Pivotality, Twisted Centres, and the Anti-Double of a Hopf Monad

Tony Zorman TU Dresden se

Based on joint work with Sebastian Halbig and Mateusz Stroiński

Let $(\mathcal{C}, \otimes, 1)$ be a **rigid** monoidal category: for all $x \in \mathcal{C}$ there exist left and right dual objects $*x, x^* \in \mathcal{C}$, with appropriate evaluation and coevaluation morphisms.

Objects of the centre $\mathbb{Z}(\mathcal{C})$ of \mathcal{C} are pairs of an $x \in \mathcal{C}$ and a half braiding

 $\sigma_{\chi,-}\colon x\otimes - \xrightarrow{\sim} - \otimes x.$

A strong monoidal endofunctor $T: \mathscr{C} \longrightarrow \mathscr{C}$

In fact, \mathfrak{D} has more structure: it is a **bimonad**, a monoid in the category $OpLax(\mathcal{C}, \mathcal{C})$ of oplax monoidal endofunctors, and furthermore also a **Hopf monad**—its category of algebras is rigid monoidal.

Intertwined with \mathfrak{D} is the anti-central monad $\mathfrak{A} := Z_{\star \star}(-)$. Unravelling the structure of \mathfrak{A} over \mathfrak{D} involves the study of twisted centres.

The left twisted centre $\mathbb{Z}(T^{C})$ of C by T comprises half braidings of the form $\sigma_{x,-}: x \otimes - \xrightarrow{\sim} T(-) \otimes x.$

The centre **acts** on the left twisted centre from the right: $\mathbb{Z}(_{\mathsf{T}}\mathscr{C}) \curvearrowleft \mathbb{Z}(\mathscr{C})$.

An invertible object in $\mathbb{Z}((-)^{**}\mathscr{C})$ induces a | Theorem (Halbig–Z)

The monadic interpretation not only yields $\mathscr{C}^{Z_T} \simeq \mathbb{Z}(_{\mathsf{T}} \mathscr{C})$, but also reflects the right action: Z_T is a **comodule monad** over \mathfrak{D} . This means that there exists a compatible coaction

 $\delta\colon Z_T(\neg \triangleleft =) \Longrightarrow Z_T(\neg) \triangleleft \mathfrak{D}(=).$

Comodule monads admit a graphical interpretation, generalising a monoidal string diagrammatic calculus introduced by Willerton:

is **centralisable** if the following coend exists:

$$Z_T := \int^{\star} Tx \otimes - \otimes x.$$

By work of Day and Street, the **central monad** $\mathfrak{D} := Z_{\mathrm{Id}_{\mathscr{C}}}$ has the property $\mathbb{Z}(\mathscr{C}) \simeq \mathscr{C}^{\mathfrak{D}}$. cyclic action on hom spaces:

Let $F: \mathscr{C} \rightleftharpoons \mathfrak{D} : U$ be a strong monoidal adjunction and $G: \mathscr{M} \rightleftharpoons \mathscr{N} : V$ an adjunction, where $\mathscr{M} \curvearrowleft \mathscr{C}$ and $\mathscr{N} \curvearrowleft \mathfrak{D}$. Then strong comodule structures on V are in bijective correspondence with lifts of

 $G \dashv V$ to a comodule adjunction.

Pivotality of a category can be decided by an isomorphism between its central

Paper, Poster, References

and anti-central monad.

These results about comodule adjunctions can be applied in various contexts in order to obtain monadic reconstruction theorems.

Corollary (Halbig–Z) Let *B* be a bimonad on \mathscr{C} and *K* a monad on a right \mathscr{C} -module category \mathscr{M} . Comodule monad structures of *K* on *B* are in bijection with right actions of \mathscr{C}^B on \mathscr{M}^K such that U^K is a strict comodule functor over U^B .

Theorem (Stroiński–Z)

If \mathscr{C} is a *nice* abelian category then all *nice* abelian \mathscr{C} -module categories \mathscr{M} are of the

Following Bruguières and Virelizier, who proved an analogous result in the bimonadic case, one obtains a version of Beck's theorem of **distributive laws**.

 Z_L lifts $Z_{L \rtimes H}$ as a comodule monad, and Z_B lifts $Z_{B \rtimes H}$ as a bimonad. In particular, there exists a comodule distributive law (Ω, Λ) , such that $Z_L \rtimes H = Z_{L \rtimes H} \circ_{\Omega} H$ as well as $Z_B \rtimes H = Z_{B \rtimes H} \circ_{\Lambda} H$.

The case $B := \mathrm{Id}_{\mathscr{C}^H}, L := {}^{**}(-): \mathscr{C}^H \longrightarrow \mathscr{C}^H$ is of particular importance, and we call $D(H) := Z_{\mathrm{Id}_{\mathscr{C}^H}} \rtimes H$ the **double** of H and $A(H) := Z_{**}(-) \rtimes H$ the **anti-double** of H. We are left to untangle a web of adjunctions: This leads to a result analogous to a theorem by Hajac and Sommerhäuser.

Theorem (Halbig–Z) The following statements are equivalent: 1. The monoidal unit $1 \in \mathscr{C}$ lifts to $\mathscr{C}^{A(H)}$. 2. $D(H) \cong A(H)$ as comodule monads. 3. $D(H) \cong A(H)$ as monads.

If *C* is pivotal, the above statements are also equivalent to *H* admitting a so-called **pair in involution**.

Pairs in involution for Hopf monads generalise the classical case: they consist of a group-like and a character, such that the square of the antipode mediates between their adjoint actions.

form \mathscr{C}^{\perp} , for a comonad \perp on \mathscr{C} .

As a bimonad B on \mathscr{C}^H is just a monoid in OpLax($\mathscr{C}^H, \mathscr{C}^H$), it can act from the right on another oplax monoidal functor L on \mathscr{C}^H . This yields an **oplax monoidal right action** $\alpha \colon LB \Longrightarrow L$, which induces an action of twisted centres $\mathbb{Z}({}_{\mathsf{L}}\mathscr{C}^H) \curvearrowleft \mathbb{Z}({}_{\mathsf{B}}\mathscr{C}^H)$.

In particular, this action transcends to one of the **cross product** $B \rtimes H$ on $L \rtimes H$, where e.g., $B \rtimes H := U^H B F^H \colon \mathscr{C} \longrightarrow \mathscr{C}.$

Setting $H := \operatorname{Id}_{\mathscr{C}}$ in the above theorem, and using that $D(\operatorname{Id}_{\mathscr{C}}) \cong \mathfrak{D}$ and $A(\operatorname{Id}_{\mathscr{C}}) \cong \mathfrak{A}$, one obtains an insight about pivotal structures.

Corollary (Halbig–Z) If \mathscr{C} admits \mathfrak{D} and \mathfrak{A} , then \mathscr{C} is pivotal if and only if $\mathfrak{D} \cong \mathfrak{A}$ as monads.