalmau, and Krokhin [17]; our proof builds on their result. In their survey

on Datalog fragments and dualities in constraint satisfaction [14] Bulatov, Krokhin, and

Larose write “it would be interesting to find (. . .) an appropriate notion of duality for

symmetric (Linear) Datalog (...)”. We do find such a notion for symmetric linear arc

monadic Datalog, namely unfolded caterpillar duality (Theorem 3.1).

2 Preliminaries

We write [n] for the set {1, . . . , n} and [m,n] for the set {m,m+1, . . . , n}. We say that

a tuple a ∈ Ak, for k ∈ N, is injective if a is injective when viewed as a function from

[k] to A.

2.1 Structures and Graphs

We assume familiarity with the concepts of relational structures and first-order formulas

from mathematical logic, as introduced for instance in [28]. The arity of a relation

symbol R is denoted by ar(R). If A is a τ -structure, then we sometimes use the same

symbol for R ∈ τ and the respective relation RA of A. We write A[S] for the substructure

of A induced on S.

A (directed) graph is a relational structure with a single binary relation E. For instance

the clique with n vertices is the graph Kn with domain [n] and edges EKn := {(a, b) | a 6=

b}. Let G be a graph. An (undirected) path from a to b in G is a tuple P = (a1, . . . , an)

such that a1, . . . , an are pairwise distinct, a1 = a, an = b, and for all i ∈ [n− 1] there is

an edge between ai and ai+1 (from ai to ai+1 or from ai+1 to ai). If i ∈ [2, n − 1], then

we say that P passes through ai. A graph G is called connected if for any two elements

a, b there exists a path from a to b in G. A cycle is a path from a to b of length n at

least three such that there is an edge between a and b. A graph is called acyclic if it

does not contain any cycle. A graph is called a tree if it is connected and acyclic. A

graph has girth k if the length of the shortest cycle is k.

2.2 Homomorphisms and CSPs

Let τ be a relational signature and let A and B be τ -structures. Then a homomor-

phism from A to B is a map h : A → B such that for R ∈ τ , say of arity k, we have

(h(a1), . . . , h(ak)) ∈ RB whenever (a1, . . . , ak) ∈ RA. An embedding of A into B is an in-

jective map e : A→ B such that (e(a1), . . . , e(ak)) ∈ R
B if and only if (a1, . . . , ak) ∈ RA.

We write A → B if there exists a homomorphism from A to B and A 6→ B if there exists

no homomorphism from A to B.

6

If τ is a finite relational signature and B is a τ -structure, then CSP(B) denotes the

class of all finite τ -structures A such that A → B. It can be viewed as a computational

problem. For example, CSP(Kn) consists of the set of all finite n-colourable graphs, and

can therefore be viewed as the n-colorability problem. Clearly, for finite structures B,

this problem is always in NP.

A τ -structure B is homomorphically equivalent to a τ -structure C if there are homo-

morphisms from B to C and vice versa. Clearly, homomorphically equivalent structures

have the same CSP. A relational τ -structure C is called a core if all endomorphisms

of C are embeddings. It is well-known and easy to see that every finite structure B

is homomorphically equivalent to a core C, and that all core structures C that are ho-

momorphically equivalent to B are isomorphic; therefore, we refer to C as the core of

B.

2.3 Primitive Positive Constructions

A τ -formula φ is called a conjunctive query (in constraint satisfaction and model theory

such formulas are called primitive positive, or short pp) if it is built from atomic formulas

(including atomic formulas of the form x = y) using only conjunction and existential

quantification. If B is a τ -structure, and φ is a conjunctive query over the signature τ ,

then the relation R = {(t1, . . . , tk) | B |= φ(t1, . . . , tk)} is called the relation defined by

φ.

Definition 2.1. The canonical database of a conjunctive query φ over the signature τ

is the τ -structure B that can be constructed as follows: Let φ′ be obtained from φ be

renaming all existentially quantified variables such that no two quantified variables have

the same name. Let φ′′ be obtained from φ′ by removing all conjuncts of the form x = y

in φ′ and by identifying variables x and y if there is a conjunct x = y in φ′. Then B is

the τ -structure whose domain is the set of variables of φ′′ such that for every R ∈ τ we

have

RB = {(v1, . . . , vk) | R(v1, . . . , vk) is a conjunct of φ′′}.

The canonical conjunctive query of a structure B with signature τ is the τ -formula with

variables B given by
∧

R∈τ

∧

t∈RB

R(t1, . . . , tar(R)).

Observe that the canonical database of the canonical conjunctive query of a struc-

ture B equals B. The following concepts have been introduced by Barto, Opršal, and

Pinsker [6].

Definition 2.2. A (d-th) pp-power of a τ -structure B is a structure C with domain Bd

such that every relation of C of arity k is definable by a conjunctive query in B as a

relation of arity dk. A structure is called primitive positive (pp) constructible of B if it

is homomorphically equivalent to a pp-power of B.

7

Primitive positive constructions turned out to the the essential tool for classifying the

complexity of finite-domain CSPs, because if C has a pp-construction in B, then there

is a so-called gadget reduction from CSP(B) to CSP(A); in fact, the converse is true as

well, see Dalmau and Opršal [21].

Definition 2.3. Let B be a class of finite τ -structures and let C be a class of finite ρ-

structures. Then a (d-dimensional) gadget reduction from C to B consists of conjunctive

query φR of arity dk over the signature τ for every R ∈ ρ of arity k. This defines the

following map r from finite ρ-structures C to finite τ -structures:

• replace each element c of C by a d-tuple ((c, 1), . . . , (c, d));

• for every R ∈ ρ of arity k and every tuple (t1, . . . , tk) ∈ RC, introduce a new

element for every existentially quantified variable in φR and define relations for

the relation symbols from τ such that the substructure induced by the new ele-

ments and {(t1, 1), . . . , (t1, d), . . . , (tk, 1), . . . , (tk, d)} induce a copy of the canonical

database of φR in the natural way. Let C′ be the resulting structure.

• let S be the smallest equivalence relation that contains all ordered pairs of elements

((c, i), (d, j)) such that there exists R ∈ ρ and (t1, . . . , tk) ∈ RC with tp = c, tq = d

such that φR(x1,1, . . . , xk,d) contains the conjunct xp,i = xq,j. Then r(C) := C′/S.

For instance, the solution to the Feder-Vardi conjecture mentioned in the introduction

states that CSP(B), for a finite structure B, is NP-hard if and only if K3 has a pp-

construction in B (unless P=NP); by what we have stated above, this is true if and only

if the 3-coloring problem has a gadget reduction in CSP(B).

Given the fundamental importance of conjunctive queries and homomorphisms in

database theory, we believe that pp-constructions and gadget reductions are an interest-

ing concept for database theory as well.

2.4 Datalog

Let τ and ρ be finite relational signatures such that τ ⊆ ρ. A Datalog program is a finite

set of rules of the form

φ0 :− φ1, . . . , φn

where each φi is an atomic τ -formula. The formula φ0 is called the head of the rule,

and the sequence φ1, . . . , φn is called the body of the rule. The symbols in τ are called

EDBs (extensional database predicates) and the other symbols from ρ are called IDBs

(intensional database predicates). In the rule heads, only IDBs are allowed. There is one

special IDB of arity 0, which is called the goal predicate. IDBs might also appear in the

rule bodies. We view the set of rules as a recursive specification of the IDBs in terms of

the EDBs – for a detailed introduction, see, e.g., [10]. A Datalog program is called

• linear if in each rule, at most one IDB appears in the body.

8

• arc if each rule involves at most one EDB.

• symmetric if it is linear and for every rule φ0 :− φ1, φ2, . . . , φn where φ0 and

φ1 are build from IDBs, the Datalog program also contains the reversed rule

φ1 :− φ0, φ2, . . . , φn.

If B is a τ -structure, then we say that CSP(B) is solved by a Datalog program Π with

EDBs τ if and only if the goal predicate is derived by Π on a finite τ -structure A if and

only if there is no homomorphism from A to B.

We say that a Datalog program has width (ℓ, k) if all IDBs have arity at most ℓ, and

if every rule has at most k variables. For given (ℓ, k) and a structure B, there exists a

Datalog program Π of width (ℓ, k) with the remarkable property that if some Datalog

program solves CSP(B), then Π solves CSP(B). This Datalog program is referred to

as the canonical Datalog program for CSP(B) of width (ℓ, k), and is constructed as

follows [25]: For every relation R over B of arity at most ℓ, we introduce a new IDB.

The empty relation of arity 0 plays the role of the goal predicate. Then Π contains all

rules φ :− φ1, . . . , φn with at most k variables such that the formula ∀x̄(φ1∧· · ·∧φn ⇒ φ)

holds in the expansion of B by all IDBs. If the canonical Datalog program for B derives

the goal predicate on a finite structure A, then there is no homomorphism from A to B

(see, e.g., [10]).

If k is the maximal arity of the EDBs, we may restrict the canonical Datalog program

of width (1, k) to those rules with only unary IDBs and at most one EDB; in this

case, we obtain the canonical arc monadic Datalog program, which is also known as

the arc consistency procedure. Analogously, we may define the canonical linear, and the

canonical symmetric Datalog program. We may also combine these restrictions, and

in particular obtain a definition the canonical slam Datalog program, i.e., the canonical

symmetric linear arc monadic Datalog program, which has not yet been studied in the

literature before.

The following lemma can be shown analogously to the well-known fact for unrestricted

canonical Datalog programs of width (ℓ, k) (see, e.g., [10]).

Lemma 2.4. Let B be a finite structure with a finite relational signature, and let Π be the

canonical slam Datalog program for B. If A is a finite structure with a homomorphism

to B, then Π does not derive false on A.

2.5 The Incidence Graph

Several results from graph theory concerning acyclicity and high girth can be generalised

to general structures. To formulate these generalisations, we need the concept of an

incidence graph of a relational structure A.

The incidence graph of a structure A with the relational signature τ is the bipartite

graph where one color class is A, and the other consists of all pairs of the form (t, R)

such that t ∈ RA and R ∈ τ . We put an edge between a and (t, R) if ti = a for some i.

9

The girth of an (undirected) graph G is the length of the shortest cycle in G. We say

that a relational structure is a generalised tree if its incidence graph is a tree. A leaf of

a generalised tree T is an element of T which has degree one in the incidence graph of

T.

A structureB is called injective if all tuples that are in some relation in B are injective

(i.e., have no repeated entries). A structure is called an (injective) tree if it is injective

and its incidence graph is a tree.

Theorem 2.5 (Sparse incomparability lemma for structures [25]). Let τ be a finite

relational signature. Let A and B be τ -structure with finite domains such that A 6→ B.

Then for every m ∈ N there exists an injective finite structure A′ whose incidence graph

has girth at least m, such that A′ → A and A′ 6→ B.

2.6 Dualities

For a τ -structure B and a class of τ -structures F the pair (F ,B) is called a duality pair

if a finite structure A has a homomorphism to B if and only if no structure F ∈ F has

a homomorphism to B. Several forms of duality pairs will be relevant here, depending

on the class of structures F .

A τ -structure B has finite duality if there exists a finite set of τ -structures F such

that (F ,B) is a duality pair. The property of having finite duality is among the very

few notions studied in the context of constraint satisfaction which is not preserved under

gadget reductions, as illustrated in the following example.

Example 2.6. Let τ = {E} be the signature that consists of a single binary relation

symbol E whose elements we call edges. Let Pn be the structure with the domain

{1, 2, . . . , n} and edges {(1, 2), (2, 3), . . . , (n − 1, n)}. Let Zn be the structure with the

domain {1, 2, . . . , 2n+ 3} and edges

{(1, 2), (2, 3), (4, 3), (4, 5), . . . , (2n − 2, 2n − 1), (n − 1, n)}.

Then

• P2 has finite duality, witnessed by the duality pair ({P3},P2),

• P2 pp-constructs P3 [11], so CSP(P3) has a gadget reduction to CSP(P2), but

• P3 does not have finite duality: this is witnessed by the fact that

({Zn | n ∈ N},P3)

is a duality pair [26], and that there is no homomorphism from Zn to Zm for

n < m. △

10

1

((1, 2, 3), R)

3

2

((3, 6), E)

6

((3, 4, 5), R)4

5

((3), P)

((1), P)

((6), P)

1

((1, 2), E)

2

((2, 3, 4), R)

4

3((3), P)

((4, 5), E)

5

Figure 1: An example of the incidence graph of a caterpillar (left) and of a structure
that is not a caterpillar (right).

Example 2.7. Let ρ = {E,Z} be the signature that consists of a binary relation symbol

E and a unary relation symbol Z. Let B2 be the structure with domain {0, 1} where

EB2 := {(1, 1), (0, 1), (1, 0)}

ZB2 := {0}

Let P′
2 be the ρ-expansion of P2 where ZP′

2 := {0, 1}. Then ({P′
2},B2) is a duality

pair. △

A more robust form of duality is tree duality, which plays a central role in constraint

satisfaction, and is studied in the graph homomorphism literature in the 90s. A structure

B has tree duality if there exists a (not necessarily finite) set of trees F such that (F ,B)

is a duality pair. The following is well known; see Theorem 7.4 in [15]. The equivalence

of 1. and 3. is from [25]; also see [7].

Theorem 2.8. Let B be a finite τ -structure. Then the following are equivalent:

1. B has tree duality;

2. B has a pp-construction in ({0, 1}; {0}, {1}, {0, 1}3 \ {(1, 1, 0)});

3. B can be solved by arc consistency.

There are finite structures with tree duality that have a P-complete CSP, such as the

structure ({0, 1}; {0}, {1}, {0, 1}3 \{(1, 1, 0)}), which is essentially the Boolean HornSAT

problem. In the following, we therefore introduce more restrictive forms of dualities.

Definition 2.9. A relational structure A is called a generalised caterpillar if

11

T

a

b

a

a

b

b

T′

a

b′

a′

b

Figure 2: Example of an (a, b)-unfolding T′ of a tree T.

• it is a generalised tree,

• its incidence graph G contains a path P = (a1, . . . , an) such that every vertex in

G \ {a1, . . . , an} of the form (t, R) is connected (in G) to a vertex in P .

See Figure 1 (left) for an example. A relational structure A is called an (injective)

caterpillar if it is injective and a generalised caterpillar (this definition of a caterpillar

is equivalent to the one given in [17]). A structure B has caterpillar duality if there

exists a set of caterpillars F such that (F ,B) is a duality pair. The structures B with

caterpillar duality have been characterised by [17] (Theorem 2.18) in terms of linear arc

Datalog.

To capture the power of symmetric linear arc Datalog, we present a more restrictive

form of duality. Let T be an (injective) tree and let a and b be distinct elements of

T. Write the canonical query of T as φa ∧ φa,b ∧ φb where φa contains all conjuncts of

the form R(ū) such that in the incidence graph, all paths from the vertex (ū, R) to the

vertex b pass though a. Similarly, we define φb, switching the roles of a and b. Note

that φa and φb do not share any conjuncts. All the remaining conjuncts of the canonical

query form ψ. Let φ1 be obtained from φa (φb) by existentially quantifying all variables

except for a (b), and let ψ be obtained from φa,b by existentially quantifying all variables

except for a and b. We introduce the following concept; see Figure 2 for an example.

Definition 2.10. Let T be an (injective) tree and let a and b be distinct elements of T

that are not leaves. The (a, b)-unfolding of T is the canonical database of the formula

φ1(a) ∧ ψ(a, b
′) ∧ ψ(a′, b′) ∧ ψ(a′, b) ∧ φ2(b)

where φ1, φ2, and ψ are as defined above. A unfolding of T is a structure T′ that is

obtained by a sequence T = T1,T2, . . . ,Tn = T′ such that Ti is an (ai, bi)-unfolding of

Ti−1, for all i ∈ {2, . . . , n}.

Note that an unfolding of a tree T is again a tree and has a homomorphism to T. It can

also be shown that the unfolding of a caterpillar is a caterpillar as well (Lemma 3.7). We

say that a structureB has unfolded caterpillar duality if there exists a set F of caterpillars

such that (F ,B) is a duality pair, and F contains every unfolding of a caterpillar in F .

12

Clearly, unfolded caterpillar duality implies caterpillar duality. Unfolded generalised

caterpillar duality is defined analogously.

2.7 Minor conditions

If B is a structure and k ≥ 1, then a polymorphism of B of arity k is a homomorphism

from Bk to B. The set of all polymorphisms of B is denoted by Pol(B). An (operation)

clone is a set of operations which contains the projections and is closed under compo-

sition. Note that Pol(B) is a clone. An operation f : Bn → B is called idempotent if

f(x, . . . , x) = x for all x ∈ B. A clone is called idempotent if all of its operations are

idempotent.

If A and B are a structures and k ≥ 1, then a polymorphism of (A,B) of arity k is

a homomorphism from Ak to B. The set of all polymorphisms of (A,B) is denoted by

Pol(A,B). Let f : An → B be a function and let σ : [n] → [m], then the map

fσ : A
m → B

(a1, . . . , am) 7→ f(aσ(1), . . . , aσ(n))

is called a minor of f . A minion is a set or functions from An to B that is closed under

taking minors. Note that Pol(A,B) is a minion. Let M and N be minions. A map

ξ : M → N is called a minion homomorphism if ξ preserves arity and for every f ∈ M

of arity n and every map σ : [n] → [m] we have

ξ(fσ) = (ξ(f))σ .

Let τ be a function signature, i.e., a set of function symbols, each equipped with an

arity. A minor condition is a finite set Σ of minor identities, i.e., expressions of the form

f(x1, . . . , xn) ≈ g(y1, . . . , ym)

where f is an n-ary function symbol from τ , g is an m-ary function symbol from τ , and

x1, . . . , xn, y1, . . . , ym are (not necessarily distinct) variables. If M is a minion, then a

map ξ : τ → M satisfies a minor condition Σ if for every minor identity f(x1, . . . , xn) ≈

g(y1, . . . , ym) ∈ Σ and for every assignment s : {x1, . . . , xn, y1, . . . , yn} → B we have

ξ(f)(s1(x1), . . . , s(xn)) = ξ(g)(s(y1), . . . , s(ym)).

We say that a minion M satisfies Σ if there exists a map ξ : τ → M that satisfies Σ.2 If

Σ and Σ′ are minor conditions, then we say that Σ implies Σ′ if every clone that satisfies

Σ also satisfies Σ′. We present some concrete minor conditions that are relevant in the

following.

2It is convenient and standard practise to notationally drop the distinction between f ∈ τ and ξ(f) ∈ M .

13

Definition 2.11. An operation m : B3 → B is called a quasi Maltsev operation if it

satisfies the minor condition

m(x, x, y) ≈ m(y, x, x) ≈ m(y, y, y).

A Maltsev operation is an idempotent quasi Maltsev operation. A quasi minority oper-

ation is a quasi Maltsev operation m that additionally satisfies

m(x, y, x) ≈ m(x, x, x)

and a minority operation is an idempotent quasi minority operation.

Definition 2.12. An operation f : Bm → B is called a quasi majority operation if it

satisfies the minor condition

m(x, x, y) ≈ m(x, y, x) ≈ m(y, x, x) ≈ m(x, x, x).

A majority operation is an idempotent quasi majority operation.

The following was shown in in [25, 29]; for the exact formulation, see [9].

Proposition 2.13. Let B be a finite relational τ -structure. Then the following are

equivalent:

• B has a quasi majority polymorphism.

• Every relation with a primitive positive definition in B has a definition by a con-

junction of primitive positive formulas, each with at most two free variables.

Example 2.14. Generalising Example 2.7, the structure Bn has domain {0, 1}, signa-

ture {0, Rn} and the relations {0} and {0, 1}n\{(0, . . . , 0)}. Define the structure Fn with

domain {1, . . . , n}, signature {0, Rn}, 0 := {1, . . . , n}, and Rn := {(1, . . . , n)}. Note that

({Fn},Bn) is a duality pair and that Fn is a tree, but not a caterpillar. The structure

Bn has finite duality, but no quasi Maltsev polymorphism and no quasi majority poly-

morphism. It follows from Theorems 2.18 and 3.1 that CSP(B) can be solved by linear

arc monadic Datalog but not by slam Datalog. △

Definition 2.15. Let k, n ∈ N>0. An operation f : Bkn → B is called k-block symmetric

if it satisfies the following condition

f(x11, . . . , x1k, . . . , xn1, . . . , xnk) ≈ f(y11, . . . , y1k, . . . , yn1, . . . , ynk) (1)

whenever {S1, . . . , Sn} = {T1, . . . , Tn} where Si = {xi1, . . . , xik} and Ti = {yi1, . . . , yik}.

If k = 1 or n = 1 then f is called totally symmetric.

If f is k-block symmetric and S1, . . . , Sn are subsets of B of size at most k, then we also

write f(S1, . . . , Sn) instead of f(x11, . . . , x1k, . . . , xn1, . . . , xnk) where {xi1, . . . , xik} = Si.

14

We say that f is k-absorptive if it satisfies

f(S1, S2, . . . , Sn) ≈ f(S2, S2, S3, . . . , Sn)

whenever S2 ⊆ S1.

Remark 2.16. Note that every structure with a 2-absorptive polymorphism f of arity

6 also has the quasi majority polymorphism m given by

m(x, y, z) := f(x, y, z, x, y, z),

because {x} ⊆ {x, z} and hence

m(x, x, z) = f(x, x, z, x, x, z) = f(x, x, x, x, x, x) = m(x, x, x)

and similarly m(x, z, x) = m(z, x, x) = m(x, x, x).

The list of equivalent statements from Theorem 2.8 can now be extended as follows.

Theorem 2.17 ([22, 25]). Let B be a finite τ -structure. Then B has tree duality if and

only if B has totally symmetric polymorphisms of all arities.

We will make crucial use of the following theorem.

Theorem 2.18 (Theorem 16 in [17]). Let B be a finite relational τ -structure. Then the

following are equivalent.

1. B has caterpillar duality.

2. CSP(B) can be solved by a linear arc monadic Datalog program.

3. Pol(B) contains for every k, n ≥ 1 an k-absorbing operation of arity kn.

4. B is homomorphically equivalent to a structure B′ with binary polymorphisms ⊔

and ⊓ such that (B′,⊔,⊓) is a (distributive) lattice.

2.8 Indicator structures

In this section we revisit a common theme in constraint satisfaction, the concept of an

indicator structure of a minor condition. To simplify the presentation, we only define

the indicator structure for minor conditions with only one function symbol. For our

purposes, this is without loss of generality, because for clones over a finite domain, every

minor condition is equivalent to such a restricted minor condition. If f : Cn → C and

g : Cm → C are operations, then the star product f ∗ g is defined to be the operation

defined as

(x1,1, . . . , xn,m) 7→ f(g(x1,1, . . . , x1,m), . . . , g(xn,1, . . . , xn,m)).

15

Lemma 2.19. Let Σ be a minor condition. Then there exists a minor condition Σ′ with

a single function symbol such that a clone over a finite domain satisfies Σ if and only if

it satisfies Σ′.

Proof. First note that for every clone D on a finite set there exists an idempotent clone C

on a finite set which is equivalent to it with respect to minion homomorphisms, i.e., there

are minion homomorphism from D to C and vice versa. It is well-known and easy to see

that if f1, . . . , fn are the function symbols that appear in Σ, and C satisfies Σ, C also

contains an operation g of arity m such that for every i ∈ [n] there exists αi : [m] → [k]

such that gαi
= fi (use that C is closed under the star product and idempotent). Note

that C satisfies a minor identity (fi)β ≈ (fj)γ if and only if C satisfies a minor identity

(gαi
)β ≈ (gαj

)γ .

If B is a relational τ -structure and ∼ is an equivalence relation on B, the B/∼ is

the τ -structure whose domain are the equivalence classes of ∼, and where R(C1, . . . , Ck)

holds if there exist a1 ∈ C1, . . . , ak ∈ Ck such that R(a1, . . . , ak) holds in B.

Definition 2.20. Let B be a relational τ -structure and let Σ be a minor condition with

a single function symbol f of arity m. Let ∼ be the smallest equivalence relation on Bm

such that a ∼ b if Σ contains f(x1, . . . , xm) ≈ f(y1, . . . , ym) such that there is a map

s : {x1, . . . , xm, y1, . . . , ym} → B with a = (s(x1), . . . , s(xm)) and b = (s(y1), . . . , s(ym)).

Then the indicator structure of Σ with respect to B is the τ -structure Bm/∼.

The following is straightforward from the definitions.

Lemma 2.21. Let B be a structure and Σ be a minor condition with a single function

symbol f . Then B has a polymorphism satisfying Σ if and only if the indicator structure

of Σ with respect to B has a homomorphism to B.

3 Results

In this section we state and prove our main result (Theorem 3.1), which characterises

the power of slam Datalog in many different ways, including descriptions in terms of pp-

constructability in P2, minor conditions, unfolded caterpillar duality, and homomorphic

equivalence to a structure with both lattice and quasi Maltsev polymorphisms.

Theorem 3.1. Let B be a structure with a finite domain and a finite relational signature

τ . Then the following are equivalent.

1. Pol(B) contains a quasi Maltsev operation and k-absorptive operations of arity nk,

for all n, k ≥ 1.

2. The canonical slam Datalog program for B solves CSP(B).

3. Some slam Datalog program solves CSP(B).

16

4. B has unfolded caterpillar duality.

5. If Pol(B) does not satisfy a minor condition Σ, then Σ implies f(x) ≈ f(y).

6. Every minor condition that holds in Pol(P2) also holds in Pol(B).

7. There is a minion homomorphism from Pol(P2) to Pol(B).

8. There is a pp-construction of B in P2.

9. B is homomorphically equivalent to a structure B′ such that Pol(B′) contains

a quasi Maltsev operation and operations ⊔ and ⊓ such that (B′,⊔,⊓) forms a

(distributive) lattice.

Moreover, if one of these items holds, then there exists a structure B′ with a binary

relational signature such that Pol(B′) = Pol(B), and all the statements hold for B′ in

place of B as well.

We first prove the equivalence of (1)-(6) in cyclic order. We then explain how the

equivalence of (6)-(8) follows from general results in the literature, and finally show

the equivalence of (1) and (9). The proof of the theorem stretches over the following

subsections.

Example 3.2. The structure Tn is the transitive tournament with n vertices, i.e., it has

the domain [n] and the binary relation <. Note that T2 equals P2. It is easy to see that

({Pn+1},Tn) is a duality pair. Since Pn+1 is a caterpillar Theorem 2.18 implies that

CSP(Tn) can be solved by a linear arc monadic Datalog program. However, Tn does

not have a quasi Maltsev polymorphism for n ≥ 3, and hence Theorem 3.1 implies that

CSP(Tn) cannot be solved by slam Datalog. △

3.1 Symmetrizing Linear Arc Monadic Datalog

The following lemma is used for the implication from (1) to (2) in the proof of Theo-

rem 3.1. Note that in the canonical linear arc monadic Datalog program Π we can use

the ‘strongest possible rules’3 when deriving the goal predicate. However, the canonical

slam Datalog program ΠS might need to use weaker rules in order to be able to apply

symmetric rules later on in the derivation. See Example 3.5.

Lemma 3.3. Let B be a finite structure with relational signature τ such that Pol(B)

contains a quasi Maltsev operation. Let Π be the canonical linear arc monadic Datalog

program for B and ΠS be the canonical slam Datalog program for B. Then Π can derive

the goal predicate on a finite τ -structure A if and only if ΠS can derive the goal predicate

on A.

3These comments are intended to illustrate the challenges in the proof of next lemma; it will not be
necessary to formalise what we mean by strongest possible rules.

17

Proof. Note that every rule of ΠS is also a rule of Π. Hence if ΠS can derive the goal

predicate on A, then so can Π. Let

⊢R0
P0(a0) ⊢R1

· · · ⊢Rn
Pn(an) ⊢Rn+1

G

be a derivation of Π on A that derives the goal predicate G. For i ∈ [n] define the

primitive positive formula Φi as follows. Suppose that the rule Ri is of the form

Pi(y) :− Ψi(x1, . . . , xk) ∧ Pi−1(x) for some atomic formula Ψi. We may assume that

both x and y are among the variables x1, . . . , xk; otherwise, the canonical database of

Pi(y)∧Ψi(x1, . . . , xk)∧Pi−1(x) is not connected. Since Π solves a CSP we may assume

without loss of generality that such rules Ri were not used in the derivation of the goal

predicate.

• If x 6= y, then Φi(x, y) is obtained from Ψi(x1, . . . , xk) by existentially quantifying

all variables except for x and y,

• otherwise, x = y and Φi(x, x
′) is obtained from Ψi(x1, . . . , xk) by existentially

quantifying all variables except for x and adding the conjunct x = x′.

Define Φ0(x) and Φn+1(x) from the rules R0 and Rn+1 in a similar fashion. For i ∈ [n]

define the binary relation →i on B that contains all tuples (b, b′) such that B |= Φi(b, b
′).

We may assume without loss of generality that

P0 = {b ∈ B | B |= Φ0(b)} = ΦB
0

and that for all b′ ∈ Pi+1 there exists a b ∈ Pi such that b →i b
′. In particular, this

implies that P0 is pp-definable.

Let Q0, . . . , Qn ⊆ B be the smallest sets such that

• Pi ⊆ Qi,

• b ∈ Qi and b→i b
′ implies b′ ∈ Qi+1, and

• b′ ∈ Qi+1 and b→i b
′ implies b ∈ Qi.

Note that there can be b ∈ Qi such that there is no b′ ∈ B with b →i b
′. Analogously,

there can be b′ ∈ Qi+1 such that there is no b ∈ B with b →i b
′. Let R̃0, . . . , R̃n+1 be

the rules obtained from R0, . . . , Rn+1 by replacing each occurrence of Pi by Qi for all

i ∈ [0, n]. We will now show that

⊢R̃0
Q0(a0) ⊢R̃1

· · · ⊢R̃n
Qn(an) ⊢R̃n+1

G

is a derivation of ΠS on A. It suffices to show that R̃i is a rule of ΠS for all i ∈ [0, n+1]. By

definition P0 ⊆ Q0. Hence B |= ∀x(Φ0(x) ⇒ P0(x)) implies B |= ∀x(Φ0(x) ⇒ Q0(x)).

Therefore, R̃0 is a rule of ΠS .

18

Let i ∈ [n]. To show that B |= ∀x((Φi(x, y) ∧ Qi−1(x)) ⇒ Qi(y)) let b ∈ Qi−1 and

b′ ∈ B be such that B |= Φi(b, b
′). Then b →i b

′ and b′ ∈ Qi by the definition of Qi.

Analogously, we show that B |= ∀x((Φi(x, y) ∧ Qi(x)) ⇒ Qi−1(y)). Therefore, R̃i is a

rule of ΠS .

To prove that R̃n+1 is a rule in ΠS we will show that for all bn ∈ Qn we have B 6|=

Φn+1(bn). Let bn ∈ Qn and assume that B |= Φn+1(bn). By the definition of Q0, . . . , Qn

and the condition that for all b′ ∈ Pi+1 there exists a b ∈ Pi such that b →i b
′ we know

that there exists a b0 ∈ P0 such that b0 and bn are connected by the symmetric transitive

closure of
⋃n

i=1 →i.

Let m be a quasi Maltsev polymorphism of B. Applying m repeatedly to the connec-

tion of b0 and bn as indicated in the following picture:

b0

bn7→
m

7→

m

b′0 b′n

we can conclude that there exist b′0, b
′
1, . . . , b

′
n ∈ B such that

b′0 →1 b
′
1 →2 · · · →n b

′
n

and B |= Φn+1(b
′
n). Since P0 is pp-definable, it is preserved by m and therefore b′0 ∈ P0.

Hence, b′2 ∈ P2, . . . , b
′
n ∈ Pn. This contradicts that Rn+1 is a rule of Π (as B |=

Φn+1(b
′
n) ∧ Pn(b

′
n)). Hence, B 6|= Φn+1(bn) and R̃n+1 is a rule of ΠS as desired.

Remark 3.4. Observe that the canonical database of

Φ0(x0) ∧ Φ1(x0, x1) ∧ · · · ∧Φn(xn−1, xn) ∧ Φn+1(xn)

is a generalised caterpillar.

Example 3.5. Consider the structure B with domain {0, 0′, 1, a, b, b′}, binary relation

E = {(0, 1), (0′ , 1), (a, b), (a, b′)}, and all constants. Let A be the structure with domain

{0, b}, E = {(0, b)}, and all constants. Clearly, A 6→ B. The canonical linear arc

monadic Datalog program Π for B can derive the goal predicate using the derivation

⊢R0
{0}(0) ⊢R1

{1}(b) ⊢R2
G.

19

The canonical slam Datalog program ΠS for B can also derive the goal predicate on A.

It cannot use the rule R1, because R1 is not symmetric. However, it may use a different

rule R̃1:

⊢R̃0
{0, 0′}(0) ⊢R̃1

{1}(b) ⊢R2
G.

Note that R0 is also a rule of ΠS but in order to apply R̃1 the program needs to use the

rule R̃0 which is weaker than the rule R0 (in the sense that the derived IDB is a strict

superset). △

3.2 Proving Unfolded Caterpillar Duality

This section is devoted to the proof of the implication (3) to (4) in Theorem 3.1. We

first prove a general result about obstruction sets for finite-domain CSPs that closes a

gap in the presentation of the proof of Lemma 21 in [17] and essentially follows from the

sparse incomparability lemma (Theorem 2.5); we thank Vı́ctor Dalmau for clarification.

Lemma 3.6. Let B be a finite structure and let F be a class of finite structures such

that (F ,B) is a duality pair. Define

F ′ := {F ∈ F | F is injective}.

Then (F ′,B) is a duality pair.

Proof. Let τ be the signature of B; let m be the maximal arity of the relation symbols

in τ . Let A be a finite τ -structure which does not homomorphically map to B. By

Theorem 2.5, there exists an injective finite structure A′ whose incidence graph has

girth at least 3, and which homomorphically maps to A but not to B. There exists a

F ∈ F which homomorphically maps to A′. Since A′ is injective, so is F. It follows that

F ∈ F ′. This implies that (F ′,B) is a duality pair.

Note that Theorem 2.18 implies that if CSP(B) is solved by a linear arc monadic

Datalog program, then B has caterpillar duality; the proof given in [17] only shows

generalised caterpillar duality. However, Lemma 3.6 implies that B in this case also has

(injective) caterpillar duality.

In order to prove the implication (3) to (4) in Theorem 3.1, it only remains to prove

that B also has unfolded caterpillar duality (Lemma 3.8). We first prove the following

lemma, which has already been mentioned in Section 2.6.

Lemma 3.7. An unfolding of a caterpillar is a caterpillar as well.

Proof. Let D be a caterpillar and let D′ be an (a, b)-unfolding of D for two non-leafs

a, b ∈ D. Let P = (a1, . . . , an) be a longest possible path in the incidence graph of D

which shows that D is a caterpillar. Note that since P is longest possible it must pass

through all non-leafs of D (see Figure 1). In particular, P passes through a and through

20

b; without loss of generality it can be written as

(ū, a, v̄, b, w̄).

Let φ1, φ2, and ψ be obtained from D as in the definition of the (a, b)-unfolding of D,

so that D′ is the canonical databases of φ1(a)∧ψ(a, b
′)∧ψ(a′, b′)∧ψ(a′, b)∧φ2(b). Note

that

• (ū, a) is a path in the incidence graph of the canonical database of φ1(a),

• (a, v̄, b) is a path in the incidence graph of the canonical database of ψ(a, b), and

• (b, w̄) is a path in the incidence graph of the canonical database of φ2(b).

Furthermore, each of these paths witnesses that the corresponding canonical database

is a caterpillar. Let (a, v̄1, b
′), (a′, v̄2, b

′), (a′, v̄3, b) be the corresponding paths in the

incidence graph of the canonical database of ψ(a, b′), ψ(a′, b′), and ψ(b′, b), respectively.

Let ṽ2 be v̄2 in reversed order. Then

P ′ := (ū, a, v̄1, b
′, ṽ2, a

′, v̄3, b, w̄)

is a path in the incidence graph G′ of D′. We claim that P ′ witnesses that D′ is a

caterpillar. This follows from the observation that if Ci, for i ∈ {1, 2}, is a caterpillar

with witnessing path Pi = (ūi, ai) such that ai ∈ Ci, then the structure obtained by

taking the disjoint union of C1 and C2 and identifying a1 and a2 is a caterpillar, witnessed

by the path (ū1, a1, ū2).

The statement for unfoldings in general follows by induction.

Lemma 3.8. If CSP(B) is solved by a slam Datalog program Π, then B has unfolded

caterpillar duality.

Proof. As we have explained above, Theorem 2.18 (in combination with Lemma 3.6)

implies that there exists a set of caterpillars F such that (F ,B) is a duality pair. Let

F ′ be the closure of F by all unfoldings of caterpillars in F . By Lemma 3.7, we have

that F ′ is a set of caterpillars as well. It remains to show that (F ′,B) is a duality pair.

Since F ⊆ F ′ it suffices to show that no element in F ′ maps homomorphically to B. Let

F ∈ F , a, b ∈ F , and F′ be the (a, b)-unfolding of F (Definition 2.10). Let φ1, φ2, and ψ be

obtained from F as in the definition of the (a, b)-unfolding of F so that F′ is the canonical

database of φ1(a)∧ψ(a, b
′)∧ψ(a′, b′)∧ψ(a′, b)∧φ2(b). Assume without loss of generality

that for every existentially quantified variable v in ψ(a, b′) the corresponding variables

in ψ(a′, b′) and ψ(b′, a) are v′ and v′′, respectively. Let P0(v0) ⊢R1
· · · ⊢Rn

Pn(vn) be a

derivation of Π on F (assuming that Π already derived P0 on a) with v0 = a, vn = b, and

v1, . . . , vn−1 ∈ F \ {a, b} such that Pi−1 occurs in the body of Ri for every i ∈ [n]. Then

v1, . . . , vn are in the canonical database of ψ(a, b). Hence vi, v
′
i, and v

′′
i are elements in

21

F′ for every i ∈ [n]. For every rule Ri let R̃i denote the reversed rule, which is also a

rule of Π since Π is symmetric. Note that

P0(a) ⊢R1
· · · ⊢Rn

Pn(b
′) ⊢R̃n

Pn−1(v
′
n−1)

· · · ⊢R̃1
P0(a

′) ⊢R1
P1(v

′′
1) · · · ⊢Rn

Pn(b)

is a derivation of Π on F′. Therefore, any derivation d of Π on F deriving the IDB P on

an element v can be transformed into a derivation d′ of Π on F′ such that

• d′ derives the IDB P on v if v is in the canonical databases of φ1(a) or φ2(b) and

• d′ derives the IDB P on v or on v′′ if v is in the canonical database of ψ(a, b) and

v /∈ {a, b}.

Since F ∈ F and Π solves CSP(B), we have that Π derives the goal predicate on

F. Therefore, Π derives the goal predicate on F′ as well. Hence, F′ does not map

homomorphically to B. It follows by induction that no unfolding of an element in F

maps homomorphically to B. Therefore, (F ′,B) is a duality pair.

3.3 Using Unfolded Caterpillar Duality

This section proves the implication (4) to (5) in Theorem 3.1.

Lemma 3.9. Let B be a relational structure with unfolded caterpillar duality. If B does

not satisfy a minor condition Σ, then Σ implies f(x) ≈ f(y).

Proof. Let τ be the signature of B. Suppose that B 6|= Σ. By Lemma 2.19, we may

assume that Σ only involves a single function symbol f of arity K. Let I be the indicator

structure of Σ with respect to B. Then I 6→ B (Lemma 2.21). By the caterpillar duality

of B, there must be a caterpillar C with a homomorphism to I that does not have a

homomorphism to B. In the following we will show that either there exists an unfolding

of C that has a homomorphism to B, which contradicts the unfolded caterpillar duality

of B, or that Σ implies f(x) ≈ f(y), which concludes the proof.

Let P be a path witnessing that C is a caterpillar. We may assume that P is of the

form

(v0, (s1, R1), . . . , (sn, Rn), vn).

This assumption is without loss of generality: if P instead starts as follows

((s1, R1), v1, . . .)

then either R1 is not unary, and we may prepend to P an entry v0 of s1 which is different

from v1. Or R1 is unary, in which case (s1, R1) is a leaf (in the incidence graph of C) and

we may simply discard this first vertex of P . In both cases, the new path still witnesses

that C is a caterpillar. Analogously, we can ensure that P does not end in a vertex of

the form (sn, Rn).

22

Let m + 1 be the maximal degree of any vi in the incidence graph of C. Define the

primitive positive formulas φ1, . . . , φn as follows. For every i ∈ [n] we obtain φi(vi−1, vi)

from Ri(si) (seen as an atomic formula) by existentially quantifying all variables except

for vi−1 and vi. Furthermore, for every i ∈ [0, n] and every neighbor (t, R) of vi in the

incidence graph of C that is not in P , let φ(x) be the formula obtained from R(t) by

existentially quantifying all variables except for vi.

Let h be a homomorphism from C to I. For every i ∈ [0, n] fix tuples ti,0, . . . , ti,m+1

in h(vi) ⊆ BK such that

• for every i ∈ [0, n] and every formula φ(x) corresponding to a neighbour (t, R)

of vi in the incidence graph of C that is not in P there is a j ∈ [m] such that

B |= φ(ti,j,k) for all k ∈ [K], and

• for every i ∈ [n] we have that B |= φi(ti−1,m+1,k, ti,0,k) for all k ∈ [K].

See Figure 3 for a visualization of the tuples in an example.

Define the binary relations ∼ and a on [0, n] × [0,m + 1] × [K] for a ∈ [n]: for

(c, i, k), (d, j, ℓ) ∈ [n]× [0,m + 1]× [K] we have

• (c, i, k) ∼ (d, j, ℓ) if and only if c = d, |i− j| ≤ 1, and tc,i,k = td,j,ℓ and

• (c, i, k) a (d, j, ℓ) if and only if c + 1 = d = a, i = m + 1, j = 0, and B |=

φd(tc,i,k, td,j,ℓ).

We write a for the converse of a. Define ↔∗ as the transitive symmetric closure of

∼ ∪ 1∪ · · ·∪ n. Note that ↔
∗ is an equivalence relation. Now we consider two cases.

The first case is that there are no k, ℓ ∈ [K] such that (0, 0, k) ↔∗ (n,m + 1, ℓ). Define

the map

π : [n]× [0,m+ 1]× [K] → {x, y}

(c, i, k) 7→

{

x if (c, i, k) ↔∗ (0, 0, ℓ) for some ℓ

y otherwise.

Observe that

1. π((0, 0, k)) = x for all k ∈ [K] and that π((n,m+ 1, ℓ)) = y for all ℓ ∈ [K].

2. Let c ∈ [n] and let i ∈ [0,m]. Then Σ implies f(tc,i) ≈ f(tc,i+1). Also tc,j1,k1 =

tc,j2,k2 implies π(c, j1, k1) = π(c, j2, k2). Hence Σ implies

f(π(c, i, 1), . . . , π(c, i,K)) ≈ f(π(c, i + 1, 1), . . . , π(c, i + 1,K)).

3. Let c ∈ [n− 1], then π(c,m+ 1, k) = π(c+ 1, 0, k) for all k ∈ [K]. Hence,

f(π(c,m+ 1, 1), . . . , π(c,m + 1,K)) = f(π(c+ 1, 0, 1), . . . , π(c+ 1, 0,K)).

23

C
v0 v1 v2 v3

0

3

3

0

3

3∈
(∃
y
E
(y
,x

))
B

4

0

4∈
(∃
y
E
(x
,y
))

B

4

0

4

2

1

2

1

2

2

1

3

3∈
(∃
y
E
(x
,y
))

B

1

2

2

3

4

1

3

4

1

3

4

1

3

4

1

2

2

3

1

3

1∈
(∃
y
E
(x
,y
))

B

1

3

1

2

2

3

a0

=
(0,0,1)

a1

=
(0,1,1)

a2

=
(0,2,2)

a3

=
(0,3,2)

a4

=
(1,0,2)

a5

=
(1,1,1)

a6

=
(1,2,1)

a7

a9 a8

a10a11a12a13 a14

a15a16

a17

A0 = {0, 1, 2, 3}A1 = {4, 5, 6, 7}A2 = {8}

A3 = {9} A4 = {10, . . . , 13}A5 = {14, . . . , 17}

C′

0 1 2

3 4 5

Figure 3: At the top there is a picture of a caterpillar C. Below there is a visualisation of
the tuples t0,0, . . . , t3,3 introduced in the proof of Lemma 3.9. The first column
is t0,0, the second t0,1, and so on. The condition used to identify tuples is the
ternary quasi minority condition. The colors indicate the equivalence classes
of the ↔∗ relation. Below we have the partially labelled sequence a0, . . . , a17
and the resulting sequence A0, . . . , A5. At the bottom there is the constructed
unfolding of C.

24

Therefore, Σ implies

f(x, . . . , x) = f(π(0, 0, 1), . . . , π(0, 0,K))

≈ f(π(0, 1, 1), . . . , π(0, 1,K))

...

≈ f(π(n,m+ 1, 1), . . . , π(n,m+ 1,K)) = f(y, . . . , y).

Hence, Σ implies g(x) ≈ g(y), as desired.

Now we consider the case that there are k, ℓ ∈ [K] such that (0, 0, k) ↔∗ (n,m+1, ℓ).

Then there exists a sequence a0, . . . , aN of distinct elements in [0, n] × [0,m + 1] × [K]

such that a0 = (0, 0, k), aN = (n,m + 1, ℓ), and for every i ∈ [N] we have ai−1 ∼ ai,

ai−1 j ai, or ai−1 j ai for some j ∈ [n]. We will use this sequence to construct an

unfolding of C that has a homomorphism to B. See Figure 3 for an example of such a

sequence and the construction that follows. First group the sequence 0, . . . , N into the

sequence A0, . . . , AM such that

• a0 ∈ A0 and aN ∈ AM ,

• for all i ∈ [0,M] there are j ∈ [0, N] and 0 ≤ k ≤ N − j such that Ai =

{j, j + 1, . . . , j + k},

• for all i ∈ [0,M] and j ∈ Ai with j + 1 ∈ Ai we have aj ∼ aj+1,

• for all 0 ≤ i1 < i2 ≤M and all j1 ∈ Ai1 , j2 ∈ Ai2 we have j1 < j2, and

• for all i ∈ [M] we have max(Ai−1) + 1 = min(Ai) and there is a j ∈ [n] with

amax(Ai−1) j amin(Ai) or amax(Ai−1) j amin(Ai).

We write Ai j Ai+1 if amax(Ai−1) j amin(Ai) and Ai j Ai+1 if amax(Ai−1) j amin(Ai)

Define the primitive positive formula Φ(0, . . . ,M) by adding conjuncts in the following

way: For all i and all j

• if Ai j Ai+1, then add the conjunct φj(i, i + 1),

• if Ai j Ai+1, then add the conjunct φj(i+ 1, i),

• if Ai j Ai+1 j+1 Ai+2, then for all φ(x) corresponding to a neighbour (t, R) of

vj in the incidence graph of C that is not in P add the conjunct φ(i+ 1), and

• if Ai j+1 Ai+1 j Ai+2, then for all φ(x) corresponding to a neighbour (t, R) of

vj in the incidence graph of C that is not in P add the conjunct φ(i+ 1).

Denote the canonical database of Φ by C′. Note that C′ is a caterpillar. Observe that,

by definition, taj = taj′ for all j, j
′ ∈ Ai. Hence, the map ι : [0,M] → B that maps i to

ta for some (any) a for which there is an j ∈ Ai with a = aj is well defined. The map ι

is a satisfying assignment of Φ in B:

25

• Every conjunct of the form φj(i, i+1) is satisfied, since a = amax(Ai) jamin(Ai+1) =

a′ implies B |= φj(ta, ta′) by definition of j .

• The argument for conjuncts of the form φj(i+ 1, i) is analogous.

• The conjuncts of the form φ(i) are satisfied: Let (d, j, ℓ) = amin(Ai). Then, by

construction of the t’s, there is j′ such that B |= td,j′,k for all k ∈ [K]. By

definition of Φ we added φ(i) only if there is some j′ ∈ Ai with aj′ = (d, j′, k) for

some k ∈ [K].

Therefore, ι can be extended to a homomorphism from C′ to B. The proof that C′ is an

unfolding of C is technical and can for example be done by induction on the number of

orientation changes in the sequence A0, . . . , AM . However, it is easy to see that C′ must

indeed be an unfolding of C.

Remark 3.10. The conclusion of Lemma 3.9 can be strengthened as follows: if B does

not satisfy a minor condition Σ, then Σ implies f(x) ≈ f(y) even with respect to the

class of all minions, i.e., it then holds that every minion that satisfies Σ also satisfies

f(x) ≈ f(y). However, in this case we cannot use Lemma 2.19, which is a statement for

clones rather than minions. Instead, one can then use a more general notion of indicator

structure adapt the entire proof to this more general setting. Since we do not need this

for proving our main result, Theorem 3.1, we have decided for the weaker result which

allows for a less technical proof.

3.4 Proof of the main result

We finally prove Theorem 3.1.

Proof of Theorem 3.1. For the implication (1) ⇒ (2) let ΠS be the canonical slam Dat-

alog program for B and let Π be the canonical linear arc monadic Datalog program

for B. Since B has k-absorptive operations of arity nk for all n, k ≥ 1 we can apply

Theorem 2.18 to conclude that Π solves CSP(B). Furthermore, B has a quasi Maltsev

polymorphism. Hence, Lemma 3.3 implies that Π and ΠS can derive the goal predicate

on the same instances of CSP(B). Therefore, ΠS solves CSP(B).

The implication (2) ⇒ (3) is trivial, the implication (3) ⇒ (4) by Lemma 3.8, and the

implication (4) ⇒ (5) by Lemma 3.9.

For the implication from (5) to (6), suppose that Σ is a minor condition that holds in

Pol(P2). Since all polymorphisms of P2 are idempotent, Σ does not imply f(x) ≈ f(y).

Hence, the contraposition of (5) implies that Pol(B) does not satisfy Σ.

The implication from (6) to (1) is clear since Pol(P2) is preserved by the Boolean

minority operation and by the nk-ary Boolean operation

(x11, . . . , x1k, . . . , xn1, . . . , xnk) 7→
∨

i∈[n]

∧

j∈[k]

xij

26

which is k-absorptive.

The equivalence between (6), (7), and (8) follows from well-known general results [6].

The equivalence of (1) and (9) follows the equivalence of items (3) and (4) in The-

orem 2.18 and from the fact that the existence of a quasi Maltsev polymorphism is

preserved by homomorphic equivalence.

For the final statement of the theorem, let B′ be the structure with the same domain

as B which contains all binary relations that are primitively positively definable in B.

First recall from Remark 2.16 that (1) implies that B has a quasi majority polymor-

phism, and hence every relation of B is equivalent to a conjunction of binary relations

of B′ (Proposition 2.13), which shows that Pol(B) = Pol(B′). In particular, B′ has

k-absorptive polymorphisms of arity nk, for all n, k ≥ 1, and hence the theorem applies

to B′ in place of B as well.

Remark 3.11. Consider the poset of all finite structures ordered by primitive positive

constructability. It is well known that the structure C1 := ({0}, {(0, 0)}) is a repre-

sentative of the top element of this poset and that it has exactly one lower cover with

representative B2. We claim that T3 is a representative of a lower cover of B2 in the

poset of all finite structures ordered by primitive positive constructability. The struc-

ture T3 := ({0, 1, 2}, {(0, 1), (0, 2), (1, 2)}) satisfies all conditions Σ that do not imply the

quasi Maltsev condition (see, e.g., [11]). Clearly, T3 does not have a primitive positive

construction in B2, because T3 does not have a quasi Maltsev polymorphism. Since

min and max are polymorphisms of T3, Theorem 2.18 implies that T3 has kn-ary k-

absorbing polymorphisms for all n, k ≥ 1. Let B be a structure with a primitive positive

construction in T3 which does not admit a primitive positive construction of T3. Then

B must have a quasi Maltsev polymorphism and kn-ary k-absorbing polymorphisms for

all n, k ≥ 1. By Theorem 3.1, B has a primitive positive construction in B2, which

proves the claim. It is still open what other lower covers B2 has.

Remark 3.12. Yet another condition on finite structures B that is equivalent to the

conditions in Theorem 3.1 has been found by Vucaj and Zhuk [36]: they prove that

there is a minion homomorphism from Pol(P2) to Pol(B) (item 7) if and only if Pol(B)

contains totally symmetric polymorphisms of all arities and generalised quasi minority

polymorphisms of all odd arities n ≥ 3. A operation f : Bn → B, for odd n ≥ 3, is called

a generalised quasi minority if it satisfies

f(x1, . . . , xn) ≈ f(xπ(1), . . . , xπ(n)) for every π ∈ Sn

and f(x, x, x3, . . . , xn) ≈ f(y, y, x3, x4, . . . , xn).

However, it is not clear to us whether this characterisation can be used to prove the

consequence of our main result from Remark 3.11.

Remark 3.13. A minion M is called a core if every minion homomorphism from M to

M is injective. We say that N is a minion core of M if M and N are homomorphically

27

equivalent (i.e., there is a homomorphism from M to N and vice versa) and N is a

minion core. Note that if M is locally finite, i.e., if M (n) is finite for every n ∈ N,

then there exists a minion N which is a minion core of M , and N is unique up to

isomorphism. We therefore call it the minion core of M . From personal communication

with Libor Barto we learned that the equivalent items of Theorem 3.1 apply if and only

if the minion core of Pol(B) equals Pol(C2,B2).

4 Decidability of Meta-Problem

There are many interesting results and open problems about algorithmic meta-problems

in constraint satisfaction; we refer to [18]. The natural algorithmic meta-problem in the

context of our work is the one addressed in the following proposition.

Proposition 4.1. There is an algorithm which decides whether the CSP of a given

finite structure B can be solved by a slam Datalog program, and if so, computes such a

program.

Proof. The following algorithm can be used to test whether B has k-absorptive opera-

tions of arity nk, for all n, k ≥ 1. It is well-known that the existence of a quasi Maltsev

polymorphism can be decided in non-deterministic polynomial time (see, e.g., [18]).

Hence, the statement then follows from Theorem 3.1.

Let m be the maximal arity of the relations of B. Let n0 := m
(|B|
|B|/2

)

and k0 := m|B|.

Note that B has k-absorptive polymorphisms of arity nk, for all k, n, if and only if it

has k0-absorptive polymorphisms of arity n0k0 (similarly as the well-known fact that B

has totally symmetric polymorphisms of all arities if and only if it has totally symmetric

polymorphisms of arity m|B|; the term
(|B|
|B|/2

)

bounds the size of antichains in the set

of all subsets of B. Also see [16] for the case of k-absorptive polymorphisms). Let Σ

be the minor condition for the existence of k0-absorptive operations of arity n0k0. Let

C be the indicator structure of Σ with respect to B as defined in Section 2.8; clearly,

this structure can be computed in doubly exponential time. We may then find a non-

deterministic algorithm with the same time bound that tests whether there exists a

homomorphism from C to B. The non-determinism for checking whether C → B can be

eliminated by standard self-reduction techniques (again see, e.g., [18]). For the second

part of the statement, note that there are for a given B only finitely many potential

rules of a slam Datalog program, and one can compute for a given rule whether it is part

of the canonical slam Datalog program of CSP(B).

5 Remarks on Related Results

The following remarks show that the results of Carvalho, Dalmau and Krokhin [16] can

be extended in the same spirit as our Theorem 3.1.

28

Remark 5.1. Let D2 be the structure ({0, 1}; {0}, {1},≤), also known as st-Con. The-

orem 2.18 of Carvalho, Dalmau and Krokhin can be extended in the same spirit as our

Theorem 3.1, by adding the following equivalent items:

5. Every minor condition that holds in Pol(D2) also holds in Pol(B).

6. There is a minion homomorphism from Pol(D2) to Pol(B).

7. B has a primitive positive construction in D2.

The equivalence of 5., 6., and 7. follows immediately from the general results in [6].

4. ⇒ 7. It is well known that Pol(D2) is generated by the two binary operations ∨

and ∧.4 Let B be a structure that is homomorphically equivalent to a structure B′ with

binary polymorphisms ⊔ and ⊓ such that (B′,⊔,⊓) is a distributive lattice. Note that

({0, 1},∨,∧) is a distributive lattice as well. Let ι be the map that maps terms over

∨,∧ to terms over ⊔,⊓ by replacing ∨ and ∧ by ⊔ and ⊓, respectively. Define the map

ξ : Pol(D2) → Pol(B′) as follows. Since Pol(D2) is generated by ∨ and ∧, for every

f ∈ Pol(D2) there is a {∧,∨}-term t whose term operation is f . Define ξ(f) as the term

operation of ι(t). Note that this term operation is a polymorphism of B′. It is clear that

ξ is a minion homomorphism (even a clone homomorphism). We still need to show that

ξ is well defined. Let t and t′ be two {∧,∨}-terms that both have the term operation

f ∈ Pol(D2). Since ({0, 1},∨,∧) is a distributive lattice, there is a set I of subsets of

[n] such that f is the term operation of

s :=
∧

I∈I

∨

i∈I

xi.

Furthermore, t and t′ can both be rewritten (using associativity, commutativity, dis-

tributivity, and idempotence) into the term s. Therefore, ι(t) and ι(t′) can also both be

rewritten into the term ι(s). Since (B′,⊔,⊓) is a distribute lattice, the term operations

of ι(t), ι(t′), and ι(s) are the same. Hence, ξ is well defined.

5.⇒ 4. holds since D2 has for every n, k ≥ 1 a k-absorbing polymorphism of arity kn.

Remark 5.2. Let B≤
∞ be the structure with the domain {0, 1} and the signature {0,≤

, R1, R2, . . . } where 0 := {0}, ≤ := {(0, 0), (0, 1), (1, 1)}, and Rn := {0, 1}n \ {(0, . . . , 0)}

for every n ≥ 1. It is well known that Pol(B≤
∞) is generated by the operation m given

by (x, y, z) 7→ x ∧ (y ∨ z).5 Carvalho, Dalmau and Krokhin also introduce another type

4Proof sketch: clearly, ∨ and ∧ preserve the relations of D2. For the converse inclusion, it suffices to
verify that every relation that is preserved by ∧ and ∨ has a primitive positive definition in D2 (see,
e.g. [34]). Every Boolean relation preserved by ∨ and ∧ has a definition in CNF which is both Horn
and dual Horn, so consists of clauses that can be defined using the relations in D2. This implies the
claim.

5Proof sketch: clearly, every relation of B≤
∞ is preserved by m. For the converse inclusion, it suffices

to verify that every relation that is preserved by m has a primitive positive definition in B≤
∞ (see,

e.g., [34]). First note that m(x, y, y) = x ∧ y, and hence every Boolean relation R preserved by m

29

C1

P2

B2

B3

...

B∞

D2

...

B≤
∞

HornSat

Figure 4: The lattice of 2-element structures with respect to pp-constructability [12]; the
structures HornSat, D2, and P2 were relevant in this text for characterisations
of Datalog fragments (for arc monadic, linear arc monadic, and slam Datalog,
respectively).

of duality in their paper: jellyfish duality. Their characterization in Theorem 18 in [16]

can be extended by the following items:

6. Every minor condition that holds in Pol(B≤
∞) also holds in Pol(B).

7. There is a minion homomorphism from Pol(B≤
∞) to Pol(B).

8. B has a primitive positive construction in B≤
∞.

The proof is analogous to the proof in Remark 5.1.

6 Conclusion and Open Problems

We characterised the unique submaximal element in the primitive positive constructabil-

ity poset on finite structures, linking concepts from homomorphism dualities, Datalog

fragments, minor conditions, and minion homomorphisms. It is now tempting to further

descend in the pp-constructability poset of finite structures in order to obtain a more

systematic understanding. Particularly attractive are other dividing lines in the poset

has a Horn definition; pick such a definition φ which is shortest possible. Suppose for contradiction
that a Horn clause in φ contains a positive literal ψ1 and two negative literals ψ2 and ψ3. By the
minimality assumption there are tuples t1, t2, t3 ∈ R such that ti satisfies φi and no other literal in
that clause. Then m(t1, t2, t3) satisfies none of ψ1, ψ2, ψ3, a contradiction. It follows that each clause
can be defined using the relations in B≤

∞ and the statement follows.

30

that are relevant for the complexity of the constraint satisfaction problem. We propose

the following problems for future research.

• Is there a countable set of structures C1,C2, . . . such that B does not have a

pp-construction in P2 if and only if one of the structures C1,C2, . . . has a pp-

construction in B? This is true if we restrict to digraphs [11] and if we restrict

to 3-element structures [36]. Our result shows that T3 must belong to this set

(Remark 3.11).

• Characterise all finite structures that are primitively positively constructible in

a finite structure that has finite duality. Are these exactly the finite structures

whose polymorphism clones have Hagemann-Mitschke chains of some length and

extended k-absorptive polymorphisms of arity kn + 1, for all n, k ≥ 1, as defined

in [17]? Is there a Datalog fragment that corresponds to this class?

• What is the precise computational complexity the Meta-Problem of deciding whether

the CSP of a given finite structure B can be solved by a slam Datalog program?

The algorithm from Proposition 4.1 only provides a deterministic doubly exponen-

tial time algorithm.

References

[1] F. N. Afrati and S. S. Cosmadakis. Expressiveness of restricted recursive queries

(extended abstract). In D. S. Johnson, editor, Proceedings of the 21st Annual ACM

Symposium on Theory of Computing, May 14-17, 1989, Seattle, Washigton, USA,

pages 113–126. ACM, 1989.

[2] A. Atserias, A. A. Bulatov, and A. Dawar. Affine systems of equations and counting

infinitary logic. Theoretical Computer Science, 410(18):1666–1683, 2009.

[3] L. Barto and M. Kozik. Constraint satisfaction problems of bounded width. In

Proceedings of Symposium on Foundations of Computer Science (FOCS), pages

595–603, 2009.

[4] L. Barto and M. Kozik. Constraint satisfaction problems of bounded width. In Pro-

ceedings of the Annual Symposium on Foundations of Computer Science (FOCS),

pages 595–603, 2009.

[5] L. Barto, M. Kozik, and R. Willard. Near unanimity constraints have bounded

pathwidth duality. In Proceedings of the 27th ACM/IEEE Symposium on Logic in

Computer Science (LICS), pages 125–134, 2012.

[6] L. Barto, J. Opršal, and M. Pinsker. The wonderland of reflections. Israel Journal

of Mathematics, 223(1):363–398, 2018.

31

[7] M. Bodirsky. Graph homomorphisms and universal algebra. Lecture Notes,

https://wwwpub.zih.tu-dresden.de/~bodirsky/GH-UA.pdf, 2023.

[8] M. Bodirsky, J. Buĺın, F. Starke, and M. Wernthaler. The smallest hard trees.

Constraints, abs/2205.07528, 2022.

[9] M. Bodirsky and H. Chen. Oligomorphic clones. Algebra Universalis, 57(1):109–125,

2007.

[10] M. Bodirsky and V. Dalmau. Datalog and constraint satisfaction with infinite tem-

plates. Journal on Computer and System Sciences, 79:79–100, 2013. A preliminary

version appeared in the proceedings of the Symposium on Theoretical Aspects of

Computer Science (STACS’05).

[11] M. Bodirsky and F. Starke. Maximal digraphs with respect to primitive positive

constructability. Combinatorica, 42:997–1010, 2022.

[12] M. Bodirsky and A. Vucaj. Two-element structures modulo primitive posi-

tive constructability. Algebra Universalis, 81(20), 2020. Preprint available at

ArXiv:1905.12333.

[13] A. A. Bulatov. A dichotomy theorem for nonuniform CSPs. In 58th IEEE Annual

Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA,

October 15-17, pages 319–330, 2017.

[14] A. A. Bulatov, A. Krokhin, and B. Larose. Dualities for Constraint Satisfaction

Problems, pages 93–124. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[15] J. Buĺın, A. A. Krokhin, and J. Opršal. Algebraic approach to promise constraint

satisfaction. In Proceedings of the 51st Annual ACM SIGACT Symposium on The-

ory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 602–

613, 2019.

[16] C. Carvalho, V. Dalmau, and A. Krokhin. CSP duality and trees of bounded

pathwidth. Theoretical Computer Science, 411:3188–3208, 2010.

[17] C. Carvalho, V. Dalmau, and A. A. Krokhin. Two new homomorphism dualities

and lattice operations. J. Log. Comput., 21(6):1065–1092, 2011.

[18] H. Chen and B. Larose. Asking the metaquestions in constraint tractability. TOCT,

9(3):11:1–11:27, 2017.

[19] V. Dalmau. Linear Datalog and bounded path duality of relational structures.

Logical Methods in Computer Science, 1(1), 2005.

32

https://wwwpub.zih.tu-dresden.de/~bodirsky/GH-UA.pdf

[20] V. Dalmau and B. Larose. Maltsev + Datalog → symmetric Datalog. In Proceed-

ings of the Twenty-Third Annual IEEE Symposium on Logic in Computer Science,

LICS 2008, 24-27 June 2008, Pittsburgh, PA, USA, pages 297–306. IEEE Computer

Society, 2008.

[21] V. Dalmau and J. Opršal. Local consistency as a reduction between constraint

satisfaction problems, 2023.

[22] V. Dalmau and J. Pearson. Closure functions and width 1 problems. In Proceedings

of the International Conference on Principles and Practice of Constraint Program-

ming (CP), pages 159–173, 1999.

[23] L. Egri, B. Larose, and P. Tesson. Symmetric Datalog and constraint satisfaction

problems in logspace. In Proceedings of the Symposium on Logic in Computer

Science (LICS), pages 193–202, 2007.

[24] L. Egri, B. Larose, and P. Tesson. Directed st-connectivity is not expressible in

symmetric Datalog. In Automata, Languages and Programming, 35th International

Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II

- Track B: Logic, Semantics, and Theory of Programming & Track C: Security and

Cryptography Foundations, pages 172–183, 2008.

[25] T. Feder and M. Y. Vardi. The computational structure of monotone monadic

SNP and constraint satisfaction: a study through Datalog and group theory. SIAM

Journal on Computing, 28:57–104, 1999.

[26] P. Hell and J. Nešetřil. Graphs and Homomorphisms. Oxford University Press,

Oxford, 2004.

[27] P. Hell, J. Nešetřil, and X. Zhu. Duality and polynomial testing of tree homomor-

phisms. TAMS, 348(4):1281–1297, 1996.

[28] W. Hodges. A shorter model theory. Cambridge University Press, Cambridge, 1997.

[29] P. Jeavons, D. Cohen, and M. Cooper. Constraints, consistency and closure. Arti-

ficial Intelligence, 101(1-2):251–265, 1998.

[30] A. Kazda. n-permutability and linear Datalog implies symmetric Datalog. Logical

Methods in Computer Science, Volume 14, Issue 2, Apr. 2018.

[31] M. Kozik, A. Krokhin, M. Valeriote, and R. Willard. Characterizations of several

Maltsev conditions. Algebra universalis, 73(3):205–224, 2015.

[32] B. Larose and P. Tesson. Universal algebra and hardness results for constraint

satisfaction problems. Theoretical Computer Science, 410(18):1629–1647, 2009.

33

[33] B. Larose and L. Zádori. Bounded width problems and algebras. Algebra Univer-

salis, 56(3-4):439–466, 2007.

[34] R. Pöschel and L. A. Kalužnin. Funktionen- und Relationenalgebren. Deutscher

Verlag der Wissenschaften, Berlin, 1979.

[35] F. Starke. Digraphs modulo primitive positive constructability. Preprint, 2024.

PhD dissertation, Institute of Algebra, TU Dresden.

[36] A. Vucaj and D. Zhuk. Submaximal clones over a three-element set up to minor-

equivalence, 2024.

[37] D. Zhuk. A proof of the CSP dichotomy conjecture. J. ACM, 67(5):30:1–30:78,

2020.

[38] D. N. Zhuk. A proof of CSP dichotomy conjecture. In 58th IEEE Annual Symposium

on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-

17, pages 331–342, 2017. https://arxiv.org/abs/1704.01914.

34

https://arxiv.org/abs/1704.01914.

	Introduction
	Arc Monadic Datalog
	Linear Datalog
	Symmetric Linear Datalog
	Our Contributions
	Related Results

	Preliminaries
	Structures and Graphs
	Homomorphisms and CSPs
	Primitive Positive Constructions
	Datalog
	The Incidence Graph
	Dualities
	Minor conditions
	Indicator structures

	Results
	Symmetrizing Linear Arc Monadic Datalog
	Proving Unfolded Caterpillar Duality
	Using Unfolded Caterpillar Duality
	Proof of the main result

	Decidability of Meta-Problem
	Remarks on Related Results
	Conclusion and Open Problems

