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Abstract—The link between airspace and air traffic com-
plexity and controller workload has been of high interest
since decades, since a negative correlation is postulated
between workload and safety. However, exploratory re-
view indicated that this correlation is hardly quantified
in the literature. In this study, we present a literature
review following the systematic Preferred Reporting Items
for Systematic Reviews and Meta-Analyses workflow to
ensure a good coverage and deep understanding of the
relevant publications on this topic. We compile a search
term out of three groups to set the scope of the review,
which is the investigation of complexity and safety cor-
relation in the air traffic control domain. After screening
and reviewing over 1,900 publications obtained by query-
ing four big research databases (IEEE Xplore, Scopus,
Web of Science, and Semantic Scholar), we reviewed
72 papers in detail, six of which have been identified
to attempt quantifying complexity – safety correlations.
From these, we could learn that collision probability is
not a suitable safety metric to correlate with complexity
indicators in a predictive context, since corresponding
work shows only little correlation. Rather, metrics closer
to all-day operations of a controller, like loss of separa-
tion, are much more suitable.

Keywords—air traffic control, air traffic management,
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I. Introduction

Despite the hit by the global COVID-19 crises, air traffic
industry continuous to grow. Accommodating increasing
traffic volumes requires both an optimized utilization of
the available ATM capacity, and its extension for critical
components such as the approach sectors of already busy
airports. While new ground infrastructure such as additional
runways or related high speed exits add capacity only
locally and with very long response times, more effective
measures consist of refined operations and tailored proce-

dures. Some of these measures, like re-categorization of wake
turbulence categories (now called wake turbulence groups,
WTG by ICAO [1]), up to concepts including dynamic
pair-wise separation, will, on the blind side, also increase
heterogeneity of the traffic mix, tremendously. Innovative
propulsion technologies for aircraft and new vehicle concepts
may certainly support this trend. Consequently, the task
load of air traffic controllers (ATCos) is supposed to increase
as well, potentially at an extent that may compromise
the safety of operations due to amplifying effects on the
resulting workload. This is especially true in already very
dense air spaces and at busy traffic times, respectively. Since
safety is paramount to the societal acceptance of air traffic
operations, it must be at least kept at given standards at
all times. Therefore, introducing enhanced controller (de-
cision) support tools mitigating traffic complexity and so
assumingly task load is crucial to keep ATCo workload on
an acceptable level.

Following this reasoning, we aim at developing a support
tool that extends the capabilities of an Arrival Manager
(AMAN) by generating additional suggestions to ATCos on
exactly when to issue relevant clearances to the cockpit crew
to reach improved throughput of dense airspace segments
down to the runway. The goal is to integrate today’s busy
approach airspace segment, often representing a bottleneck
to traffic flows, further into an entire flight covering safety
oriented optimization process. Since control procedures are
based on upstream safety assessment of route design, pro-
cedures and boundary conditions, in every-day operation,
only operational performance indicators are being recorded
and safety is considered to be granted using these indicators
as proxies. This results in rather conservative and as such
capacity-sensitive rules on aircraft separation minima, that
do not allow leveraging the full system potential, especially
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not under all ambient and operational circumstances.
By integrating additional, real-time measurable perfor-

mance metrics using a well tailored support tool extend-
ing today’s AMAN concepts, the system will allow for
continuous safety analyses on a tactical level. This way,
we postulate, additional potential in airspace and runway
capacities can be leveraged. A positive correlation is finally
postulated between hazard potential and so-called traffic
complexity as entropy, i.e. as a measure of traffic disorder
and thus implicitly a measure of ATCo workload.

Before presenting recent scientific work related to corre-
lation models, the following section gives a general overview
of the current state of the art to air traffic complexity
metrics and related safety research and motivates the need
for an accordingly tailored systematic literature review. In
section III we outline the methodology and workflow used
to identify relevant publications. Afterwards, the actual
process of querying, filtering, and evaluating publications is
presented. Section IV gives an overview of our findings and
highlights selected publications rated most relevant to the
subject matter. The paper concludes with a discussion of
the results and an outlook to anticipated next steps in this
area.

II. State of the Art

The formal translation process from traffic complexity into
workload follows a widely accepted concept depicted in
figure 1. According to [2], complexity is an objective measure
that allows quantifying the difficulty of the controller task,
why it is also referred to as task load. How this translates
into workload, which is a subjective measure of how an ATCo
perceives this difficulty, is influenced by several factors, like
the quality and capabilities of the controller working position
(CWP) equipment, the behavioral profile of the present
human, as well as individual strategies for handling those
tasks. In turn, the level of workload indirectly influences
complexity via controller behavior and the actions taken in
front of the perceived workload, again (e.g. allow or deny
additional aircraft to enter a sector).

The translation from complexity to workload will certainly
be influenced by the availability of enhanced support tools
and an increasing level of automation, since these affect
the “equipment” part but also the strategies, how ATCos
work. However, at the time being, the level of automation
did not increase beyond the generation of advice and the
human operator still stays responsible for checking and
implementing the suggestions provided by the system [3].
Therefore, we decided to not restrict the selection of pub-
lications by requiring specific investigation of automation
issues, yet. As can be seen from the results presented below,
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Figure 1. Transition from complexity to controller workload [2].

this decision proved reasonable, since automation aspects
are hardly covered in previous work.

Investigating the state of the art of complexity-safety
correlation models revealed that there is a lot of work
available in which the correlation between objective indica-
tors of complexity and subjective indicators of workload is
investigated, as will be shown in detail in section IV. In most
of this work, the correlation between complexity or workload
and safety is assumed implicitly, not explicitly formulated.
However, starting in 2012, the authors elaborated on how a
correlation between complexity and safety can be formalized,
c.f. figure 2 [4]. Back then, an investigation based on 19 com-
plexity indicators from literature and collision probability
did not unveil a significant statistical correlation. In fact, the
authors concluded that the influence of workload is diffuse
and that the most explainable safety metric is given by the
collision probability.

Since then, only little progress could be found tackling the
problem of quantifying the correlation between complexity
and safety. To confirm, we take a step back to reiterate
on this question and thoroughly investigate the current
research landscape by systematically searching, reviewing,
and evaluating publications that investigate the correlation
between complexity and safety in the context of air traffic
management.

III. Methodology
For the systematic literature review, we followed the ideas
of the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) workflow [5], as depicted in
figure 3.

To begin with, a query has been constructed to search
publication databases for relevant literature. The query
is composed of three major keyword groups: First, the
domain is defined (air traffic control). The second group
comprises the independent variables of interest. Since
the terms complexity, task load, and workload are used
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Figure 2. Relationship between complexity and safety metrics. Adapted
from [4].

inconsistently throughout the literature, all three have been
considered here. The third group states the dependent
variables, i.e. safety related indicators and metrics. All
three groups are connected via boolean AND operators,
resulting in the following comprehensive search term: ( atc
OR “air traffic control” OR atco OR “air traffic
controller” OR atm OR “air traffic management”
) AND ( complexity OR workload OR “work load” OR
taskload OR “task load” ) AND ( safety OR risk )

For performing the query of publications, the following
four databases have been selected: IEEE Xplore (330 re-
sults), Scopus (871 results), Web of Science (459 results),
and Semantic Scholar (250 results). To include most recent
publications, the search has been run multiple times, the
latest update was performed on April 10, 2024.

After the final search, 1,910 publications were returned
from the databases in total. Furthermore, 4 publications
have been added that were not returned by any of the
databases, based on external hints. A search for dupli-
cates based on publication title and Digital Object Iden-
tifier (DOI) removed 592 records. The remaining records
have been screened for eligibility. As criterion to include
a publication for further investigation, we demand that
the title or abstract has to give the impression that the
work investigates or at least considers a correlation between
workload or complexity, and safety. Furthermore, the work
should address the air traffic domain. Even though, this
has already been part of the search query, for some reason,
the list of results included a lot of publications from other
domains, especially health care, road traffic, and genet-
ics. Using objective criteria like type of publication (e.g.
only considering journal articles) or availability of a DOI
was not feasible, since this would have excluded relevant

work published at high-rated aviation conferences, like Air
Traffic Management Research and Development Seminar
(ATM Seminar), International Conference on Research in
Air Transportation (ICRAT), and SESAR Innovation Days
(SID). During this step, 1,130 records got removed from the
results, leaving 192 publications for full paper screening.

For this, not all publications could be retrieved, due to ac-
cess restrictions, unavailability, or language barriers. Among
the results there was a single publication that got retracted.
In summary, a set of 170 papers could be obtained for further
processing. Eligibility for forwarding a paper to the final
in-depth review step was decided based on the question, if
it presents a quantitative correlation analysis or proposes
a metric. Work that makes plain use of existing models
for optimization or comparison of scenarios, concepts, tools,
or algorithms, has been excluded. Additionally, the scope
is narrowed to focus on air traffic control, i.e. work that
focuses on cockpit side has been excluded. Finally, a set of
72 publications remained that were reviewed in detail as will
be reported in the next section.
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Figure 3. PRISMA workflow diagram outlining the selection process
for publications considered for detailed review.
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IV. Results

A. General Overview

During the in-depth review, our focus was to aggregate re-
sults and identify work that explicitly investigate indicator–
safety correlations and quantify these by reporting coeffi-
cients of determination.

Throughout the final set of selected publications, the
predominant way of considering safety aspects is to general-
ize that safety is negatively correlated to controller work-
load, i.e. increased levels of workload compromise safety,
but without supporting this with appropriate studies, nor
providing evidence for this assumption [6–37]. Another way
is to related safety directly to complexity in general [12,
38–49], or to specific indicators like number of aircraft within
a sector [50], again without supporting those assumptions.

Most studies – after mentioning these assumptions in
their introduction – focus on investigating the correlation
between selected traffic- or airspace-specific indicators and
workload obtained in various ways. Widely used methods
for the latter are human in the loop (HITL) studies, dur-
ing which ATCos provide subjective measures of perceived
workload via tools like Instantaneous Self Assessment (ISA),
NASA Task Load indeX (NASA-TLX), Air Traffic Workload
Input Technique (ATWIT), and Verbal Online Subjective
Opinion (VOSO) [7, 11, 17, 21, 27, 30, 51, 52]. In some
studies, instead of manual inputs, various psycho-/physio-
logical and biochemical parameters, like electroencephalog-
raphy (EEG), heart rate variability (HRV), Dual Frequency
Head Maps (DFHM), eye movements, and reaction time,
are measured during the simulation [7, 8, 13, 16, 21, 28,
29, 51–54]. Another way of obtaining subjective workload or
complexity ratings to use for correlation analysis is through
expert rating. Here, experienced ATCo get to rate scenarios
based on recordings and replays without being situated in
the actual role of an acting controller themselves [33, 46, 55].
Furthermore, Capacity analysis (CAPAN), and Directorate
of Operation Research and Analysis Task (DORATASK)
are two scores that focus more on a systematic analysis of
controller tasks [26, 56].

Another group of publication comprises those in which
authors propose metrics compiled from comprehensive sets
of indicators that are supposed to reflect measures of com-
plexity or workload, but without performing a correlation
analysis to test whether those metrics reflect perceived
workload of controllers [6, 15, 19, 20, 32, 35, 38–41, 45, 47,
48, 57–62].

Finally, some work relates complexity or workload indica-
tors to capacity indicators, like number of aircraft passing
an airspace, delay, or inter-arrival time [26, 63]

The following subsection gives detailed outlines of the
publications that actually focus on safety indicators and -
metrics.

B. Complexity and Safety Correlation Models
There exist several publications that focus on correlating
indicators reflecting properties of the airspace or air traffic
to safety-related indicators based on investigation of historic
or simulation data. Safety indicators selected for analysis
mostly comprise the number or frequency of incident like
loss of separation, or near midair collision (NMAC) [64–66].
Often, the focus of a publication is on the qualitative cause
analysis [67, 68]. An example of quantitative analysis is given
in [65]. After the introduction of point merge operations at
Istanbul Airport, authors compare two terminal maneuver-
ing area (TMA) designs based on complexity as calculated
using Eurocontrol’s network strategic tool (NEST) tool, the
number of aircraft within the airspace, as well as the number
of conflicts (loss of separation as by NEST’s definition).
However, there is no correlation analysis between complexity
and safety being performed.

In the following, we give an in-depth description of the
most relevant papers, which actually relate complexity or
workload indicators, and safety. Those have been selected
based on the hard fact that they present coefficients of
determination as proof of actual model development and
correlation analysis. The order of the papers presented does
not imply any preference.
1) Number of NMACs and Traffic Load: Gifford et al. de-
velop a model to predict the number of NMACs from a linear
combination of three metrics: Traffic Load, Complexity, and
Staffing. The latter two are represented by linear functions
of traffic load again [69]. Finally, the following model for the
risk of an NMAC is presented:

𝑅𝐼𝑆𝐾 = 𝛽′
0 + 𝛽′

1𝑁 + 𝛽′
2𝑢 + 𝛽3𝑣 + 𝜖 (1)

with

𝛽′
0 = 𝛽0 + 𝛽2𝜙0 + 𝛽3(𝛾0 + 𝜙0𝛾2)

𝛽′
1 = 𝛽1 + 𝛽2𝜙1 + 𝛽3(𝛾1 + 𝜙1𝛾2)

𝛽′
2 = 𝛽2 + 𝛽3𝛾2

Here, Greek letters represent coefficients from the different
sub-models of each metric. 𝑢, and 𝑣 represent residuals
of the complexity, and staffing metric, respectively, and 𝑁
the number of aircraft within the sector. To validate the
model, authors perform a data analysis of historic data
from major US metropolitan regions, specifically 23 terminal
control areas (TCAs) and 120 terminal radar service areass
(TRSAs). For each type, the model is fitted separately,
resulting in pseudo 𝑅2 values of 0.61 for TCAs and 0.81
for TRSAs.
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2) Probability of Operational Errors: In [70], authors corre-
late the number of aircraft within a sector to the probability
of an operational error to occur. The model is based on the
idea that each controller is subjected to a certain probability
of making a control mistake. Hence, with each aircraft more
within a sector, the chance of making a mistake increases
proportionally. Data analyses lead to a probability of an op-
erational error (per million control center-hours), depending
on the number of aircraft 𝑛 of (𝑅2 = 0.989)

𝑃(OE|𝑛) = 2.6279 ⋅ 𝑛2.479. (2)

3) Propensity: With the work presented in [71–73], authors
aim at developing a linear model to correlate up to 24
complexity indicators, and ATCo activity measures with
subjective workload ratings, as well as Propensity, a safety
metric developed in the Eurocontrol INTEGRA project [74].
Controller activity measures comprise total and average
duration of radio communication related tasks, as well as
the number of inputs into the system. Workload is obtained
during a HITL simulation study on a 5-level ISA scale. After
performing a Principal Component Analysis (PCA) to re-
duce number of uncorrelated predictors, authors analyze the
capabilities of different feature sets to predict ISA workload
ratings and propensity scores, respectively. They find that
the former has the highest correlation with a set of combined
complexity, and controller activity indicators (𝑅2 = 0.16).
The coefficients of a linear regression model predicting ISA
scores are provided in [73]. Propensity correlates the most
with a combination of complexity indicators and ISA ratings
(𝑅2 = 0.30). The coefficients of the complexity-propensity
model are provided in [71, 73]. Due to the large number of
up to 32 coefficients, the models are not reflected here.
4) Collision Probability: In [4], authors search for a correla-
tion between 19 complexity indicators, extracted from liter-
ature, and collision probability as safety metric [75]. Ahead
of the data analysis, authors define 4 scenarios that differ
in traffic load and mix (in terms of departure, and arrival)
characteristics. Additionally, each scenario is split into 10
samples, each spanning a one-hour time frame. For each of
the resulting 40 samples, a multiple regression analysis is
performed separately, and selected results are highlighted. In
summary, authors find that there is no significant correlation
between complexity and collision probability. However, they
conclude that the correlation is stronger for the TMA sector
investigated (0.37 < 𝑅2 < 0.45) than for en-route sectors,
as presented in [71, 73] (𝑅2 < 0.30).
5) Workload and Collision Risk: The focus of [76] is on
the analysis of predictive capabilities of the complexity
indicators (as presented in [4]) towards the collision risk
safety indicator. Outstanding to this research is the idea
of time-shifting, which introduces a temporal dimension to

the correlation between input and output variables. This
approach allows to actually treat complexity indicators as
precursors for safety-related events. However, using collision
risk as safety indicator seems to be a drastic choice, since
upstream incidents, like loss of separation, are neglected [77,
78]. In this study, workload is represented by a weighted
sum of three components, which are obtainable in a fast-
time simulation environment: radio channel utilization time,
air traffic control (ATC) idle proportion, and number of
deferred tasks. While the publication does not provide the
actual model for correlating indicators to workload or col-
lision risk, 𝑅2 values are reported as follows: 0.7 for the
workload model, and 0.5 for the collision risk model.

6) Potential Loss of Separation: Another analysis of historic
traffic data is presented in [77, 78]. Here, complexity is
calculated by NEST. Regarding the quantification of safety,
a potential loss of separation (LoS) indicator is considered in
addition to the conflict risk. Both metrics are calculated via
a customized conflict risk assessment tool [79]. In summary,
the analysis found that there is a strong correlation between
the daily number of flights and the number of potential LoS
(𝑅2 = 0.88), as well as between daily number of flights
and conflict risk (𝑅2 = 0.80). For both safety metrics, the
correlation with complexity is slightly higher (𝑅2 = 0.91
for PLoS and 𝑅2 = 0.83 for CR). There are some more
fine-grained results reported in the publication, like the
distinction between summer and winter-season, as well as
per-flightlevel results. However, besides data analysis, there
is no attempt of deriving a correlation model from this.
Table I. summarizes the findings.

Table I. Summary of complexity – safety correlation analyses.

Independent
Variables

Dependent
Variable R² Ref

Traffic Load, Com-
plexity, and Staffing # of NMACs 0.61 (TCAs)

0.81 (TRSAs) [69]

# of Aircraft Probability of
Operational Error 0.989 [70]

Complexity Indic.,
ISA Ratings Propensity 0.30 [71, 73]

Complexity Indic. Collision
Probability < 0.45 [4]

Complexity Indic. Collision Risk 0.5 [76]

daily number
of flights

Potential LoS 0.88

[78, 80]
Conflict Risk 0.80

NEST complexity
metric

Potential LoS 0.91
Conflict Risk 0.83
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V. Conclusion

Already from screening titles and abstracts, but also from
full paper reviews, it became clear that the terms complexity,
task load, and workload are used inconsistently throughout
the literature. Often, these are not clearly distinguished
from one another and correlations are assumed implicitly.
The majority of publications makes qualitative statements
only, which promote the lump-sum assumption of a strictly
negative correlation between complexity, or workload and
safety.

Quantitative correlation analyses are hardly found in the
literature. We consider this lack of formal modeling as a
crucial scientific gap: No evidence can be proven to which
level workload or complexity can be accepted while granting
safety at all operational times. This applies especially to
those models that are proposed to give a measure of com-
plexity of the controller task without any further analysis of
correlation to any other metric.

Furthermore, it has already been realized that this connec-
tion is not as straight-forward as implied. Rather, besides the
effects of too high workload, there are also negative effects
when workload levels decreasing below a certain threshold
(“underload” [81]), which can have compromising impact on
safety (e.g. boredom, distraction, unsound work habits, etc.),
cf. figure 4 and [82]. For instance, in [64] authors found that
lower workload levels are associated with higher frequency of
safety events (). Investigating this relationship will become
more important with increasing automation beyond a level
where support tools generate advice but also implement
those, essentially pushing the controller into the passive role
of monitoring.

Workload

Sa
fe

ty

Figure 4. Qualitative depiction of the relationship between workload
and safety, according to [4].

From the six models identified that actually investigate
and quantify the relationship between traffic- and airspace-
complexity indicators and safety metric, we could learn that
collision probability might be too specific as such a metric,
especially in a predictive context. Corresponding work shows
only little correlation between investigated indicators and
collision risk [4, 71–73, 75]. Rather, metrics closer to all-day

operations of a controller, like loss of separation, are much
more suitable, as can be seen in [69, 70, 77, 78].

With recent advances on the field of machine learning
and several modern techniques at hand, as well as the
increasing availability of large amounts of traffic data (e.g.
NASA Sherlock Data Warehouse [83]), we find it somehow
surprising that there seems to be no attempt of exploiting
these capabilities for investigating the correlation between
traffic- and airspace-based indicators and safety metrics. For
modelling workload, such approaches have been followed
since decades [84–87]. Employing such advanced techniques,
we are optimistic that it will be possible to detect patterns
in data that no human was able to detect or foresee and
which therefore could not be employed for complexity-safety
correlation analyses, yet.

The focus of our next steps will be on identifying correla-
tions between potential indicators and safety metrics from
historic data with the explicit goal to derive a validated
model that can be applied in various contexts, especially for
developing the safety-conscious arrival management support
tool as highlighted at the beginning.
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