
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 31st USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

31st USENIX Security Symposium.
August 10–12, 2022 • Boston, MA, USA

978-1-939133-31-1

Open access to the Artifact Appendices
to the Proceedings of the 31st USENIX

Security Symposium is sponsored
by USENIX.

Spoki: Unveiling a New Wave of Scanners
through a Reactive Network Telescope

Raphael Hiesgen, HAW Hamburg; Marcin Nawrocki, Freie Universität Berlin;
Alistair King, Kentik; Alberto Dainotti, CAIDA, UC San Diego and

Georgia Institute of Technology; Thomas C. Schmidt, HAW Hamburg;
Matthias Wählisch, Freie Universität Berlin

https://www.usenix.org/conference/usenixsecurity22/presentation/hiesgen

A Artifact Appendix

A.1 Abstract
Spoki is a real-time reactive network telescope. It is written in
C++ and based on the actor model to achieve high scalability.
The artifacts also include Python tools to analyze Spoki log
files, identify downloaders distributed by attackers, and fetch
files referenced by the downloaders.

We used Spoki to collect the data for our paper over the
course of three months. The artifact contains the source code.
It can be used to collect the same information (given a suitable
setup) and get started with the evaluation.

A.2 Artifact check-list (meta-information)
Compilation: C++-17 compiler, Python 3.

Run-time environment Linux. Capabilities to capture network
traffic (telescope, root access).

Hardware Depends on your traffic volume. Processing traffic from
a /24 should work with 4 cores of common server hardware.

Output Spoki writes observed events to log files, which can be
analyzed by our Python tools.

Experiments We collected data over three months. The data sets
we used contain sensitive data and are thus not available.

Publicly available? Yes, see below.

Code licenses MIT License

A.3 Description
A.3.1 How to access

All artifacts and future results are available via https://spoki.
secnow.net/. We also archived the artifact on Zenodo: https:
//zenodo.org/record/5702603.

A.3.2 Software dependencies

Spoki runs on Linux and uses the following open-source software.
The repository contains a script to build them.

• The C++ Actor Framework (CAF)

• Scamper

• libtrace

The Python tools depend on Kafka. Python-related dependencies
can be installed via pip (see below).

A.4 Installation
Spoki The source code is located in the spoki/ folder. On
Ubuntu 20.04, you first need to install the following dependencies:

$ sudo apt install gcc g++ cmake git curl make
libtool -bin automake libpcap0.8-dev
libbison -dev flex

Now you can build the required libraries via a script in the reposi-
tory. It installs the libraries into a local folder.

$./setup.sh

Finally, you need to configure and build Spoki:

$./configure
$ make -C build

The Spoki binary will be located at ./build/tools/spoki/.

Evaluation Tools to download the malware linked in payloads
are located in evaluation. First, setup a local virtual environment.
Inside the environment you can setup the tools via the makefile (run
it twice the first time):

$ make update
$ make update

This will link the following tools into the virtual environment:

assemble Reads Spoki logs and assembles events.

filter Identifies events with downloaders.

clean Extracts and clean links from events.

download Follows links and downloads executables.

Additional tools to analyze port statistics, contact types, query
malware hashes in VirusTotal, and annotate data are located in the
same project. Please check the README.md file for details.

A.5 Experiment workflow
Spoki can be run directly from the command line and accepts config-
uration via a caf-application.conf file. Please check the README
of Spoki for the configuration details. It is necessary to configure the
data source (e.g., the interface to read packets from), a folder for the
logs, and a tag for your datasource. Spoki writes two types of logs:
event logs that contain information on observed events alongside
Spoki’s probe reply and scamper logs that list the probe confirma-
tions received from scamper.

The malware processing tools require a running Kafka instance
for communication. They further accept CLI options to configure the
Kafka topic they use between them. The assemble further accepts
the location of the Spoki tools and a date and hour to start processing.
These tools build a processing pipeline. In the final step, Spoki logs
all observed URLs and the data it downloads alongside some meta
information.

A.6 Evaluation and expected results
We cannot provide our data sets because they include personally
identifiable information such as IP addresses. We provide Spoki’s
code to allow others to repeat our experiments.

USENIX Association 31st USENIX Security Symposium 35

https://spoki.secnow.net/
https://spoki.secnow.net/
https://zenodo.org/record/5702603
https://zenodo.org/record/5702603

	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Software dependencies

	Installation
	Experiment workflow
	Evaluation and expected results

