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Abstract
Modelling the extremal dependence of bivariate variables is important in a wide vari-
ety of practical applications, including environmental planning, catastrophe model-
ling and hydrology. The majority of these approaches are based on the framework of 
bivariate regular variation, and a wide range of literature is available for estimating 
the dependence structure in this setting. However, such procedures are only applica-
ble to variables exhibiting asymptotic dependence, even though asymptotic independ-
ence is often observed in practice. In this paper, we consider the so-called ‘angular 
dependence function’; this quantity summarises the extremal dependence structure for 
asymptotically independent variables. Until recently, only pointwise estimators of the 
angular dependence function have been available. We introduce a range of global esti-
mators and compare them to another recently introduced technique for global estima-
tion through a systematic simulation study, and a case study on river flow data from 
the north of England, UK.
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1  Introduction

Bivariate extreme value theory is a branch of statistics that deals with the modelling of 
dependence between the extremes of two variables. This type of analysis is useful in a 
variety of fields, including finance (Castro-Camilo et al. 2018), engineering (Ross et al. 
2020), and environmental science (Brunner et al. 2016), where understanding and pre-
dicting the behaviour of rare, high-impact events is important.

In certain applications, interest lies in understanding the risk of observing simul-
taneous extreme events at multiple locations; for example, in the context of flood 
risk modelling, widespread flooding can result in damaging consequences to proper-
ties, businesses, infrastructure, communications and the economy (Lamb et al. 2010; 
Keef et al. 2013b). To support resilience planning, it it imperative to identify loca-
tions at high risk of joint extremes.

Classical theory for bivariate extremes is based on the framework of regular vari-
ation. Given a random vector (X, Y) with standard exponential margins, we say that 
(X, Y) is bivariate regularly varying if, for any measurable B ⊂ [0, 1],

with R ∶= eX + eY , V ∶= eX∕R and H(�B) = 0 , where �B is the boundary of B 
(Resnick 1987). Note that bivariate regular variation is most naturally expressed on 
standard Pareto margins, and the mapping (X, Y) ↦ (eX , eY ) performs this transfor-
mation. We refer to R and V as radial and angular components, respectively. Equa-
tion 1.1 implies that for the largest radial values, the radial and angular components 
are independent. Furthermore, the quantity H, which is known as the spectral meas-
ure, must satisfy the moment constraint ∫ 1

0
vdH(v) = 1∕2.

The spectral measure summarises the extremal dependence of (X, Y), and a wide 
range of approaches exist for its estimation (e.g., Einmahl and Segers 2009; de Car-
valho and Davison 2014; Eastoe et al. 2014). Equivalently, one can consider Pick-
ands’ dependence function (Pickands 1981), which has a direct relationship to H via

where A is a convex function satisfying max(t, 1 − t) ≤ A(t) ≤ 1 . This function again 
captures the extremal dependence of (X, Y), and many approaches also exist for its 
estimation (e.g., Guillotte and Perron 2016; Marcon et al. 2016; Vettori et al. 2018). 
Moreover, estimation procedures for the spectral measure and Pickands’ depend-
ence function encompass a wide range of statistical methodologies, with parametric, 
semi-parametric, and non-parametric modelling techniques proposed in both Bayes-
ian and frequentist settings.

However, methods based on bivariate regular variation are limited in the forms of 
extremal dependence they can capture. This dependence can be classified through 
the coefficient � (Joe 1997), defined as

(1.1)lim
r→∞

Pr(V ∈ B,R > sr ∣ R > r) = H(B)s−1, s ≥ 1,

A(t) = ∫
1

0

max{vt, (1 − v)(1 − t)}2dH(v), t ∈ [0, 1],

𝜒 ∶= lim
u→∞

Pr(Y > u ∣ X > u) ∈ [0, 1],
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where this limit exists. If 𝜒 > 0 , then X and Y are asymptotically dependent, and the 
most extreme values of either variable can occur simultaneously. If � = 0 , X and Y 
are asymptotically independent, and the most extreme values of either variable occur 
separately.

Under asymptotic independence, the spectral measure H places all mass on the 
points {0} and {1} ; equivalently, A(t) = 1 for all t ∈ [0, 1] . Consequently, for this 
form of dependence, the framework given in Eq. 1.1 is degenerate and is unable to 
accurately extrapolate into the joint tail (Ledford and Tawn 1996, 1997). Practically, 
an incorrect assumption of asymptotic dependence between two variables is likely to 
result in an overly conservative estimate of joint risk.

To overcome this limitation, several models have been proposed that can cap-
ture both classes of extremal dependence. The first was given by Ledford and Tawn 
(1996), in which they assume that as u → ∞ , the joint tail can be represented as

where L is a slowly varying function at infinity, i.e., limu→∞ L(cu)∕L(u) = 1 for c > 0 , 
and � ∈ (0, 1] . The quantity � is termed the coefficient of tail dependence, with � = 1 
and limu→∞ L(u) > 0 corresponding to asymptotic dependence and either 𝜂 < 1 or 
� = 1 and limu→∞ L(u) = 0 corresponding to asymptotic independence. Many exten-
sions to this approach exist (e.g., Ledford and Tawn 1997; Resnick 2002; Ramos and 
Ledford 2009); however, all such approaches are only applicable in regions where 
both variables are large, limiting their use in many practical settings. Since many 
extremal bivariate risk measures, such as environmental contours (Haselsteiner et al. 
2021) and return curves (Murphy-Barltrop et al. 2023), are defined both in regions 
where both variables are extreme and in regions where only one variable is extreme, 
methods based on Eq. 1.2 are inadequate for their estimation.

Several copula-based models have been proposed that can capture both classes 
of extremal dependence, such as those given in Coles and Pauli (2002), Wadsworth 
et al. (2017) and Huser and Wadsworth (2019). Unlike Eq. 1.2, these can be used 
to evaluate joint tail behaviour in all regions where at least one variable is extreme. 
However, these techniques typically require strong assumptions about the parametric 
form of the bivariate distribution, thereby offering reduced flexibility.

Heffernan and Tawn (2004) proposed a modelling approach, known as the con-
ditional extremes model, which also overcomes the limitations of the framework 
described in Eq. 1.2. This approach assumes the existence of normalising functions 
a ∶ ℝ+ → ℝ and b ∶ ℝ+ → ℝ+ such that

where D is a non-degenerate distribution function that places no mass at infinity. 
Note that the choice of conditioning on X > u is arbitrary, and an equivalent for-
mulation exists for normalised X given Y > u . This framework can capture both 
asymptotic dependence and asymptotic independence, with the former arising 
when a(x) = x and b(x) = 1 , and can also be used to describe extremal behaviour in 
regions where only one variable is large.

(1.2)Pr(X > u, Y > u) = Pr{min(X, Y) > u} = L(eu)e−u∕𝜂 ,

(1.3)lim
u→∞

Pr
[
{Y − a(X)}∕b(X) ≤ z, X − u > x ∣ X > u

]
= D(z)e−x, x > 0,
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Finally, Wadsworth and Tawn (2013) proposed a general extension of Eq. 1.2. As 
u → ∞ , they assume that for any (�, �) ∈ ℝ

2
+
⧵ {0},

where L(⋅ ;� , �) is slowly varying and the function � provides information about 
the joint tail behaviour of (X, Y). One can observe that Eq. 1.2 is a special case of 
Eq. 1.4 with � = � . The dependence function � satisfies several theoretical proper-
ties: for instance, it is non-decreasing in each argument, satisfies the lower bound 
�(�, �) ≥ max{�, �} , and is homogeneuous of order 1, i.e., �(h�, h�) = h�(�, �) 
for any h > 0 . Setting w ∶= �∕(� + �) ∈ [0, 1] , the latter property implies that 
�(�, �) = (� + �)�(w, 1 − w) , motivating the definition of the so-called angular 
dependence function (ADF) �(w) = �(w, 1 − w), w ∈ [0, 1] . Using this representa-
tion, Eq. 1.4 can be rewritten as

 as u → ∞ , where L(⋅ ;w) is slowly varying. The ADF generalises the coefficient � , 
with � = 1∕{2�(0.5)} . This extension captures both extremal dependence regimes, 
with asymptotic dependence implying the lower bound, i.e., �(w) = max(w, 1 − w) 
for all w ∈ [0, 1] . Evaluation of the ADF for rays w close to 0 and 1 corresponds to 
regions where one variable is larger than the other.

The ADF can be viewed as the counterpart of the Pickands’ dependence function 
for asymptotically independent variables, and shares many of its theoretical properties 
(Wadsworth and Tawn 2013). Specifically, �(0) = �(1) = 1 and max(w, 1 − w) ≤ �(w) , 
although there is no requirement for �(w) to be convex, or that it is bounded above, 
unlike A(t). There do, however, exist shape constraints that � must satisfy; see Sect. 3 
for further details. The ADF can be used to differentiate between different forms of 
asymptotic independence, with both positive and negative associations captured, 
alongside complete independence, which implies �(w) = 1 for all w ∈ [0, 1] . Figure 1 
illustrates the ADFs for three copulas. We observe a variety in shapes, corresponding 

(1.4)Pr(X > 𝛽u, Y > 𝛾u) = L(eu;𝛽, 𝛾)e−𝜅(𝛽,𝛾)u,

(1.5)
Pr(min{X∕w,Y∕(1 − w)} > u) = L(eu;w)e−𝜆(w)u, w ∈ [0, 1], 𝜆(w) ≥ max(w, 1 − w),

Fig. 1   The true ADFs (given in red) for three example copulas. Left: bivariate Gaussian copula with 
coefficient � = 0.5 . Centre: inverted logistic copula with dependence parameter r = 0.8 . Right: logistic 
copula with dependence parameter r = 0.8 . The lower bound for the ADF is denoted by the black dotted 
line
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to differing degrees of positive extremal dependence in the underlying copulas. The 
weakest dependence is observed for the inverted logistic copula, while the ADF for the 
asymptotically dependent logistic copula is equal to the lower bound.

Despite these modelling advances, the majority of approaches for quantifying the 
risk of bivariate extreme events still require bivariate regular variation. Many of the 
procedures that do allow for asymptotic independence use the conditional extremes 
model of Eq.  1.3 despite some well known limitations of this approach (Liu and 
Tawn 2014).

One particular application of the model described in Eq. 1.5 is the estimation of 
so-called bivariate return curves, RC(p) ∶=

{
(x, y) ∈ ℝ

2 ∶ Pr(X > x, Y > y) = p
}
 , 

which requires knowledge of extremal dependence in regions where either variable is 
large; see Sect. 6.4. Murphy-Barltrop et al. (2023) obtain estimates of return curves, 
finding that estimates derived using Eq. 1.5 were preferable to those from the condi-
tional extremes model. Mhalla et al. (2019b) and Murphy-Barltrop and Wadsworth 
(2024) also provide non-stationary extensions and inference methods for the ADF.

In this paper, we propose a global methodology for ADF estimation in order 
to improve extrapolation into the joint upper tail for bivariate random vectors 
exhibiting asymptotic independence. Until recently, the ADF has been estimated 
only in a pointwise manner using the Hill estimator (Hill 1975) on the tail of 
min{X∕w,Y∕(1 − w)} , resulting in unrealistic rough functional estimates and, as we 
demonstrate in Sect. 5, high degrees of variability. Further, Murphy-Barltrop et al. 
(2023) showed that pointwise ADF estimates result in non-smooth return curve esti-
mates, which are again unrealistic.

The first smooth ADF estimator was proposed recently in Simpson and Tawn 
(2022) based on a theoretical link between a limit set derived from the shape of 
appropriately scaled sample clouds and the ADF (Nolde and Wadsworth 2022). The 
authors introduce global estimation techniques for the limit set, from which smooth 
ADF estimates follow; see Sect. 2 for further details.

We introduce several novel smooth ADF estimators, and compare their perfor-
mance with the pointwise Hill estimator, as well as the estimator given in Simp-
son and Tawn (2022). In Sect.  2, we review the literature on ADF estimation. In 
Sect. 3, we introduce new theoretical results that the ADF must satisfy to be valid. 
In Sect. 4, we introduce a range of novel estimators, and select tuning parameters 
for each proposed estimation technique. In Sect. 5, we compare each of the available 
estimators through a systematic simulation study, finding certain estimators to be 
favourable over others. A subset of estimators are then applied to river flow data sets 
in Sect. 6 and used to obtain estimates of return curves for different combinations of 
river gauges. We conclude in Sect. 7 with a discussion.

2 � Existing techniques for ADF estimation

In this section, we introduce existing estimators for the ADF, with (X, Y) denoting 
a random vector with standard exponential margins throughout. To begin, for any 
ray w ∈ [0, 1] , define the min-projection at w as Tw ∶= min{X∕w,Y∕(1 − w)} . Equa-
tion 1.5 implies that for any w ∈ [0, 1] and t > 0,
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as u → ∞ , with t∗ ∶= et . Since the expression in Eq. 2.1 has a univariate regularly 
varying tail with positive index, Wadsworth and Tawn (2013) propose using the 
Hill estimator (Hill 1975) to obtain a pointwise estimator of the ADF; we denote 
this ‘base’ estimator 𝜆̂H . A major drawback of this technique is that the estimator 
is pointwise, that is, �(w) is estimated separately for each w, leading to rough and 
often unrealistic estimates of the ADF. In particular, no information is shared across 
different rays, increasing the variability in the resulting estimates. Furthermore, this 
estimator need not satisfy the theoretical constraints on the ADF identified in Wads-
worth and Tawn (2013), such as the endpoint conditions �(0) = �(1) = 1.

Simpson and Tawn (2022) recently proposed a novel estimator for the ADF 
using a theoretical link with the limiting shape of scaled sample clouds. Let 
Cn ∶= {(Xi, Yi)∕ log n; i = 1,⋯ , n} denote n scaled, independent copies of (X,  Y). 
Nolde and Wadsworth (2022) explain how, as n → ∞ , the asymptotic shape of Cn 
provides information on the underlying extremal dependence structure. In many sit-
uations, Cn converges onto the compact limit set G = {(x, y) ∶ g(x, y) ≤ 1} ⊆ [0, 1]2 , 
where g is the gauge function of G. A sufficient condition for this convergence to 
occur is that the joint density, f, of (X, Y) exists, and that

for continuous g. Following Nolde (2014), we also define the unit-level, bound-
ary set 𝜕G = {(x, y) ∶ g(x, y) = 1} ⊂ [0, 1]2. Given fixed margins, the shapes of 
G, and hence �G , are completely determined by the extremal dependence struc-
ture of (X, Y). Furthermore, Nolde and Wadsworth (2022) show that the shape of 
G is also directly linked to the modelling frameworks described in Eqs.  1.2, 1.3 
and 1.5, as well as the approach of Simpson et  al. (2020). In particular, letting 
Rw ∶= (w∕max(w, 1 − w),∞] × ((1 − w)∕max(w, 1 − w),∞] for all w ∈ [0, 1] , we 
have that

where

The boundary sets �G for each of the copulas in Fig. 1 are given in Fig. 2, alongside 
the coordinates (w∕�(w), (1 − w)∕�(w)) for all w ∈ [0, 1] ; these coordinates repre-
sent the relationship between G and the ADF via Eq. 2.3. One can again observe 
the variety in shapes. For the asymptotically dependent logistic copula, we have that 
(1, 1) ∈ �G ; this is true for all asymptotically dependent bivariate random vectors 
with a limit set.

In practice, both the limit set, G, and its boundary, �G , are unknown. Simpson 
and Tawn (2022) propose an estimator for �G , which is then used to derive an esti-
mator 𝜆̂ST for the ADF via Eq. 2.3. The resulting estimator 𝜆̂ST was shown to outper-
form 𝜆̂H in a wide range of scenarios (Simpson and Tawn 2022).

(2.1)Pr(Tw > u + t ∣ Tw > u) =
L(eu+t;w)

L(eu;w)
e−𝜆(w)t → e−𝜆(w)t = t−𝜆(w)

∗
,

(2.2)− log f (tx, ty) ∼ tg(x, y), x, y ≥ 0, t → ∞,

(2.3)�(w) = max(w, 1 − w) × r−1
w
,

rw = min{r ∈ [0, 1] ∶ rRw ∩ G = �}.
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Estimation of �G uses an alternative radial-angular decomposition of (X, Y), with 
R∗ ∶= X + Y  and V∗ ∶= X∕(X + Y) . Simpson and Tawn (2022) assume the tail of 
R∗ ∣ V∗ = v∗ , v∗ ∈ [0, 1] , follows a generalised Pareto distribution (Davison and 
Smith 1990) and then use generalised additive models to capture trends over angles 
in both the threshold and generalised Pareto distribution scale parameter (Youngman 
2019). Next, high quantile estimates from the conditional distributions R∗ ∣ V∗ = v∗ , 
v∗ ∈ [0, 1] are computed using the fitted generalised Pareto distributions. They are 
then transformed back to the original scale using X = R∗V∗ and Y = R∗(1 − V∗) and 
finally scaled onto the set [0, 1]2 to give an estimate of �G ; see Simpson and Tawn 
(2022) for further details.

Wadsworth and Campbell (2024) also provide methodology for estimation of 
�G , though their focus is on estimation of tail probabilities more generally, includ-
ing in dimensions greater than two. Furthermore, their approach requires prior 
selection of a parametric form for g. We therefore restrict our attention to the work 
of Simpson and Tawn (2022) as their main focus is semi-parametric estimation for 
�G in two dimensions.

When applying the estimators 𝜆̂H and 𝜆̂ST in Sect.  5 and 6, we use the tuning 
parameters suggested in the original approaches. In the case of 𝜆̂H , we set u to be 
the empirical 90% quantile of Tw . The default tuning parameters for 𝜆̂ST can be found 
in Simpson and Tawn (2022), and example estimates of the set �G obtained using 
the suggested parameters are given in the Supplementary Material. For calculating 
this estimator, we used the code available at https://​github.​com/​essim​pson/​self-​consi​
stent-​infer​ence.

3 � Novel theoretical results pertaining to the ADF

In this section, we outline some new theoretical results on the ADF. These results 
impose shape constraints that the ADF must satisfy, and follow from the properties 
of � introduced in Sect. 1.

Fig. 2   The boundary set �G (given in red) for three example copulas, with coordinate limits denoted 
by the black dotted lines and the blue lines representing the coordinates (w∕�(w), (1 − w)∕�(w)) for all 
w ∈ [0, 1] . Left: bivariate Gaussian copula with coefficient � = 0.5 . Centre: inverted logistic copula with 
dependence parameter r = 0.8 . Right: logistic copula with dependence parameter r = 0.8

https://github.com/essimpson/self-consistent-inference
https://github.com/essimpson/self-consistent-inference
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Proposition 3.1  For any w1,w2 ∈ [0, 1] such that w1 ≤ w2 , we have

Proof  For the first statement, the proof is trivial if at least one of w1 or w2 
equals 0. Therefore, without loss of generality, assume that w1,w2 > 0 . Recall 
�(w) = �(w, 1 − w) , and that � is homogeneous of order 1 and monotonic in both 
arguments. Setting t ∶= w1∕w2 ∈ (0, 1] , we have

implying w1∕�(w1) ≤ w2∕�(w2) . For the second argument, the proof 
is again trivial if w2 = 1 or w1 = w2 = 1 , so assume w1,w2 < 1 . Set-
ting t ∶= (1 − w2)∕(1 − w1) ∈ (0, 1] , similar reasoning shows that 
(1 − w1)∕�(w1) ≥ (1 − w2)∕�(w2) , completing the proof. 	�  ◻

Remark  The intuition behind Proposition 3.1 comes from considering the relation-
ship between the ADF and the boundary set �G described in Eq. 2.3. Considering 
the sets described by the blue lines in Fig.  2, this implies that the x-coordinates 
(y-coordinates) of the sets must be increasing (decreasing) as the ray w increases, as 
is clear from the figure.

Proposition 3.1 also implies several interesting properties that the ADF must 
satisfy.

Corollary 3.1  Suppose there exists w∗ ∈ [0, 0.5] , or w∗ ∈ [0.5, 1] , such that 
�(w∗) = max(w∗, 1 − w∗) . Then �(w) = max(w, 1 − w) for all w ∈ [0,w∗] , or 
w ∈ [w∗, 1].

Proof  Considering the first case w∗ ∈ [0, 0.5] , Proposition 3.1 gives that 
(1 − w)∕�(w) ≥ (1 − w∗)∕�(w∗) = (1 − w∗)∕(1 − w∗) = 1 for any w ∈ [0,w∗] , 
implying max(w, 1 − w) = (1 − w) ≥ �(w) . Since �(w) ≥ max(w, 1 − w) , we must 
therefore have �(w) = max(w, 1 − w) . The same reasoning applies for w ∈ [w∗, 1] 
when w∗ ≥ 0.5 and �(w∗) = max(w∗, 1 − w∗) . 	�  ◻

Corollary 3.1 states that if the ADF equals the lower bound for any angle in the 
interval [0, 0.5] (or the interval [0.5, 1]), then it must also equal the lower bound for 
all angles less (greater) than this angle. This has further implications when we con-
sider the conditional extremes modelling framework described in Eq. 1.3. Let ay∣x 
and ax∣y be the normalising functions for conditioning on the events X > u and Y > u 
respectively, and let �y∣x ∶= limu→∞ ay∣x(u)∕u and �x∣y ∶= limu→∞ ax∣y(u)∕u , with 

w1∕�(w1) ≤ w2∕�(w2) and (1 − w1)∕�(w1) ≥ (1 − w2)∕�(w2).

w1

w2

�(w2) = t�(w2, 1 − w2)

= �(w1, t(1 − w2))

≤ �(w1, t(1 − w1))

≤ �(w1, 1 − w1)

= �(w1),
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�y∣x, �x∣y ∈ [0, 1] . From Nolde and Wadsworth (2022), we have that g(1, �y∣x) = 1 and 
g(�x∣y, 1) = 1 , with g defined as in Eq. 2.2, and �y∣x , �x∣y are the maximum such val-
ues satisfying these equations. Assuming that the values of �y∣x and �x∣y are known, 
we have the following result.

Corollary 3.2  For all w ∈ [0, �∗
x∣y
]
⋃
[�∗

y∣x
, 1] , with �∗

x∣y
∶= �x∣y∕(1 + �x∣y) and 

�∗
y∣x

∶= 1∕(1 + �y∣x) , we have �(w) = max(w, 1 − w).

Proof  To begin, consider the ray �∗
x∣y

∈ [0, 0.5] and observe that (�x∣y, 1) ∈ �G . From 
this, one can see that (�x∣y, 1) ∈ R�∗

x∣y
 . Equation  2.3 therefore implies that r�∗

x∣y
= 1 , 

and hence �(�∗
x∣y
) = max(�∗

x∣y
, 1 − �∗

x∣y
) . From Corollary 3.1, it follows that 

�(w) = max(w, 1 − w) for all w ∈ [0, �∗
x∣y
] . Considering the ray �∗

y∣x
∈ [0.5, 1] in an 

analogous manner, the result follows. 	�  ◻

Corollaries 3.1 and 3.2 are illustrated in Fig.  3 for a Gaussian copula with 
� = 0.5 . Here, �x∣y = �y∣x = 0.25 , implying �(w) = max(w, 1 − w) for all 
w ∈ [0, 0.2]

⋃
[0.8, 1] ; these rays correspond to the blue lines in the figure. One can 

observe that for any region Rw defined along either of the blue lines (such as the 
shaded regions illustrated for w = 0.1 and w = 0.9 ), we have that rw = 1 , since these 
regions will intersect �G at either the coordinates (0.25, 1) or (1, 0.25).

Finally, Proposition 3.1 also implies constraints on the derivative of the ADF, 
where this exists.

Corollary 3.3  Let ��(w) denote the derivative of the ADF at w, where it exists. For all 
w ∈ (0, 1) , we have that

Proof  Given any w ∈ (0, 1) and 𝜀 > 0 such that � ≤ min{w, 1 − w} , Proposition 3.1 
implies that w∕�(w) ≤ (w + �)∕�(w + �) and (w − �)∕�(w − �) ≤ w∕�(w) , which 
can be rearranged to give

Taking the limits as � → 0+ , we obtain ��(w) ≤ �(w)∕w . By rearranging the equations 
(1 − w)∕�(w) ≥ (1 − (w + �))∕�(w + �) and (1 − (w − �))∕�(w − �) ≥ (1 − w)∕�(w) 
and taking limits in a similar manner, the result follows. 	�  ◻

Remark  Note that Corollary 3.3 corresponds to the same derivative constraints orig-
inally derived in Wadsworth and Tawn (2013), albeit with a different proof.

The results introduced in this section provide necessary conditions that the ADF 
must satisfy. Furthermore, each of the introduced corollaries follow directly from 
Proposition 3.1; therefore, if an estimator satisfies the conditions of this proposi-
tion, it will automatically satisfy the remaining conditions. We therefore incorporate 

−�(w)∕(1 − w) ≤ ��(w) ≤ �(w)∕w.

�(w + �) − �(w)

�
≤ �(w)∕w,

�(w) − �(w − �)

�
≤ �(w)∕w.
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Proposition 3.1 into our estimation framework for � ; see Sect. 4 for further details. 
We remark that only one of the existing approaches for estimating the ADF (Mur-
phy-Barltrop and Wadsworth 2024) has considered such constraints, although 
they will automatically be satisfied by ADF estimators derived from valid limit set 
estimates.

4 � Novel estimators for the ADF

Motivated by the goal of global estimation, we propose a range of novel estimators 
for the ADF. We recall that the ADF and Pickands’ dependence function exhibit sev-
eral theoretical similarities, as listed in Sect. 1, and arise as exponential rate parame-
ters for suitable constructions of structure variables (Mhalla et al. 2019a). We there-
fore begin by reviewing estimation of the Pickands’ dependence function.

Because smooth functional estimation for the ADF is desirable, we restrict our 
review to approaches for the Pickands’ dependence function which achieve this: 

Fig. 3   Pictorial illustration of the results described in Corollaries 3.1 and 3.2. The boundary set �G , 
given in red, is from the bivariate Gaussian copula with � = 0.5 , with the points (1, �y∣x) and (�x∣y, 1) 
given in green. The blue lines represent the rays w ∈ [0, �∗

x∣y
]
⋃
[�∗

y∣x
, 1] , while the yellow and pink shaded 

regions represent the set Rw for w = 0.1 and w = 0.9 , respectively
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notably spline-based techniques (Hall and Tajvidi 2000; Cormier et  al. 2014) and 
techniques that utilise the family of Bernstein-Bézier polynomials (Guillotte and 
Perron 2016; Marcon et al. 2016, 2017). In this paper, we focus on to the latter cat-
egory, since spline-based techniques typically result in more complex formulations 
and a larger number of tuning parameters. Moreover, approaches based on Bern-
stein-Bézier polynomials have been shown to improve estimator performance across 
a wide range of copula examples (Vettori et al. 2018). For estimation of Pickands’ 
dependence function, the following family of functions is considered

where k ∈ ℕ denotes the polynomial degree. Note that Bk is a sub-family from the 
class of Bernstein–Bézier polynomials. Many approaches assume that the Pickands’ 
dependence function A ∈ Bk and propose techniques for estimating the coefficient 
vector ��� , resulting in an estimator 𝛽̂𝛽𝛽 . This automatically ensures A(t) ≤ 1 for all 
t ∈ [0, 1] , thereby satisfying the theoretical upper bound of the Pickands’ depend-
ence function.

We make a similar assumption about the ADF, and use this to propose novel esti-
mators. However, unlike the Pickands’ dependence function, the ADF is unbounded 
from above, meaning functions in Bk cannot represent all forms of extremal depend-
ence captured by Eq. 1.5. Moreover, the endpoint conditions �(0) = �(1) = 1 are not 
necessarily satisfied by functions in Bk . We therefore propose an alternative family 
of polynomials: given k ∈ ℕ , let

Functions in this family are unbounded from above, and f (0) = f (1) = 1 for all 
f ∈ B

∗
k
 . Note that functions in B∗

k
 are not required to satisfy the lower bound of the 

ADF; this bound is instead imposed in a post-processing procedure, as detailed in 
Sect. 4.4.

For the remainder of this section, let �(⋅; ���) ∈ B
∗
k
 represent a form of the ADF 

from B∗
k
 . Interest now lies in estimating the coefficient vector ��� , which requires 

choice of the degree k ∈ ℕ . This is a trade-off between flexibility and computational 
complexity; polynomials with small values of k may not be flexible enough to cap-
ture all extremal dependence structures, resulting in bias, while high values of k will 
increase computational burden and parameter variance.

4.1 � Composite likelihood approach

One consequence of Eq.  2.1 is that, for all w ∈ [0, 1] , the conditional variable 
T∗
w
∶= (Tw − uw ∣ Tw > uw) ∼ Exp(�(w) ), approximately, for large uw . The density of 

this variable is fT∗
w
(t∗
w
) ≈ 𝜆(w)e−𝜆(w)t

∗
w , t∗

w
> 0 , resulting in a likelihood function for 

Bk =

{
k∑

i=0

�i

(
k

i

)
wi(1 − w)k−i

|||||
��� ∈ [0, 1]k+1, w ∈ [0, 1]

}
,

(4.1)

B
∗
k
=

{
(1 − w)k +

k−1∑
i=1

�i

(
k

i

)
wi(1 − w)k−i + wk =∶ f (w)

|||||
w ∈ [0, 1],��� ∈ [0,∞)k−1

}
.
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min-projection exceedances of uw . Let (x, y) ∶= {(xi, yi) ∶ i = 1,⋯ , n} denote n 
independent observations from the joint distribution of (X,  Y). For each w ∈ W  , 
where W  denotes some finite subset spanning the interval [0,  1], let 
tw ∶= {min(xi∕w, yi∕(1 − w)) ∶ i = 1,⋯ , n} and take uw to be the empirical q quan-
tile of tw , with q close to 1 and fixed across w. Letting 
t∗
w
∶= {tw − uw ∣ tw ∈ tw, tw > uw} , we have a set of realisations from the conditional 

variable T∗
w
.

One approach to obtain an estimate of �(w) while considering all w ∈ W  simul-
taneously is to use a composite likelihood, in which multiple likelihood components 
are treated as independent whether or not they are independent. Provided each com-
ponent is a valid density function, the resulting likelihood function provides unbi-
ased parameter estimates under the true model; see Varin et al. (2011) for further 
details. For this model, the likelihood function is

 where |t∗
w
| denotes the cardinality of the set t∗

w
 . This composite likelihood function 

has equal weights across all w ∈ W  (the ‘components’). An estimator of the ADF, 
𝜆̂CL , is 𝜆(⋅; 𝛽̂𝛽𝛽CL) , where 𝛽̂𝛽𝛽CL ∶= argmax 𝛽𝛽𝛽∈[0,∞)k−1LC(𝛽𝛽𝛽).

To apply this method in practice, one must first specify a set W  and a probability q. 
Given some large, odd-valued m ∈ ℕ , we let W ∶= {i∕(m − 1) ∶ i = 0, 1,⋯ ,m − 1} ; 
this corresponds to a set of equally spaced rays W  spanning the interval [0, 1], with 
{0, 0.5, 1} ⊂ W  . Selection of m and q are discussed in Sect. 4.5. The former is akin 
to selecting the degree of smoothing, while the latter is analogous to selecting a 
threshold for the generalised Pareto distribution defined in Sect. 2 in the univariate 
setting.

4.2 � Probability ratio approach

With W  and tw defined as in Sect. 4.1, consider two probabilities q < p < 1 , both 
close to one. Given any w ∈ W  , let uw and vw denote the q and p empirical quantiles 
of tw , respectively. Assuming the distribution function of Tw is strictly monotonic, 
Eq. 2.1 implies that

Similarly to Murphy-Barltrop and Wadsworth (2024), we exploit Eq. 4.3 to obtain 
an estimator for the ADF. Firstly, we observe that this representation holds for all 
w ∈ W  , hence

(4.2)

LC(���) =
�
w∈W

�
t∗
w
∈t∗

w

�(w; ���)e−�(w; ���)t
∗
w =

��
w∈W

�(w; ���)�t∗w�
�
× e

−
∑

w∈W

∑
t∗w∈t∗w

�(w; ���)tw ,

(4.3)

1 − p

1 − q
= Pr(Tw > vw ∣ Tw > uw) ≈ e−𝜆(w)(vw−uw) ⇒

||||
1 − p

1 − q
− e−𝜆(w)(vw−uw)

|||| ≈ 0,

∑
w∈W

||||
1 − p

1 − q
− e−�(w)(vw−uw)

|||| ≈ 0.
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To ensure Eq.  4.3 holds requires careful selection of q and p. This selection also 
represents a bias-variance trade off: probabilities too small (big) will induce bias 
(high variability). Moreover, owing to the different rates of convergence to the limit-
ing ADF, a single pair (q, p) is unlikely to be appropriate across all data structures. 
We instead consider a range of probability pairs simultaneously. Specifically, letting 
{(qj, pj) ∣ qj < pj < 1, 1 ≤ j ≤ h} , h ∈ ℕ , be pairs of probabilities near one, consider 
the expression

in which uw,j and vw,j denote qj and pj empirical quantiles of tw , respectively, for each 
j = 1,⋯ , h . Since minimising S(���) should provide a reasonable estimate of � over 
all W  , we set 𝛽̂𝛽𝛽PR = argmin 𝛽𝛽𝛽∈[0,∞)k−1S(𝛽𝛽𝛽) and denote by 𝜆̂PR the estimator 𝜆(⋅; 𝛽̂𝛽𝛽PR) . 
Similarly to 𝜆̂CL , one must select the sets W  and {(qj, pj) ∣ qj < pj < 1, 1 ≤ j ≤ h} , 
h ∈ ℕ prior to applying this estimator; see Sect. 4.5.

4.3 � Incorporating knowledge of conditional extremes parameters

Assuming we know the conditional extremes parameters �y∣x, �x∣y , Corollary 3.2 
implies that for all w ∈ [0, �∗

x∣y
]
⋃
[�∗

y∣x
, 1] , with �∗

x∣y
= �x∣y∕(1 + �x∣y) and 

�∗
y∣x

= 1∕(1 + �y∣x) , �(w) = max(w, 1 − w) . In this section, we exploit this result to 
improve estimation of the ADF.

In practice, �∗
x∣y

 and �∗
y∣x

 are unknown; however, estimates 𝛼̂y∣x and 𝛼̂x∣y are com-
monly obtained using a likelihood function based on a misspecified model for the 
distribution D in Eq. 1.3 (e.g., Jonathan et al. 2014). The resulting estimates, denoted 
𝛼̂∗
x∣y

 , 𝛼̂∗
y∣x

 , can be used to approximate the ADF for w ∈ [0, 𝛼̂∗
x∣y
)
⋃
(𝛼̂∗

y∣x
, 1] . What now 

remains is to combine this with an estimator for �(w) on [𝛼̂∗
x∣y
, 𝛼̂∗

y∣x
].

A crude way to obtain an estimator via this framework would be to set 
�(w) = max(w, 1 − w) for w ∈ [0, 𝛼̂∗

x∣y
)
⋃
(𝛼̂∗

y∣x
, 1] and 𝜆(w) = 𝜆̂H(w) , 𝜆̂CL(w) or 

𝜆̂PR(w) for w ∈ [𝛼̂∗
x∣y
, 𝛼̂∗

y∣x
] . However, this results in discontinuities at 𝛼̂∗

x∣y
 and 𝛼̂∗

y∣x
 . 

Instead, for the smooth estimators, we rescale B∗
k
 such that the resulting ADF esti-

mate is continuous for all w ∈ [0, 1] . Consider the set of polynomials

For all f ∈ B̃k , we have that f (𝛼̂∗
x∣y
) = (1 − 𝛼̂∗

x∣y
) and f (𝛼̂∗

y∣x
) = 𝛼̂∗

y∣x
 , and each f is only 

defined on the interval [𝛼̂∗
x∣y
, 𝛼̂∗

y∣x
] . Letting 𝜆̃(⋅ ;𝛽𝛽𝛽) ∈ B̃k represent a form of the ADF 

for w ∈ [𝛼̂∗
x∣y
, 𝛼̂∗

y∣x
] , the techniques introduced in Sects.  4.1 and 4.2 can be used to 

S(���) ∶=
∑
w∈W

h∑
j=1

|||||

[
1 − pj

1 − qj

]
− e−�(w; ���)(vw,j−uw,j)

|||||
,

(4.4)

B̃k =

{
(1 − 𝛼̂∗

x∣y
)

(
1 −

v − 𝛼̂∗
x∣y

𝛼̂∗
y∣x

− 𝛼̂∗
x∣y

)k

+

k−1∑
i=1

𝛽i

(
k

i

)( v − 𝛼̂∗
x∣y

𝛼̂∗
y∣x

− 𝛼̂∗
x∣y

)i(
1 −

v − 𝛼̂∗
x∣y

𝛼̂∗
y∣x

− 𝛼̂∗
x∣y

)k−i

+

𝛼̂∗
y∣x

(
v − 𝛼̂∗

x∣y

𝛼̂∗
y∣x

− 𝛼̂∗
x∣y

)k

=∶ f (v)
|||||
v ∈ [𝛼̂∗

x∣y
, 𝛼̂∗

y∣x
], 𝛽𝛽𝛽 ∈ [0,∞)k−1

}
.
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obtain estimates of the coefficient vectors, which we denote 𝛽̂𝛽𝛽CL2 and 𝛽̂𝛽𝛽PR2 , respec-
tively. The resulting estimators for � are

with 𝜆̂PR2 defined analogously. We lastly define the discontinuous estimator 𝜆̂H2 as

This is obtained by combining the pointwise Hill estimator with the information 
provided by the estimates 𝛼̂∗

x∣y
, 𝛼̂∗

y∣x
 . Illustrations of all the estimators discussed in this 

section, as well as in Sect. 2, can be found in the Supplementary Material.
We note that estimation of the parameters, �x∣y, �y∣x, is subject to uncertainty and 

will not give a perfect representation of �∗
x∣y

 and �∗
y∣x

 . However, we believe it is worth 
exploring the quality of the resulting estimates, and find in Sect. 5 that they gener-
ally provide improvement over estimators that do not exploit this link. We also note 
the potential for independent estimates of � to be used for improving estimation of 
�x∣y and �y∣x in the conditional extremes model, but leave exploration of this to future 
work.

4.4 � Incorporating theoretical properties

All estimators introduced so far are not required to satisfy the property of � intro-
duced in Proposition 3.1, or the lower bound on the ADF discussed in Sect. 1. Fur-
thermore, the estimator 𝜆̂H is also not guaranteed to satisfy the endpoint conditions, 
i.e., �(0) = �(1) = 1.

There are several techniques one could use to impose these properties. For 
instance, one could incorporate penalty terms to objective functions LC(���) or S(���) to 
penalise for cases when the conditions of Proposition 3.1, or the ADF lower bound, 
are not satisfied. Alternatively, one could also impose the theoretical properties of 
the ADF in post-processing steps; such a procedure can be applied regardless of 
whether the original estimator is smooth or local. In unreported results, we consid-
ered penalising the objective function LC(���) for violations of ADF properties, with 
larger penalties for greater violations. This approach allows for simpler optimisation 
of the objective function than imposing a very strong penalty for any violation, but 
introduces the choice of a penalty parameter and does not guarantee the properties 
are fully satisfied. We therefore opt instead to apply a post-processing procedure to 
each of the ADF estimators; this has the added advantage of also being applicable to 
the pointwise Hill estimators.

For any estimator 𝜆̂− , assume that the set {w ∈ [0, 1] ∣ 𝜆̂−(w) < max(w, 1 − w)} 
is non-empty. To ensure the ADF is bounded from below, and satisfies the endpoint 
conditions �(0) = �(1) = 1 , we set

𝜆̂CL2(w) =

�
𝜆̃(w;𝛽̂𝛽𝛽CL2) for w ∈ [𝛼̂∗

x∣y
, 𝛼̂∗

y∣x
],

max(w, 1 − w) for w ∈ [0, 𝛼̂∗
x∣y
)
⋃
(𝛼̂∗

y∣x
, 1],

𝜆̂H2 ∶=

�
𝜆̂H(w) for w ∈ [𝛼̂∗

x∣y
, 𝛼̂∗

y∣x
],

max(w, 1 − w) for w ∈ [0, 𝛼̂∗
x∣y
)
⋃
(𝛼̂∗

y∣x
, 1].
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Next, we ensure the conditions outlined in Proposition 3.1 are satisfied. Define the 
angular sets W≤0.5 = (w≤0.5

1
,w≤0.5

2
,⋯ ,w≤0.5

(m−1)∕2
) ∶= {i∕(m − 1) ∶ i = (m − 1)∕2, (m − 1)∕2 − 1,⋯ , 0} ⊂ W  

and W≥0.5 = (w≥0.5
1

,w≥0.5
2

,⋯ ,w≥0.5
(m−1)∕2

) ∶= {i∕(m − 1) ∶ i = (m − 1)∕2, (m − 1)∕2 + 1,⋯ ,m − 1} ⊂ W  . We pro-
pose the following algorithm.

Algorithm 1   Algorithm for imposing Property 3.1.

This ensures the processed estimator 𝜆̂− satisfies the conditions of Properties 3.1 
for w ∈ W  ; this is the finite window that we use to represent [0, 1] in practice. This 
processing is applied to all pointwise and novel estimators, i.e., 𝜆̂H , 𝜆̂CL, 𝜆̂PR , 𝜆̂H2 , 
𝜆̂CL2 and 𝜆̂PR2 , ensuring that the ADF estimates from each approach are always the-
oretically valid. In practice, we found that imposing these theoretical results also 
improved estimation quality within the resulting ADF estimates, both in terms of 
bias and variance. An illustration of the processing procedure is given in the Sup-
plementary Material.

4.5 � Tuning parameter selection

Prior to using any of the ADF estimators introduced in this section, we are required to 
select at least one tuning parameter. For the probability values required by the estimators 
introduced in Sects. 4.1 and 4.2, we set q = 0.90 , {qj}hj=1 ∶= {0.87 + (j − 1) × 0.002}h

j=1
 

and pj = qj + 0.05 for j = 1,… , h , with h = 31 . These values were chosen to evaluate 
whether the resulting estimators improve upon the base estimator 𝜆̂H using (approxi-
mately) the same amount of tail information in all cases. We tested a range of probabili-
ties for both estimators and found that the ADF estimates were not massively sensitive to 
these across different extremal dependence structures. For example, for 𝜆̂CL , a lower q 
resulted in mild improvements for asymptotically independent copulas, while simultane-
ously worsening the quality of ADF estimates for asymptotically dependent examples, 
while a higher q led to higher variance.

For the angular interval W  , we set m = 1, 000 , i.e., W = {0, 0.001, 0.002,⋯ , 0.999, 1} . 
This set was sufficient to ensure a high degree of smoothness in the resulting ADF esti-
mates without too high a computational burden.

𝜆̂−(w) =

{
max

{
𝜆̂−(w), max(w, 1 − w)

}
for w ∈ (0, 1),

1 for w ∈ {0, 1}.
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For each of the novel estimators (except 𝜆̂H2 ), we must also specify the degree 
k ∈ ℕ for the polynomial families described by Eqs. 4.1 and 4.4. In the case of the 
Pickands’ dependence function, studies have found that higher values of k are prefer-
able for very strong positive dependence, while the opposite is true for weak depend-
ence (Marcon et al. 2017; Vettori et al. 2018). We prefer to select a single value of 
k that performs well across a range of dependence structures, while minimising the 
computational burden; this avoids the need to select this parameter when obtaining 
ADF estimates in practice.

To achieve this objective, we estimated the root mean integrated squared error 
(RMISE), as defined in Sect. 5.1, of the estimators 𝜆̂CL and 𝜆̂PR with k = 4,⋯ , 11 
using 200 samples from two Gaussian copula examples, corresponding to strong 
( � = 0.9 ) and weak ( � = 0.1 ) positive dependence. Assessment of how the RMISE 
estimates vary over k for both estimators suggests that k = 7 is sufficient to accu-
rately capture both dependence structures. The full results can be found in the Sup-
plementary Material. We remark that this approach for selecting k is somewhat ad 
hoc, and in practice, one could employ various diagnostic tools, such as the tool 
discussed in Sect. 6.3, to select k on a case-by-case basis.

For each of the ‘combined’ estimators in Sect.  4.3, we take the same tuning 
parameters as for the ‘non-combined’ counterpart, since the combined estimators 
have near identical formulations only defined on a subset of [0, 1]. For example, the 
empirical 90% threshold of the min-projection is used for both 𝜆̂H and 𝜆̂H2 . Finally, 
when estimating the conditional extremes parameters, empirical 90% conditioning 
thresholds are used.

5 � Simulation study

5.1 � Overview

In this section, we use simulation to compare the estimators proposed in Sect. 4 to 
the existing techniques described in Sect. 2. For the comparison, we introduce nine 
copula examples, representing a wide variety of extremal dependence structures, 
and encompassing both extremal dependence regimes.

The first three examples are from the bivariate Gaussian distribution, for which 
the dependence is characterised by the correlation coefficient � ∈ [−1, 1] . We con-
sider � ∈ {−0.6, 0.1, 0.6} , resulting in data structures exhibiting medium negative, 
weak positive, and medium positive dependence, respectively. Note that in the case 
of � = −0.6 , the choice of exponential margins will hide the dependence structure 
(Keef et al. 2013a; Nolde and Wadsworth 2022).

For the next two examples, we consider the bivariate extreme value copula with 
logistic and asymmetric logistic families (Gumbel 1960; Tawn 1988). In both cases, 
the dependence is characterised by the parameter r ∈ (0, 1] ; we set r = 0.8 , corre-
sponding to weak positive extremal dependence. For the asymmetric logistic fam-
ily, we also require two asymmetry parameters (k1, k2) ∈ [0, 1]2 , which we fix to be 
(k1, k2) = (0.3, 0.7) , resulting in a mixture structure.
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We next consider the inverted bivariate extreme value copula (Ledford and Tawn 
1997) for the logistic and asymmetric logistic families, with the dependence again 
characterised by the parameters r and (r, k1, k2) , respectively. We set r = 0.4 , cor-
responding to moderate positive dependence, and again fix (k1, k2) = (0.3, 0.7) . Note 
that for this copula, the model described in Eq.  1.5 is exact: see Wadsworth and 
Tawn (2013).

Lastly, we consider the bivariate student t copula, for which dependence is char-
acterised by the correlation coefficient � ∈ [−1, 1] and the degrees of freedom 𝜈 > 0 . 
We consider � = 0.8 , � = 2 and � = 0.2 , � = 5 , corresponding to strong and weak 
positive dependence.

Illustrations of the true ADFs for each copula are given in Fig. 4, showing a range 
of extremal dependence structures. For examples where the ADF equals the lower 
bound, the copula exhibits asymptotic dependence. While the fifth copula exhibits 

Fig. 4   True ADFs (in red) for each copula introduced in Sect. 5.1, along with the theoretical lower bound 
(black dotted line)
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asymmetric dependence, the limiting ADF is symmetric; the same is not true for its 
inverted counterpart.

To evaluate estimator performance, we use the RMISE

where 𝜆̂− denotes an arbitrary estimator. Simple rearrangement shows that this met-
ric is equal to the square root of the sum of integrated squared bias (ISB) and inte-
grated variance (IV) (Gentle, 2002), i.e.,

Therefore, the RMISE summarises the quality of an estimator in terms of both bias 
and variance, and can be used as a means to compare different estimators.

5.2 � Results

For the copulas described in Sect. 5.1, data from each copula example was simulated 
on standard exponential margins with a sample size of n =10,000, and the integrated 
squared error (ISE) of each estimator was approximated for 1, 000 samples using the 
trapezoidal rule; see the Supplementary Material for further information. The square 
root of the mean of these estimates was then computed, resulting in a Monte–Carlo 
estimate of the RMISE.

The RMISE estimates for each estimator and copula combination are shown in 
Table 1. Tables containing the corresponding Monte–Carlo error, ISB and IV values 
can be found in the Supplementary Material, along with root mean squared error 
estimates for individual rays w ∈ {0.1, 0.3, 0.5, 0.7, 0.9} . For each estimator, the bias 
varies significantly across the different copulas. However, in the majority of cases, 
the bias/variance are similar across most of the estimators. We remark that the mag-
nitudes of the Monte-Carlo errors, as reported in the Supplementary Material, are 
small enough such that the ordering of RMISE estimates in Table 1 is likely to be a 
true reflection of the relative performance for each estimator.

While no estimator consistently outperforms the others, 𝜆̂CL2 and 𝜆̂ST tend to have 
lower RMISE, ISB and IV values, on average. This is especially the case when com-
paring to the base estimator 𝜆̂H . Furthermore, the ‘combined’ estimators outper-
form their non-combined counterparts in many cases, suggesting that incorporating 
parameter estimates from the conditional extremes model can reduce bias and vari-
ance. The Gaussian copula with � = −0.6 has much higher RMISE values, indicat-
ing that none of the estimators capture negative dependence well, though this is in 
part due to the choice of exponential margins.
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We note that while the true ADFs are identical for the asymptotically dependent 
logistic, asymmetric logistic, and student t copulas, the corresponding RMISE val-
ues in Table 1 vary significantly. Notably, the asymmetric logistic, which possesses 
a complex asymmetric structure, has substantially higher RMISE values compared 
to the other asymptotically dependent copulas. We suspect these disparities arise at 
finite levels due to the different rates of convergence to the limiting ADF in Eq. 1.5, 
alongside the fact many multivariate extreme value models perform poorly in the 
case of asymmetric dependence (Tendijck et al. 2021).

Overall, these results indicate that no one estimator is preferable across all extre-
mal dependence structures. However, we suggest using the estimators 𝜆̂CL2 and 𝜆̂ST 
since, on average, these appeared to result in less bias and variance. The form of 
extremal dependence appears to affect the performance of both of these estimators; 
since this is often difficult to quantify a priori, we suggest using both estimators and 
evaluating relative performance via diagnostics, as we do in Sect. 6.

6 � Case study

6.1 � Overview

Understanding the probability of observing extreme river flow events (i.e., floods) at 
multiple sites simultaneously is important in a variety of sectors, including insurance 
(Keef et al. 2013b; Quinn et al. 2019; Rohrbeck and Cooley 2021) and environmental 
management (Lamb et al. 2010; Gouldby et al. 2017). Valid risk assessments there-
fore require accurate evaluation of the extremal dependence between different sites.

In this section, we estimate the ADF of river flow data sets obtained from gauges 
in the north of England, UK, which can be subsequently used to construct bivariate 

Table 1   RMISE values 
(multiplied by 100) for 
each estimator and copula 
combination

Smallest RMISE values in each row are highlighted in bold, with 
values reported to 3 significant figures. Copulas 1-3 refer to the 
Gaussian copula with � = −0.6 , � = 0.1 and � = 0.6 , respectively. 
Copulas 4-7 refer to the logistic, asymmetric logistic, inverted logis-
tic, inverted asymmetric logistic copulas, respectively. Copulas 8-9 
refer to the student t copula with parameters � = 0.8 , � = 2 and 
� = 0.2 , � = 5 , respectively

Copula 𝜆̂
H

𝜆̂
CL

𝜆̂
PR

𝜆̂
H2 𝜆̂

CL2 𝜆̂
PR2 𝜆̂

ST

Copula 1 61.2 61.3 66.2 61.4 61.9 66.7 63.7
Copula 2 3.44 3.36 3.67 3.41 3.35 3.66 2.95
Copula 3 3.43 3.46 3.83 3.21 3.22 3.57 1.09
Copula 4 4.58 4.71 6.89 4.24 4.24 6.17 2.77
Copula 5 14 14.1 17.1 14 14.1 17.1 12.1
Copula 6 2.05 2 2.18 1.78 1.75 1.92 2.12
Copula 7 2.79 2.68 2.93 2.77 2.69 2.93 3.96
Copula 8 1.04 1.05 1.44 0.562 0.535 0.72 1.87
Copula 9 11.9 12 14.9 11.9 12 14.9 11.1
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return curves. Daily average flow values ( m3∕s ) at six river gauge locations on dif-
ferent rivers were considered. The gauge sites are illustrated in Fig. 5. For each loca-
tion, data is available between May 1993 and September 2020; however, we only 
consider dates where a measurement is available for every location. To avoid season-
ality, we consider the interval October-March only; from our analysis, it appears that 
the highest daily flow values are observed in this period. This results in n = 4, 659 
data points for each site. Plots of the daily flow time series can be found in the Sup-
plementary Material; these plots suggest that an assumption of stationarity is rea-
sonable for the extremes of each data set.

We fix the site on the river Lune to be our reference site and consider the extre-
mal dependence between this and all other gauges. We first estimate the extremal 
dependence measure � and the coefficient � using the upper 10% of the corre-
sponding joint tails. Both � and � are limiting values; however, in practice, we are 

Fig. 5   Locations of river gauges in the north of England, UK. Individual rivers illustrated in blue along-
side the corresponding gauge locations
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unable to evaluate such limits without a closed form for the joint distribution. We 
therefore calculate these values empirically. Taking � , for example, an estimate is 
𝜒̂q = P̂r(X > x̂q, Y > ŷq)∕P̂r(X > x̂q) , where P̂r(⋅) denotes an empirical probability 
estimate and x̂q and ŷq denote empirical q quantile estimates for the variables X and 
Y, respectively, and q is some value close to 1. Specifically, we take q = 0.9 . In prac-
tice, we are unlikely to observe 𝜒 = 𝜒̂q , even at the most extreme quantile levels, 
i.e., as q → 1 . This can be problematic when trying to quantify the form of extremal 
dependence, since 𝜒̂q > 0 may arise for asymptotically independent data sets (for 
example). Therefore, the estimated coefficients should act only as a rough guide for 
this quantification.

The dependence measure estimates and 95% confidence intervals are shown in 
Fig. 6 as a function of distance from the reference site. Here and throughout, all con-
fidence intervals are obtained via block bootstrapping with block size b = 40 ; this 
value appears appropriate to account for the varying degrees of temporal depend-
ence observed across the six gauge sites. These estimates suggest that asymptotic 
independence may exist for at least three of the site pairings; therefore, model-
ling techniques based on bivariate regular variation would likely fail to capture the 
observed extremal dependencies in this scenario.

6.2 � ADF estimation

We transform each marginal data set to exponential margins using the semi-para-
metric approach of Coles and Tawn (1991), whereby a generalised Pareto distribu-
tion is fitted to the upper tail and the body is modelled empirically. The generalised 
Pareto distribution thresholds are selected using the technique proposed in Murphy 
et al. (2024). In spite of the data violating the independence assumption, diagnostic 
plots found in the Supplementary Material indicate reasonable model fits. Since our 
results from Sect. 5 suggest that the estimators 𝜆̂CL2 and 𝜆̂ST perform best overall, we 
used these, alongside the base estimator 𝜆̂H , to estimate the ADF for each combina-
tion of the reference gauge and the other five gauges. The resulting ADF estimates 
can be found in Fig. 7.

One can observe contrasting shapes across the different pairs of gauges, illustrat-
ing the variety in the observed extremal dependence structures. These results illus-
trate that on the whole, the estimator 𝜆̂CL2 is very much a smoothed version of 𝜆̂H on 
the interval (𝛼̂∗

x∣y
 , 𝛼̂∗

y∣x
) , owing to the form of likelihood function used.

6.3 � Assessing goodness of fit for ADF estimates

Recall that, from Eq. 2.1, we have T∗
w
∼ Exp(�(w)) as uw → ∞ for all w ∈ [0, 1] . We 

exploit this result to assess the goodness of fit for ADF estimates.
Let 𝜆̂(w),w ∈ [0, 1] , denote an estimated ADF obtained using the sample. 

Given w ∈ [0, 1] , let uw denote some high empirical quantile from the sample tw , 
and consider the sample t∗

w
 , with tw and t∗

w
 defined as in Sect. 4.1. If t∗

w
 is indeed a 

sample from an Exp(𝜆̂(w)) distribution, we would expect good agreement between 
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empirical and model quantiles. Analogously, 𝜆̂(w)t∗
w
 should represent a sample 

from an Exp(1) distribution if T∗
w
∼ Exp(�(w)) , independent of the ray w.

We use these results to derive local and global diagnostics for the ADF. First, 
for a subset of rays w ∈ [0, 1] , corresponding to a range of joint survival regions, 

Fig. 6   Estimated dependence coefficients as a function of distance from the Lune gauge, with 95% point-
wise confidence intervals given by the shaded regions. Left: Estimates of � (blue). Right: Estimates of � 
(grey)

Fig. 7   ADF estimates for each pair of gauge sites. The purple, pink and green lines represent the esti-
mates from 𝜆̂H , 𝜆̂CL2 and 𝜆̂ST , respectively, with the theoretical lower bound denoted by the black dotted 
lines
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let nw = |t∗
w
| and t∗

w(j)
 denote the j-th order statistic of t∗

w
 and consider the set of 

pairs

With uw fixed to be the 90% empirical quantile of tw , quantile-quantile (QQ) plots 
for five individual rays, w ∈ {0.1, 0.3, 0.5, 0.7, 0.9} , are given in the first five panels 
Fig. 8 for the third pair of gauges and the 𝜆̂CL2 estimator. Uncertainty intervals are 
obtained via block bootstrapping on the set t∗

w
 , i.e., the order statistics. We acknowl-

edge a deficiency of this scheme that all sampled quantiles will be bounded by the 
interval [t∗

w(1)
, t∗

w(nw)
] . However, alternative uncertainty quantification approaches, 

such as parametric bootstraps or the use of beta quantiles for uniform order statis-
tics, would fail to account for the observed temporal dependence within the data.

For the global diagnostic, we propose the following: for each i ∈ {1,⋯ , n} , 
define the corresponding angular observation wi ∶= xi∕(xi + yi) and let uwi

 denote 
the 90% empirical quantile of twi

 . Randomly sample one point t∗ from the set t∗
wi

 
and set ei ∶= �(wi)(t

∗ − uwi
) ; repeating this process over all i ∈ {1,⋯ , n} , we 

obtain the set E ∶= {ei ∣ i ∈ {1,⋯ , n}} . We then consider the set of pairs

{(
− log(1 − j∕(nw + 1))∕𝜆̂(w), t∗

w(j)

)
∶ j = 1,⋯ , nw

}
.

{(
− log(1 − j∕(n + 1)), e(j)

)
∶ j = 1,⋯ , n

}
,

Fig. 8   Local and global ADF QQ plots for the third pair of gauges, using the ADF estimate obtained via 
𝜆̂CL2 . Estimates given in black, with 95% pointwise tolerance intervals represented by the grey shaded 
regions. Red lines correspond to the y = x line
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with e(j) denoting the j-th order statistic of E  ; this comparison provides an overall 
summary for the quality of model fit across all angles. The corresponding QQ plot 
for the third pair of gauges and the 𝜆̂CL2 estimator is given in the bottom right panel 
of Fig. 8, with uncertainty bounds obtained via block bootstrapping on set E  . This 
diagnostic possesses a degree of stochasticity due to sampling from the set t∗

wi
 . We 

can check the impact of this on our impression of the fit by considering a few differ-
ent random seeds; see the Supplementary Material for further details.

On the whole, the estimated exponential quantiles appear in good agreement with 
the observed quantiles, indicating the underlying ADF estimate accurately captures 
the tail behaviour for each min-projection variable. Analogous plots for 𝜆̂H and 𝜆̂ST 
are given in the Supplementary Material. Similar plots were obtained when the other 
pairs of gauges were considered.

6.4 � Estimating return curves

To quantify the risk of joint flooding events across sites, we follow Murphy-Barltrop 
et al. (2023) and use the ADF to estimate a bivariate risk measure known as a return 
curve, RC(p) , as defined in Sect. 1. This measure is a direct bivariate extension of a 
return level, which is commonly used to quantify risk in the univariate setting (Coles 
2001). Taking probability values p close to zero gives a summary of the joint extre-
mal dependence, thus allowing for comparison across different data structures. In 
the context of extreme river flows, return curves can be used to evaluate at which 
sites joint extremes (floods) are more/less likely to occur. For illustration, we fix p 
to correspond to a 5 year return period, i.e., p = 1∕(5ny) , where ny is the average 
number of points observed in a given year (Brunner et al. 2016). Excluding missing 
observations, we have 28 years of data, hence the resulting curve should be within 
the range of data whilst simultaneously representing the joint tail. The resulting 
return curve estimates for each ADF estimator and pair of gauge sites can be found 
in Fig. 9.

There is generally good agreement among the estimated curves. The almost-
square shapes of the estimates for the first two pairs of gauges indicate higher like-
lihoods of observing simultaneous flood events at the corresponding gauge sites; 
this is as expected given the close spatial proximity of these sites. In all cases, the 
curves derived via 𝜆̂H are quite rough and unrealistic, and are subsequently ignored. 
To assess the goodness of fit of the remaining return curve estimates, we consider 
the first and fifth examples and apply the diagnostic introduced in Murphy-Barltrop 
et al. (2023). Our results suggest good quality model fits for both of the estimates 
obtained using 𝜆̂CL2 and 𝜆̂ST , though with potentially a slight preference for the esti-
mate based on 𝜆̂CL2 for the fifth pair. Furthermore, we also obtain 95% return curve 
confidence intervals for these examples. The resulting plots illustrating the diagnos-
tics and confidence intervals, along with a brief explanation of the diagnostic tool, 
are given in the Supplementary Material.
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7 � Discussion

We have introduced a range of novel global estimators for the ADF, as detailed in 
Sect. 4. We compared these estimators to existing techniques through a system-
atic simulation study and found our novel estimators to be competitive in many 
cases. In particular, the estimators derived via the composite likelihood approach 
of Sect. 4.1, alongside the estimator of Simpson and Tawn (2022), appear to have 
lower bias and variance, on average, compared to alternative estimation tech-
niques. We also applied ADF estimation techniques to a range of river flow data 
sets, and obtained estimates of return curves for each data set. The results suggest 
that our estimation procedures are able to accurately capture the range of extre-
mal dependence structures exhibited in the data.

From Sect.  5, one can observe that the ‘combined’ estimators proposed in 
Sect. 4.3 outperform their ‘uncombined’ counterparts in the majority of instances. 
This indicates that incorporating the knowledge obtained from the conditional 
extremes parameters leads to improvements in ADF estimates. Furthermore, in 
most cases, ADF estimates obtained via approximations of the set �G appeared 
to have lower bias compared to alternative estimation techniques. More generally, 
these results suggest that inferential techniques that exploit the results of Nolde 
and Wadsworth (2022) are superior to techniques which do not. Estimation of �G , 
and its impact on estimation of other extremal dependence properties, represents 
an important line of research.

Fig. 9   Estimated 5-year return curves (on original margins) for each pair of gauges. The purple, pink and 
green lines represent the curve estimates from 𝜆̂H , 𝜆̂CL2 and 𝜆̂ST , respectively
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As noted in Sect.  1, few applications of the modelling framework described 
in Eq.  1.5 exist, even though this model offers advantages over the widely used 
approach of Heffernan and Tawn (2004) when evaluating joint tail probabilities. 
Inference via the ADF ensures consistency in extremal dependence properties, and 
one can obtain accurate estimates of certain risk measures, such as return curves.

For each of the existing and novel estimators introduced in Sects.  2 and 4, we 
were required to select quantile levels, which is equivalent to selecting thresholds of 
the min-projection. With the exception of 𝜆̂ST , similar quantile levels were consid-
ered for each estimator so as to provide some degree of comparability. However, due 
to variation in estimation procedures, we acknowledge that the selected quantile lev-
els are not readily comparable since the quantity of joint tail data used for estimation 
varies across different estimators. Moreover, as noted in Sect. 4.5, trying to select 
‘optimal’ quantile levels appears a fruitless exercise since the performance of each 
estimator does not appear to alter much across different quantile levels.

As noted in Sect. 4.5, our proposed estimators require selection of several tun-
ing parameters. For all practical applications, we recommend this selection is done 
using a combination of the diagnostic tools outlined in Sect. 6, since it is unlikely 
that one set of tuning parameters will be appropriate across all observed dependence 
structures and sample sizes.

Finally, we acknowledge the lack of theoretical treatment for the proposed ADF 
estimators which is an important consideration for understanding properties of the 
methodology. However, theoretical results of this form typically require in-depth 
analyses and strict assumptions, which themselves may be hard to verify, whilst 
in practice one can only ever look at diagnostics obtained from the data. We have 
therefore opted for a more practical treatment of the proposed estimators.
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