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Abstract

In this paper, we study a hyperelastic composite material with a periodic microstructure and
a prestrain close to a stress-free joint. We consider two limits associated with linearization
and homogenization. Unlike previous studies that focus on composites with a stress-free
reference configuration, the minimizers of the elastic energy functional in the prestrained
case are not explicitly known. Consequently, it is initially unclear at which deformation to
perform the linearization.
Our main result shows that both the consecutive and simultaneous limits converge to a single
homogenized model of linearized elasticity. This model features a homogenized prestrain and
provides first-order information about the minimizers of the original nonlinear model. We
find that the homogenization of the material and the homogenization of the prestrain are
generally coupled and cannot be considered separately.
Additionally, we establish an asymptotic quadratic expansion of the homogenized stored
energy function and present a detailed analysis of the effective model for laminate composite
materials. A key analytical contribution of our paper is a new mixed-growth version of
the geometric rigidity estimate for Jones domains. The proof of this result relies on the
construction of an extension operator for Jones domains adapted to geometric rigidity.
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operator.
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1 Introduction
One way to deal with the difficulties of nonlinear elasticity arising from its non-convex nature,
is the derivation of simpler, effective models that capture the behavior from a macroscopic point
of view. In this context, linearization and homogenization are two important concepts. Both
have already been discussed by many authors (e.g. [DNP02; MN11; MPT19; Sch07; ADD12])
and are well understood, in particular, in the case when the reference configuration is stress-
free. However, for composites, this is not always a natural assumption. Composites may
naturally feature prestrain due to varying properties of the material, be they unwanted side-
effects or even desirable behavior. Examples include wood composites [Has+15; MJ22] (where
changes of moisture content lead to swelling and shrinkage), liquid crystal elastomers [WT03]
(which undergo a shape change due an ordering of their long molecules in a nematic phase), or
residual stresses in additively manufactured composites [Zha+17]. One promising application
of prestrained composites is the design of active materials, which change their shape upon
activation via external stimuli such as light, humidity, temperature, electric fields, etc., see
[vJZ18; KES07].

In this paper we study periodic, elastic composites with prestrain. Our starting point is the
energy functional of nonlinear elasticity,

Eh
ε (ϕ) ∶=

ˆ
Ω
W h (x

ε ,Dϕ(x)) dx, ϕ ∈ H1(Ω,Rd), (1.1)
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where Ω ⊂ Rd denotes the reference domain of the elastic body, ϕ a deformation, and W h(y,F )
a stored energy function parametrized by some scaling parameter 0 < h≪ 1. More precisely, we
assume that

W h(y,F ) ∶=W (y,FAh(y)−1) , (1.2)

where W (y,F ) denotes a standard stored energy function that is Y ∶= [0,1)d-periodic in y, and
minimized and non-degenerate for F ∈ SO(d), see Assumption 2.2 for details. The stored energy
function describes an elastic composite with a prestrain that is modeled (following [BNS20]) with
help of a multiplicative decomposition of the deformation gradient F into an elastic part and a
prestrain tensor Ah ∶ Rd → Rd×d. The latter is assumed to be Y -periodic and a perturbation of
a stress-free joint. Roughly speaking this means that

Ah = (I + hB̃h)A, (1.3)

where the stress-free joint A =Da is a tensor field with a Bilipschitz potential a ∈W 1,∞
loc (R

d;Rd)
(see Definition 2.3 below) and B̃h is a bounded perturbation. Stress-free joints have been consid-
ered by R.D. James in [Jam86] to model composites with a prestrain that can be accommodated
for by a piece-wise affine deformation. The notion that we consider in this paper is a slight
generalization of it. To understand deformations of prestrained composites with (nearly) zero
elastic energy is important for many applications. Examples include ceramics [DT68], where
stress introduced during the drying process can lead to cracks, thermal expansion of bi-material
joints [Pos+94], and equilibrium configurations of crystals [CK88]. We also note that the theory
of stress-free joints is related to models for twinning in crystals [Zan90] and phase transitions
of multi-phase materials such as shape-memory alloys [Rül22].
We are interested in minimizers of (1.1) when 0 < ε, h ≪ 1. Therefore we study the limits
h → 0 (linearization) and ε → 0 (homogenization), both successively and simultaneously. With
regard to the stored energy function the successive limit “linearization after homogenization” is
especially interesting. The limit ε → 0 leads to a homogenized stored energy function given by
the multi-cell homogenization formula of [Mül87]:

W h
hom(F ) = inf

k∈N inf
φ∈W1,∞

per (kY,Rd)
 

kY
W h(y,F +Dφ(y))dy. (1.4)

Unfortunately, this formula is of limited use in practice: In addition to the difficulties of com-
puting the two infima, the dependence on the prestrain is implicit. In particular, the minimizers
of W h

hom are unknown for h > 0 due to the presence of the prestrain. These difficulties can be
overcome in the limit h → 0 where we shall obtain a unique minimizer and explicit formulas
to compute it. We observe that the infimum of Eh

ε scales like h2, see Remark 2.8 where it is
shown that this follows from (1.3) in combination with the assumption that A is a stress-free
joint. This motivates us to study the scaled energy h−2Eh

ε and the corresponding stored energy
function h−2W h. As a main result we show in Theorem 3.2 that the homogenized stored energy
function admits a quadratic Taylor expansion at Ā ∶=

´
Y Ady. The expansion is of the form

1
h2W

h
hom(Ā +G) ≈ RA(B) +QA

hom(G −BhomĀ). (1.5)

Above, QA
hom denotes a quadratic form obtained by homogenizing the quadratic form

QA(y,G) ∶= Q(y,GA−1(y)), where Q(y,G) ∶= lim
h→0

1
h2W (y, I + hG).

Furthermore, Bhom is an effective incremental prestrain tensor obtained by a weighted average
of the incremental prestrain tensor B, which we define as the limit of B̃h for h → 0. The term
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RA(B) is a residual energy that is independent of the displacement G, but depends on the
stress-free joint A, the stored energy function W and B. We refer to Section 3.1 for the details.
We further prove that (almost) minimizers F ∗h of W h

hom admit an expansion that is explicit up
to an error term of order o(h), see Corollary 3.3. We note that this is a nontrivial result, since in
our setting minizers of W h

hom are not explicitly known or may even not exist. We also establish
a commutative diagram that shows that linearization and homogenization of the stored energy
function commute.

In Section 3.3 we lift this commutative diagram to the level of a Γ-convergence result for the
associated energy functionals, and we investigate the asymptotics of (almost) minimizers ϕ∗ε,h

of Eh
ε (ϕ) subject to well-prepared boundary conditions of the form ϕ = aε + hg on Γ ⊂ ∂Ω,

where aε denotes the potential of the stress-free joint A( ⋅ε ), i.e. Daε(x) = A(x
ε ). In particular,

in Proposition 3.13 we prove an expansion of the form ϕ∗ε,h = aε + hu∗ε,h and show that the
displacement u∗ε,h satisfies the commutative convergence diagram

u∗ε,h u∗ε

u∗h u∗,

h→ 0

h→ 0

ε→ 0 ε→ 0

where the arrows stand for weak convergence in H1
Γ,g(Ω,Rd). We show that the displacement

u∗ε,h and the limits u∗ε , u∗h, u∗ are (almost) minimizers of the functionals

Ih
ε (u) ∶=

1
h2

ˆ
Ω
W h (x

ε ,A(
x
ε ) + hDu(x)) dx, u ∈ H1

Γ,g(Ω,Rd), (1.6a)

Ih
hom(u) ∶=

1
h2

ˆ
Ω
W h

hom (Ā + hDu(x)) dx, u ∈ H1
Γ,g(Ω,Rd), (1.6b)

I lin
ε (u) ∶=

ˆ
Ω
QA (x

ε ,Du(x) +B(
x
ε )A(

x
ε )) dx, u ∈ H1

Γ,g(Ω,Rd), (1.6c)

I lin
hom(u) ∶=

ˆ
Ω
QA

hom (Du(x) +BhomĀ) dx + ∣Ω∣RA(B), u ∈ H1
Γ,g(Ω,Rd). (1.6d)

In fact, the convergence results are obtained by proving the validity of the diagram

Ih
ε I lin

ε

Ih
hom I lin

hom,

where each arrow stands for Γ-convergence, and the horizontal direction corresponds to lineariza-
tion (h→ 0), and the vertical direction to homogenization (ε→ 0). This is done in Theorem 3.11.
The diagram shows that the successive limits of linearization and homogenization commute and
lead to the limit obtained by the simultaneous limit (h, ε) → 0. The Γ-convergence results are
w.r.t. weak convergence in H1(Ω,Rd) and thus only yield weak convergence of the minimizers.
A posteriori we upgrade some of them to a stronger topology by utilizing the quadratic form of
the linearized limit, see Proposition 3.13.
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Key tools for the proofs and survey of the literature. The linearization of elasticity
using De Giorgi’s Γ-convergence (see [DF75; Dal93]) goes back to G. Dal Maso, M. Negri and
D. Percivale [DNP02] and uses the geometric rigidity estimate [FJM02] as a key ingredient.
The analysis has been extended to include homogenization, see [Neu10; MN11; GN11]. In our
work we extend this result to prestrained materials, where the prestrain is a perturbation of a
stress-free joint in the sense of Definition 2.6 below. In a mathematical context, stress-free joints
have been studied by Ericksen [Eri83] and James [Jam86]. Our main idea to deal with such
a prestrain is to utilize the (piece-wise) Bilipschitz potential of the stress-free joint to go back
and forth to a transformed reference domain, where the prestrain is small, i.e. a perturbation
of the identity. To illustrate this, suppose that the potential a ∶ Ω → Rd of a stress-free joint A
is Bilipschitz and consider some deformation ϕ ∈ H1(Ω,Rd). Then,

Eh
1 (ϕ) =

ˆ
Ω
W (x,Dϕ(x)Da(x)−1(I + hB̃h(x))−1) dx

=
ˆ

a(Ω)W (a
−1(z),D(ϕ ○ a−1)(z)(I + hB̃h ○ a−1(z))−1)det Da−1(z)dz.

However, multiple problems arise from this representation. In particular, we cannot directly
apply the geometric rigidity estimate of [FJM02] to the transformed domain, since a(Ω) is not
necessarily a Lipschitz domain, even if a is Bilipschitz (see [Lic19] for counterexample). Thus,
we show first that the rigidity estimate also holds on the more general class of Jones domains.
We achieve this by providing an extension operator on Jones domains that allows to control
the distance to the set of rotations. This extension operator is based on the constructions in
[Jon81; DM04].
In this paper, we extend the commutativity of homogenization and linearization established in
[Neu10; MN11; GN11] to prestrained composites. The first homogenization results for elastic-
ity in this direction are due to Marcellini [Mar78] for convex integrands and Braides [Bra85]
and Müller [Mül87] for non-convex integrands, where the multi-cell homogenization formula
is invoked. The main ingredient to establish this commutativity is a quantitative quadratic
expansion of the homogenized stored energy function, as established in [MN11] for materials
without prestrain. In this work, the presence of a prestrain leads to additional difficulties. The
main ingredients to overcome these, are a connection between the expansions of W h at A and
W h

hom at Ā ∶=
ffl

Y A(y)dy, see Lemma 3.5, as well as again a reduction to a small prestrain. Both
ingredients are obtained from the fact that any periodic stress-free joint admits a representation
A = Ā +Dφ for some Y -periodic map φ ∈W1,∞

per (Y,Rd), see Lemma 5.1.
One major point that allows us to establish compactness for the simultaneous linearization
and homogenization is the fact that periodic stress-free joints admit a Bilipschitz potential,
see Proposition 2.5. Note that in general we require stress-free joints only to admit a piece-
wise Bilipschitz potential, see Definition 2.3, to conform with the definition in [Jam86] where
piece-wise affine maps are considered. The fact that periodicity in this setting implies global
injectivity is not trivial. Our proof relies on a general transformation rule for not necessarily
injective maps, see [EG15, Thm. 3.8] and [KR19, Thm. B.3.10], which allows us to measure
the non-injectivity of a map in terms of the determinant of its derivative.

1.1 Notation

Throughout this paper we use the following notation.

• Y ∶= [0,1)d denotes the representative cell of periodicity;
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• Given Ā ∈ Gl+(d), we say that a measurable map u ∶ Rd → Rn is ĀY -periodic or Ā-periodic,
if u(x + Āk) = u(x) for all k ∈ Zd and a.e. x ∈ Rd;

• We denote by Lp
per(ĀY,Rn), W1,p

per(ĀY,Rn) and H1
per(ĀY,Rn) the set of all ĀY -periodic

maps in Lp
loc(R

d,Rn), W1,p
loc(R

d,Rn) and H1
loc(Rd,Rn), respectively;

• I ∈ Rd×d denotes the identity matrix, and symG ∶= 1
2(G + G

T ) the symmetric part of
G ∈ Rd×d; we denote the euclidean scalar product in Rd×d by ⋅ ∶ ⋅ ;

• We call U ⊂ Rd a Lipschitz domain, if U is open, bounded, connected and has a Lipschitz
boundary, i.e., ∂U is locally the graph of a Lipschitz continuous function, cf. [Ada75, §4.5].

2 Modeling of prestrained composites
We model periodic composites with prestrain by means of the elastic energy functional Eh

ε

defined in (1.1). Throughout the paper we assume that the reference domain Ω ⊂ Rd is a
Lipschitz domain. The stored energy function W h ∶ Rd × Rd×d → [0,∞] in (1.1) is defined by
the expression (1.2) and invokes

• a reference stored energy function W that describes the elastic properties of the compo-
nents of the composite relative to a virtual stress-free reference configuration,

• a prestrain tensor Ah ∶ Rd → Rd×d, which we assume to be a perturbation of a stress-free
joint A of order h.

In the following we present the precise assumptions on these quantities. We start with the
assumptions on the stored energy function and then discuss the assumptions for the prestrain
tensor. To this end we introduce a class of nonlinear material laws that we consider for the
composite:

Definition 2.1 (Material class W, cf. [Böh+22, Def. 2.2]). Let 0 < α ≤ β, ρ > 0. We denote by
W(α,β, ρ) the class of functions W ∶ Rd×d → [0,∞], which satisfy

(W1) (Frame indifference): W (RF ) =W (F ) for all F ∈ Rd×d,R ∈ SO(d);

(W2) (Non-degeneracy):

W (F ) ≥ αdist2(F,SO(d)) for all F ∈ Rd×d,

W (F ) ≤ β dist2(F,SO(d)) for all F ∈ Rd×d with dist2(F,SO(d)) ≤ ρ;

(W3) (Quadratic expansion): There exists a quadratic form Q ∶ Rd×d → R and an increasing
map r ∶ [0,∞)→ [0,∞] with limδ→0 r(δ) = 0, such that

∣W (I +G) −Q(G)∣ ≤ ∣G∣2 r(∣G∣) for all G ∈ Rd×d.

Assumption 2.2 (Periodic composite). We assume that the following statements hold:

(i) (Measurability): W is a Carathéodory function such that for a.e. y ∈ Rd the map F ↦
W (y,F ) is continuous.

(ii) (Material law): There exist 0 < αel ≤ βel, ρel > 0, such that for a.e. y ∈ Rd, we have
W (y, ⋅) ∈W(αel, βel, ρel).

6



(iii) (Periodicity): For all F ∈ Rd×d the map y ↦W (y,F ) is Y -periodic.

A stored energy function W that satisfies Assumption 2.2 describes a composite material with a
common stress-free reference state, that is, at a.e. material point y ∈ Rd, W (y,R) is minimized
exactly for all rotations R ∈ SO(d). To model a prestrained composite we appeal to a multi-
plicative decomposition of the deformation gradient and introduce the prestrain tensor Ah, see
(1.2). We note that an arbitrary prestrain tensor may lead to non-trivial energy minimizing
deformations (ground states) of the elastic energy functional, and in general it is impossible
to explicitly understand the dependence of the ground states on the prestrain. The situation
is different, if the prestrain tensor is the deformation gradient of a Bilipschitz potential a. In
that case a ground state is given by the potential a and has zero energy. Roughly speaking, a
stress-free joint is a prestrain with such a potential:

Definition 2.3 (Stress-free joints). Let U ⊂ Rd be open, bounded and connected. We denote
by SFJ(U) the set of all maps A ∶ U → Rd×d such that for some L > 0 the following holds:

(SFJ1) detA(x) > 0 and max {∣A(x)∣ , ∣A(x)−1∣} ≤ L for a.e. x ∈ U ;

(SFJ2) There exists a continuous map a ∈ W1,∞
loc (U,R

d) (called a potential of A) such that
A = Da a.e.;

(SFJ3) a is Bilipschitz or U admits a finite decomposition into Lipschitz domains1 where a is
Bilipschitz (in the sense that there exist pair-wise disjoint Lipschitz domains Ui, i = 1, . . . , n
such that U = ⋃n

i=1Ui and a∣Ui
is Bilipschitz).

This definition is a generalization of stress-free joints as considered in [Jam86]. There, one may
think of a stress-free joint as a composite consisting of firmly joint bodies, where each component
features a prestrain, given by the prestrain tensors Ai, respectively, joined in such a way that the
composite can be deformed into some configuration with vanishing prestrain, globally. Hence,
there exists some continuous, piece-wise affine map a ∶ Ω→ Rd with a(x) = Aix + ci if x ∈ Ωi for
some decomposition (Ωi)ni=1 of Ω. This yields the necessary condition that for each neighboring
domains Ωi and Ωj , the matrizes Ai and Aj must have a rank one difference. More precisely, if
Hd−1(∂Ωi ∩ ∂Ωj) > 0 and ∂Ωi ∩ ∂Ωj ⊂ {n}⊥, n ≠ 0, then

Aiv = Ajv, for all v ∈ Rd with v ⋅ n = 0. (2.1)

Since we are interested in periodic composites, we shall consider the special case of periodic
stress-free joints and define

Definition 2.4 (Periodic stress-free joints). We denote by SFJper the set of all maps A ∶ Rd →
Rd×d that are Y -periodic and satisfy (SFJ1) and (SFJ2) for U = Y .

The following proposition shows that any A ∈ SFJper has in fact a unique Bilipschitz potential
a. In particular, the restriction of A to any admissible set U belongs to SFJ(U).

Proposition 2.5 (Existence of a Bilipschitz potential). Let A ∈ SFJper. Then there exists a
unique potential a ∶ Rd → Rd that is globally Bilipschitz and onto, and satisfies A = Da a.e. in
Rd and a(0) = 0. (For the proof see Section 5.1.)

In our paper, we consider a situation where the prestrain tensor Ah is a perturbation of a
periodic stress-free joint A in the following sense.

1This regularity assumption on the domain can be weakened and has mainly the purpose to impose regularity
on the intersections ∂Ui ∩ ∂Uj , cf. Proof of Theorem 3.15.
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Definition 2.6 (Perturbation of a periodic stress-free joint). We say (Ah) ⊂ L∞(Rd,Rd×d) is a
perturbation of a periodic stress-free joint A ∈ SFJper, if Ah is Y -periodic, and as h→ 0 we have

Ah → A in L∞(Rd,Rd×d) and h−1(Ah −A) converges in L2
loc(Rd,Rd×d).

Remark 2.7 (Definition of the incremental prestrain tensors Bh and B). Let (Ah) be a pertur-
bation of a stress-free joint A in the sense of Definition 2.6. We may write the prestrain tensor
as a product:

Ah = (I + hB̃h)A, where B̃h ∶= 1
h(AhA

−1 − I), (2.2)

and we may define
B ∶= lim

h→0
B̃h (in L2

loc(Rd,Rd×d)). (2.3)

Furthermore, the Neumann series implies that for small h≪ 1,

Ah(y)−1 = A(y)−1(I − hBh(y)), (2.4)

where Bh(y) ∶= ∑∞k=0(−h)kB̃h(y)k+1. From Definition 2.6 we conclude that

Bh → B in L2
loc(Rd,Rd×d), lim sup

h→0
h ∥Bh∥L∞(Rd) = 0. (2.5)

In fact, (2.4) together with (2.5) are equivalent to the notion introduced in Definition 2.6. In
the paper we shall frequently work with this representation, since it eases the presentation.

Remark 2.8 (Energy scaling in the case of a perturbed stress-free joint.). Let (Ah) be a
perturbation of a stress-free joint A in the sense of Definition 2.6. Let aε be the potential of the
stress-free joint A( ⋅ε ). Then, using the ansatz ϕ = aε + hu for some u ∈ W1,∞(Ω,Rd), we can
show that the minimal energy scales like h2. Indeed, by (1.1), (1.2) and (W3),

Eh
ε (ϕ) =

ˆ
Ω
W (x

ε , (I + hDuA(x
ε ))(I − hBh(x

ε ))) dx

= h2
ˆ

Ω
Q (x

ε ,DuA(
x
ε )
−1 −Bh(x

ε )) dx + o(h2).

Especially, aε is a minimizer, if the prestrain is a pure stress-free joint and its energy scales
like h2 in the presence of a perturbation. On the other hand, (W2) and a suitable geometric
rigidity estimate (see Theorem 3.15) imply that any sequence (ϕε,h) ⊂ H1(Ω,Rd) satisfying
Eh

ε (ϕε,h) ≤ ch2 is of the form ϕε,h = Rε,haε + cε,h +O(h) for some constant cε,h ∈ Rd and rotation
Rε,h ∈ SO(d). This motivates us to linearize at the known low-energy state aε and study the
minimizers of u↦ h−2Eh

ε (aε + hu) = Ih
ε (u).

One can find a variety of non-trivial (periodic) stress-free joints. Some examples are presented in
Fig. 1. The simplest example is a laminate, which is depicted in Fig. 1a. There it is sufficient to
satisfy (2.1). We discuss laminates in greater detail in Section 4. Also a simple example is shown
in Fig. 1b, where the periodicity cell decomposes into a checkerboard. It is not hard to think of
and draw stress-free joints that arise from this situation. However, these examples might not
be to relevant in practice, since very specific kinds of materials would need to be joined for this
to work. An interesting and complex stress-free joint relevant for practical purposes is given
in Fig. 1c. This examples was found using the theories developed in [Jam86] and [Eri83]. It
depicts the joint of blocks of a single material in various orientations. Finally, our theory also
allows for situations as presented in Fig. 1d featuring a smooth course of the prestrain. The
precise formulas used in Fig. 1 can be found in Appendix A.
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(a) A laminate. (b) A “2D-laminate”.

(c) A single material stress-free
joint.

(d) A smooth stress-free joint.

Figure 1: Images depicting periodic stress-free joints. The images always include the periodicity
cell Y on the left-hand side and the deformed cell, according to the deformation a ∶ Y → Rd, on
the right-hand side. The different shades depict the areas where the deformation is affine.

An important special case is the situation, when A ≡ I, i.e., when we have small prestrain of
order h. In fact, the essence of most proofs relies on reducing the situation to this case by
transforming the reference domain with help of the Bilipschitz potential a of Proposition 2.5.
Let us anticipate that a technical difficulty, that emerges in this context, is that we need to show
that certain functional inequalities for Sobolev functions (in particular, the geometric rigidity
estimate) are stable w.r.t. Bilipschitz transformations. We discuss this in Sections 5.1 and 5.2.

3 Main results
We first discuss homogenization and linearization on the level of the stored energy function.
Then, we introduce the effective quantities and study properties of the quadratic term QA

hom in
the expansion of W h

hom. Finally, we discuss Γ-convergence of the energy functionals.

3.1 Homogenization and linearization of the stored energy function

In this section, we discuss homogenization and linearization of the stored energy function W h,
see (1.2). We assume that W satisfies Assumption 2.2 and that (Ah) is a perturbed stress-
free joint in the sense of Definition 2.3. We are especially interested in the energy well of the
homogenized stored energy function W h

hom (see (1.4)) and its dependence on the prestrain tensor
Ah and the material law W . To understand the latter is difficult, since W is non-convex and
since Ah enters the definition of W h non-linearly. We therefore focus on the regime 0 < h≪ 1,
i.e., when Ah is close to a periodic, stress-free joint A.
For the presentation it is useful to view homogenization on the level of the energy density as
an operation [ ⋅]hom that maps a measurable, Y -periodic function V ∶ Rd × Rd×d → [0,∞] to a
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function [V ]hom ∶ Rd×d → [0,∞] by appealing to the so-called multi-cell homogenization formula:

[V ]hom(F ) ∶= inf
k∈N inf

φ∈W1,∞
per (kY,Rd)

 
kY
V (y,F +Dφ(y))dy, F ∈ Rd×d. (3.1)

The motivation of this definition is the following:

Remark 3.1 (Non-convex homogenization). Let V ∶ Rd ×Rd×d → [0,∞] be Y -periodic, measur-
able and suppose that it satisfies the p-growth- and p-Lipschitz-condition

⎧⎪⎪⎨⎪⎪⎩

1
C ∣F ∣

p −C ≤ V (y,F ) ≤ C(1 + ∣F ∣p), F ∈ Rd×d,

∣V (y,F ) − V (y,G)∣ ≤ C(1 + ∣F ∣p−1 + ∣G∣p−1) ∣F −G∣ , F,G ∈ Rd×d,
(3.2)

for some 1 < p <∞. Then the classical result of S. Müller on non-convex homogenization implies
that the integral functional φ ↦

´
Ω V (

x
ε ,Dφ(x))dx Γ-converges to the homogenized functional

φ ↦
´

Ω[V ]hom(Dφ(x))dx. We note that in the definition of [V ]hom the space W 1,∞
per (kY,Rd)

can be replaced by W1,p
per(kY,Rd) [Mül87] thanks to the p-growth- and p-Lipschitz-condition. We

defined [⋅]hom with W1,∞, since we want to highlight that the homogenization procedure is (to
some extend) independent of the growth exponent of the integrand.

To determine what we can expect, we first review what is already known about the homogenized
stored energy function in the simplest setting, namely, in the case without prestrain, i.e., Ah =
A = I. In that case it was shown in [MN11; GN11] that [W ]hom admits a quadratic Taylor
expansion at identity:

[W ]hom(I +G) = [Q]hom(G) + o(∣G∣2) (3.3)

where Q is defined by

Q(y,G) ∶= lim
h→0

1
h2W (y, I + hG), G ∈ Rd×d. (3.4)

In a nutshell this means that homogenization and linearization commute: The quadratic term
in the expansion of the homogenized stored energy function is given by the homogenization of
the quadratic term in the expansion of W at identity. We note that the homogenization of Q
is much more simple than the one for W . Indeed, thanks to (W1) – (W3), the limit in (3.4)
exists and defines a positive quadratic form that satisfies the ellipticity condition

αel ∣symG∣2 ≤ Q(y,G) ≤ βel ∣symG∣2 , for all G ∈ Rd×d, (3.5)

and a.e. y ∈ Rd. In particular, Q is convex and thus, as shown by [Mül87, Lem. 4.1], the
multi-cell homogenization formula reduces to a single-cell homogenization formula that can be
represented with help of a corrector field: For all G ∈ Rd×d we have

[Q]hom(G) = min
φ∈W 1,∞

per (Y,Rd)
 

Y
Q(y,G +Dφ(y))dy =

 
Y
Q(y,G +DφG(y))dy, (3.6)

where φG ∈H1
per(Y,Rd) denotes the unique (up to an additive constant) solution to the periodic

corrector equation
−Div (LQ(G +DφG)) = 0 in D ′(Rd),

where LQ denotes the 4th-order tensor associated with Q via the polarization identity

F ∶ LQ(y)G = 1
2(Q(y,F +G) −Q(y,F ) −Q(y,G)). (3.7)
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In [NS18; NS19] it is shown that under additional regularity assumptions on W (both w.r.t. F
and y), [W ]hom is of class C3 and admits a representation via a single-cell homogenization –
both in an open neighborhood of SO(d). On the other hand, since nonlinear laminates may
buckle under compression (see [Mül87, Thm. 4.3]) it is clear that the validity of the single-
cell formula and the commutativity property fail for deformations F away from SO(d). In
view of this it is reasonable to focus on the case of deformations that are asymptotically close
to a ground state and on prestrains that are asymptotically close to a stress-free joint. It
is instructive to first discuss a special case of our result, namely the stored energy function
W 0(y,F ) = W (y,FA(y)−1) whose prestrain is of the form of an unperturbed stress-free joint
A ∈ SFJper. In that case the ground states are explicitly known:

Arg min[W 0]hom = {F = RĀ ∣R ∈ SO(d)} , Ā ∶=
 

Y
A(y)dy.

Indeed, as shown in Lemma 5.1 below, this follows from the fact that A ≡ Ā + Dφ for some
φ ∈ W1,∞

per (Y,Rd) and the identity W 0(y,A(y)) = W (y, I) = 0 ≤ inf[W 0]hom. Furthermore, we
shall see that [W 0]hom admits a quadratic expansion at Ā of the form

[W 0]hom(Ā +G) = [QA]hom(G) + o(∣G∣2), (3.8)

where QA denotes the quadratic form obtained by linearizing W 0 at A:

QA(y,G) ∶= lim
h→0

1
h2W

0(y,A(y) + hG) = Q(y,GA(y)−1). (3.9)

While the expansion (3.8) is rather similar to (3.3), the situation changes in the case of a
perturbed stress-free joint Ah = (I + hBh)A as considered in the definition of W h. The next
theorem is the main result of this section. Roughly speaking it establishes the expansion

1
h2 [W h]hom(Ā + hG) = RA(B) + [QA]hom(G −BhomĀ) + o(∣G∣2),

which holds for h→ 0 in a quantitative sense that is made precise in the theorem. The quadratic
form on the right-hand side of the expansion is the same as in (3.8). However, in contrast to
(3.8), the quadratic term on the right-hand side features an effective incremental prestrain
tensor Bhom and includes a residual energy RA(B). We define these quantities in Definition 3.8
with help of the homogenization correctors associated with QA. We note that in the special case
A ≡ I, this form of the expansion already appeared implicitly in previous works in the context
of simultaneous homogenization and dimension reduction (cf. [BNS20; Böh+22; Bar+23]).

Theorem 3.2 (Non-degeneracy and quadratic expansion of W h
hom). Let W satisfy Assump-

tion 2.2, let (Ah) be a perturbation of a periodic stress-free joint A ∈ SFJper (see Definition 2.6),
and define W h by (1.2). Set W h

hom ∶= [W h]hom, QA
hom ∶= [QA]hom, and Ā ∶=

´
Y A(y)dy. Then

the following statements hold.

(a) (Frame indifference) For all F ∈ Rd×d, h > 0 and R ∈ SO(d) we have

W h
hom(RF ) =W h

hom(F ). (3.10)

(b) (Non-degeneracy) There exists some α > 0 and h0 > 0 such that for all F ∈ Rd×d and
0 < h ≤ h0

W h
hom(F ) ≥ 1

α dist2(FĀ−1,SO(d)) − αh2. (3.11)
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(c) (Asymptotic expansion) There exists a continuous, increasing map ρ ∶ [0,∞) → [0,∞] with
ρ(0) = 0, such that for all h > 0 and G ∈ Rd×d

∣ 1
h2W

h
hom(Ā + hG) − (QA

hom(G −BhomĀ) +RA(B))∣ ≤ (1 + ∣G∣2)ρ(h + ∣hG∣), (3.12)

where Bhom and RA(B) are given by Definition 3.8.

(For the proof see Section 5.5.)

We note that the ground state of W h
hom is not explicitly known. In fact, under the assumptions

of the theorem (which does not impose growth conditions on W ), it is even not clear that W h
hom

attains its minimum. For this reason, in the theorem we consider an expansion of W h
hom around

the deformation Ā, which is an asymptotic ground state. This is made precise in the following
corollary, which yields an asymptotic expansion for almost minimizers of W h

hom:

Corollary 3.3. In the situation of Theorem 3.2 let (F ∗h ) ⊂ Rd×d denote a sequence of almost
minimizers for (W h

hom) in the sense that

lim sup
h→0

1
h2 ∣W h

hom(F ∗h ) − inf
F ∈Rd×d

W h
hom(F )∣ = 0.

Then there exist rotations Rh ∈ SO(d), such that

F ∗h = Rh(I + hBhom)Ā + o(h). (3.13)

(For the proof see Section 5.5.)

Furthermore, we observe that the quadratic term in the expansion (3.12) is in fact the homog-
enization of the quadratic term in the expansion of W h at A(y):

Lemma 3.4. In the situation of Theorem 3.2 we have up to a subsequence

lim
h→0

1
h2W

h(A(y) + h ⋅) =QA(y, ⋅ −B(y)A(y)), (3.14)

and

[(y,G)↦ QA(y,G −B(y)A(y))]hom =R
A(B) +QA

hom( ⋅ −BhomĀ), (3.15)

where Bhom and RA(B) are given by Definition 3.8. (For the proof see Section 5.4.)

Finally, the following lemma establishes a rigorous connection between the expansion of W h at
A(y) and the expansion of W h

hom at Ā.

Lemma 3.5. In the situation of Theorem 3.2 we have

[(y,G)↦W h(y,A(y) +G)]
hom
= [W h]

hom
(Ā + ⋅).

(For the proof see Section 5.3.)

We may summarize the structural implications of Theorem 3.2 and Lemmas 3.4 and 3.5 with
help of the following commuting diagram:

1
h2W

h (y,A(y) + h ⋅) QA (y, ⋅ −B(y)A(y))

1
h2W

h
hom (Ā + h ⋅) RA(B) +QA

hom( ⋅ −BhomĀ).

(1)

(3) (2)

(4)

(3.16)
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(1) and (4) stand for linearization (i.e. taking the limit h → 0), while (2) and (3) stand for
homogenization (i.e., applying [ ⋅]hom). Linearization (4) is part of Theorem 3.2. (1) and (2)
are provided by Lemma 3.4 and (3) is shown in Lemma 3.5. In a nutshell (2) states that
[QA(y, ⋅ −BA)]hom can be decomposed into a residual energy term and a quadratic form. This
result uses a corrector representation of the homogenized quadratic form similar to (3.6). We
explain this in detail in the next section. Thus, it is possible to extract the dependence on
the incremental prestrain B from the homogenized energy. The energy can however not be
decoupled from the stress-free joint A, as an example in Section 4 shall reveal.

3.2 Properties of QA
hom and definition of the effective quantities

In this section we present the definition of the effective quantities that appear in Theorem 3.2
and Lemma 3.4. We recall that the definition of QA invokes the quadratic term Q, which thanks
to (W1) - (W3), satisfies the ellipticity conditions (3.5). The homogenized quadratic form QA

hom
inherits this non-degeneracy property in the following form:

Lemma 3.6 (Non-degeneracy). There exists a constant c > 0 (only depending on αel and βel,
∥A∥L∞(Y ) and ∥A( ⋅)−1∥L∞(Y )) such that for all G ∈ Rd×d,

1
c ∣symĀG∣

2 ≤ QA
hom(G) ≤ c ∣symĀG∣

2 , (3.17)

where
symĀ ∶ R

d×d → Rd×d
symĀ, symĀ ∶= sym(GĀ−1)Ā. (3.18)

(For the proof see Section 5.3.)

Especially, (3.17) shows that the left-hand side of (3.15) admits a unique minimizer up to the
symmetry symĀ, which is given by BhomĀ. We introduce the effective incremental prestrain
Bhom following the approach in [BNS20, §3]. The main point of this construction is to obtain
the decomposition (3.15) which establishes the direction (2) in the diagram (3.16). The main
idea is to utilize an orthogonal decomposition of the Hilbert space L2(Y,Rd×d

sym) equipped with
the scalar product

(Φ,Ψ)Q ∶=
ˆ

Y
Φ(y) ∶ LQ(y)Ψ(y)dy. (3.19)

Thanks to (3.5), (⋅, ⋅)Q defines a scalar product that is equivalent to the standard one. We
denote the associated norm by ∥ ⋅∥Q and write PU for the orthogonal projection in this Hilbert
space onto some closed, convex subset U ⊂ L2(Y,Rd×d

sym). We consider the subspace

S ∶= {sym(DφA( ⋅)−1) ∣φ ∈ H1
per(Y,Rd)} , (3.20)

and define O as the orthogonal complement of S in S + Rd×d
sym (which we consider as subspace

of (L2(Y,Rd×d
sym), ∥ ⋅∥Q)). We thus obtain a decomposition of L2(Y,Rd×d

sym) into three orthogonal
subspaces:

L2(Y,Rd×d
sym) = S +O + (S +Rd×d

sym)⊥.
Note that S is closed as follows from Korn’s inequality, see Corollary 3.18 below. With this at
hand we are ready to define the residual energy and the effective incremental prestrain.

Lemma 3.7 (Effective incremental prestrain Bhom). The projection Rd×d
sym → O, G ↦ PO(G)

is an isomorphism. In particular, for every B ∈ L2(Y,Rd×d) there exists a unique Bhom ∈ Rd×d
sym

such that
PO(Bhom) = PO(symB). (3.21)

(For the proof see Section 5.4.)
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Definition 3.8 (Definition of Bhom and RA(B)). Let B be given by (2.5). We define the
effective incremental prestrain as the unique matrix Bhom ∈ Rd×d

sym that satisfies (3.21) and we
define the residual energy by

RA(B) ∶= ∥P(S+Rd×d
sym)⊥(symB)∥

2

Q
. (3.22)

In Section 5.4 we show that with these definitions Lemma 3.4 is satisfied. The definition of
Bhom and RA(B) is rather abstract. Using the method of correctors, we obtain an algorithmic
characterization.

Proposition 3.9 (Algorithmic characterization). Let s ∶= d(d+1)
2 , {Gi ∣ i = 1, . . . , s} denote a

basis of Rd×d
sym and

emb ∶ Rs → Rd×d
sym, ξ ↦

s

∑
i=1 ξiGi,

the linear isomorphism describing the vector representation of matrizes in Rd×d
sym,Ā

subject to this
basis. For G ∈ Rd×d we define the corrector φG ∈ H1

per,0(Y,Rd) as the unique minimizer of

φ ∈ H1
per,0(Y,Rd)↦

ˆ
Y
Q (y,G +Dφ(y)A(y)−1) dy. (3.23)

Furthermore, we define the symmetric and positive definite matrix Q ∈ Rs×s by

Qij ∶=
ˆ

Y

(Gi +DφGi
(y)A(y)−1) ∶ LQ(y)(Gj +DφGj

(y)A(y)−1)dy, (3.24)

and b ∈ Rs by
bi ∶=

ˆ
Y

(Gi +DφGi
(y)A(y)−1) ∶ LQ(y)B(y)dy. (3.25)

Then
Bhom = emb (Q−1b) and
∀G ∈ Rd×d ∶ QA

hom(GĀ) = ξ ⋅Q ξ with ξ = emb−1 ( symG).
(3.26)

(For the proof see Section 5.4.)

3.3 Linearization and homogenization of the integral functionals

In this section, we upgrade the convergences of the diagram (3.16) to the level of Γ-convergence
for the respective integral functionals. We are interested in the minimization of Eh

ε , see (1.1). To
study this, we recall the functionals Ih

ε ,I lin
ε ,Ih

hom and I lin
hom defined in (1.6). These functionals

describe the elastic energy on the level of the scaled displacement u which is associated with a
deformation ϕ by means of the expansion ϕ = aε+hu, where aε denotes the asymptotic minimizer
defined by Daε = A( ⋅ε ). In particular, we have Ih

ε (u) = h−2Eh
ε (φ). In the case without prestrain

(that is Ah ≡ I) it has already been shown in several contributions, e.g. [DNP02; Neu10; MN11;
ADD12], that these functionals can be rigorously obtained in the sense of Γ-convergence. We
extend these results to the case of a perturbed stress-free joint. To be compatible with the ansatz
ϕ = aε+hu in Remark 2.8, we consider well-prepared boundary conditions. On the level of u this
can be expressed by fixing u = g for some fixed g ∈W1,∞(Ω,Rd) on some part of the boundary
Γ ⊂ Rd. We suppose that Γ is closed with positive (d − 1)-dimensional Hausdorff-measure.

Definition 3.10 (Boundary conditions). We denote the closure in H1(Ω,Rd) of the set of
functions u ∈W1,∞(Ω,Rd) with u = g on Γ by H1

Γ,g(Ω,Rd).
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Our main results can be displayed in the following diagram.

Theorem 3.11 (Γ-convergence). We have

Ih
ε I lin

ε

Ih
hom I lin

hom,

(5)

(1)

(4)

(3) (2) (3.27)

where (1) and (4) mean Γ-convergence w.r.t. weak convergence in H1
Γ,g(Ω,Rd) as h → 0, (2)

as ε → 0 and (5) is the simultaneous limit as (ε, h) → 0. Finally, (3) means Γ-convergence
w.r.t. weak convergence in W1,p

Γ,g(Ω,R
d) as ε → 0, provided W satisfies the additional growth

and Lipschitz conditions (3.2). (For the proofs see Sections 5.6 and 5.7.)

Note that (3) has been shown in [Mül87]. In Section 5.6, we show (1) and (4) as consequences of
a more general statement. Convergence (2) is a standard result of homogenization of a quadratic
functional. We sketch the proof in Section 5.7 and use it to establish the simultaneous limit
(5). One can still make sense of (3) and (4), if (3.2) is not satisfied. For the situation without
prestrain, i.e. Ah = A = I, it was shown in [Neu10] that (4) can still be shown with Ih

hom ∶=
Γ- lim infε→0 Ih

ε . We propose that the arguments can be adapted to the more general situation
considered in this paper. However, we omit proof for this claim in this work. Furthermore, we
establish the following equi-coercivity estimates.

Theorem 3.12 (Equi-coercivity). There exists a constant C > 0 such that for all small ε, h > 0
and u ∈ H1

Γ,g(Ω,Rd) we have

∥u∥2H1(Ω) ≤ C (Ih
ε (u) + 1) , (3.28a)

∥u∥2H1(Ω) ≤ C (I lin
ε (u) + 1) , (3.28b)

∥u∥2H1(Ω) ≤ C (Ih
hom(u) + 1) . (3.28c)

(For the proof see Sections 5.6 and 5.7.)

A direct consequence of the Γ-convergences are the convergences of infima and (almost) mini-
mizers of the functional sequences towards minima and minimizers of the limits (see [Dal93,
§7]). Since we establish Γ-convergences w.r.t. weak convergence in H1

Γ,g(Ω,Rd), the sequences
of (almost) minimizers a priori only converge weakly in H1. We prove, that some of these
convergences can be improved to strong convergence a posteriori. For the homogenization
limits we consider the notion of strong two-scale convergence, which we state with help of the
periodic unfolding operator Tε (see Section 5.7 for its precise definition).

Proposition 3.13. Let u ∈ H1(Ω,Rd×d) and φ denote the unique minimizer of (5.54) for u.
The following statements hold.

(a) Let uh ⇀ u weakly in H1(Ω,Rd), ε > 0 be fixed and assume Ih
ε (uh) → I lin

ε (u) as h → 0.
Then, Duh → Du strongly in L2(Ω,Rd×d).

(b) Let uh ⇀ u weakly in H1(Ω,Rd) and assume Ih
hom(uh)→ I lin

hom(u). Then, Duh → Du strongly
in L2(Ω,Rd×d).
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(c) Let uε ⇀ u weakly in H1(Ω,Rd) and assume I lin
ε (uε)→ I lin

hom(u). Then, TεDuε → Du +Dyφ

strongly in L2(Ω × Y,Rd×d).

(d) Let uε,h ⇀ u weakly in H1(Ω,Rd) and assume Ih
ε (uε,h) → I lin

hom(u) as (ε, h) → 0. Then,
TεDuε,h → Du +Dyφ strongly in L2(Ω × Y,Rd×d) as (ε, h)→ 0.

(For the proof see Sections 5.6 and 5.7.)

3.4 Geometric rigidity estimate and Korn’s inequality on Jones domains

An essential ingredient to establish the equi-coercivity estimates above is the geometric rigidity
estimate due to Friesecke, James and Müller [FJM02]. However, in this paper we are faced with
some additional complexity. The argument for the proofs depend heavily on the fact that A
is the gradient of a Bilipschitz map a and an application of the geometric rigidity estimate on
a(Ω). One complexity here is that a(Ω) is not necessarily a Lipschitz domain, see [Lic19] for a
counter example. The proof given in [FJM02] does not extend easily to such domains. We show
that the rigidity estimate does indeed hold on domains like this with controlled constants and
does even hold on more general domains. For this, we introduce the class of Jones domains.
Definition 3.14 (Jones domain, cf. [Jon81]). Let U ⊂ Rd, δ > 0, e ∈ (0,1]. We say U is a Jones
domain or more precisely an (e, δ)-domain2, if for all x, y ∈ U with ∣x − y∣ < δ, there exists a
rectifiable curve γ ∶ [0,1]→ U with γ(0) = x, γ(1) = y and

len(γ) ≤ 1
e ∣x − y∣ , dist(z, ∂U) ≥ e ∣x − z∣ ∣y − z∣∣x − y∣ for all z ∈ γ([0,1]). (3.29)

Note that Lipschitz domains are Jones domains and e and δ are controlled by transformation
of the domain by a Bilipschitz map. Furthermore, as shown in [ADD12], for the strong con-
vergence of (almost) minimizers in H1 we require a slightly more general version of the rigidity
estimate with mixed growth conditions (see [CDM14]). This version provides estimates for de-
compositions into parts with lower and higher integrability. For this we introduce the notation
of decompositions V = F +G in Lp +Lq(U,Rm), which is shorthand for

V = F +G a.e. in U, F ∈ Lp(U,Rm),G ∈ Lq(U,Rm) (3.30)

for U ⊂ Rd and V ∶ U → Rm measurable. We use analogous notation for more decompositions
into more than two terms. A suitable application is usually a decomposition like V = 1{V >c}V +
1{V ≤c}V . Such a decomposition is applied e.g. in [CDM14] to show a uniform integrability
statement related to the rigidity estimate, see Proposition 5.26.
The following theorem extends the geometric rigidity estimate and Korn’s inequality to Jones
domains with mixed growth conditions and prestrained deformations:
Theorem 3.15. Let U ⊂ Rd a bounded, connected (e, δ)-domain, 1 < p ≤ q <∞ and A ∈ SFJ(U).
Then, there exists a constant C = C(U,A, p, q) > 0, such that for all u ∈W1,1(U,Rd) the following
statements hold.

(a) (Geometric rigidity) Given a decomposition dist(DuA( ⋅)−1,SO(d)) = Fdist(DuA( ⋅)−1,SO(d)) +
Gdist(DuA( ⋅)−1,SO(d)) in Lp +Lq(U), there exist R ∈ SO(d) and a decomposition DuA( ⋅)−1 −
R = FDuA( ⋅)−1−R +GDuA( ⋅)−1−R in Lp +Lq(U,Rd×d), such that

∥FDuA( ⋅)−1−R∥Lp(U) ≤ C ∥Fdist(DuA( ⋅)−1,SO(d))∥Lp(U) ,
∥GDuA( ⋅)−1−R∥Lq(U) ≤ C ∥Gdist(DuA( ⋅)−1,SO(d))∥Lq(U) .

(3.31)

2We use e here instead of the standard notation ε, since ε is already reserved for the periodicity.
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(b) (Korn’s inequality) Given a decomposition sym(DuA( ⋅)−1) = Fsym(DuA( ⋅)−1)+Gsym(DuA( ⋅)−1)
in Lp +Lq(U,Rd×d), there exist S ∈ Rd×d

skew and a decomposition DuA( ⋅)−1−S = FDuA( ⋅)−1−S +
GDuA( ⋅)−1−S in Lp +Lq(U,Rd×d), such that

∥FDuA( ⋅)−1−S∥Lp(U) ≤ C ∥Fsym(DuA( ⋅)−1)∥Lp(U) ,
∥GDuA( ⋅)−1−S∥Lq(U) ≤ C ∥Gsym(DuA( ⋅)−1)∥Lq(U) .

(3.32)

Moreover, let L ≥ 1, r ∶= diam(U) ∶= supx,y∈U ∣x − y∣ and ρ ∶= min { r
2 , δ}. The constant C can be

chosen to be of the form C = ( r
ρ)

dc for some c = c(d, e, p, q,L) uniformly for all A that admit a
Bilipschitz potential with Bilipschitz constant not greater than L. (For the proof see Section 5.2.)

Recall that especially all periodic stress-free joints A ∈ SFJper admit a Bilipschitz potential by
Proposition 2.5 and the Bilipschitz constants of the potentials of A( ⋅ε ) coincide for all ε > 0.
Moreover, since e and r

ρ are invariant under scaling of the domain, so is the constant C. We
obtain the following versions of Korn’s inequality as corollaries.

Corollary 3.16 (Korn’s inequality). Let U ⊂ Rd a Lipschitz domain, Γ ⊂ ∂U with Hd−1(Γ) > 0,
1 < p < ∞ and A ∈ SFJ(U). Then, there exists a constant C = C(U,Γ, p,A) > 0, such that for
all u ∈W1,1

Γ,0(U,R
d),

∥u∥W1,p(U) ≤ C ∥sym(DuA( ⋅)−1)∥Lp(U) . (3.33)

Moreover, given L ≥ 1, the constant C can be chosen uniformly for all A that admit a Bilipschitz
potential with Bilipschitz constant not greater than L. (For the proof see Section 5.2.)

Corollary 3.17 (Korn’s second inequality). Let U ⊂ Rd a Lipschitz domain, 1 < p < ∞ and
A ∈ SFJ(U). Then, there exists a constant C = C(U,A, p) > 0, such that for all u ∈W1,1(U,Rd),

∥u∥W1,p(U) ≤ C (∥u∥Lp(U) + ∥sym(DuA( ⋅)−1)∥Lp(U)) . (3.34)

Moreover, given L ≥ 1, the constant C can be chosen uniformly for all A that admit a Bilipschitz
potential with Bilipschitz constant not greater than L. (For the proof see Section 5.2.)

Corollary 3.18 (Periodic Korn’s inequality). Let 1 < p < ∞ and A ∈ SFJper. There exists a
constant C = C(p,A) > 0 such that for all φ ∈W1,p

per,0(Y,R
d),

∥φ∥W1,p(Y ) ≤ C ∥sym(DφA( ⋅)−1)∥Lp(Y ) . (3.35)

(For the proof see Section 5.2.)

Remark 3.19. The mixed growth versions for the geometric rigidity estimate and Korn’s in-
equality have been proven in [CDM14] for the case of Lipschitz domains and Korn’s inequality
has been shown in [DM04] to hold on Jones domains. However, up to our knowledge, the result
for Korn’s inequality on Jones domains is novel in the mixed growth version and the geometric
rigidity estimate on Jones domains even in the standard case without mixed growth (p = q).
Furthermore, as an application of the mixed growth versions, we obtain Korn’s inequality and
the geometric rigidity estimate in the Lorentz space Lp,q(U) for 1 < p < ∞ and 1 ≤ q ≤ ∞, see
[CDM14, Cor. 4.1].
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The proof of Theorem 3.15 relies on the construction of an extension operator E that allows
us to control dist(DEu,SO(d)) by dist(Du,SO(d)) (resp. distance to Rd×d

skew). The construc-
tion is adapted from [Jon81; DM04] and presented together with the proofs for Theorem 3.15
and Corollaries 3.16 to 3.18 in Section 5.2. This extension operator is interesting in its own
right. In the proof we only require the rigidity estimate to hold on cubes. Thus, the procedure
provides an alternative to the second part of the proof of [FJM02, Thm. 3.1], where the rigidity
estimate is lifted from cubes to arbitrary Lipschitz domains. Moreover, as presented in Theo-
rem 3.15, from our procedure we obtain fairly good control over the constant depending on the
regularity of the domain.

4 Example: Isotropic Laminates
In this section we study the linearized and homogenized energy density QA

hom and the homog-
enized perturbation Bhom in dependence of the microstructure for the example of an isotropic
laminate in R3. The symmetries present in this case reduce the complexity tremendously, so
that we are able to compute the quantities by hand.

4.1 Formulas for three dimensional isotropic laminates

Let d = 3. We suppose

Q(y,G) = λ(y1) tr(G)2 + 2µ(y1) ∣symG∣2 , (4.1)

with Lamé constants λ,µ ∈ L∞per([0,1)) satisfying ess inf[0,1) µ > 0 and ess inf[0,1)(λ + 2µ
3 ) >

0. We also suppose that the stress-free joint A only depends on y1. We denote by a the
Bilipschitz potential of A. It is not hard to show that then necessarily there exists a map
ā ∈W1,∞

per ([0,1),R3), such that (cf. Lemma 5.1)

a(y) = ā(y1) + Āy. (4.2)

We want to compute Bhom and QA
hom for this situation using Proposition 3.9. Thus, our first goal

is to give explicit formulas for the correctors. Here, it is convenient to change variables first and
compute different correctors than proposed in Proposition 3.9. The procedure is summarized
in the following remark.

Remark 4.1. By changing variables and applying Lemma 5.1, we can also represent QA
hom by

QA
hom(G) =

ˆ
ĀY

Q̃ (z,GĀ−1 +Dφ̃GĀ−1(z)) dz =
ˆ

Y
Q̂ (y, (G +Dφ̂GĀ−1(y))Ā−1) dy,

where

Q̃(z,G) ∶= Q(a−1(z),G)detA(a−1(z))−1, z ∈ Rd, (4.3a)
Q̂(y,G) ∶= Q(a−1(Āy),G)detA(a−1(Āy))−1 det Ā, y ∈ Rd. (4.3b)

and the correctors are defined as

φ̃G ∶= argmin{
ˆ

ĀY
Q̃(z,G +Dφ(z))dy ∣φ ∈ H1

per,0(ĀY,Rd)} , (4.4a)

φ̂G ∶= argmin{
ˆ

Y
Q̂(y,G +Dφ(y)Ā−1)dy ∣φ ∈ H1

per,0(Y,Rd)} . (4.4b)
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Indeed, we get

(Q)ij =
ˆ

ĀY

(Gi +Dφ̃Gi
(z)) ∶ LQ̃(z)(Gj +Dφ̃Gj

(z))dz (4.5a)

=
ˆ

Y

(Gi +Dφ̂Gi
(y)Ā−1) ∶ LQ̂(y)(Gj +Dφ̂Gj

(y)Ā−1)dy, (4.5b)

and

bi =
ˆ

ĀY

(Gi +Dφ̃Gi
(z)) ∶ LQ̃(z)B(a

−1(z))dz (4.6a)

=
ˆ

Y

(Gi +Dφ̂Gi
(y)Ā−1) ∶ LQ̂(y)B(a

−1(Āy))dy. (4.6b)

Note that the different correctors are connected via the formulas

φ̃G = φG ○ a−1, φ̂G = φG ○ a−1 ○ Ā ⋅ . (4.7)

One version or another may be more useful for a certain purpose. We shall see that here, it is
convenient to use the version b). One advantage of b) is that it basically reduces the problem
to the case where Da ≡ Ā which helps us later to compute the correctors. First, note that Q̂ is
again an isotropic, linearized elastic energy density with Lamé constants

λ̂(y) ∶= λ([a−1(Āy)]1)detA([a−1(Āy)]1)−1 det Ā,
µ̂(y) ∶= µ([a−1(Āy)]1)detA([a−1(Āy)]1)−1 det Ā.

Moreover, Q̂ is still a laminate, since λ̂ and µ̂ only depend on y1, in view of

a−1(Āy) = a−1(y1Āe1) + (0, y2, y3)T . (4.8)

Indeed, let z ∶= a−1(y1Āe1). Then,

a(z + (0, y2, y3)T ) = ā(z1) + Āz + Ā(0, y2, y3)T = a(z) + Ā(0, y2, y3)T = Āy.

We denote the mean over Y (resp. [0,1)) of some map f ∈ L1(Y,Rm), m ∈ N (resp. f ∈
L1([0,1),Rm) with ⟨f⟩ and the harmonic mean with ⟨f⟩harm. Recall the following standard
moduli of elastic, isotropic materials:

K ∶= λ + 2
3µ (Bulk modulus),

M ∶=K + 4
3µ = λ + 2µ (P-wave modulus),

and analogously K̂, M̂ . As a basis for Rd×d
sym, we consider

G1 =
⎛
⎜
⎝

1
3 0 0
0 1

3 0
0 0 1

3

⎞
⎟
⎠
, G2 =

⎛
⎜
⎝

2
3 0 0
0 −1

3 0
0 0 −1

3

⎞
⎟
⎠
, G3 =

⎛
⎜
⎝

0 0 0
0 −1

2 0
0 0 1

2

⎞
⎟
⎠
,

G4 =
⎛
⎜
⎝

0 1
2 0

1
2 0 0
0 0 0

⎞
⎟
⎠
, G5 =

⎛
⎜
⎝

0 0 1
2

0 0 0
1
2 0 0

⎞
⎟
⎠
, G6 =

⎛
⎜
⎝

0 0 0
0 0 1

2
0 1

2 0

⎞
⎟
⎠
.

Then, for every matrix F ∈ Rd×d, we get the decomposition symF = ∑6
i=1 aiGi, where

a1 = F11 + F22 + F33, a2 = F11 − 1
2F22 − 1

2F33, a3 = F33 − F22,
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a4 = F12 + F21, a5 = F13 + F31, a6 = F23 + F32.

Moreover, we get

Q̂(y,G1) = λ̂(y1) + 2
3 µ̂(y1) = K̂(y1), Q̂(y,G2) = 4

3 µ̂(y1),
Q̂(y,G3) = Q̂(y,G4) = Q̂(y,G5) = Q̂(y,G6) = µ̂(y1).

Proposition 4.2. In the situation as above, the correctors φ̂Gi
(cf. Remark 4.1) depend only

on y1 and satisfy

Dφ̂G1 =
⟨M⟩harm ⟨K

M
⟩ −K

∣α∣2M
αeT

1 , Dφ̂G2 =
4β1

3 ∣α∣2
⎛
⎜
⎝

α1
−1

2α2
−1

2α3

⎞
⎟
⎠
eT

1 +
4α2

1 − 2α2
2 − 2α2

3

3 ∣α∣4
β2αe

T
1 ,

Dφ̂G3 =
β1

∣α∣2
⎛
⎜
⎝

0
−α2
α3

⎞
⎟
⎠
eT

1 +
α2

3 − α2
2

∣α∣4
β2αe

T
1 , Dφ̂G4 =

β1

∣α∣2
⎛
⎜
⎝

α2
α1
0

⎞
⎟
⎠
eT

1 +
2α1α2

∣α∣4
β2αe

T
1 ,

Dφ̂G5 =
β1

∣α∣2
⎛
⎜
⎝

α3
0
α1

⎞
⎟
⎠
eT

1 +
2α1α3

∣α∣4
β2αe

T
1 , Dφ̂G6 =

β1

∣α∣2
⎛
⎜
⎝

0
α3
α2

⎞
⎟
⎠
eT

1 +
2α2α3

∣α∣4
β2αe

T
1 ,

where α ∶= Ā−T e1 and

β1 ∶=
⟨µ⟩harm
µ

− 1, β2 ∶=
⟨M⟩harm ⟨

µ
M
⟩

M
− ⟨µ⟩harm

µ
+ 1 − µ

M
.

(For the proof see Appendix B.)

With these formulas it is straight-forward to calculate Q and Bhom using Remark 4.1. We omit
the calculations and state the result for the special case α = ∣α∣ e1.

Proposition 4.3. Consider the situation as above, where a is such that α = ∣α∣ e1, α ∶= Ā−T e1.
Then the matrix Q from Proposition 3.9 is the symmetric block-diagonal matrix given by

Q = (A1 0
0 A2

) ,

where

A1 ∶=
⎛
⎝
⟨ K̂

M̂
⟩ ⟨M̂⟩harm −

4
3 ⟨γµ̂⟩

4
3 ⟨γµ̂⟩

4
3 ⟨γµ̂⟩

4
3 ⟨

µ̂

M̂
⟩ ⟨M̂⟩harm −

4
3 ⟨γµ̂⟩

⎞
⎠
,

A2 ∶= diag ( ⟨µ̂⟩ , ⟨µ̂⟩harm , ⟨µ̂⟩harm , ⟨µ̂⟩ ).

Moreover, Bhom ∶= ∑6
i=1 BiGi with coefficients

B1 = ⟨B̂11 + λ̂
M̂
B̂22 + λ̂

M̂
B̂33⟩ + 2 ⟨(B̂22 + B̂33) K̂µ̂

M̂
⟩
⟨ µ̂

M̂
⟩

⟨ K̂µ̂

M̂
⟩
,

B2 = ⟨B̂11 + λ̂
M̂
B̂22 + λ̂

M̂
B̂33⟩ − 3

2 ⟨(B̂22 + B̂33) K̂µ̂

M̂
⟩
⟨ K̂

M̂
⟩

⟨ K̂µ̂

M̂
⟩
,
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B3 =
⟨µ̂(B̂33 − B̂22)⟩

⟨µ̂⟩ , B4 = ⟨B̂12 + B̂21⟩ ,

B5 = ⟨B̂13 + B̂31⟩ , B6 =
⟨µ̂(B̂23 + B̂32)⟩

⟨µ̂⟩ .

Here B̂(y) = B(a−1(Āy)) and γ ∶=
⟨ K̂

M̂
⟩⟨M̂⟩harm−K̂

M̂
.

Remark 4.4. By means of the transformation rule and Lemma 5.1, we have ⟨µ̂⟩ = ⟨µ⟩ and
analogously for λ, K, M and Kµ

M . But the harmonic mean, as well as other entities, in generality
depend on A.

4.2 Isotropic bilayers with bilayered prestrain

In this last section we want to visualize the dependence of the prestrain on the microstructure
for the special case of an isotropic bilayer with bilayered prestrain. This means, we consider
a laminate consisting of two homogeneous, isotropic materials that on each phase feature a
homogeneous prestrain, i.e.,

λ(y) =
⎧⎪⎪⎨⎪⎪⎩

λ1 y1 ∈ [0, θ),
λ2 y1 ∈ [θ,1),

µ(y) =
⎧⎪⎪⎨⎪⎪⎩

µ1 y1 ∈ [0, θ),
µ2 y1 ∈ [θ,1),

A(y) =
⎧⎪⎪⎨⎪⎪⎩

A1 y1 ∈ [0, θ),
A2 y1 ∈ [θ,1),

B(y) =
⎧⎪⎪⎨⎪⎪⎩

B1 y1 ∈ [0, θ),
B2 y1 ∈ [θ,1),

where θ ∈ [0,1] is the volume fraction of the first material. With this definition A is a stress-free
joint, if and only if A1 = A2 + ceT

1 for some c ∈ R3, such that eT
1 A
−1
2 c > 0. Indeed, in view of

(2.1), A1 = A2 + ceT
1 is required to ensure that A is a gradient and eT

1 A
−1
2 c > 0 is equivalent to

detA1,detA2 > 0. We can then define the potential a by

a(y) ∶=
⎧⎪⎪⎨⎪⎪⎩

A1y y1 ∈ [0, θ),
A2y + θc y1 ∈ [θ,1).

By applying the inversion formula in [Mil81], we obtain A−1
1 = A−1

2 − 1
1+eT

1 A−1
2 c
A−1

2 ceT
1 A
−1
2 . Using

this, we can explicitly calculate a−1(Āy), y ∈ Y . We get

a−1(Āy) =
⎧⎪⎪⎨⎪⎪⎩

A−1
1 Āy y1 ∈ [0, θ̂),

A−1
2 (Āy − θc) y1 ∈ [θ̂,1),

with the distorted volume fraction

θ̂ ∶= θ

1 − (1 − θ)eT
1 A
−1
1 c
= θ(1 + e

T
1 A
−1
2 c)

1 + θeT
1 A
−1
2 c

.

Note that θ̂ is exactly defined, such that

θ

θ̂
= 1 − (1 − θ)eT

1 A
−1
1 c = detA−1

1 det Ā, 1 − θ
1 − θ̂

= 1 + θeT
1 A
−1
2 c = detA−1

2 det Ā,

and hence

eT
1 A
−1
1 Āy ∈ [0, θ)⇔ y1 ∈ [0, θ̂), eT

1 A
−1
2 (Āy − θc) ∈ [θ,1)⇔ y1 ∈ [θ̂,1).
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Using this, the mean values in Proposition 4.3 can be explicitly calculated. For the readers
convenience we give an example for each case:

⟨µ̂⟩ = ⟨µ⟩ = θµ1 + (1 − θ)µ2, ⟨ K̂
M̂
⟩ = θ̂K1

M1
+ (1 − θ̂)K2

M2
,

⟨µ̂⟩harm = (
θ̂2

θµ1
+ (1 − θ̂)

2

(1 − θ)µ2
)
−1

= ( θ

µ1(1 − (1 − θ)eT
1 A
−1
1 c)2

+ 1 − θ
µ2(1 + θeT

1 A
−1
2 c)2

)
−1
.

Dependence of QA
hom and Bhom on the microstructure. We want to study the dependence

of Q and B on the microstructure. For this we look at the special case A ≡ I. Our results from
Section 3.3 state that the deformation away from Γ is given up to order o(h) by

ϕ(x) ∶= x + hBhomx.

We can easily calculate the coefficients using Proposition 4.3. Note that θ̂ = θ, λ̂ = λ, µ̂ = µ.
Fig. 2 displays these coefficients in dependence of the volume fraction θ and on the Lamé
constant µ2 for fixed volume fraction θ = 1

2 . These graphs show that QA
hom and Bhom depend

non-linearly on θ for heterogeneous materials. Especially does the homogenized prestrain differ
from just taking the mean value in favor of the stronger material.

Figure 2: The graphs depict the coefficients of B ∈ R6 and Q ∈ R6×6 for an isotropic laminate
with B1 = −I, B2 = I and A ≡ I. We display the dependences on the volume fraction θ and the
Lamé constant µ2. In this situation only the coefficients B1 and B2 are non-zero. The blue
curve for B is a measure for the volume expansion, since the trace is the first order term in
the expansion of the determinant. The second row of graphs show a non-linear influence of the
material law on Bhom.
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Dependence of QA
hom and Bhom on the stress-free joint. We are interested in the de-

pendencies which don’t come from the mean matrix Ā. For this, we consider the following
one-parameter-family:

Aβ(y) ∶=
⎧⎪⎪⎨⎪⎪⎩

diag(β,1,1) y1 ∈ [0, 1
2)

diag(2 − β,1,1) y1 ∈ [12 ,1)
, 0 < β < 2.

Thus, θ = 1
2 , Āβ ≡ I, θ̂ = β

2 . We can easily calculate the perturbation Bhom and the homogenized
energy QA

hom in dependence of β. The results are displayed in Fig. 3 shows that the homoge-
nization of the perturbation and the energy cannot be decoupled from the homogenization of
the stress-free joint.

Figure 3: The graphs display the dependence of B ∈ R6 and Q ∈ R6×6 on the parameter β for
the family Aβ and B1 = −I, B2 = I. We see a non-constant dependence, which especially shows
that also the homogenization of the energy and the perturbation cannot be decoupled from the
homogenization of the stress-free joint. The dependence of B on β is linear.

5 Proofs

5.1 Properties of stress-free joints and proof of Proposition 2.5

In this section, we provide some properties of periodic maps, maps with periodic derivative and
stress-free joints, as defined in Definition 2.3, that we require later. Especially, we establish
Proposition 2.5. We start by collecting some basic properties of maps with periodic derivative.
Since they are standard statements, we only sketch the proof.

Lemma 5.1. Let 1 ≤ p ≤ ∞ and a ∈W1,p
loc(R

d,Rd) be continuous with a(0) = 0 and Y -periodic
derivative. Set aε(x) ∶= εa(x

ε ) and Ā ∶=
ffl

Y Da(y)dy. Then

(a) a − Ā ⋅ ∈W1,p
per(Y,Rd), i.e., a(y + k) = a(y) + Āk for all k ∈ Zd and y ∈ Y .

(b) aε ⇀ Ā ⋅ weakly in W1,p
loc(R

d,Rd) (or weakly-∗ for p = ∞). Especially, if p > d, then
sup

x∈Rd ∣aε(x) − Āx∣→ 0 as ε→ 0.
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(c) If p > d and det Da > 0 a.e. in Y , then det Ā =
ffl

Y det Da(y)dy > 0.

Suppose additionally, a ∶ Rd → Rd is a homeomorphism and onto, p > d and det Da > 0 a.e. in
Y . Then

(d) A measurable map φ ∶ Rd → R is Ā-periodic, if and only if φ ○ a is Y -periodic. Moreover,
in this case ˆ

a(Y )φ(z)dz =
ˆ

ĀY
φ(z)dz. (5.1)

(e) Let φ ∈W1,1
per(ĀY ). Then,

 
a(Y )Dφ(z)dz =

 
ĀY

Dφ(z)dz = 0. (5.2)

(f) a−1 − Ā−1
⋅ is Ā-periodic, i.e., a−1(z + Āk) = a−1(z) + k for all z ∈ Rd, k ∈ Zd.

(g) If a−1 ∈W1,1
loc(R

d,Rd), then Ā−1 =
ffl

a(Y )Da−1(z)dz =
ffl

ĀY Da−1(z)dz.

(h) If a−1 ∈W1,q
loc(R

d,Rd) for some q > d, then det Ā−1 =
ffl

a(Y ) det Da−1(z)dz
=

ffl
ĀY det Da−1(z)dz.

Proof. We first sketch the proof of (a). Since Da is Y -periodic, for all k ∈ Zd, there exists a
constant ck > 0, such that

a(y + k) = a(y) + ck, y ∈ Y .
By setting y = 0, we obtain ck = a(k). Thus, a ∶ Zd → Rd is linear and can be represented as
a(k) = Ãk for some matrix Ã ∈ Rd×d. Note that we can represent Ã explicitly as Ãij = aj(ei).
We claim Ã = Ā. Indeed, since a − Ã ⋅ is Y -periodic, the mean over Y of its derivative is zero
and thus,

0 =
 

Y
Da(y) − Ãdy = Ā − Ã.

(b) and (c) are a consequence of (a), the weak convergence of rescaled periodic maps to their
mean and the weak continuity of the determinant. Let us sketch (d). Since a is a homeomor-
phism, we obtain

φ is Ā-periodic
⇔ φ(z + Āk) = φ(z) for a.e. z ∈ Rd and all k ∈ Zd

⇔ φ(a(y + k)) (a)= φ(a(y) + Āk) = φ(a(y)) for a.e. y ∈ Rd and all k ∈ Zd

⇔ φ ○ a is Y -periodic.

Moreover, since (a(Y )+ Āk)
k∈Zd = (a(Y + k))k∈Zd generates a tesselation of Rd and φ(z + Āk) =

φ(z) for a.e. z ∈ a(Y ) and all k ∈ Zd, it is not hard to show that 
ĀY

φ = lim
n→∞

 
B(0,n)φ =

 
a(Y )φ.

This implies the claim, since by (c) and a change of variables (cf. [EG15, Thm. 3.8] and [KR19,
Thm. B.3.10]), we observe

∣a(Y )∣ =
ˆ

a(Y ) 1 =
ˆ

Y
det Da(y)dy = det Ā = ∣ĀY ∣ .

We omit the proof of (e) – (h), since they are easy consequences of (a) – (d).
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We proceed by proving Proposition 2.5. In fact, we prove a slightly stronger statement, which
emphasizes the structures we use for our reasoning.

Proposition 5.2 (Injectivity). Let p > d and a ∈ W1,p
loc(R

d,Rd) be a continuous function with
Y -periodic derivative and det Da(y) > 0 for a.e. y ∈ Y . Then a is injective a.e., in the sense
that for a.e. z ∈ Rd the preimage a−1 {z} consists of at most one point. Moreover, assume a has
bounded distortion, that is, there exists K > 0, such that

∣Da(y)∣d ≤K det Da(y), for a.e. y ∈ Rd. (5.3)

Then, a is in fact a homeomorphism, onto and a−1 ∈W1,1
loc(R

d,Rd) with Da−1(z) = Da(a−1(z))−1

for a.e. z ∈ Rd. If a additionally satisfies

∣Da( ⋅)−1∣p det Da ∈ L1(Y ) (resp. ∣Da( ⋅)−1∣ ∈ L∞(Rd) for p =∞), (5.4)

then, a−1 ∈W1,p
loc(R

d,Rd).

Proof. Step 1 – Idea of the proof: Let aε(x) ∶= εa(x
ε ). Without loss of generality, we

assume a(0) = 0. Since p > d and a is continuous, we have for all open, bounded sets U ⊂ Rd

the area formula (cf. [EG15, Thm. 3.8] and [KR19, Thm. B.3.10]),
ˆ

U
det Da(x)dx =

ˆ
a(U)H

0(U ∩ a−1 {z})dz. (5.5)

Note that H0(U ∩ a−1 {z}) is a measure of the non-injectivity of a∣U . Define the level set

O[a,U] ∶= {x ∈ U ∣H0(U ∩ a−1 {a(x)}) ≥ 2} = {x ∈ U ∣∃y ∈ U,x ≠ y ∶ a(x) = a(y)} .

Then a(U ∖O[a,U]) and a(O[a,U]) are disjoint and
ˆ

U
det Da(x)dx ≥

ˆ
a(U∖O[a,U]) 1 dz +

ˆ
a(O[a,U]) 2 dz = ∣a(U)∣ + ∣a(O[a,U])∣ .

Applying this to aε, aε → Ā ⋅ uniformly and det Daε ⇀ det Ā by Lemma 5.1 imply that necessarily

∣aε(O[aε, Y ])∣ ≤
ˆ

Y
det Daε(x)dx − ∣aε(Y )∣

ε→0ÐÐ→ det Ā − ∣ĀY ∣ = 0. (5.6)

Now, the idea of this proof is to show, that if a is not injective (a.e.), then the periodicity of
Da implies that the points, where a is not injective, are periodically distributed over Rd and
thus the mass of non-injectivity points of the rescaled functions aε does not vanish in Y , i.e.,
∣aε(O[aε, Y ])∣ > δ for some δ > 0 independent of ε which is a contradiction to (5.6).

Step 2 – Injectivity a.e.: Suppose a is not injective a.e. Then,

O ∶= O[a,Rd] = {x ∈ Rd ∣∃z ∈ Rd, x ≠ z ∶ a(x) = a(z)}

satisfies ∣O∣ > 0. This set is periodic, i.e. O = k + O for any k ∈ Zd. Indeed, if x ≠ z satisfy
a(x) = a(z), then a(k + x) = a(x) + Āk = a(z) + Āk = a(k + z). Thus, also ∣O ∩ Y ∣ > 0, since
otherwise

∣O∣ = ∑
k∈Zd

∣O ∩ (k + Y )∣ = ∑
k∈Zd

∣(k +O) ∩ (k + Y )∣ = ∑
k∈Zd

∣k + (O ∩ Y )∣ = ∑
k∈Zd

∣(O ∩ Y )∣ = 0.
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Since aε is obtained from a by rescaling, the set εO = ⋃k∈Zd ε(k +O ∩ Y ) consists of all points,
where aε is not injective. Our goal is to find a suitable subset O∗ ⊂ O∩Y with positive measure
and a sufficiently large collection K∗ε ⊂ Zd, such that

⋃
k∈K∗ε

ε(k +O∗) !⊂ O[aε, Y ] (5.7)

yields a contradiction to (5.6). Let On ∶= {y ∈ Y ∣∃z ∈ [−n,n)d, z ≠ y ∶ a(z) = a(y)}, n ∈ N. Since
On ↑ (O ∩Y ), there exists n0 ∈ N, such that ∣On0

∣ > 0. We set O∗ ∶= On0 . Lusin’s condition N −1

(cf. [KR19, Thm. B3.13]) implies that also ∣a(O∗)∣ > 0. Note that this is a critical property for
this proof; it is satisfied, since det Da > 0 a.e. in Rd and a ∈W1,p(Y,Rd) with p > d. Since a is
continuous and O∗ precompact, a(O∗) is bounded. Thus, there exists l0 ∈ N, such that the sets
a(O∗) + l0Āk, k ∈ Zd are pair-wise disjoint. We set

K∗ε ∶= {k ∈ l0Zd ∣ ε(k + [−n0, n0)d) ⊂ Y } ,

which is non-empty for ε ≪ 1. We observe that then the sets aε(ε(k +O∗)) = ε(a(O∗) + Āk),
k ∈K∗ε are pair-wise disjoint as well. We claim that with these definitions we obtain the desired
contradiction to (5.6). We show that (5.7) holds. Let y ∈ ε(k + O∗) for some k ∈ K∗ε . Then,
by definition of K∗ε , we have y ∈ Y . Moreover, from the definition of O∗ and the rescaling
aε = εa( ⋅ε ), we obtain some z ∈ ε(k + [−n0, n0)d), y ≠ z with aε(y) = aε(z). Since z ∈ Y by
definition of K∗ε , we find y ∈ O[aε, Y ]. We now show that K∗ε is large enough and infer the
contradiction. We can count the elements in K∗ε and find exactly ⌊ ε

−1−2n0
l0
⌋d many. Hence, for

ε ≤ 2−1(2n0 + l0)−1, our construction yields

∣aε(O[aε, Y ])∣ ≥ ∑
k∈K∗ε

∣ε(a(O∗) + Āk)∣ = εd ⌊ε
−1 − 2n0
l0

⌋
d

∣a(O∗)∣ ≥ (2l0)−d ∣a(O∗)∣ ,

a contradiction to (5.6). Hence, a must be injective a.e.
Step 3 – Sobolev homeomorphism: For the rest of the proof, we assume that a has bounded
distortion. Then a is a strongly open map, see [Ric93, Thm. I.4.1] and [HK14, Thm. 3-18]. We
claim that any strongly open map that is injective a.e. is injective everywhere. Indeed, suppose
there exist x, y ∈ Rd, x ≠ y, such that a(x) = a(y). Let δ > 0, such that B(x, δ) ∩B(y, δ) = ∅.
Then

O ∶= a(B(x, δ)) ∩ a(B(y, δ)) ∋ a(x)
is open, since a is an open map, and not empty. Hence ∣O∣ > 0. But the preimage of each
point in O contains a point in B(x, δ) and one in B(y, δ). This is a contradiction to injectivity
a.e. Moreover, since a maps open sets to open sets, preimages of open sets of a−1 are open.
Hence, the inverse a−1 is continuous. Since a has bounded distortion, [HK14, Thm. 5.2] shows
a−1 ∈W1,1

loc(a(R
d),Rd) and [FG95, Thm. 3.1] shows Da−1(z) = Da(a−1(z))−1 for a.e. z ∈ a(Rd).

Step 4 – Surjectivity: Since a(Rd) is non-empty and open, it suffices to show that a(Rd) is
closed in Rd to conclude a(Rd) = Rd. Since a is continuous a(Y ) is compact. Moreover, in view
of Lemma 5.1 we have

a(Rd) = ⋃
k∈Zd

a(k + Y ) = ⋃
k∈Zd

Āk + a(Y ).

Let (zn) ⊂ a(Rd) with zn → z ∈ Rd. By boundedness of (zn) and since det Ā > 0, there exist
finitely many k1, . . . , km ∈ Zd, such that (zn) ⊂ ⋃m

i=1(Āki + a(Y )). But since this set is closed,
z ∈ ⋃m

i=1(Āki + a(Y )) ⊂ a(Rd). Hence, a(Rd) is closed.
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Step 5 – Regularity of the inverse: If p =∞, then the formula Da−1(z) = Da(a−1(z))−1

for a.e. z ∈ Rd and (5.4) imply a−1 ∈ W1,∞
loc (R

d,Rd). For p < ∞, we additionally use the
transformation rule, see [Bal81, Thm. 1], to show

ˆ
a(Y ) ∣Da

−1(z)∣p dz =
ˆ

Y

∣Da(y)−1∣p det Da(y)dy <∞.

Hence, a−1 ∈W1,p(a(Y ),Rd) and by periodicity a−1 ∈W1,p
loc(R

d,Rd).

The previous proposition implies that periodic stress-free joints are already Bilipschitz. Even
non-periodic stress-free joints are by definition at least piece-wise Bilipschitz. This encourages
us to study Bilipschitz maps in the last part of this section. We use the following lemmas later
to show uniformity of some estimates w.r.t. transformation of the domain by Bilipschitz maps.
We denote the set of Bilipschitz maps on U ⊂ Rd with Bilipschitz constant less than or equal to
1 ≤ L <∞ by

BilL(U,Rd) ∶= {a ∶ U → Rd ∣ 1
L ∣x − y∣ ≤ ∣a(x) − a(y)∣ ≤ L ∣x − y∣ , for all x, y ∈ U} . (5.8)

Lemma 5.3. Let U ⊂ Rd be a Lipschitz domain and L ∈ [1,∞). The set BilL(U,Rd) is sequen-
tially closed w.r.t. the weak-∗ topology in W1,∞(U,Rd).

Proof. Let (ak) ⊂ BilL(U,Rd) converging weakly-∗ to some a ∈W1,∞(U,Rd). We have to show
a ∈ BilL(U,Rd). Lower semi-continuity of the norm implies that

∥Da∥L∞(U) ≤ lim inf
k→∞ ∥Dak∥L∞(U) ≤ L.

Compactness implies that (ak) also uniformly converges to a. Moreover, we find an open
ball B ⊂ Rd, such that ⋃k∈N ak(U) ⊂ B. In view of [EG15, Section 3.1.1] we can extend the
inverses a−1

k to Lipschitz maps on Rd with Lipschitz constants smaller than or equal L. Since
the sequence of extended inverses (a−1

k ) is bounded in W1,∞(B,Rd), there exists a subsequence
(not relabeled), such that (a−1

k ) weakly-∗ (and thus especially uniformly) converges to some
â ∈ W1,∞(B,Rd) with ∥Dâ∥L∞(B) ≤ L. To conclude the proof we need to show that â is the
inverse of a on U . Indeed, for all k ∈ N and x ∈ U , we have

∣â(a(x)) − x∣ = ∣â(a(x)) − a−1
k (ak(x))∣ ≤ ∣â(a(x)) − â(ak(x))∣ + ∣â(ak(x)) − a−1

k (ak(x))∣
≤ ∣â(a(x)) − â(ak(x))∣ + ∥â − a−1

k ∥∞ → 0.

Hence â ○ a = id on U . Especially, for z ∈ a(U), we have â(z) ∈ U and thus a−1
k (z) ∈ U for

sufficiently large k ∈ N. Thus, also

∣a(â(z)) − z∣ = ∣a(â(z)) − ak(a−1
k (z))∣ ≤ ∣a(â(z)) − a(a−1

k (z))∣ + ∣a(a−1
k (z)) − ak(a−1

k (z))∣
≤ ∣a(â(z)) − a(a−1

k (z))∣ + ∥a − ak∥∞ → 0.

We conclude, â = a−1 in a(U) and a ∈ BilL(U,Rd).

Lemma 5.4 (cf. [DNP02, Lemma 3.3]). Let 1 ≤ p < ∞, L ∈ [1,∞), U ⊂ Rd be a Lipschitz
domain, U ⊂ BilL(U,Rd) weakly-∗ closed w.r.t. W1,∞(U,Rd) and S ⊂ U be a bounded set with
0 <Hm(S) <∞ for some 1 ≤m ≤ d. Let S0 be the set of all points x ∈ S with Hm(S∩B(x, δ)) > 0
for all δ > 0. Let K ⊂ Rd×d be a closed cone, such that for all F ∈K ∖ {0} and a ∈ U

dim(kerF ) < dim(aff a(S0)),
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where aff a(S0) ⊂ Rd denotes the smallest affine space containing a(S0). Define

∣F ∣S,a,p ∶= (min
ξ∈Rd

ˆ
S
∣Fa(x) − ξ∣p dHm(x))

1/p
. (5.9)

There exists a constant C > 0, such that for all F ∈K and a ∈ U
∣F ∣ ≤ C ∣F ∣S,a,p . (5.10)

Proof. Suppose the contrary holds. Then, for all k ∈ N we find some ak ∈ U and Fk ∈ K with
∣Fk∣ = 1, such that

1
k =

1
k ∣Fk∣p ≥ ∣Fk∣pS,ak,p =

ˆ
S
∣Fkak(x) − ξk∣p dHm(x),

where ξk ∈ Rd denotes a minimizer in ∣Fk∣S,ak,p. Since ∣ ⋅ ∣S,a,p and the assumption dim(kerF ) <
dim(aff a(S0)) are translation invariant w.r.t. a, we may without loss of generality assume (ak)
is bounded in W1,∞(U,Rd). Hence, we find a subsequence (not relabeled), such that ak → a
uniformly, Fk → F and ξk → ξ for some a ∈ U , F ∈ K and ξ ∈ Rd. Note that indeed, (ak) being
bounded in W1,∞(U,Rd), ∣Fk∣ and ∣Fk∣S,ak,p being bounded, imply that (ξk) is bounded. Then,

0 = lim
k→∞

ˆ
S
∣Fkak(x) − ξk∣p dHm(x) =

ˆ
S
∣Fa(x) − ξ∣p dHm(x).

Hence, Fa(x) = ξ for all x ∈ S0. This implies dim(kerF ) ≥ dim(aff a(S0)) and thus F = 0 by
assumption. But this is a contradiction to ∣F ∣ = limk→∞ ∣Fk∣ = 1.

Corollary 5.5. Let L ∈ [1,∞), 1 ≤ p <∞ and K ⊂ Rd×d denote the union of the cone generated
by SO(d) − I and the space of skew-symmetric matrizes. Then, there exists a constant C =
C(Ω,Γ, L) > 0 such that for all F ∈K and a ∈ BilL(Ω,Rd), we have

∣F ∣ ≤ C ∣F ∣a(Γ),p , where ∣ ⋅ ∣a(Γ),p ∶= ∣ ⋅ ∣a(Γ),id,p .

Proof. According to [DNP02, Chap. 3], K, S ∶= Γ and U ∶= BilL(Ω,Rd) satisfy the assumptions
of the previous lemma for m = d − 1. Hence, using the change of variables rule for boundary
integrals, cf. [KR19, Chap. 1.1.3], we get

∣F ∣p ≤ c1 ∣F ∣pΓ,a,p ≤ c1

ˆ
Γ
∣Fa(x) − ξ∣p dHd−1(x) ≤ c2

ˆ
Γ
∣Fa(x) − ξ∣p ∣cof Da(x)ν(x)∣ dHd−1(x)

= c2

ˆ
a(Γ) ∣Fz − ξ∣

p dHd−1(z) = c2 ∣F ∣pa(Γ),p ,
where c2 does not depend on a ∈ BilL(Ω,Rd) and ξ ∈ Rd is a minimizer in ∣F ∣a(Γ),p.

Corollary 5.6. Let L ∈ [1,∞), 1 ≤ p <∞. Then, there exists a constant C = C(Ω, L) > 0 such
that for all F ∈ Rd×d and a ∈ BilL(Ω,Rd), we have

∣F ∣ ≤ C ∣F ∣a(Ω),p , where ∣ ⋅ ∣a(Ω),p ∶= ∣ ⋅ ∣a(Ω),id,p .

Proof. K ∶= Rd×d, S ∶= Ω and U ∶= BilL(Ω,Rd) trivially satisfy the assumptions of Lemma 5.4
for m = d. Hence, the transformation rule implies

∣F ∣p ≤ c1 ∣F ∣pΩ,a,p ≤ c1

ˆ
Ω
∣Fa(x) − ξ∣p dx ≤ c2

ˆ
Ω
∣Fa(x) − ξ∣p ∣det Da(x)∣ dx

= c2

ˆ
a(Ω) ∣Fz − ξ∣

p dz = c2 ∣F ∣pa(Ω),p ,
where c2 does not depend on a ∈ BilL(Ω,Rd) and ξ ∈ Rd is a minimizer in ∣F ∣a(Ω),p.
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5.2 Extension operator for rigidity in Jones domains; Korn inequality and
rigidity estimates

In this section we prove Theorem 3.15 and conclude Corollaries 3.16 to 3.18.

Extension operator for rigidity. As proposed in Section 3.4, the results are based on an
extension operator that we shall introduce first. Before we state the result, recall our notation
for mixed growth decompositions introduced in (3.30). We introduce the following notation for
cubes.

Definition 5.7. For the cube Q ∶= a+[− l
2 ,

l
2]

d with a ∈ Rd and l > 0, we denote the center point
by x̄(Q) ∶= a and the edge length by l(Q) ∶= l. Moreover, for α > 0, we define the scaled cube
αQ ∶= x̄(Q) + α(Q − x̄(Q)). We use the same definitions for open and half-open cubes.

The extension operator controls the distance to SO(d), Rd×d
sym and other sets simultaneously,

as long as a geometric rigidity like statement holds on cubes. To unify this, we introduce the
following notion:

Definition 5.8 ((A, p, q)-rigidity). Let Q ⊂ Q+ ⊂ Rd measurable, p, q ∈ [1,∞] and A ⊂ Rd×d. We
say (A, p, q)-rigidity holds on Q w.r.t. Q+, if the following statement holds. We find a constant
c > 0, such that for all u ∈ W1,1(Q+,Rd) and all decompositions dist(Du,A) = Fdist(Du,A) +
Gdist(Du,A) in Lp +Lq(Q+), we find some matrix M ∈ Rd×d and a decomposition Du −M =
FDu−M +GDu−M in Lp +Lq(Q,Rd×d), such that

∥FDu−M∥Lp(Q) ≤ c ∥Fdist(Du,A)∥Lp(Q+) ,
∥GDu−M∥Lq(Q) ≤ c ∥Gdist(Du,A)∥Lq(Q+) .

(5.11)

We say (A, p, q)-rigidity holds on cubes, if (A, p, q)-rigidity holds on any cube Q w.r.t. Q+ = 33
32Q.

The choice 33
32 for the scaling is technical and not important. The standard choices for A

are Rd×d
skew which is Korn’s inequality and SO(d) which is the geometric rigidity estimate, cf.

Section 3.4.

Theorem 5.9. Let U ⊂ Rd be an open, bounded (e, δ)-domain, ρ ∶= min {1
2 diam(U), δ}. For

γ > 0, define

U+γ ∶= {x ∈ Rd ∣dist(x,U) ≤ γ} , U−γ ∶= {x ∈ U ∣dist(x, ∂U) ≥ γ} ,

and note that U−γ ⊂⊂ U ⊂⊂ U+γ . There exist constants 0 < α′ < α and α′′ > 0 (which we relate
to the sets U−ρα′′ ⊂ U ⊂ U

+
ρα′ ⊂ U

+
ρα) and a bounded, linear extension operator E ∶W1,1(U,Rd) →

W1,1
loc(R

d,Rd) with

(a) Eu = u a.e. in U and

(b) suppEu ⊂ U+ρα,

such that the following holds:

Let r ∈ [1,∞], 1 ≤ p ≤ q ≤ ∞ and A ⊂ Rd×d, such that (A, p, q)-rigidity holds on cubes.
Then, there exists a constant c > 0, such that for all u ∈ W1,1(U,Rd) and all decompositions
dist(Du,A) = Fdist(Du,A) +Gdist(Du,A) in Lp +Lq(U,Rd×d), the following estimates hold.
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(c) We find a decomposition Eu = FEu +GEu +HEu in Lp +Lq +Lr(Rd,Rd), such that

∥FEu∥Lp(Rd) ≤ c ∥Fdist(Du,A)∥Lp(U) ,
∥GEu∥Lq(Rd) ≤ c ∥Gdist(Du,A)∥Lq(U) ,
∥HEu∥Lr(Rd) ≤ c ∥u∥Lr(U) .

(5.12)

Especially, for p = q = r,

∥Eu∥Lp(Rd) ≤ c (∥u∥Lp(U) + ∥dist(Du,A)∥Lp(U)) . (5.13)

(d) We find a decomposition dist(DEu,A) = Fdist(DEu,A) + Gdist(DEu,A) + Hdist(DEu,A) in
Lp +Lq +Lr(Rd,Rd×d) with Hdist(DEu,A) = 0 a.e. in U+ρα′, such that

∥Fdist(DEu,A)∥Lp(Rd) ≤ c ∥Fdist(Du,A)∥Lp(U) ,
∥Gdist(DEu,A)∥Lq(Rd) ≤ c ∥Gdist(Du,A)∥Lq(U) ,
∥Hdist(DEu,A)∥Lr(Rd) ≤ c(ρ−1 ∥u∥Lr(U−

ρα
′′) + ∥Du∥Lr(U−

ρα
′′)) .

(5.14)

Especially, for p = q = r,

∥dist(DEu,A)∥Lp(U+
ρα
′) ≤ c ∥dist(Du,A)∥Lp(U) . (5.15)

Moreover, the constants α, α′, α′′ and c depend on the domain U only via its first Jones
coefficient e.

We want to emphasize that the extension operator does not depend on the choice of A but is
stable for all admissible choices of A, including Korn’s inequality (A = Rd×d

sym) and the geometric
rigidity estimate (A = SO(d)). Especially, (c) and (d) for the trivial choice A = ∅ show that E is
a bounded operator w.r.t. W1,p for any p ∈ [1,∞]. We follow [Jon81; DM04] for the construction
of the extension operator and the proof of Theorem 5.9. The definition of the extension operator
relies on Whitney decompositions of the domain U and Rd ∖U and a suitable reflection of the
cubes from the outside to the inside of U close to the boundary. For the readers convenience
we recall here the relevant definitions and statements from [Jon81].

Definition 5.10 (cf. [Jon81]). Let U ⊂ Rd open. A Whitney decomposition of U is a sequence
of closed, dyadic cubes Qk, k ∈ N, such that U = ⋃k∈NQk and

(i) l(Qk) ≤ dist(Qk, ∂Ω) ≤ 4
√
d l(Qk),

(ii) int(Qj) ∩ int(Qk) = ∅, whenever j ≠ k,

(iii) 1
4 ≤

l(Qj)
l(Qk) ≤ 4, whenever Qj ∩Qk ≠ ∅.

Lemma 5.11 (Reflection, cf. [Jon81]).

(a) Every open set U ⊂ Rd admits a Whitney decomposition, cf. [Ste71, Thm. VI.1].

(b) There exists a constant c = c(d, e) > 0, such that if U is an (e, δ)-domain, the following
statements hold. Let ρ ∶=min {1

2 diam(U), δ},

• W1 ∶= (Sk)k∈N denote a Whitney decomposition of U ,
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• W2 ∶= (Qj)j∈N denote a Whitney decomposition of Rd ∖U and
• W3 ∶= {Qj ∈W2 ∣ l(Qj) ≤ ρ

c
}.

For every cube Qj ∈W3, there exists a reflected cube Q∗j = Sk ∈W1, such that

1 ≤ l(Q∗j )
l(Qj) ≤ 4, dist(Qj ,Q

∗
j ) ≤ c l(Qj),

and if Qj ,Qk ∈W3 with Qj ∩Qk ≠ ∅, there exists a chain Fj,k ∶= {Q∗j = S1, . . . , Sm = Q∗k} ⊂
W1, i.e. Sj ∩ Sj+1 ≠ ∅, with chain length m ≤ c.

(c) There exists a constant C = C(d) > 0 and a partition of unity (φj) ⊂ C∞c (Rd, [0,1]) subor-
dinate to W3, such that

suppφj ⊂ 17
16Qj , ∑

Qj∈W3

φj ≡ 1 on ⋃W3, ∣∇φj ∣ ≤ C l(Qj)−1.

Throughout this section let U ⊂ Rd an (e, δ)-domain andW1, W2, W3 and (φj) as in Lemma 5.11.
Note that by property (i) of Definition 5.10, W3 consists of the cubes that are close to the
boundary of U . In fact, we may choose 0 < α′ < α only depending on e and d, such that

U+ρα′ ⊂⋃W3 ∪U ⊂ U+ρα.

For u ∈W1,1(U,Rd), we define the extension of u as,

Eu(x) ∶=
⎧⎪⎪⎨⎪⎪⎩

u(x) if x ∈ U,
∑Qj∈W3 PQ∗j

[u](x)φj(x) if x ∈ int(Rd ∖U),
(5.16)

where PQ[u] denotes the affine map

PQ[u](x) ∶= ūQ +M(x − x̄Q), x ∈ Rd, (5.17)

with
ūQ ∶=

 
Q
u, M ∶=

 
Q

Du, x̄Q ∶=
 

Q
xdx. (5.18)

Jones showed in [Jon81, Lem. 2.3] that ∣∂U ∣ = 0. Thus, the formula defines Eu up to a null-set.
We show later that indeed Eu ∈W1,1

loc(R
d,Rd).

Remark 5.12. The main difference of the extension operators in [Jon81; DM04] and in our
work is the choice of M . We want to motivate our choice. By studying [DM04] we identify the
following key properties that M needs to satisfy:

(a) M is linear w.r.t. u, such that E is linear.

(b) ∣M ∣ can be controlled by Du, such that E is a bounded operator.

(c) We can estimate the difference u − PQ[u] by dist(Du,A) in W1,p(Q) to be able to control
dist(DEu,A) (also in the mixed growth sense).

The fact that M =
ffl

Q Du is a suitable choice is now due to the following simple observation.
In Definition 5.8, we can always choose the explicit matrix M =

ffl
Q Du. Indeed, let M̃ ∈ Rd×d
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denote a matrix that satisfies the statement in the definition of (A, p, q)-rigidity. Then, the
inequality

∣M − M̃ ∣ = ∣
 

Q
Du − M̃ ∣ ≤

 
U

∣Du − M̃ ∣ ≤
 

Q

∣FDu−M̃ ∣ +
 

Q

∣GDu−M̃ ∣

implies this statement by using Du−M = (Du−M̃)+(M −M̃) and Remark 5.13 (i) below. With
this choice, (5.11) reads

∥FDu−DPQ[u]∥Lp(Q) ≤ c ∥Fdist(Du,A)∥Lp(Q+) ,
∥GDu−DPQ[u]∥Lq(Q) ≤ c ∥Gdist(Du,A)∥Lq(Q+) .

(5.19)

Moreover, since
ffl

Q u −PQ[u] = 0, a mixed growth version of the Poincaré-Wirtinger inequality,
see Proposition C.1, yields a decomposition u − PQ[u] = Fu−PQ[u] +Gu−PQ[u] in Lp +Lq(Q,Rd)
with

∥Fu−PQ[u]∥Lp(Q) ≤ cdiam(Q) ∥Fdist(Du,A)∥Lp(Q+) ,
∥Gu−PQ[u]∥Lq(Q) ≤ cdiam(Q) ∥Gdist(Du,A)∥Lq(Q+) .

(5.20)

These are exactly the estimates needed for (c). We note that using a similar argument we can
also always use in Definition 5.8 the explicit choice M ∈ Arg minN∈A ∣N −

ffl
Q Du∣ ⊂ A.

Before we proceed with the proof of Theorem 5.9, we provide some further remarks.

Remark 5.13.

(i) To conclude (5.19) and (5.20) from the arguments above, we used the fact that an inequality
of the form ∣v∣ ≤ f̃ + g̃ for some f̃ ∈ Lp(Q), g̃ ∈ Lq(Q) with f̃ , g̃ ≥ 0 already implies the
existence of a decomposition v = f + g with ∥f̃∥Lp ≤ ∥f∥Lp, ∥g̃∥Lq ≤ ∥g∥Lq . This has already
been pointed out in the notation section of [CDM14]. We shall use this fact without further
comments several times throughout the proofs below.

(ii) The constant in Definition 5.8 is invariant under scaling and translation of the domains
Q and Q+, which can be seen by a standard scaling argument. Moreover, this holds true
with the explicit choice M =

ffl
Q Du from above. Especially, if (A, p, q) rigidity holds on

one cube, then it holds on all.

(iii) If (A, p, q)-rigidity holds on two open sets Q1,Q2 ⊂ Rd with Q1∩Q2 ≠ ∅, then it is not hard
to show that it also holds on Q1 ∪Q2. Especially, if it holds on cubes, then it holds on any
finite union of intersecting cubes. We carry out the argument in the proof of Theorem 3.15.

The proof of Theorem 5.9 is analogous to [Jon81; DM04]. Since one has to be careful to
deal with the mixed growth estimates and the general (A, p, q)-rigidity, we provide the main
arguments for the readers convenience. To that end, we fix r ≥ 1, 1 ≤ p ≤ q ≤∞ and A ⊂ Rd×d,
such that (A, p, q)-rigidity holds on cubes. Further, we consider a decomposition dist(Du,A) =
Fdist(Du,A) +Gdist(Du,A) in Lp +Lq(U).
The idea of the proof relies on two observations. First, by construction we have Eu ≈ PQ∗j

[u] on
Qj and in view of (5.19) and (5.20), u ≈ PQ∗j

[u] on Q∗j , see Fig. 4. Hence, to relate Eu to u, the
idea is to relate PQ∗j

[u]∣Qj
to PQ∗j

[u]∣Q∗j . This can be done, since PQ∗j
[u] is a polynomial and

Qj and Q∗j have a similar size and controlled distance. This is made rigorous in the following
lemma.
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U

∂U

Qj

Q∗j

Eu ∶≈ P
Q
∗
j
[u]∣Qj

u ≈∶ P
Q
∗
j
[u]∣

Q
∗
j

Q

Figure 4: Lemma 5.14 allows to relate PQ∗j
[u]∣Qj

to PQ∗j
[u]∣Q∗j and thus Eu∣Qj

to u.

Lemma 5.14 (cf. [Jon81, Lem. 2.1]). Let m ∈ N, 1 ≤ p ≤ q ≤ ∞, Q ⊂ Rd a cube and E,F ⊂ Q
measurable sets satisfying ∣E∣ , ∣F ∣ ≥ γ ∣Q∣ for some γ > 0. There exists a constant c = c(γ,m, d),
such that for any polynomial P of degree at most m and decomposition P = FP ∣E + GP ∣E in
Lp +Lq(E), we find a decomposition P = FP ∣F +GP ∣F in Lp +Lq(F ) satisfying

∥FP ∣F ∥Lp(F ) ≤ c ∥FP ∣E∥Lp(E) ,
∥GP ∣F ∥Lq(F ) ≤ c ∥GP ∣E∥Lp(E) .

(5.21)

(For the proof see Appendix C.)

The second observation is that due to the definition of the partition of unity, Eu∣Qj
admits

contributions PQ∗k
[u] only from neighboring cubes Qk, i.e. only if Qk ∩Qj ≠ 0, see Fig. 5. Thus,

we need to relate PQ∗j
[u] and PQ∗k

[u] on Qj . To do so, together with Lemma 5.14 we can use
that the reflections of neighboring cubes are not necessarily neighbors but at least connected
by a controlled chain in view of Lemma 5.11. The following lemma provides estimates for such
a case.

U

∂U

Qj

Qk

Eu ∶≈ φP
Q
∗
j
[u]

+ (1 − φ)P
Q
∗
k
[u]

Q∗k

Q∗ju ≈∶ P
Q
∗
j
[u]

u ≈∶ P
Q
∗
k
[u]

S5
S4

S3 S2

Figure 5: Lemma 5.15 allows to relate PQ∗j
[u] and PQ∗k

[u] which is necessary to estimate Eu
close to Qj ∩Qk.

Lemma 5.15 (cf. [Jon81, Lem. 3.1] and [DM04, Lem. 2.3]). Let m ∈ N and F ∶= {S1, . . . , Sm} ⊂
W1 a chain of cubes in W1. Then, we find decompositions PS1[u] − PSm

[u] = FPS1 [u]−PSm
[u] +
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GPS1 [u]−PSm
[u] in Lp +Lq(S1,Rd) and DPS1[u]−DPSm

[u] = FDPS1 [u]−DPSm
[u]+GDPS1 [u]−DPSm

[u]
in Lp +Lq(S1,Rd×d), such that

∥FPS1 [u]−PSm
[u]∥Lp(S1) ≤ cl(S1) ∥Fdist(Du,A)∥Lp(⋃ 33

32F) ,
∥GPS1 [u]−PSm

[u]∥Lq(S1) ≤ cl(S1) ∥Gdist(Du,A)∥Lq(⋃ 33
32F) ,

(5.22)

∥FDPS1 [u]−DPSm
[u]∥Lp(S1) ≤ c ∥Fdist(Du,A)∥Lp(⋃ 33

32F) ,
∥GDPS1 [u]−DPSm

[u]∥Lq(S1) ≤ c ∥Gdist(Du,A)∥Lq(⋃ 33
32F) ,

(5.23)

for some constant c = c(d,m, p, q) > 0. Here, 33
32F ∶= {

33
32S1, . . . ,

33
32Sm}.

Proof. Using a telescopic sum, we obtain the estimate

∣PS1[u] − PSm
[u]∣ ≤

m−1
∑
i=1 ∣PSi

[u] − PSi+1[u]∣

≤
m−1
∑
i=1 ∣PSi

[u] − PSi∪Si+1[u]∣ + ∣PSi∪Si+1[u] − PSi+1[u]∣ , on S1.

In view of Lemma 5.14 it suffices to estimate PSi
[u] −PSi∪Si+1[u] and PSi∪Si+1[u] −PSi+1[u] on

Si (respectively on Si+1) instead of S1. Here, we can add and subtract u and then use (5.19)
and (5.20) with Q = Si and Q+ = 33

32Si (respectively with Q = Si+1 and Q = Si ∪ Si+1 and Q+
analogously) to obtain the desired mixed growth estimates in terms of dist(Du,A). Note that in
order to control γ in Lemma 5.14, we use that S1 and Si, Si+1 are close in view of Lemma 5.11.
Moreover, the constant in (5.19) and (5.20) can be chosen uniformly by scaling and translation
invariance of the constant in (A, p, q)-rigidity.

We use these lemmas to estimate Eu. We only provide a sketch of the proofs. For the details
we refer to the related lemmas in [Jon81] and [DM04].

Lemma 5.16 (cf. [Jon81, Lem. 3.2] and [DM04, Lem. 2.4]). Let Qj ∈W3. We define

F(Qj) ∶= {33
32Si ∣Si ∈ Fj,k,Qk ∈W3,Qj ∩Qk ≠ ∅} , (5.24)

where Fj,k denote the chains connecting Q∗j and Q∗k in W1 defined in Lemma 5.11 (b). We find
decompositions Eu = FEu+GEu+HEu in Lp +Lq +Lr(Qj ,Rd) and dist(DEu,A) = Fdist(DEu,A)+
Gdist(DEu,A) in Lp +Lq(Qj), such that

∥FEu∥Lp(Qj) ≤ cl(Qj) ∥Fdist(Du,A)∥Lp(⋃F(Qj)) ,
∥GEu∥Lq(Qj) ≤ cl(Qj) ∥Gdist(Du,A)∥Lq(⋃F(Qj)) ,
∥HEu∥Lr(Qj) ≤ c ∥u∥Lr(Q∗j ) ,

(5.25)

∥Fdist(DEu,A)∥Lp(Qj) ≤ C ∥Fdist(Du,A)∥Lp(⋃F(Qj)) ,
∥Gdist(DEu,A)∥Lq(Qj) ≤ C ∥Gdist(Du,A)∥Lq(⋃F(Qj)) ,

(5.26)

for some constants c = c(d, e,A, p, q, r) > 0 and C = C(d, e,A, p, q) > 0.
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Proof. The partition of unity is constructed such that φk∣Qj
≡ 0 whenever Qk ∩ Qj = ∅ and

∑Qk∈W3 φk ≡ 1 on Qj . Thus, we have the formula,

Eu∣Qj
= PQ∗j

[u] + ∑
Qk∈W3,

Qj∩Qk≠∅
(PQ∗k

[u] − PQ∗j
[u])φk on Qj .

Again, using Lemma 5.14, it suffices to estimate PQ∗j
[u] and PQ∗k

[u] − PQ∗j
[u] on Q∗j instead

of Qj . To show (5.25), we can now estimate on Q∗j the latter term using Lemma 5.15 and the
former term using (5.19) and the formula PQ∗j

[u] = (PQ∗j
[u] − u) + u. For the derivative, we

obtain from the formula above,

(DEu −DPQ∗j
[u])∣Qj

= ∑
Qk∈W3,

Qj∩Qk≠∅
(PQ∗k

[u] − PQ∗j
[u])∇φT

k + φk(DPQ∗k
[u] −DPQ∗j

[u]) on Qj ,

We can estimate the right-hand side analogously to the procedure for Eu∣Qj
and make the

following observation from which we can infer (5.26):

dist(DEu,A) ≤ ∣DEu −DPQ∗j
[u]∣ + dist(DPQ∗j

[u],A)

≤ ∣DEu −DPQ∗j
[u]∣ +

 
Q∗j

∣Du −DPQ∗j
[u]∣ +

 
Q∗j

dist(Du,A).

Lemma 5.17 (cf. [Jon81, Lem. 3.3] and [DM04, Lem. 2.5]). Let Qj ∈W2 ∖W3. We define

F(Qj) ∶= {33
32Q

∗
k ∣Qk ∈W3,Qj ∩Qk ≠ ∅} . (5.27)

We find decompositions Eu = FEu + GEu + HEu in Lp +Lq +Lr(Qj ,Rd) and dist(DEu,A) =
Fdist(DEu,A) +Gdist(DEu,A) +Hdist(DEu,A) in Lp +Lq +Lr(Qj), such that

∥FEu∥Lp(Qj) ≤ cρ ∥Fdist(Du,A)∥Lp(⋃F(Qj)) ,
∥GEu∥Lq(Qj) ≤ cρ ∥Gdist(Du,A)∥Lq(⋃F(Qj)) ,
∥HEu∥Lr(Qj) ≤ c ∥u∥Lr(⋃F(Qj)) ,

(5.28)

and

∥Fdist(DEu,A)∥Lp(Qj) ≤ c ∥Fdist(Du,A)∥Lp(⋃F(Qj)) ,
∥Gdist(DEu,A)∥Lq(Qj) ≤ c ∥Gdist(Du,A)∥Lq(⋃F(Qj)) ,
∥Hdist(DEu,A)∥Lq(Qj) ≤ c (ρ−1 ∥u∥Lr(⋃F(Qj)) + ∥Du∥Lr(⋃F(Qj))) ,

(5.29)

for some constant c = c(d, e,A, p, q, r) > 0.

Proof. Note that F(Qj) is empty only if Eu∣Qj
≡ 0. Thus, we may assume F(Qj) ≠ ∅. Then,

(5.28) follows from the formula

Eu∣Qj
= ∑

Qk∈W3,
Qj∩Qk≠∅

PQ∗k
[u]φk on Qj ,
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where we estimate PQ∗k
[u] as in the previous lemma using PQ∗k

[u] = (PQ∗k
[u]−u)+u on Q∗k. Note

that since F(Qj) ≠ ∅, we have 4ρ
c1
≥ l(Qj) ≥ ρ

c1
. Similarly, we obtain (5.29) from the formulas

DEu = ∑
Qk∈W3,

Qj∩Qk≠∅
PQ∗k
[u]∇φT

k + φkDPQ∗k
[u], and

dist(DEu,A) ≤ ∣DEu∣ + dist(0,A) ≤ ∣DEu∣ +
 

Q∗k

dist(Du,A) +
 

Q∗k

∣Du∣ ,

by estimating DPQ∗k
[u] using DPQ∗k

[u] = (DPQ∗k
[u] −Du) +Du in Q∗k.

Proof of Theorem 5.9. Let u ∈W1,1(U,Rd). Recall formula (5.16), which states

Eu(x) ∶=
⎧⎪⎪⎨⎪⎪⎩

u(x) if x ∈ U,
∑Qj∈W3 PQ∗j

(u)(x)φj(x) if x ∈ int(U c).

Note that ({0} , p, p)-regularity is trivially satisfied from the observation

∥Du − 0∥Lp(Q) = ∥Du∥Lp(Q) = ∥dist(Du,{0})∥Lp(Q) ,
for any measurable set Q ⊂ Rd and any p ∈ [1,∞]. Therefore, Lemmas 5.16 and 5.17, applied
for A = {0} and r = p = q = 1 and r = p = q =∞ respectively, yield the estimates

∥Ev∥W1,1(int(Rd∖U)) ≤ c1ρ
−1 ∥v∥W1,1(U) , for all v ∈W1,1(U,Rd), (∗1)

∥Ev∥W1,∞(int(Rd∖U)) ≤ c1ρ
−1 ∥v∥W1,∞(U) , for all v ∈W1,∞(U,Rd). (∗2)

Indeed, (∗1) and (∗2) follow by summing over the cubes Qj ∈ W2, where we note that in
view of the controlled size and distances of cubes and their reflected cubes by Definition 5.10
and Lemma 5.11,

∑
Qj∈W3

1Q∗j
≤ c21U , ∑

Qj∈W3

1⋃F(Qj) ≤ c21U , ∑
Qj∈W2∖W3

1⋃F(Qj) ≤ c21U−
ρα
′′
.

We have to show that the weak derivative of Eu exists and thus, indeed, Eu belongs to
W1,1(Rd,Rd). This can be seen as follows. By the approximation result of Jones in [Jon81,
Sec. 4], there exists a sequence (uk) ⊂ C∞(Rd,Rd), which converges to u in W1,1(U,Rd). It
follows analogously to [Jon81, Lem. 3.5] from (∗2) that Euk ∈W1,∞(Rd,Rd) is a Lipschitz map.
Applying (∗1) yields that (Euk) defines a Cauchy sequence in W1,1(Rd,Rd) and thus, converges
to Eu in W1,1(Rd,Rd). Especially Eu ∈ W1,1(Rd,Rd) holds. Finally, we obtain the estimates
in Theorem 5.9 from Lemmas 5.16 and 5.17 by summing over the cubes in W2.

Geometric rigidity estimate and Korn’s inequality in Jones domains. In the remain-
der of this section we utilize the extension operator to obtain Theorem 3.15 and Corollaries 3.16
to 3.18.

Proof of Theorem 3.15. Recall the definitions r ∶= diam(U) and ρ ∶= min { r
2 , δ}. We only con-

sider the the case of the rigidity estimate, since the argument for Korn’s inequality is similar in
view of ∣symF ∣ = dist(F,Rd×d

skew).
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Step 0 – Rigidity on finite unions of cubes: We cover U by m cubes Q1, . . . ,Qm ⊂ Rd of
size l(Qi) ∼ ρ. We can do so with m ≲ ( r

ρ)
d many cubes. To be precise we ask for the following

properties from the covering:

U ⊂
m

⋃
i=1Qi ⊂

m

⋃
i=1

33
32Qi ⊂ U+ρα′ , m ≤ c1( r

ρ)
d,

1
c1
ρ ≤ l(Qi) ≤ c1ρ,

m

∑
i=11Qi

≤ c1, and

for each i = 1, . . . ,m, there exists j < i with ∣Qi ∩Qj ∣ ≥ 1
2 ∣Qi∣ .

Such a covering can be constructed using d + 1 shifted copies of the lattice

{Qk = α′ρ

2
√

d
(k + [0,1)d) ∣k ∈ Zd,Qk ∩U ≠ ∅} .

Recall (A, p, q)-rigidity, cf. Definition 5.8. Let us first show that (SO(d), p, q)-rigidity holds
on ⋃m

i=1Qi w.r.t. Q+ = ⋃m
i=1 33

32Qi with a constant cm where c = c(d, p, q) > 0. Consider
v ∈ W1,1(⋃m

i=1Qi) and a decomposition dist(Dv,SO(d)) = Fdist(Dv,SO(d)) + Gdist(Dv,SO(d)) in
Lp +Lq(⋃m

i=1Qi). Due to [FJM02, Prop. 3.4] and [CDM14, Thm. 1.1] (SO(d), p, q)-rigidity
holds on cubes. Thus, we find Ri ∈ SO(d) and decompositions Dv − Ri = FDv−Ri

+GDv−Ri
in

Lp +Lq(Qi,Rd×d), i = 1, . . . ,m, satisfying

∥FDv−Ri
∥Lp(Qi) ≤ c2 ∥Fdist(Dv,SO(d))∥Lp(33

32 Qi) ,
∥GDv−Ri

∥Lq(Qi) ≤ c2 ∥Gdist(Dv,SO(d))∥Lq(33
32 Qi) .

Note that by scaling and translation invariance of Definition 5.8, we can choose the constant
c2 independent of i. We show that we can replace Ri by R1 by estimating the difference. For
each i, we find a chain Q1 = Qi1 , . . .Qik

= Qi with k ≤m and ∣Qij
∩Qij+1

∣ ≥ c3 min{∣Qij
∣, ∣Qij+1

∣}.
Thus,

∣Ri −R1∣ ≤
k−1
∑
j=1 ∣Rij+1 −Rij

∣ ≤
k−1
∑
j=1

 
Qij
∩Qij+1

∣Dv −Rij
∣ + ∣Dv −Rij+1

∣

≤
k−1
∑
j=1

 
Qij
∩Qij+1

∣FDv−Rij
∣ + ∣GDv−Rij

∣ + ∣FDEu−Rij+1
∣ + ∣GDv−Rij+1

∣.

We estimate the right-hand side as follows,
XXXXXXXXXXXX

 
Qij
∩Qij+1

∣FDv−Rij
∣
XXXXXXXXXXXXLp(Qi)

≤ ∣Qi∣1/p
∣Qij
∩Qij+1 ∣1/p

∥FDv−Rij
∥Lp(Qij

∩Qij+1) ≤ c4 ∥Fdist(Dv,SO(d))∥Lp(33
32 Qij

) ,

and obtain analogous results for the other terms. Note that the constant c4 only depends on d
and p (respectively on q). Hence, Remark 5.13 (i) shows that Ri −R1 admits a decomposition
Ri −R1 = FRi−R1 +GRi−R1 in Lp +Lq(Ω,Rd×d) with

∥FRi−R1
∥Lp(Qi) ≤ kc4 ∥Fdist(Dv,SO(d))∥Lp(33

32 Qi) ,
∥GRi−R1

∥Lq(Qi) ≤ kc4 ∥Gdist(Dv,SO(d))∥Lq(33
32 Qi) .

Set Ai ∶= Qi ∖ ⋃i−1
j=i Qj . Thus, choosing R ∶= R1, FDv−R ∶= ∑m

i=1(FDv−Ri
+ FRi−R1)1Ai

and
GDv−R ∶= ∑m

i=1(GDv−Ri
+GRi−R1)1Ai

, we obtain Dv −R = FDv−R +GDv−R a.e. in ⋃m
i=1Qi and

∥FDv−R∥Lp(⋃m
i=1 Qi) ≤mc5 ∥Fdist(Dv,SO(d))∥Lp(⋃m

i=1
33
32 Qi) ,
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∥GDv−R∥Lq(⋃m
i=1 Qi) ≤mc5 ∥Gdist(Dv,SO(d))∥Lq(⋃m

i=1
33
32 Qi) .

Step 1 – A ≡ I: Let us first restrict to the case A ≡ I. Given u ∈W1,1(U,Rd) and a decompo-
sition dist(Du,SO(d)) = Fdist(Du,SO(d)) +Gdist(Du,SO(d)) in Lp +Lq(U), by Theorem 5.9 we find
a decomposition dist(DEu,SO(d)) = Fdist(DEu,SO(d))+Gdist(DEu,SO(d)) in Lp +Lq(⋃m

i=1Qi), such
that

∥Fdist(DEu,SO(d))∥Lp(⋃m
i=1 Qi) ≤ c6 ∥Fdist(Du,SO(d))∥Lp(U) ,

∥Gdist(DEu,SO(d))∥Lq(⋃m
i=1 Qi) ≤ c6 ∥Gdist(Du,SO(d))∥Lq(U) .

Then, by Step 0, we find R ∈ SO(d) and a decomposition DEu − R = FDEu−R + GDEu−R in
Lp +Lq(⋃m

i=1Qi,Rd×d), such that

∥FDEu−R∥Lp(⋃m
i=1 Qi) ≤ c7( r

ρ)
d ∥Fdist(Du,SO(d))∥Lp(U) ,

∥GDEu−R∥Lq(⋃m
i=1 Qi) ≤ c7( r

ρ)
d ∥Gdist(Du,SO(d))∥Lq(U) .

The claim follows by combining the two results.

Step 2 – Bilipschitz potentials: Now, if A admits a Bilipschitz potential a Theorem 3.15
is an easy consequence of the arguments above for ũ ∶= u ○ a−1 on Ũ = a(U) and using the
transformation rule. This is possible, since Ũ is a Jones domain and ũ ∈ W1,1(Ũ ,Rd). Note
that e, δ and r

ρ are controlled when transforming the domain by a map in BilL(U,Rd).
Step 3 – Arbitrary stress-free joints: Now, let us consider an arbitrary stress-free joint
A ∈ SFJ(U) with potential a. By (SFJ3), we find disjoint Lipschitz domains U1, . . . , Un with
U = ⋃n

i=1Ui, such that a is Bilipschitz on Ui for all i = 1, . . . , n. Thus, we may apply Step 2 on
Ui and obtain Ri ∈ SO(d) and decompositions DuA( ⋅)−1 −Ri = F i

DuA( ⋅)−1−Ri
+Gi

DuA( ⋅)−1−Ri
in

Lp +Lq(Ui,Rd×d), such that

∥F i
DuA( ⋅)−1−Ri

∥
Lp(Ui) ≤ c8 ∥Fdist(DuA( ⋅)−1,SO(d))∥Lp(Ui) ,

∥Gi
DuA( ⋅)−1−Ri

∥
Lq(Ui) ≤ c8 ∥Gdist(DuA( ⋅)−1,SO(d))∥Lq(Ui) .

It remains to show that we can choose the same rotation for each i = 1, . . . , n. Indeed, we can do
so, by estimating the difference between the rotations of neighboring domains. Therefore, let
i ≠ j with Hd−1(∂Ui∩∂Uj) > 0. Set Γij ∶= ∂Ui∩∂Uj and define ũi ∶= u○a−1 ∈W1,p(a(Ui),Rd) and
ũj ∶= u○a−1 ∈W1,p(a(Uj),Rd). Since ũi = ũj on a(Γij), we obtain by Corollary 5.5, continuity of
the trace operator, the Poincaré-Wirtinger inequality and the transformation rule, for suitable
ξi, ξj ∈ Rd,

∣Ri −Rj ∣
p = ∣RjR

T
i − I ∣

p ≤ c9

ˆ
a(Γij) ∣Riz −Rjz − ξi + ξj ∣

p dHd−1(z)

= c9

ˆ
a(Γij) ∣(Riz − ũ(z) − ξi) − (Rjz − ũ(z) − ξj)∣

p dHd−1(z),

≤ c10
⎛
⎝

ˆ
a(Ui) ∣Ri −Dũ∣p +

ˆ
a(Uj) ∣Rj −Dũ∣p

⎞
⎠

≤ c11
⎛
⎝

ˆ
Ui

∣Ri −DuDa( ⋅)−1∣p +
ˆ

Uj

∣Rj −DuDa( ⋅)−1∣p
⎞
⎠
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≤ c12

ˆ
Ui∪Uj

distp (DuDa( ⋅)−1,SO(d)).

Since dist(DuDa( ⋅)−1,SO(d)) = Fdist(DuA( ⋅)−1,SO(d)) +Gdist(DuA( ⋅)−1,SO(d)), we obtain

∣Ri −Rj ∣ ≤ c13 (∥Fdist(DuA( ⋅)−1,SO(d))∥Lp(U) + ∥Gdist(DuA( ⋅)−1,SO(d))∥Lq(U)) .
Hence, since U is connected, by an induction argument it follows that we may choose Ri ∶= R1
for all i = 1, . . . , n, which finishes the proof. Note that R1 is chosen arbitrarily among the Ri.

Proof of Corollaries 3.16 and 3.17. Let u ∈W1,p(U,Rd). By Theorem 3.15, we find S ∈ Rd×d
skew,

such that

∥Du∥Lp(U) ≤ c1 (∥DuA( ⋅)−1 − S∥Lp(U) + ∣S∣) ≤ c2 (∥sym(DuA( ⋅)−1)∥Lp(U) + ∣S∣) .
Hence, it remains to bound ∣S∣ by the right-hand sides of (3.33) and (3.34) respectively. By
(SFJ3) we find a Lipschitz domain Ũ ⊂ U such that the potential a of A is Bilipschitz on Ũ .
In the case of Corollary 3.16, we can choose Ũ such that Γ̃ ∶= Γ ∩ ∂Ũ satisfies Hd−1(Γ̃) > 0.
Consider ũ ∶= u ○ a−1 ∈W1,p(a(Ũ),Rd). Then,

Dũ(a(x)) = Du(x)Da(x)−1 for a.e. x ∈ Ũ .

Let ξ ∶=
ffl

a(Ũ) Sz−ũ(z)dz. For Corollary 3.17, we estimate the modulus of S using Corollary 5.6,
the change of variables rule and the Poincaré-Wirtinger inequality,

∣S∣p ≤ c3

ˆ
a(Ũ) ∣Sz − ξ∣

p dz ≤ c4 (
ˆ

a(Ũ) ∣Sz − ũ(z) − ξ∣
p dz + ∥ũ∥pLp(a(Ũ)))

≤ c5 (
ˆ

a(Ũ) ∣S −Dũ(z)∣p dz + ∥ũ∥pLp(a(Ũ))) ≤ c6 (
ˆ

Ũ

∣S −Du(x)Da(x)−1∣p dx + ∥u∥pLp(Ũ))
≤ c7 (∥sym (DuDa( ⋅)−1)∥pLp(U) + ∥u∥pLp(Ũ)) .

Similarly if u ∈W1,p
Γ,0(U,R

d), i.e. ũ = 0 on a(Γ̃), we estimate using Corollary 5.5,

∣S∣p ≤ c8

ˆ
a(Γ̃) ∣Sz − ξ∣

p dz = c6

ˆ
a(Γ̃) ∣Sz − ũ(z) − ξ∣

p dz ≤ c9

ˆ
a(Ũ) ∣S −Dũ(z)∣p dz

≤ c10

ˆ
Ũ

∣S −Du(x)Da(x)−1∣p dx ≤ c11 ∥sym (DuDa( ⋅)−1)∥pLp(U) .
Hence, Corollary 3.16 follows by applying the Poincaré-Friedrich inequality. Note that, if a
is Bilipschitz on U , we can choose Ũ = U and Γ̃ = Γ and then the constants can be chosen
uniformly for potentials with controlled Bilipschitz constant.

Proof of Corollary 3.18. We argue similarly to [Pom03, Thm 2.3]. Let φ ∈W1,p(Ω,Rd×d) and
let a denote the Bilipschitz potential of A with a(0) = 0, cf. Proposition 2.5.

Step 1: First, we show that sym(DφDa( ⋅)−1) = 0 implies φ = 0. This can be carried out as
follows. Let φ̃ ∶= φ ○ a−1. If φ satisfies sym(DφDa( ⋅)−1) = 0, then φ̃ satisfies sym Dφ̃ = 0. As
stated in the proof of [Cia88, Thm 6.3-4], then φ̃i must be an affine map, i = 1, . . . , d. From the
periodicity of φ and Da, we obtain (cf. Lemma 5.1)

φ̃i(ka(ej)) = φ̃i(a(kej)) = φi(kej) = φi(ej) = φ̃i(a(ej)), k ∈ Z.
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Since the vectors a(ej) = a(0) + Āej = Āej , j = 1, . . . , d span the matrix Ā ∶=
ffl

Y Da(y)dy with
det Ā ≠ 0, see Lemma 5.1, we infer that φ̃ and thus also φ are in fact constant. Finally, because´

Y φ = 0, φ = 0.
Step 2: We show that Step 1 implies the claim. Suppose the claim does not hold. Then we
find a sequence (φk) ⊂W1,p

per,0(Y,R
d) with ∥φk∥W1,p(Y ) = 1 and

∥sym(DφkDa( ⋅)−1)∥Lp(Y ) ≤ 1
k .

Since (φk) is bounded in W1,p(Y,Rd), it is not restrictive to assume that φk ⇀ φ ∈W1,p
per,0(Y,R

d)
weakly in W1,p(Y,Rd). Corollary 3.17 yields

∥φk − φl∥W1,p(Y ) ≤ c1( ∥φk − φl∥Lp(Y ) + ∥sym(DφkDa( ⋅)−1)∥Lp(Y ) + ∥sym(DφlDa( ⋅)−1)∥Lp(Y ) ).
Hence, (φk) is a Cauchy sequence in W1,p(Y,Rd) and thus actually converges strongly to φ. By
continuity we obtain sym(DφDa( ⋅)−1) = 0 and thus by Step 1, φ = 0. But this is a contradiction
to ∥φ∥W1,p(Y ) = 1.

5.3 Proofs of Lemmas 3.5 and 3.6 and introduction of auxiliary integrands
W̃ h

hom and Q̃hom

For the proofs of Theorem 3.2, Corollary 3.3, and Proposition 3.9 it is natural to work with the
transformed energy densities

W̃ h
hom(F ) ∶= inf

k∈N inf
φ∈W1,∞

per (kY,Rd)
 

kY
W (y, (F +Dφ(y)A(y)−1)(I − hBh(y))) dy, (5.30)

Q̃hom(G) ∶= min
φ∈H1

per(Y,Rd)
ˆ

Y
Q (y,G +Dφ(y)A(y)−1) dy. (5.31)

The relation to [W h]hom and [QA]hom is the following: For all F,G ∈ Rd×d it holds

W̃ h
hom(F ) = [(y,F )↦W h(y,FA(y))]

hom
(F ) = [W h]hom(FĀ),

Q̃hom(G) = [(y,G)↦ QA(y,GA(y))]
hom
(G) = [QA]hom(GĀ).

(5.32)

Indeed, this can be easily seen by realizing that for A ∈ SFJper with potential a, and for any
F ∈ Rd×d, Lemma 5.1 implies that

φF = F (Ā−1
⋅ − a−1) ○ a ∈W1,∞

per (Y,Rd), FA( ⋅)−1 = FĀ−1 −DφFA( ⋅)−1. (5.33)

With this observation at hand, the identities (5.32) follow from the definition of [⋅]hom. Note
that in the definition of Q̃hom it suffices to minimize w.r.t. a single periodicity cell and correctors
in H1. This is due to the fact that Q satisfies a quadratic growth condition and is convex. With
similar argumentation, we can prove Lemma 3.5.

Proof of Lemma 3.5. Let G ∈ Rd×d and a denote the unique potential of A with a(0) = 0.
Lemma 5.1 shows that the map φA ∶= Ā ⋅ − a satisfies φA ∈W1,∞

per (Y,Rd). Hence,

W h(y,A(y) +G) =W h(y, Ā +G −DφA(y)).

From this Lemma 3.5 follows immediately, since DφA(y) is not seen when applying [ ⋅]hom to
the right-hand side.
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We note that we shall establish most properties of [W h]hom and [QA]hom by proving equivalent
assertions for W̃ h

hom and Q̃hom. An example is the following:

Proof of Lemma 3.6. In view of (5.32) and the definition of symĀ it suffices to show

∀G ∈ Rd×d ∶ 1
c1
∣(symG)Ā∣2 ≤ Q̃hom(G) ≤ c1 ∣(symG)Ā∣2 .

For the upper bound note that by (3.5) and the invertibility of Ā, we have

Q̃hom(G) ≤
ˆ

Y
Q(y,G)dy ≤ βel ∣symG∣2 ≤ βel ∣Ā−1∣2 ∣(symG)Ā∣2 .

For the lower bound, let φ ∈ H1
per(Y,Rd) and a the potential of A with a(0) = 0. We use that

φ ○ a ∈ H1
per(ĀY,Rd) and thus its derivative is orthogonal to constants in L2(a(Y ),Rd×d), cf.

Lemma 5.1. We observe

∣symG∣2 ≤ ∣symG∣2 +
 

a(Y ) ∣sym D(φ ○ a)∣2 =
 

a(Y ) ∣sym(G +D(φ ○ a))∣2

≤ ∥det A∥L∞∣a(Y )∣
ˆ

Y

∣sym(G +DφA( ⋅)−1)∣2 ≤ ∥det A∥L∞
αel det Ā

ˆ
Y
Q(y,G +Dφ(y)A(y)−1)dy.

Hence, we observe the lower bound by minimizing the inequality over φ.

5.4 Representation formulas for the homogenized energy and perturbation.
Proofs of Lemmas 3.4 and 3.7 and Proposition 3.9

Proof of Lemma 3.7. We claim that PO is onto and injective. Indeed, by definition we have
O ⊂ (S +Rd×d

sym) and O ⊂ S⊥ and thus,

O = PO(S +Rd×d
sym) = PO(S) +PO(Rd×d

sym) = PO(Rd×d
sym),

which yields surjectivity. For injectivity we only need to show PO(symG) = 0 implies symG = 0.
For the argument, first note that

PO(symG) = 0 ⇔ PS(symG) = symG

⇔ symG ∈ S ⇔ ∃φ ∈ H1
per(Y,Rd) ∶ sym [G −DφA( ⋅)−1] = 0.

(5.34)

We claim: If PO(symG) = 0, then there exists φ ∈ H1
per(Y,Rd) such that

symG = sym D(φ ○ a−1) a.e. in Rd,

where a denotes the potential of A as in (SFJ2) with a(0) = 0. Indeed, this follows since by
(5.34) there exists φ ∈ H1

per(Y,Rd) such that symG = sym(DφA( ⋅)−1), and by the chain rule we
have Dφ(y)A−1(y) = Dφ(y)Da−1(z) = D(φ ○ a−1)(z) for a.e. z = a(y) ∈ Rd. Now the assertion
symG = 0 follows by integrating (5.34) over a(Y ) and by appealing to Lemma 5.1.

Proof of Lemma 3.4. Step 1 – Proof of (3.14): By definition of W h we have

1
h2W

h(y,A(y) + hG) = 1
h2W (y, I + h(GA(y)−1 −Bh(y)) − h2GA(y)−1Bh(y)).

Since up to a subsequence we have Bh → B a.e. and in view of (W3), we deduce that the
right-hand side converges to Q(y,GA(y)−1 −B(y)) = QA(y,G −B(y)A(y)) as claimed.
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Step 2 – Proof of (3.15): Thanks to the definition of QA, [⋅]hom, and S, we have

LHS of (3.15) = inf
φ∈H1

per(Y,Rd)
ˆ

Y
Q(y,GA(y)−1 +Dφ(y)A(y)−1 −B(y))dy.

= inf
Ψ∈S⊥ ∥GA( ⋅)

−1 +Ψ −B∥2
Q
= ∥PS⊥(sym(GA( ⋅)−1 −B))∥2

Q
= ∥PS⊥(sym(GĀ−1 −B))∥2

Q
,

where in the last identity we used that sym(GA( ⋅)−1) − sym(GĀ−1) ∈ S, which follows from
(5.33). Since S +O + (S +Rd×d

sym)⊥ is an orthogonal sum, we get

LHS of (3.15) = ∥PO(sym(GĀ−1 −B))∥2
Q
+ ∥P(S+Rd×d

sym)⊥(symB)∥
2

Q
.

In view of the definition of Bhom and RA(B) we arrive at

LHS of (3.15) = ∥PO(sym(GĀ−1) −Bhom)∥
2
Q
+RA(B). (5.35)

Note that in the special case B = 0, this identity reduces to QA
hom(G) = ∥PO(sym(GĀ−1))∥2

Q
.

In particular, ∥PO(sym(GĀ−1) −Bhom)∥
2
Q
= QA

hom(G −BhomĀ) and (3.15) follows.

We finish this section with the proof of the representation formulas Proposition 3.9.

Proof of Proposition 3.9. Thanks to the periodic Korn inequality (cf. Corollary 3.18) and the
non-degeneracy of Q (cf. (3.5)), we see that (3.23) is a coercive, strictly convex minimization
problem. We conclude that the corrector φG indeed exists and is unique. Furthermore, since
the associated Euler-Lagrange equation is linear, we deduce that

Q̃hom(G) = ξ ⋅Q ξ, ξ = emb−1(G), for all G ∈ Rd×d
sym.

Combined with (5.32) the second identity in (3.26) follows. It remains to prove the representa-
tion of Bhom. To this end, we first note that

PO(symG) = symG + sym(DφGA(y)−1).

Indeed, this follows from symG ∈ S +O and the definition of φG. We also conclude that

bi = (PO(Gi), symB)Q .

Thanks to the surjectivity of PO we have O = PO(emb(Rs)), and thus, we obtain the following
characterization of Bhom:

PO(Bhom) = PO(symB) ⇔ ∀χ ∈ O ∶ (χ,PO(Bhom))Q = (χ, symB)Q
⇔ ∀ ξ ∈ Rs ∶ (PO(emb(ξ)),PO(Bhom))Q = (PO(emb(ξ)), symB)Q
⇔ ∀ ξ ∈ Rs ∶ ξ ⋅Q emb−1(Bhom) = ξ ⋅ b,

and thus Bhom = emb ((Q)−1b) as claimed.
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5.5 Asymptotic expansion of the homogenized elastic energy density; Proofs
of Theorem 3.2 and Corollary 3.3

We note that Theorem 3.2 (a) easily follows from frame-indifference of W by substituting φ
with Rφ in the definition of W h

hom. In view of (5.32), for Theorem 3.2 (b) and (c) it suffices to
prove the following two propositions:

Proposition 5.18 (Non-degeneracy). There exists some α > 0 and h0 > 0 such that for all
F ∈ Rd×d and 0 < h ≤ h0

W̃ h
hom(F ) ≥ 1

α dist2(F,SO(d)) − αh2 ∥Bh∥2L2(Y ) . (5.36)

Proposition 5.19 (Asymptotic expansion). There exists a continuous, increasing map ρ ∶
[0,∞)→ [0,∞] with ρ(0) = 0, such that for all h > 0 and G ∈ Rd×d,

∣ 1
h2 W̃

h
hom(I + hG) − (Q̃hom(G −Bhom) +RA(B))∣ ≤ (1 + ∣G∣2)ρ(h + ∣hG∣). (5.37)

We start with the argument for the non-degeneracy property:

Proof of Proposition 5.18. We adapt the argument of [MN11, Thm. 1.1]. By definition of W̃ h
hom

we find for all η > 0 some kη ∈ N and φη ∈W1,∞
per (kηY,Rd) such that

W̃ h
hom(F ) ≥

 
kηY

W(y, (F +DφηA(y)−1)(I − hBh))dy − η

≥ αel

 
kηY

dist2 ((F +DφηA(y)−1)(I − hBh),SO(d))dy − η.

Here and throughout this section we often omit the explicit dependence on the argument of
certain quantities when integrating for easier reading. However, we do display the dependence
for A( ⋅)−1 to distinguish between the function and matrix inverse. Furthermore, the triangle
inequality yields for all F̃ ∈ Rd×d,

dist(F̃ ,SO(d)) ≤ dist(F̃ (I − hBh(y)),SO(d)) + h ∣Bh(y)∣ ∣F̃ ∣
≤ dist(F̃ (I − hBh(y)),SO(d)) + h ∣Bh(y)∣ (dist(F̃ ,SO(d)) + ∣I ∣).

Since lim suph→0 h ∥Bh∥L∞(Rd) → 0, we can absorb for small h≪ 1 the term dist(F̃ ,SO(d)) into
the left-hand side and obtain

dist2(F̃ (I − hBh(y)),SO(d)) ≥ 1
c1

dist2(F̃ ,SO(d)) − c1h
2 ∣Bh(y)∣2 . (5.38)

Thus, with F̃ = F +Dφη(y)A(y)−1 and thanks to Y -periodicity of Bh, we get

W̃ h
hom(F ) ≥ 1

c2

 
kηY

dist2 (F +DφηA(y)−1,SO(d)) dy − c2h
2 ∥Bh∥2L2(Y ) − η.

Note that ∥Bh∥L2(Y ) is bounded. Hence, by the transformation rule and A = Da with 1
c ≤

det Da ≤ c a.e., we obtain

W̃ h
hom(F ) ≥ 1

c3

 
a(kηY ) dist2 (F +D(φη ○ a−1),SO(d))dz − c3h

2 ∥Bh∥2L2(Y ) − η.

Finally, by quasiconvexity of Qdist2( ⋅ ,SO(d)), we get

W̃ h
hom(F ) ≥ 1

c3
Qdist2(F,SO(d)) − c3h

2 ∥Bh∥2L2(Y ) − η,
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since φη ○ a−1 ∈ H1
per(kηĀY,Rd) and a(kηY ) is a periodicity cell for this kind of periodicity,

cf. Lemma 5.1 and [Bra06, Section 5.1.1]. Since this holds for arbitrary η > 0 with constants
independent of η and Zhang showed in [Zha97] that Qdist2( ⋅ ,SO(d)) can again be controlled
by dist2( ⋅ ,SO(d)), we conclude the claim.

Before we proceed with the proof of the asymptotic expansion, we show the following technical
lemma which we use for the linearization.

Lemma 5.20. For h > 0, let kh ∈ N and δh ∈ (0,∞) with lim suph→0 δh <∞ and limh→0 h
2δ−1

h = 0.
Moreover, let Φh ∈ L2(khY,Rd×d) with

lim sup
h→0

δh

 
khY
∣Φh(y)∣2 dy <∞,

and Ψh,Ψ ∈ L2
per(Y,Rd×d) with δh ∥Ψh −Ψ∥2L2(Y ) → 0. Then, there exist subsets Yh ⊂ khY with

1
kd

h

∣khY ∖ Yh∣→ 0, such that

δh ∣
 

khY
1Yh
(y)( 1

h2W (y, I + hΦh(y) + hΨh(y)) −Q(y,Φh(y) +Ψ(y))dy)∣→ 0. (5.39)

Moreover, if limh→0 ∥hΨh∥L∞(Rd) = 0 and Φh satisfies the uniform bound

lim sup
h→0

δh ∥Φh∥2L∞(khY ) <∞,
then we may choose Yh = khY .

Proof. Let Gh ∶= Ψh +Φh. For some Yh ⊂ khY (to be specified below), (W3) yields that

δh ∣
 

khY
1Yh
(y)( 1

h2W (y, I + hΦh + hΨh) −Q(y,Φh +Ψ))dy∣ ≤ (I)h + (II)h,

where

(I)h ∶= δh

 
khY

1Yh
∣Gh∣2 r(y, ∣hGh∣)dy, (II)h ∶= δh

 
khY

∣Q(y,Φh +Ψh) −Q(y,Φh +Ψ)∣ dy.

Since Q is a quadratic form and satisfies (3.5), we obtain (II)h → 0 from the L2-bound of Φh

and the convergence and Y -periodicity of Ψh. We proceed to show (I)h → 0 for suitable sets
Yh. Consider r̄h(y) ∶= r(y, h1/2δ−1/4

h ) and ρh ∶= (
´

Y r̄h)1/2. By the second identity in (W2) we
have r̄h ≤ 2βel a.e. for h≪ 1 and by (W3), r̄h converges to 0 a.e. as h→ 0. Thus, by dominated
convergence, ρh → 0. Now set,

Yh ∶= {y ∈ khY ∣ ∣Gh(y)∣ ≤ h−1/2δ−1/4
h } ∩ {y ∈ khY ∣ r̄h(y) ≤ ρh} .

Then, Markov’s inequality, the Y -periodicity of r̄h and the L2-boundedness of Φh and Ψh yield
that 1

kd
h

∣khY ∖ Yh∣→ 0. With this definition, we obtain

(I)h ≤ δh

 
khY

1Yh
∣Gh∣2 r̄h dy ≤ ρh

 
khY

δh ∣Gh∣2 dy.

Since the integral on the right-hand side is bounded, we indeed obtain (I)h → 0. Finally, note
that if Φh and Ψh satisfy the uniform bounds, we can estimate (I)h differently as

(I)h ≤ c1

 
khY

δh(∥Φh∥2L∞ + ∣Ψh∣2)r(y, ∥hGh∥L∞)dy
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≤ c2

ˆ
Y
(1 + δh ∣Ψh −Ψ∣2 + ∣Ψ∣2)r(y, ∥hGh∥L∞)dy.

Since ∥hGh∥L∞ → 0 and r(y, ∥hGh∥L∞) ≤ 2βel a.e. for ∥hGh∥L∞ ≤ ρel, dominated convergence
(with strongly converging dominating sequence) shows that the right-hand side converges to 0.
Hence, in this case we may choose Yh = khY .

Proof Proposition 5.19. Step 1 – Reduction: In order to treat the cases Gh = Bhom and
Gh ≠ Bhom simultaneously, we let throughout this proof, αh ∶= ∣Gh −Bhom∣ if Gh ≠ Bhom and
αh ∶= 1 otherwise. As can be easily seen by a contradiction argument, it suffices to prove that

∣W̃ h
hom(I + hGh) − h2 (Q̃hom(Gh −Bhom) +RA(B))∣

∣hGh∣2 + h2 → 0, as h→ 0,

for an arbitrary sequence (Gh) ⊂ Rd×d satisfying hGh → 0. Moreover, we may without loss
assume that Hh ∶= 1

αh
(Gh − Bhom) → G for some G ∈ Rd×d by the subsequence principle and

compactness. We prove separately the upper and lower bounds

lim sup
h→0

W̃ h
hom(I + hGh) − h2 (Q̃hom(Gh −Bhom) +RA(B))

∣hGh∣2 + h2 ≤ 0, (5.40)

lim inf
h→0

W̃ h
hom(I + hGh) − h2 (Q̃hom(Gh −Bhom) +RA(B))

∣hGh∣2 + h2 ≥ 0. (5.41)

For the proof we adapt the argument of [MN11, Thm 1.1].
Step 2 – Upper bound: By definition of W̃ h

hom we have for all σh ∈W1,∞
per (Y,Rd) that

W̃ h
hom(I + hGh) ≤

ˆ
Y
W (y, (I + hGh + hDσhA(y)−1)(I − hBh)) dy.

Suppose that σh satisfies
lim sup

h→0
1∣Gh∣2+1 ∥Dσh∥2L∞(Y ) <∞. (5.42)

Then, since lim suph→0 ∥hBh∥L∞(Rd) = 0, the assumptions of Lemma 5.20 including the uniform
bound hold with

δh ∶= 1∣Gh∣2+1 , Φh ∶= Gh +DσhA( ⋅)−1, Ψh ∶= −Bh − hGhBh − hDσhA( ⋅)−1Bh, Ψ ∶= −B.

Thus, we obtain

W̃ h
hom(I + hGh) ≤

ˆ
Y
Q(y,Gh +DσhA(y)−1 −B)dy + (∣Gh∣2 + 1) rest1(h),

with rest1(h) → 0 as h → 0. Our goal is to construct a suitable map σh satisfying (5.42). This
construction is done by estimating the latter term in (5.40) in two steps. We fix η > 0. First,
by an approximation argument we find some φ ∈W1,∞

per (Y,Rd) such that

Q̃hom(G) ≥
ˆ

Y
Q (y,G +DφA(y)−1) dy − η.

Second, recall the construction of Bhom and RA(B) in Section 3.2. Note that Bhom − symB +
P(S+Rd×d

sym)⊥(symB) = PS(Bhom − symB) ∈ S, and thus, we find ψ ∈ H1
per(Y,Rd) such that,

symB − sym(DψA( ⋅)−1) = Bhom +P(S+Rd×d
sym)⊥(symB). (5.43)
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Hence, again by an approximation argument, we find ψ̃ ∈W1,∞
per (Y,Rd) independent of h, such

that with σh ∶= αhφ + ψ̃ (recall Hh = 1
αh
(Gh −Bhom)),

ˆ
Y
Q (y,Gh +DσhA(y)−1 −B) dy

=
ˆ

Y
Q (y,Gh + (αhDφ +Dψ)A(y)−1 −B) dy

≤
ˆ

Y
Q (y,Gh + (αhDφ +Dψ̃)A(y)−1 −B) dy + (∣Gh∣2 + 1)η

=
ˆ

Y
Q (y,Gh −Bhom + αhDφA(y)−1) dy +RA(B) + (∣Gh∣2 + 1)η

= α2
h

ˆ
Y
Q (y,Hh +DφA(y)−1) dy +RA(B) + (∣Gh∣2 + 1)η.

Note that σh satisfies (5.42). Combining these results, we conclude

LHS of (5.40) ≤ lim sup
h→0

´
Y Q(y,Gh +DσhA(y)−1 −B)dy − Q̃hom(Gh −Bhom) −RA(B)

∣Gh∣2 + 1

≤ lim sup
h→0

(
ˆ

Y
Q(y,Hh +DφA(y)−1)dy − Q̃hom(Hh)) α2

h∣Gh∣2+1 + η

= (
ˆ

Y
Q(y,G +DφA(y)−1)dy − Q̃hom(G)) lim sup

h→0

α2
h∣Gh∣2+1 + η ≤ c1η.

Since η > 0 was arbitrary and the constant c1 is independent of η, we conclude (5.40).
Step 3 – Lower bound: We observe,

LHS of (5.41) ≥ lim inf
h→0

W̃ h
hom(I + hGh)
∣hGh∣2 + h2 − lim sup

h→0

Q̃hom(Gh −Bhom) +RA(B)
∣Gh∣2 + 1

.

Thus, without loss of generality we may assume that lim infh→0
W̃ h

hom(I+hGh)∣hGh∣2+h2 is finite and restrict
ourselves to a subsequence (not relabeled) where the lim inf is achieved as a limit. By definition
of W̃ h

hom, for all h > 0 we find kh ∈ N and σh ∈W1,∞
per (khY,Rd), such that

W̃ h
hom(I + hGh) ≥

 
khY

W (y, (I + hGh + hDσhA(y)−1)(I − hBh)) dy − h(∣hGh∣2 + h2).

In order to apply Lemma 5.20, we want to show

lim sup
h→0

1∣Gh∣2+1

 
khY
∣Dσh∣2 dy <∞. (5.44)

Indeed, by the rigidity estimate Theorem 3.15, we find a constant rotation Rh ∈ SO(d) and a
constant c2 > 0 independent of kh such that

 
khY

∣I + hGh + hDσhA(y)−1 −Rh∣
2 dy ≤ c2

 
khY

dist2 (I + hGh + hDσhA(y)−1,SO(d))dy.

Arguing as in Proposition 5.18, using the definition of σh, we may estimate the right-hand side
to find 

khY

∣I + hGh + hDσhA(y)−1 −Rh∣
2 dy ≤ c3 (W̃ h

hom(I + hGh) + h(∣hGh∣2 + h2) + h2) .
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Using
ffl

a(khY )D(σh ○ a−1) = 0, see Lemma 5.1, and Pythagoras, we now obtain,

1∣Gh∣2+1

 
khY
∣Dσh∣2 dy ≤ c4∣Gh∣2+1

 
khY

∣DσhDa(y)−1∣2 det Dady

≤ c5∣Gh∣2+1 (
 

a(khY ) ∣D(σh ○ a−1)∣2 dz + ∣I + hGh −Rh

h
∣
2
)

= c5∣Gh∣2+1

 
a(khY ) ∣

I + hGh −Rh

h
+D(σh ○ a−1)∣

2
dz

≤ c6∣hGh∣2+h2

 
khY

∣I + hGh + hDσhDa(y)−1 −Rh∣
2 dy

≤ c7 (
W̃ h

hom(I + hGh)
∣hGh∣2 + h2 + 1) .

Thus, we may apply Lemma 5.20 with

δh ∶= 1∣Gh∣2+1 , Φh ∶= Gh +DσhA( ⋅)−1, Ψh ∶= −Bh − hGhBh − hDσhA( ⋅)−1Bh, Ψ ∶= −B,

and find sets Yh ⊂ khY with 1
kd

h

∣khY ∖ Yh∣→ 0, such that

W̃ h
hom(I + hGh) ≥

 
khY

1Yh
W (y, (I + hGh + hDσhA(y)−1)(I − hBh)) dy − h(∣hGh∣2 + h2)

≥ h2
 

khY
1Yh

Q (y,Gh +DσhA(y)−1 −B) dy + (∣hGh∣2 + h2) rest2(h),

with rest2(h) → 0. Let ψ ∈ H1
per(Y,Rd) be as in (5.43), set Ψ ∶= P(S+Rd×d

sym)⊥(symB) and define
φ̃h ∈ H1

per(khY,Rd) by σh = ψ + αhφ̃h. We observe as in Step 2,

Q (y,Gh +Dσh(y)A(y)−1 −B(y)) = α2
hQ (y,Hh +Dφ̃h(y)A(y)−1 − α−1

h Ψ(y)) .

Moreover, let φG ∈ H1
per(Y,Rd) the corrector for Q̃hom(G), cf. Proposition 3.9. Then, using

orthogonality and Y -periodicity, we observe

Q̃hom(G) + α−2
h RA(B) =

 
khY

Q (y,G +DφGA(y)−1 − α−1
h Ψ) dy.

Concluding the results of this step so far, we obtain

LHS of (5.41)

≥ lim inf
h→0

α2
h∣Gh∣2+1
⎛
⎝

 
khY

1Yh
Q (y,Hh +Dφ̃hA(y)−1 − α−1

h Ψ) dy

−
 

khY
Q (y,G +DφGA(y)−1 − α−1

h Ψ) dy + Q̃hom(G) − Q̃hom(Hh)
⎞
⎠

= lim inf
h→0

α2
h∣Gh∣2+1
⎛
⎝

 
khY

1Yh
Q (y,Hh +Dφ̃hA(y)−1 − α−1

h Ψ) dy

−
 

khY
Q (y,G +DφGA(y)−1 − α−1

h Ψ) dy
⎞
⎠
.
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Since Q is a quadratic form, there holds the formula Q(y,G1)−Q(y,G2) ≥ 2(G1−G2) ∶ LQ(y)G2
for all G1,G2 ∈ Rd×d. Thus, we can treat the latter term as follows,

1
2

 
khY

1Yh
Q (y,Hh +Dφ̃hA(y)−1 − α−1

h Ψ) −Q (y,G +DφGA(y)−1 − α−1
h Ψ) dy

≥ (I)h + (II)h + (III)h,

where

(I)h ∶=
 

khY
[Hh +Dφ̃hA(y)−1 − α−1

h Ψ] ∶ LQ[(1Yh
− 1)(G +DφGA(y)−1 − α−1

h Ψ)]dy,

(II)h ∶=
 

khY
[Hh −G] ∶ LQ[G +DφGA(y)−1 − α−1

h Ψ]dy,

(III)h ∶=
 

khY
[(Dφ̃h −DφG)A(y)−1] ∶ LQ[G +DφGA(y)−1 − α−1

h Ψ]dy.

We show that each term, potentially multiplied by α2
h∣Gh∣2+1 , converges to 0. Define χh(y) ∶=

1
kd

h
∑ξ∈Zd,ξ+Y ⊂khY

(1−1Yh
(y+ξ)), y ∈ Y . Then α2

h∣Gh∣2+1(I)h converges to 0 by the Cauchy-Schwartz
inequality, since

α2
h∣Gh∣2+1

 
khY

∣Hh +Dφ̃hA(y)−1 + α−1
h Ψ∣2 dy

is bounded due to (5.44) and by periodicity,
 

khY
1khY ∖Yh

∣G +DφGA(y)−1 + α−1
h Ψ∣2 dy =

ˆ
Y
χh ∣G +DφGA(y)−1 + α−1

h Ψ∣2 dy,

which converges to 0 when multiplied with α2
h∣Gh∣2+1 by dominated convergence, since ∥χh∥L∞(Y ) ≤

1 and ∥χh∥L1(Y ) = 1
kd

h

∣khY ∖ Yh∣. Similarly, using the Cauchy-Schwartz inequality, we observe
α2

h∣Gh∣2+1(II)h → 0, since Hh → G. To treat (III)h, we note that according to [Mar78, Thm. 2.1]
φG also minimizes

ψ ∈ H1
per(khY,Rd)↦

 
khY

Q(y,G +DψA(y)−1)dy.

Referring to the associated Euler-Lagrange equation, we obtain

(III)h = α
−1
h

 
khY
[(Dφ̃h −DφG)A(y)−1] ∶ LQΨ dy.

Thus, we obtain (III)h = 0, since similarly Ψ = P(S+Rd×d
sym)⊥(symB) satisfies the Euler-Lagrange

equation
 

khY
[Ĝ +Dφ̂A(y)−1] ∶ LQΨ dy = 0, for all Ĝ ∈ Rd×d, φ̂ ∈ H1

per(khY,Rd).

This completes the proof.

Finally, we prove Corollary 3.3 in the following equivalent form:
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Corollary 5.21. Let (F ∗h ) ⊂ Rd×d denote a sequence of almost minimizers for (W̃ h
hom) in the

sense that
lim sup

h→0

1
h2 ∣W̃

h
hom(F ∗h ) − inf

F ∈Rd×d
W̃ h

hom(F )∣ = 0.

Then there exist rotations Rh ∈ SO(d), such that

F ∗h = Rh(I + hBhom) + o(h). (5.45)

Proof. Let Fh,F ∶ Rd×d → R with Fh(G) ∶= 1
h2 W̃

h
hom(I + hG) and Fh(G) ∶= Q̃hom(G −Bhom) +

RA(B). Then, Proposition 5.19 implies Γ-convergence of Fh to F . Thus, any subsequence of
any bounded sequence (Gh) ⊂ Rd×d with Fh(Gh) − inf Fh → 0, admits a further subsequence
which converges to a minimizer of F . We construct such a sequence. Proposition 5.19 clearly
implies W̃ h

hom(F ∗h )→ 0 as h→ 0. Hence, non-degeneracy Proposition 5.18 implies that detF ∗h > 0
if h≪ 1. Thus, by polar decomposition we obtain a rotation Rh ∈ SO(d) such that

F ∗h = Rh

√
F ∗h T

F ∗h .
Let G∗h ∶= 1

h(
√
F ∗h T

F ∗h −I). Then, by frame indifference of W̃ h
hom, G∗h satisfies Fh(G∗h)− inf Fh →

0. Moreover, by Proposition 5.18,

∣G∗h∣2 = 1
h2 ∣
√
F ∗h T

F ∗h − I∣
2
≤ 1

h2 dist2(F ∗h ,SO(d)) ≤ c1 (
W̃ h

hom(F ∗h )
h2 + 1) .

Thus, (G∗h) ⊂ Rd×d
sym is bounded and any subsequence admits a further subsequence which con-

verges to a minimizer of F . Since Bhom is the unique minimizer of F in Rd×d
sym, the whole sequence

G∗h must converge to Bhom. Hence, the claim follows.

5.6 Linearization; Proof of Theorem 3.11 (1) and (4), (3.28c) and Proposi-
tion 3.13 (a) and (b)

In this section we show the directions (1) and (4) in Theorem 3.11 as well as an associated
equi-coercivity statement which especially includes (3.28c) as a consequence. We show here a
stronger statement which includes (1) and (4) simultaneously and does not require any period-
icity assumptions. Indeed, note that W h, A, Bh and B as well as W h

hom, Ā and Bhom satisfy
the assumptions of the following theorem if h is small enough. For W h

hom this is a consequence
of Theorem 3.2 and for W h this follows from similar but easier considerations.

Theorem 5.22. Let α > 0, Ŵ h ∶ Ω × Rd×d → [0,∞] a sequence of Carathéodory functions
continuous in the second component, Â ∈ SFJ(Ω) and B̂h, B̂ ∈ L2(Ω,Rd×d) such that for a.e.
x ∈ Ω and all h > 0, the following properties hold.

(i) (Frame indifference): Ŵ h(x,RF ) = Ŵ h(F ) for all F ∈ Rd×d, R ∈ SO(d).

(ii) (Non-degeneracy): Ŵ h(x,F ) ≥ 1
α dist2 (FÂ(x)−1,SO(d)) − αh2( ∣B̂h(x)∣

2 + 1) for all F ∈
Rd×d.

(iii) (Asymptotic expansion): There exists a quadratic form Q̃ ∶ Ω×Rd×d → R, a map R̂ ∈ L2(Ω)
and a remainder r̂ ∶ Ω × [0,∞) → [0,∞] (which is measurable in the first, continuous and
increasing in the second component and satisfies lim supδ→0 ess supx∈Ω r̂(x, δ) < ∞ and
limδ→0 r̂(x, δ) = 0), such that for all G ∈ Rd×d,

∣ 1
h2 Ŵ

h(x,A(x) + hG) − (Q̃(x,G − B̂(x)Â(x)) + R̂(x))∣

49



≤ (1 + ∣B̂h(x)∣
2 + ∣G∣2)r̂(x,h + ∣hG∣)

and with symÂ(x) defined as in Lemma 3.6,

1
α
∣ symÂ(x)G∣2 ≤ Q̃(x,G) ≤ α∣ symÂ(x)G∣2.

(iv) B̂h → B̂ in L2(Ω,Rd×d) and lim suph→0 ∥hB̂h∥L∞(Ω) = 0.

Then, the energy functionals Îh(u) ∶=
´

Ω Ŵ
h(x, Â(x)+hDu(x))dx Γ-converge w.r.t. weak con-

vergence in H1
Γ,g(Ω,Rd) to Î lin(u) ∶=

´
Ω Q̂(x,Du(x) − Â(x)B̂(x)) + R̂(x)dx.

Before we move on to the proof, we provide the following lemma whose proof follows analogously
to Lemma 5.20.

Lemma 5.23. Consider the situation of Theorem 5.22. Let (Φh) ⊂ L2(Ω,Rd×d) bounded. Then,
there exist subsets Ωh ⊂ Ω with ∣Ω ∖Ωh∣→ 0, such that

RRRRRRRRRRR

1
h2

ˆ
Ωh

Ŵ h (x, Â(x) + hΦh(x)) dx −
ˆ

Ωh

Q̂ (x,Φh(x) − B̂(x)Â(x)) dx −
ˆ

Ω
R̂
RRRRRRRRRRR
→ 0.

Moreover, if (Φh) is bounded in L∞(Ω,Rd×d) then we may choose Ωh = Ω.

Proof of Theorem 5.22. Step 1 – Recovery sequence: Let u ∈ H1
Γ,g(Ω,Rd). By Defini-

tion 3.10 there is a sequence (uδ) ⊂W1,∞
Γ,g (Ω,R

d) converging to u strongly in H1 as δ → 0. It is
sufficient to show

Îh(uδ)
h→0ÐÐ→
(I)
Î lin(uδ)

δ→0ÐÐ→
(II)
Î lin(u),

because then we may extract a diagonal sequence δ(h) with Îh(uδ(h))→ Î lin(u) using Attouch’s
diagonalization lemma, see [Att84, Lemma 1.15]. It remains for us to show (I), since (II) is a
direct consequence of the continuity of Î lin w.r.t. strong convergence in H1(Ω,Rd). But (I)
follows by applying Lemma 5.23 with the constant sequence Φh = Duδ.
Step 2 – Lower bound: Let again u ∈ H1

Γ,g(Ω,Rd) and (uh) ⊂ H1
Γ,g(Ω,Rd) be an arbitrary

sequence converging weakly to u in H1(Ω). We show

lim inf
h→0

Îh(uh) ≥ Î lin(u).

Since (Duh) ⊂ L2(Ω,Rd×d) is bounded, we may apply Lemma 5.23 with Φh = Duh. Thus, since
Ŵ h is non-negative, we obtain

lim inf
h→0

Îh(uh) ≥ lim inf
h→0

ˆ
Ω
Q̂ (x,1Ωh

(x)(Duh(x) − B̂(x)Â(x))) + R̂(x)dx.

Finally, since 1Ωh
is bounded in L∞(Ω) and converges to 1 strongly in L2(Ω), we obtain that

1Ωh
(Duh−B̂Â) converges weakly to Du−B̂Â in L2(Ω,Rd×d). Hence, weak lower semi-continuity

of the quadratic integral functional, yields

lim inf
h→0

ˆ
Ω
Q̂ (x,1Ωh

(x)(Duh(x) − B̂(x)Â(x))) + R̂(x)dx ≥ Î lin(u).

Moreover, we prove the following equi-coercivity statement. The approach to prove this state-
ment mimics [Neu10, §5.3.1] and is influenced by [BNS20, §5.1] and [DNP02, §3].
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Theorem 5.24. Consider the situation of Theorem 5.22. Then, we find a constant c > 0, such
that for all h > 0,

∥u∥H1(Ω) ≤ c (Îh(u) + 1) . (5.46)

Proof. We show that there is a constant c1 depending only on Ω, Γ and Â such that
ˆ

Ω
∣Du(x)∣2 dx ≤ c1 (

1
h2

ˆ
Ω

dist2 (I + hDu(x)Â(x)−1,SO(d))dx + ∥g∥2L2(Γ,Hd−1)) . (5.47)

Then the claim follows immediately from the non-degeneracy of Ŵ h and the Poincaré-Friedrich
inequality. (5.47) can be shown in the following way. By the geometric rigidity estimate
Theorem 3.15, we find a rotation R ∈ SO(d), such that

ˆ
Ω
∣I + hDu(x)Â(x)−1 −R∣2 dx ≤ c2

ˆ
Ω

dist2 (I + hDu(x)Â(x)−1,SO(d))dx. (5.48)

Note that I +hDuÂ( ⋅)−1 = DϕÂ( ⋅)−1, where ϕ = a+hu and a ∶ Ω→ Rd is the potential of Â, i.e.
Â = Da. We seek to estimate the difference I −R suitably. By (SFJ3) we find some Lipschitz
domain Ωi ⊂ Ω, such that a is Bilipschitz on Ωi and Hd−1(Γ ∩ ∂Ωi) > 0. Then, u − g = 0 on Γ
implies u ○ a−1 − g ○ a−1 = 0 on a(Γ ∩ ∂Ωi) in the sense of traces. Thus, by choosing a suitable
ξh ∈ Rd, Corollary 5.5, continuity of the trace operator and the Poincaré-Wirtinger inequality
yield

∣I −R∣2 ≤ c3 ∣I −R∣2a(Γ∩∂Ωi),2 ≤ c4

ˆ
a(Γ∩∂Ωi) ∣z −Rz + hu(a

−1(z)) − hg(a−1(z)) − ξh∣
2 dHd−1(z)

≤ c5

ˆ
∂a(Ωi) ∣z −Rz + hu(a

−1(z)) − ξh∣
2 dHd−1(z) + c5h

2 ∥g ○ a−1∥2L2(a(Γ∩∂Ωi),Hd−1)
≤ c6

ˆ
a(Ωi) ∣I + hD(u ○ a−1)(z) −R∣2 dHd−1(z) + c6h

2 ∥g∥2L2(Γ,Hd−1) .
≤ c7

ˆ
Ω
∣I + hDu(x)Da(x)−1 −R∣2 dHd−1(x) + c7h

2 ∥g∥2L2(Γ,Hd−1) .
Hence, we conclude (5.47) by combining this estimate with (5.48).

Finally, we state the following strong convergence result in the spirit of Proposition 3.13. In
fact, this result admits Proposition 3.13 (a) and (b) as corollaries.

Proposition 5.25. Consider the situation of Theorem 5.22. Let uh ⇀ u weakly in H1(Ω,Rd)
and assume Îh(uh)→ Î lin(u). Then, Duh → Du strongly in L2(Ω,Rd×d).

At the heart of upgrading to strong convergence lies a formula for quadratic forms, stating

Q̂(x,F − F̂ ) = Q̂(x,F ) − Q̂(x, F̂ ) + 2(F̂ − F ) ∶ LQ̂(x)F̂ , x ∈ Ω, F, F̂ ∈ Rd×d. (5.49)

This allows to upgrade a convergence of energies and weak convergence in L2(Ω,Rd×d) to strong
convergence, at least for the symmetric part using ∣sym(F − F̂ )∣2 ≤ αQ̂(x,F − F̂ ). Using this
trick, strong convergence in W1,p for 1 ≤ p < 2 for the linearization in elasticity was already
established in [DNP02]. The argument was later refined in [ADD12] to also include p = 2. The
essential ingredient for this was the observation that uniform integrability of the distance to
the set of rotations implies uniform integrability of the distance to a single rotation. For our
purposes here, we need the following variant of this statement.
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Proposition 5.26. Let 1 < p < ∞, F ⊂ W 1,1(Ω,Rd) and A ⊂ SFJ(Ω) such that Theorem 3.15
holds with a uniform constant in A and (ηA

ϕ )A∈Aϕ∈F ⊂ (0,∞). Assume

{ηA
ϕ distp(DϕA( ⋅)−1,SO(d)) ∣ϕ ∈ F ,A ∈ A}

to be uniformly integrable. Then, there exist rotations (RA
ϕ )A∈Aϕ∈F ⊂ SO(d), such that

{ηA
ϕ ∣DϕA( ⋅)−1 −RA

ϕ ∣
p ∣ϕ ∈ F ,A ∈ A}

is uniformly integrable.

This proposition is a consequence of the mixed growth version of the rigidity estimate, see
Theorem 3.15. The proof exactly follows [CDM14, Cor. 4.2] but for the readers convenience we
sketch the main arguments of the proof.

Proof. Let dA
ϕ ∶= (ηA

ϕ )1/p dist(DϕA( ⋅)−1,SO(d)). Due to uniform integrability, we find Tε > 0,
such that ˆ

{dA
ϕ >Tε} ∣d

A
ϕ ∣

p ≤ ε.

Consider the decompositions dist(DϕA( ⋅)−1,SO(d)) = FA
ϕ +GA

ϕ in Lp +L∞(Ω), where

FA
ϕ ∶= dist(DϕA( ⋅)−1,SO(d))1{dA

ϕ >Tε}, GA
ϕ ∶= dist(DϕA( ⋅)−1,SO(d))1{dA

ϕ ≤Tε}.
Choose q ∈ (p,∞). Then, by construction we observe,

∥(ηA
ϕ )1/pFA

ϕ ∥
p

Lp(Ω) ≤ ε, ∥(ηA
ϕ )1/pGA

ϕ ∥
q

Lq(Ω) ≤ c1T
q−p
ε .

By Theorem 3.15, we obtain rotations RA
ϕ ∈ SO(3) and decompositions DϕA( ⋅)−1−RA

ϕ = F̂A
ϕ +ĜA

ϕ

in Lp +Lq(Ω,Rd×d), such that

∥(ηA
ϕ )1/pF̂A

ϕ ∥
p

Lp(Ω) ≤ c2 ∥(ηA
ϕ )1/pFA

ϕ ∥
p

Lp(Ω) ≤ c2ε,

∥(ηA
ϕ )1/pĜA

ϕ ∥
q

Lq(Ω) ≤ c2 ∥(ηA
ϕ )1/pGA

ϕ ∥
q

Lq(Ω) ≤ c3T
q−p
ε .

By assumption the constant c2 is independent of ϕ and A. Note that (ηA
ϕ )1/p (DϕA( ⋅)−1 −RA

ϕ ) =
(ηA

ϕ )1/pF̂A
ϕ + (ηA

ϕ )1/pĜA
ϕ . It is not hard to show that these estimates imply uniform integrability

of ηA
ϕ ∣DϕA( ⋅)−1 −RA

ϕ ∣
p, see [ADD12, Lem. 5.1] for a proof.

Using Proposition 5.26 and Korn’s inequality Corollary 3.17, the proof of Proposition 5.25 can
be obtained analogously to [ADD12, Sect. 5]. Thus, we omit this proof here. Note that later
we do carry out the proof of the strong convergences Proposition 3.13 (c) and (d), since there
we have the additional difficulty to deal with two-scale convergence. One may also follow and
alter the proof there to establish a proof for Proposition 5.25.
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5.7 Homogenization; Proof of Theorem 3.11 (2) and (5), (3.28a), (3.28b)
and Proposition 3.13 (c) and (d)

Our approach to obtain the homogenization results relies on the notion of two-scale convergence,
which was developed by Gabriel Ngutseng in [Ngu89] and first used by Grégoire Allaire in [All92]
to treat such homogenization problems. Following [Vis06; Vis07; MT07; CDG02] we appeal to
a characterization of two-scale convergence via the periodic unfolding operator Tε ∶ Rd×Y → Rd,
given by

Tε(x, y) ∶= ε⌊xε ⌋ + εy, (5.50)

where ε > 0 and ⌊z⌋ ∈ Zd denotes the (vectorial) integer part of z ∈ Rd, given by ⌊z⌋i ∶=
max {ξ ∈ Z ∣ ξi ≤ zi}, i = 1, . . . , d. Moreover, we let Tε act point-wise on maps, i.e., for u ∶ Rd → Rn

we set Tεu ∶= u ○ Tε. In combination with the unfolding operator, we extend maps defined on
subsets of Rd to Rd by 0.

Definition 5.27. Let 1 ≤ p ≤ ∞. We say (uε) ⊂ Lp(Ω) weakly (resp. strongly) two-scale
converges to u ∈ Lp(Ω × Y ) and write uε

2Ð⇀ u (resp. uε
2Ð→ u), if (uε) is bounded in Lp(Ω) and

Tεuε ⇀ u (resp. Tεuε → u) in Lp(Ω × Y ).

Remark 5.28.

(i) Since T −1
ε (Ω) ⊂ {(x, y) ∈ Rd × Y ∣dist(x,Ω) ≤ ε

√
d} and ∣∂Ω∣ = 0, boundedness of (uε) in

Lp(Ω) ensures that ¨
Rd∖Ω×Y

∣Tεuε∣p → 0 as ε→ 0. (5.51)

Especially, from the isometry from L1(Rd) to L1(Rd×Y ) induced by the unfolding operator,
see [Vis06, Lem. 1.1], we obtain

lim
ε→0
(
ˆ

Ω
uε −

¨
Ω×Y
Tεuε) = 0. (5.52)

(ii) Below, we also speak of two-scale convergence of a sequence (uh) ⊂ Lp(Ω), where we mean
convergence of Tε(h)uh for a subsequence ε ∶ (0,∞)→ (0,∞). The precise meaning will be
clear from the context.

With this technique, the proof of Theorem 3.11 (2) is standard, see e.g. [All92]. We sketch
the proof here, since we shall need elements of it for the simultaneous limit. Equation (5.52)
and the characterization of two-scale limits of derivatives, see [All92, Prop. 1.14], motivates the
definition of the two-scale Γ-limit I lin

ts ∶ H1(Ω,Rd) × L2(Ω,H1
per(Y,Rd))→ R of I lin

ε , given by

I lin
ts (u,φ) ∶=

¨
Ω×Y

Q (y, (Du(x) +Dyφ(x, y))A(y)−1 −B(y)) dy dx. (5.53)

Indeed, strong continuity and weak lower semi-continuity w.r.t. L2 of the quadratic energy
functional, implies that we can understand I lin

ts rigorously as a two-scale Γ-limit of I lin
ε in the

sense that given (u,φ) ∈ H1
Γ,g(Ω,Rd) × L2(Ω,H1

per(Y,Rd)), the following statements hold.

• Suppose uε ⇀ u weakly in H1
Γ,g(Ω,Rd) and Duε

2Ð⇀ Du +Dyφ weakly two-scale in L2(Ω ×
Y,Rd×d). Then, lim infε→0 I lin

ε (uε) ≥ I lin
hom(u,φ).

• We find a sequence (uε) ⊂ H1
Γ,g(Ω,Rd) converging to (u,φ) in the sense as above with

limε→0 I lin
ε (uε) = I lin

hom(u,φ).
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A construction for the recovery sequence can be found in [Neu10, Thm. 3.3.1 (3)]. In fact, we
also use this construction in the proof of Theorem 3.11 (5). Given this statement it is not hard
to infer that I lin

ε Γ-converges w.r.t. weak convergence in H1
Γ,g(Ω,Rd) with the limit given by

I∗linhom(u) ∶=min {I lin
ts (u,φ) ∣φ ∈ L2(Ω,H1

per(Y,Rd))} , u ∈ H1(Ω,Rd). (5.54)

Indeed, one can use the direct method to show that a minimizer exists. The argument uses the
version of Korn’s inequality given in Corollary 3.18 to obtain a equi-coercivity statement and
the weak lower semi-continuity of quadratic functionals. From the existence of a minimizer,
the Γ-convergence follows immediately. Finally, testing the Euler-Lagrange equation for the
minimizer with test functions of the form v(x)n(y) with v ∈ L2(Ω) and n ∈ H1

per,0(Y,Rd), we
obtain I∗linhom = I lin

hom. Before we proceed with the proof of Theorem 3.11 (5), we show the
following lemma which is in the spirit of Lemmas 5.20 and 5.23.

Lemma 5.29. Let ε ∶ (0,∞) → (0,∞) with limh→0 ε(h) = 0. Let (Φh), (Ψh) ⊂ L2(Ω,Rd×d)
bounded and Ψ ∈ L2(Ω,L2

per(Y,Rd×d)), such that Ψh
2Ð→ Ψ in L2(Ω × Y,Rd×d). Then, there exist

subsets Ωh ⊂ Ω with ∣Ω ∖Ωh∣→ 0, such that
RRRRRRRRRRR

1
h2

ˆ
Ωh

W ( x
ε(h) , I + hΦh(x) + hΨh(x)) dx −

ˆ
Ωh

Q ( x
ε(h) ,Φh(x) +Ψ(x, x

ε(h))) dx
RRRRRRRRRRR
→ 0.

Moreover, if (Φh) is bounded in L∞(Ω,Rd×d) and limh→0 ∥hΨh∥L∞(Ω) = 0, then we may choose
Ωh = Ω.

Proof. Let Gh ∶= Ψh +Φh. As in Lemma 5.20 we may estimate the term in question from above
by a sum (I)h + (II)h, where

(I)h ∶=
ˆ

Ωh

∣Gh(x)∣2 r ( x
ε(h) , ∣hGh(x)∣) dx,

(II)h ∶=
ˆ

Ωh

Q ( x
ε(h) ,Φh(x) +Ψh(x)) −Q (y,Φh(x) +Ψ(x, x

ε(h))) dx.

We estimate (II)h first. Since, Φh and Ψh are bounded in L2(Ω,Rd×d) and Q satisfies (3.5), we
find from (5.52), that

∣(II)h −
¨

Ω×Y
Q (y,Tε(h)[1Ωh

(Φh +Ψh)](x, y)) −Q (y,Tε(h)[1Ωh
(Φh +Ψ)](x, y)) dydx∣→ 0.

Thus, since Q is a quadratic form, we obtain (II)h → 0 for an arbitrary sequence (Ωh) from
the L2-boundedness of Φh and the two-scale convergence (Ψh −Ψ) 2Ð→ 0 in L2(Ω × Y,Rd×d). It
remains to treat the term (I)h. As in Lemma 5.20, we set r̄h(y) ∶= r(y, h1/2) and ρh ∶= (

´
Y r̄h)1/2.

By dominated convergence we observe ρh → 0. We set

Ωh ∶= {x ∈ Ω ∣ ∣Gh(x)∣ ≤ h−1/2} ∩ Tε(h)({(x, y) ∈ Rd × Y ∣ r̄h(y) ≤ ρh}).

Then, Markov’s inequality and (5.52) yield ∣Ω ∖Ωh∣ → 0. The set Ωh is defined, such that the
Y -periodicity of r implies 1Ωh

(x)r( x
ε(h) , ∣hGh(x)∣) ≤ ρh. Hence, (I)h ≤ ∥Gh∥2L2(Ω) ρh converges

to 0 as h→ 0. If Φh and Ψh satisfy the uniform bounds, then again by (5.52),

lim sup
h→0

(I)h ≤ c1 lim sup
h→0

¨
Ω×Y
(∥Φh∥2L∞(Ω) + ∣Tε(h)Ψh(x, y)∣

2)r(y, ∥hGh∥L∞(Ω))dydx,

independently of the definition of Ωh. The right-hand side equals 0 by dominated convergence
(with strongly converging dominating sequence). Hence, we may choose Ωh = Ω.
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Proof of Theorem 3.11 (5). Let ε ∶ (0,∞) → (0,∞) with limh→0 ε(h) = 0. We show that Ih
ε(h)

Γ-converges w.r.t. weak convergence in H1
Γ,g(Ω,Rd) to I lin

hom.

Step 1 – Recovery sequence: Let u ∈ H1
Γ,g(Ω,Rd). We find some φ ∈ L2(Ω,H1

per,0(Y,Rd)),
such that I lin

hom(u) = I∗linhom(u) = I lin
ts (u,φ). Via a density argument, we find sequences (uδ) ⊂

W1,∞(Ω,Rd) ∩H1
Γ,g(Ω,Rd) and (φδ) ⊂ C∞c (Ω,C∞per(Y,Rd)) such that

uδ → u strongly in H1(Ω,Rd),
φδ → φ strongly in L2(Ω,H1

per(Y,Rd)).

Define uδ,h(x) ∶= uδ(x)+ε(h)φδ(x, x
ε(h)). Then, for fixed δ > 0, the sequence (Duδ,h) is bounded

in L∞(Ω,Rd×d). Thus, the assumptions of Lemma 5.29, including the uniform bounds, are
satisfied with

Φh(x) ∶= Duδ,h(x)A( x
ε(h))−1, Ψh(x) ∶= −Bh( x

ε(h)) − hΦh(x)Bh( x
ε(h)), Ψ(x, y) ∶= −B(y),

and we obtain Ih
ε(h)(uδ,h) − I lin

ε(h)(uδ,h)→ 0. Now, continuity of the quadratic energy functional
w.r.t. strong convergence in L2 applied twice along with (5.52), implies

lim
δ→0

lim
h→0
Ih

ε(h)(uδ,h) = lim
δ→0

lim
h→0
I lin

ε(h)(uδ,h) = lim
δ→0
I lin

ts (uδ, φδ) = I lin
ts (u,φ) = I lin

hom(u).

Especially, for fixed δ, the sequence (uδ,h) is a recovery sequence for the two-scale Γ-convergence
of I lin

ε(h) introduced above. Thus, by Attouch’s diagonalization lemma [Att84, Lem. 1.15], we
find a diagonal sequence uh ∶= uh,δ(h) satisfying Ih

ε(h)(uh)→ I lin
hom(u) and uh → u in L2(Ω,Rd×d).

Since (uh) is bounded in H1(Ω,Rd×d), we conclude uh ⇀ u.
Step 2 – Lower bound: Let u ∈ H1

Γ,g(Ω,Rd) and (uh) ⊂ H1
Γ,g(Ω,Rd) converging weakly to u

in H1(Ω,Rd). By [All92, Prop. 1.14] we find some φ ∈ L2(Ω,H1
per,0(Ω,Rd)) and a subsequence

(not relabeled) such that

lim inf
h→0

Ih
ε(h)(uh) = lim

h→0
Ih

ε(h)(uh), Duh
2Ð⇀ Du +Dyφ in L2(Ω × Y,Rd×d).

Since (Duh) is bounded in L2(Ω,Rd×d), we may apply Lemma 5.29 with

Φh(x) ∶= Duh(x)A( x
ε(h))−1, Ψh(x) ∶= −Bh( x

ε(h)) − hΦh(x)Bh( x
ε(h)), Ψ(x, y) ∶= −B(y).

Thus, we find subsets Ωh ⊂ Ω with ∣Ω ∖Ωh∣→ 0, such that

lim inf
h→0

Ih
ε(h)(uh) ≥ lim inf

h→0

1
h2

ˆ
Ωh

W ( x
ε(h) , (I + hDuh(x)A( x

ε(h))−1)(I − hBh( x
ε(h)))) dx

= lim inf
h→0

ˆ
Ω
Q ( x

ε(h) ,1Ωh
(x)(Duh(x)A( x

ε(h))−1 −B( x
ε(h)))) dx

= lim inf
h→0

¨
Ω×Y

Q (y,Tε(h)[1Ωh
(DuhA( ⋅ε(h))−1 −B( ⋅ε(h)))](x, y)) dydx.

The inequality above is trivial, since W is non-negative and the last equality follows from
(5.52). Then, since 1Ωh

is bounded in L∞(Ω) and converges in L2(Ω) to 1, we find that
1Ωh
(DuhA( ⋅ε(h))−1 −B( ⋅ε(h))) converges weakly two-scale to (Du +Dyφ)A( ⋅)−1 −B in L2(Ω ×

Y,Rd×d). Hence, lower semi-continuity of the quadratic functional w.r.t. weak convergence in
L2(Ω × Y ) yields

lim inf
h→0

Ih
ε(h)(uh) ≥ I lin

ts (u,φ) ≥ I∗linhom(u) = I lin
hom(u).
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We proceed by proving the associated equi-coercivity statement (3.28a). Note that this also
implies (3.28b), since Γ-convergence of Ih

ε to I lin
ε implies

I lin
ε (u) = inf {lim inf

h→0
Ih

ε (uh) ∣uh ⇀ u weakly in H1
Γ,g(Ω,Rd)} .

Indeed, given (3.28a), from this characterization one obtains (3.28b) immediately from the weak
lower semi-continuity of the norm in H1(Ω,Rd).

Proof of (3.28a). Let u ∈ H1
Γ,g(Ω,Rd) and ε, h > 0 small enough. As in the proof of Theo-

rem 5.24, in view of Theorem 3.15, we find a constant rotation R ∈ SO(d), such that
ˆ

Ω
∣I + hDu(x)A(x

ε )
−1 −R∣2 dx ≤ c1

ˆ
Ω

dist2(I + hDu(x)A(x
ε )
−1,SO(d))dx.

Let a denote the potential of A as given in (SFJ2). The constant c1 is independent of ε, since the
potential aε ∶= εa( ⋅ε ) of A( ⋅ε ) is a Bilipschitz map by Proposition 2.5 with Bilipschitz constant
independent of ε. We conclude the claim by estimating I − R as in Theorem 5.24. Indeed,
repeating the argument there but with a replaced by aε and applied on the whole part of the
boundary Γ instead of Γ ∩ ∂Ωi, we obtain

∣I −R∣2 ≤ c2

ˆ
Ω
∣I + hDu(x)Daε(x)−1 −R∣2 dx + c2h

2 ∥g∥2L2(Γ,Hd−1) .
Note that also c2 is independent of ε by the uniformity of the estimate Corollary 5.5 w.r.t. the
Bilipschitz maps aε. Now, combining these two estimates, we obtain

ˆ
Ω
∣Du(x)∣2 dx ≤ c3

ˆ
Ω

dist2(I + hDu(x)A(x
ε )
−1,SO(d))dx + c3 ∥g∥2L2(Γ,Hd−1) .

From this we may conclude the claim by appealing to the Poincaré-Friedrich inequality and
non-degeneracy (W2). Indeed, for the non-degeneracy we can argue as in Proposition 5.18 to
estimate the right-hand side by c4(Ih

ε (u) + 1).

We finish by proving Proposition 3.13 (c) and (d) which establishes strong convergence. In
comparison to Proposition 5.25 we can only expect to obtain strong two-scale convergence of
the sequences, since even the recovery sequences constructed for Theorem 3.11 (2) and (5) are
only two-scale converging. An upgrade to strong two-scale convergence has been obtained in
[Neu10, Sec. 7.5] in the context of homogenization for planar rods. We follow the procedure
presented there and incorporate the arguments from [ADD12] to show Proposition 3.13 (d).

Proof of Proposition 3.13 (c). Using the construction in the proof of Theorem 3.11 (5), we find
a recovery sequence (u∗ε), satisfying I lin

ε (u∗ε)→ I lin
ts (u,φ) = I lin

hom(u) and

u∗ε → u strongly in L2(Ω,Rd),

Du∗ε 2Ð→ Du +Dyφ strongly two-scale in L2(Ω × Y,Rd).

Since uε ⇀ u weakly in H1(Ω,Rd), we infer from [All92, Prop. 1.14] that each subsequence
admits a further subsequence (uε′′) with Duε′′

2Ð⇀ Du + Dyφ
′′ in L2(Ω × Y,Rd×d), where φ′′ ∈

L2(Ω,H1
per,0(Y,Rd)) a priori depends on the subsequence. But then the lower bound statement

for the two-scale Γ-convergence of I lin
ε implies

I lin
ts (u,φ) = I lin

hom(u) = lim
ε→0
I lin

ε (uε) = lim inf
ε′′→0

I lin
ε′′ (uε′′) ≥ I lin

ts (u,φ′′) ≥ I lin
ts (u,φ).
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Thus, φ′′ = φ by uniqueness of the minimizer of (5.54) and so the whole sequence (uε) satisfies
Duε

2Ð⇀ Du +Dyφ in L2(Ω × Y,Rd×d). Now, since I lin
ε (uε) − I lin

ε (u∗ε)→ 0, we may refer to (5.49)
to show
ˆ

Ω
∣sym(Duε(x)A(x

ε )
−1 −Du∗ε(x)A(x

ε )
−1)∣2 dx ≤ c1(I lin

ε (uε) − I lin
ε (u∗ε)

+ 2
ˆ

Ω
(Du∗ε(x) −Duε(x))A(x

ε )
−1 ∶ LQ(x

ε )(Du
∗
ε(x)A(x

ε )
−1 −B(x

ε ))dx)→ 0.

Indeed, the last term converges to 0 as it is a product of a weakly and a strongly two-scale
converging sequence, see [Vis06, Prop. 1.4]. Now, Korn’s inequality Corollary 3.17 shows Duε −
Du∗ε → 0 in L2(Ω,Rd×d) and then the claim follows from the strong two-scale convergence
Du∗ε 2Ð→ Du +Dyφ.

Proof of Proposition 3.13 (d). Fix ε ∶ (0,∞)→ (0,∞) with limh→0 ε(h) = 0. As above it suffices
to show that Duh −Du∗ε(h) → 0 in L2(Ω,Rd×d), where uh ∶= uε(h),h and u∗ε is as above.

Step 1 – Two-scale convergence: As above we can show that (uh) satisfies Duh
2Ð⇀

Du +Dyφ in L2(Ω × Y,Rd×d). Indeed, each subsequence of (uh) admits a further subsequence
(uh′′) such that Duh′′

2Ð⇀ Du +Dyφ
′′ and φ′′ = φ because of

I lin
ts (u,φ) = I lin

hom(u) = lim
h→0
Ih

ε(h)(uh) = lim inf
h′′→0

Ih′′

ε(h′′)(uh′′) ≥ I lin
ts (u,φ′′).

The last inequality follows as shown in the proof of Theorem 3.11 (5).

Step 2 – Quadratic trick: Since Duh is bounded in L2(Ω,Rd×d), we may apply Lemma 5.29
and find sets Ωh ⊂ Ω with ∣Ω ∖Ωh∣→ 0, such that Ih

ε(h)(uh) admits a decomposition

Ih
ε(h)(uh) = (I)h + (II)h + (III)h, where,

(I)h ∶=
ˆ

Ω
Q ( x

ε(h) ,1Ωh
(x)(Duh(x)A( x

ε(h))−1 −B( x
ε(h)))) dx,

(II)h ∶=
1
h2

ˆ
Ω∖Ωh

W ( x
ε(h) , (I + hDuh(x)A( x

ε(h))−1)(I − hBh( x
ε(h)))) dx,

and the remainder (III)h converges to 0. Without loss of generality, we may assume that
{x ∈ Ω ∣ ∣Duh(x)∣ ≤ h−1/2} ⊂ Ωh. Furthermore, we have lim infh→0 (I)h ≥ I

lin
hom(u) as we have

shown in Step 2 of the proof of Theorem 3.11 (5). We show that (II)h → 0. Indeed, since (II)h

is non-negative, this follows from

I lin
hom(u) = lim

h→0
Ih

ε(h)(uh) ≥ lim inf
h→0

(I)h + lim sup
h→0

(II)h ≥ I
lin
hom(u) + lim sup

h→0
(II)h.

Hence, we obtain limh→0 (I)h = limh→0 Ih
ε(h)(uh) = I lin

hom(u) and we may proceed as for Proposi-
tion 3.13 (c) to show that this implies

sym ((1Ωh
Duh −Du∗ε(h))A( ⋅ε(h))−1)→ 0 strongly in L2(Ω,Rd×d).

Step 3 – Convergence of the rest: Let 1 ≤ p < 2. By Hölder’s inequality, we have
ˆ

Ω
1Ω∖Ωh

(x) ∣Duh(x)∣p dx ≤ ∣Ω ∖Ωh∣
2−p

2 (
ˆ

Ω
∣Duh(x)∣2 dx)

p
2
→ 0.

57



Combined with Step 2 and Korn’s inequality Corollary 3.17 this yields Duh − Du∗ε(h) → 0 in
Lp(Ω,Rd×d). Especially, Duh −Du∗ε(h) converges to 0 in measure.

Step 4 – Strong convergence in L2: We seek to apply Vitali’s convergence theorem to
the sequence (Duh − Du∗ε(h)). Since we already showed convergence in measure, it remains
to establish uniform integrability. Since (Du∗ε(h)) is strongly two-scale converging in L2(Ω ×
Y,Rd×d), the sequence (∣Du∗ε(h)∣2) is uniformly integrable by (5.52). Thus, it suffices to show
(Duh) is uniformly integrable. For this, we want to use Proposition 5.26. First, arguing as in
Proposition 5.18, we get

1
h2

ˆ
Ω
1Ω∖Ωh

dist2 (I + hDuh(x)A( x
ε(h))−1,SO(d))dx ≤ c1 ((II)h +

ˆ
Ω∖Ωh

∣Bh( x
ε(h))∣

2
dx) .

The right hand-side converges to 0, since 1Ω∖Ωh
Bh( ⋅ε(h)) converges strongly two-scale to 0 in

L2(Ω×Y,Rd×d). Moreover, since ∣hDuh∣ ≤
√
h on Ωh, the Taylor expansion dist(I +G,SO(d)) =

∣symG∣ +O(∣G∣2) yields,

1
h21Ωh

dist2 (I + hDuhA( ⋅ε(h))−1,SO(d)) ≤ c1 (1Ωh
∣sym(DuhA( ⋅ε(h))−1)∣

2
+ h ∣Duh∣2) .

Since by Step 2 also here the right-hand side is strongly two-scale converging, the sequence
( 1

h2 dist2(I + hDuhA( ⋅ε(h))−1,SO(d))) is uniformly integrable. Hence, by Proposition 5.26, we

find rotations (Rh) ⊂ SO(d), such that 1
h2 ∣I + hDuhA( ⋅ε(h))−1 −Rh∣

2
is uniformly integrable.

Finally,

∣I −Rh

h
∣
2
≤ 2( 1

h2

 
Ω
∣I + hDuhA( ⋅ε(h))−1 −Rh∣

2
+
 

Ω
∣DuhA( ⋅ε(h))−1∣

2
)

is bounded. Hence, we conclude that (∣Duh∣2) is uniformly integrable and an application of
Vitali’s convergence theorem yields the claim.

A Formulas of the stress-free joints
In this section we provide the explicit formulas used in Fig. 1. Fig. 1a is a laminate given by

Aa(y) =
⎧⎪⎪⎨⎪⎪⎩

A1
a if y1 ∈ [0, 1

2),
A2

a if y1 ∈ [12 ,1).

To ensure that Aa is a stress-free joint, by (2.1) it is necessary and sufficient to satisfy the
rank-one compatibility condition A2

a = A1
a + c ⊗ e1 for some c ∈ R3 and have detA1

a,detA2
a > 0.

In Fig. 1a we used

A1
a =
⎛
⎜
⎝

1 1 0
0 1 0
0 0 1

⎞
⎟
⎠
, A2

a =
⎛
⎜
⎝

2 1 0
0 1 0
0 0 1

⎞
⎟
⎠
.

The stress-free joint in Fig. 1b is given by

Ab(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

A1
b if (y1, y2) ∈ [0, 1

2)
2,

A2
b if (y1, y2) ∈ [12 ,1) × [0,

1
2),

A3
b if (y1, y2) ∈ [12 ,1)

2,

A4
b if (y1, y2) ∈ [0, 1

2) × [
1
2 ,1).

58



We choose A1
b, A2

b and A3
b with positive determinant, such that they satisfy the appropriate

rank-one compatibility conditions. From this A4
b is uniquely determined. In Fig. 1b we used

A1
b =
⎛
⎜
⎝

1 1
2 0

0 1 0
0 0 1

⎞
⎟
⎠
, A2

b =
⎛
⎜
⎝

1 1
2 0

1
2 1 0
0 0 1

⎞
⎟
⎠
, A3

b =
⎛
⎜
⎝

1 −1
2 0

1
2 1 0
0 0 1

⎞
⎟
⎠
, A4

b =
⎛
⎜
⎝

1 −1
2 0

0 1 0
0 0 1

⎞
⎟
⎠
.

In Fig. 1d, by Proposition 2.5 and Lemma 5.1 it suffices to choose Ā ∈ R3×3 with det Ā > 0, such
that Ad ∶= Ā +Dād satisfies detAd > 0 in Y . We used Ā ∶= I and

ād(y) = 1
20

3
∑
i=1 sin(2πyi) (

1
1
1
) , y ∈ Y.

The most interesting case is Fig. 1c. For the construction we consider the domains

Y1 ∶= {y ∈ Y ∣ y1 ≤ ∣y2 − 1
2 ∣} , Y2 ∶= {y ∈ Y ∣ 12 ≥ y2 > ∣y1 − 1

2 ∣} ,
Y3 ∶= {y ∈ Y ∣1 − ∣y1 − 1

2 ∣ > y2 > 1
2} , Y4 ∶= {y ∈ Y ∣1 − ∣y2 − 1

2 ∣ ≤ y1} ,

with normals ni at ∂Y1 ∩ ∂Yi (periodically continued) given by,

n2 ∶= ( 1√
2 ,

1√
2 ,0)

T
, n3 ∶= ( 1√

2 ,−
1√
2 ,0)

T
, n4 ∶= e1.

For α ∈ [0,1] and c ∈ R3 with c−2
2 = c−2

1 α2 + c−2
3 (1 − α2), consider the orthonormal basis

b1 ∶= αe1 +
√

1 − α2e3, b2 ∶= e2, b3 ∶= αe3 −
√

1 − α2e1.

and the matrices

A1 ∶=
3
∑
i=1 cibi ⊗ bi, A2 ∶= A1

⎛
⎜
⎝
I + 2α(c2

2c
−2
1 − 1)√

2(1 − α2)
e3 ⊗ n2

⎞
⎟
⎠
,

A3 ∶= A1
⎛
⎜
⎝
I + 2α(c2

2c
−2
1 − 1)√

2(1 − α2)
e3 ⊗ n3

⎞
⎟
⎠
, A4 ∶= A1

⎛
⎜
⎝
I + 2α(c2

2c
−2
1 − 1)√

(1 − α2)
e3 ⊗ n4

⎞
⎟
⎠
,

We set A(c)(y) ∶= Ai, if y ∈ Yi, i = 1, . . . ,4. One can check that with these definitions the
matrices have positive determinant and all necessary rank-one compatibility conditions are
satisfied. Moreover, the matrices satisfy Ai = RiA1Qi, for rotations Ri,Qi ∈ SO(3), i = 2, . . . ,4.
Thus, the stress-free joint depicts the joint of multiple bodies of the same material in different
orientations, cf. [Eri83, Sect. 2]. This stress-free joint was found using the theory of [Eri83]. In
Fig. 1c we used the parameters α = 1√

2 , c = (
√

3
4 ,1,
√

3
2)

T .

B Correctors for isotropic laminates
Proof of Proposition 4.2. We state the general procedure, how one can find the corrector φ̂Gi

.
The corrector φ̂Gi

is characterized as the unique solution to the Euler-Lagrange equation
ˆ

Y

(Gi +Dφ̂Gi
(y)Ā−1) ∶ LQ̂(y)Dδφ(y)Ā

−1 = 0, for all δφ ∈ H1
per(Y,R3).
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Since we consider laminates, it is a good Ansatz to assume, φ̂Gi
depends only on y1, i.e., φ̂Gi

(y) =
ϕGi
(y1) for some ϕGi

∈ H1
per([0,1),R3). Indeed, in this case we have Dφ̂Gi

(y) = ϕ′Gi
(y1)eT

1
and it is not hard to show that the Euler-Lagrange equation presented above is equivalent to
the one restricted to the space {φ ∣∃ϕ ∈ H1

per([0,1),R3) with φ(y) = ϕ(y1) for all y ∈ R3}, using
that the integrals w.r.t. y2 and y3 vanish. For maps in this space we obtain the decomposition
sym(DφĀ−1) = ∑6

j=1 ajGj with

a1 = α1ϕ
′
1 + α2ϕ

′
2 + α3ϕ

′
3, a2 = α1ϕ

′
1 − 1

2α2ϕ
′
2 − 1

2α3ϕ
′
3, a3 = α3ϕ

′
3 − α2ϕ

′
2,

a4 = α1ϕ
′
2 + α2ϕ

′
1, a5 = α1ϕ

′
3 + α3ϕ

′
1, a6 = α2ϕ

′
3 + α3ϕ

′
2,

where α ∶= Ā−T e1. Since isotropy yields Gj ∶ LQ̂Gk = 0 for k ≠ j, we get

Q̂(y,Gi +Dφ(y)Ā−1) =
6
∑
j=1(aj(y1) + δij)2 Q̂(y,Gj),

and the Euler-Lagrange equation reduces to

0 =
ˆ 1

0
(λ̂ + 2

3 µ̂)(α1ϕ
′
Gi 1 + α2ϕ

′
Gi 2 + α3ϕ

′
Gi 3 + δi1)(α1δϕ

′
1 + α2δϕ

′
2 + α3δϕ

′
3)

+4
3 µ̂(α1ϕ

′
Gi 1 −

1
2α2ϕ

′
Gi 2 −

1
2α3ϕ

′
Gi 3 + δi2)(α1δϕ

′
1 − 1

2α2δϕ
′
2 − 1

2α3δϕ
′
3)

+µ̂(α3ϕ
′
Gi 3 − α2ϕ

′
Gi 2 + δi3)(α3δϕ

′
3 − α2δϕ

′
2)

+µ̂(α1ϕ
′
Gi 2 + α2ϕ

′
Gi 1 + δi4)(α1δϕ

′
2 + α2δϕ

′
1)

+µ̂(α1ϕ
′
Gi 3 + α3ϕ

′
Gi 1 + δi5)(α1δϕ

′
3 + α3δϕ

′
1)

+µ̂(α2ϕ
′
Gi 3 + α3ϕ

′
Gi 2 + δi6)(α2δϕ

′
3 + α3δϕ

′
2)

=
ˆ 1

0
δϕ′1[α1(λ̂ + 2

3 µ̂)(α1ϕ
′
Gi 1 + α2ϕ

′
Gi 2 + α3ϕ

′
Gi 3 + δi1)

+ 4
3α1µ̂(α1ϕ

′
Gi 1 −

1
2α2ϕ

′
Gi 2 −

1
2α3ϕ

′
Gi 3 + δi2)

+ α2µ̂(α1ϕ
′
Gi 2 + α2ϕ

′
Gi 1 + δi4) + α3µ̂(α1ϕ

′
Gi 3 + α3ϕ

′
Gi 1 + δi5)]

+δϕ′2[α2(λ̂ + 2
3 µ̂)(α1ϕ

′
Gi 1 + α2ϕ

′
Gi 2 + α3ϕ

′
Gi 3 + δi1)

− 2
3α2µ̂(α1ϕ

′
Gi 1 −

1
2α2ϕ

′
Gi 2 −

1
2α3ϕ

′
Gi 3 + δi2)

− α2µ̂(α3ϕ
′
Gi 3 − α2ϕ

′
Gi 2 + δi3) + α1µ̂(α1ϕ

′
Gi 2 + α2ϕ

′
Gi 1 + δi4)

+ α3µ̂(α2ϕ
′
Gi 3 + α3ϕ

′
Gi 2 + δi6)]

+δϕ′3[α3(λ̂ + 2
3 µ̂)(α1ϕ

′
Gi 1 + α2ϕ

′
Gi 2 + α3ϕ

′
Gi 3 + δi1)

− 2
3α3µ̂(α1ϕ

′
Gi 1 −

1
2α2ϕ

′
Gi 2 −

1
2α3ϕ

′
Gi 3 + δi2)

+ α3µ̂(α3ϕ
′
Gi 3 − α2ϕ

′
Gi 2 + δi3) + α1µ̂(α1ϕ

′
Gi 3 + α3ϕ

′
Gi 1 + δi5)

+ α2µ̂(α2ϕ
′
Gi 3 + α3ϕ

′
Gi 2 + δi6)]

,

for all δϕ ∈ H1
per([0,1),R3). It follows from a variant of the fundamental lemma of the calculus

of variations that then necessarily the factors after δϕ′j are constant (cf. [MW89, Section 1.4]).
This yields a system of linear equations for ϕ′Gi j

given by

⎛
⎜⎜
⎝

α2
1(λ̂ + 2µ̂) + (α2

2 + α2
3)µ̂ α1α2(λ̂ + µ̂) α1α3(λ̂ + µ̂)

α1α2(λ̂ + µ̂) α2
2(λ̂ + 2µ̂) + (α2

1 + α2
3)µ̂ α2α3(λ̂ + µ̂)

α1α3(λ̂ + µ̂) α2α3(λ̂ + µ̂) α2
3(λ̂ + 2µ̂) + (α2

1 + α2
2)µ̂

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

ϕ′Gi 1
ϕ′Gi 2
ϕ′Gi 3

⎞
⎟⎟
⎠
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=
⎛
⎜
⎝

c1
c2
c3

⎞
⎟
⎠
−
⎛
⎜⎜
⎝

α1(λ̂ − 2
3 µ̂)δi1 + 4

3α1µ̂δi2 + α2µ̂δi4 + α3µ̂δi5
α2(λ̂ − 2

3 µ̂)δi1 − 2
3α2µ̂δi2 − α2µ̂δi3 + α1µ̂δi4 + α3µ̂δi6

α3(λ̂ − 2
3 µ̂)δi1 − 2

3α3µ̂δi2 + α3µ̂δi3 + α1µ̂δi5 − α2µ̂δi6

⎞
⎟⎟
⎠

⇔∶ Cϕ′ = c − r,
for some constant c ∶= (c1, c2, c3)T ∈ R3. Note that this constant is not arbitrary, but can be
calculated from ϕ′ as we shall see below. The matrix C is of the form

C = (λ̂ + µ̂)ααT + ∣α∣2 µ̂I = ∣α∣2 µ̂( λ̂ + µ̂
∣α∣2 µ̂

ααT + I)

The inverses of matrizes of such a form have been calculated in [Mil81]. Indeed, C is invertible
with inverse

C−1 = 1
∣α∣2 µ̂

(I − λ̂ + µ̂
∣α∣2 M̂

) .

The constant c can be calculated as follows. Since ϕ is periodic, we obtain

0 =
ˆ 1

0
ϕ′(t)dt = ⟨ϕ′⟩ = ⟨C−1⟩ c − ⟨C−1r⟩ .

Hence, c = ⟨C−1⟩−1 ⟨C−1r⟩. The inverse of ⟨C−1⟩ can be calculated similarly to the inverse of C
and is given by

⟨C−1⟩−1 = ∣α∣2 ⟨µ̂⟩harm
⎛
⎝
I +
⎛
⎝
⟨M̂⟩harm
⟨µ̂⟩harm

− 1
⎞
⎠
∣α∣2 ααT⎞

⎠
.

The claim now follows from calculating ϕ′ = C−1 (⟨C−1⟩−1 ⟨C−1r⟩ − r).

C Mixed growth estimates
In this section we sketch the proof of Lemma 5.14 and provide a mixed growth version of the
Poincaré-Wirtinger inequality.

Proof of Lemma 5.14. For p = q (i.e. with decompositions) the lemma is [Jon81, Lem. 2.1]. We
have to check that this lemma also holds in the mixed growth sense. For this we can use the
equivalence of the norm ∥ ⋅∥Lp and ∥ ⋅∥Lq on the finite dimensional vector space of polynomials
of degree at most m. In fact it is easy to show that we can use the following choices

FP ∣F =
⎧⎪⎪⎨⎪⎪⎩

P if ∥GP ∣E∥Lq(E) ≤ ∥FP ∣E∥Lq(E) ,
0 else,

GP ∣F =
⎧⎪⎪⎨⎪⎪⎩

0 if ∥GP ∣E∥Lq(E) ≤ ∥FP ∣E∥Lq(E) ,
P else.

Proposition C.1 (Poincaré-Wirtinger inequality). Let Q ⊂ Rd be a finite union of overlapping
cubes, 1 ≤ p ≤ q ≤∞, v ∈W1,p(Q) and a decomposition Dv = FDv+GDv in Lp +Lq(Q,Rd). Then,
we find a decomposition v −

ffl
Q v = Fv−fflQ v +Gv−fflQ v in Lp +Lq(Q) with

∥Fv−fflQ v∥Lp(Q) ≤ c diam(Q) ∥FDv∥Lp(Q) ,
∥Gv−fflQ v∥Lq(Q) ≤ c diam(Q) ∥GDv∥Lq(Q) .

(C.1)

for some constant c > 0, which is invariant under scaling and translation of Q.
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Proof. The proof is analogous to [CDM14, Thm. 2.1]. It suffices to show that the statement
holds in the case where Q is a cube. Then, we can extend the statement to finite unions
of overlapping cubes as in Remark 5.13 (iii). Note that, throughout the proof, constants may
depend on the cube Q. A posteriori, a standard scaling argument and translation of the domain
shows that the constant scales as presented with Q.

Step 1 – Extension: By standard reflection techniques, we can extend v to some smooth
domain Q+ ⊃⊃ Q, such that v ∈W1,p(Q+) and Dv = FDv +GDv in Lp +Lq(Q+,Rd), for suitable
extensions of FDv and GDv with

∥FDv∥Lp(Q+) ≤ c1 ∥FDv∥Lp(Q) ,
∥GDv∥Lq(Q+) ≤ c1 ∥GDv∥Lq(Q) .

For example the extension presented in [CDM14, Thm. 5.1] can be adapted to show this.

Step 2 – Case ∥GDv∥Lq(Q) ≤ ∥FDv∥Lp(Q): Suppose ∥GDv∥Lq(Q) ≤ ∥FDv∥Lp(Q). Then, the
Poincaré-Wirtinger inequality implies

∥v −
ffl

Q v∥Lp(Q) ≤ c1 ∥Dv∥Lp(Q) ≤ c2 (∥FDv∥Lp(Q) + ∥GDv∥Lq(Q)) ≤ c3 ∥FDv∥Lp(Q) .
The calculation shows, that the statement holds with Fv−fflQ v ∶= v −

ffl
Q v, Gv−fflQ v ∶= 0.

Step 3 – Case ∥GDv∥Lq(Q) ≥ ∥FDv∥Lp(Q): We may now assume ∥GDv∥Lq(Q) ≥ ∥FDv∥Lp(Q). We
denote by vF and vG weak solutions to ∆vF = div(FDv1Q+) and ∆vG = div(GDv1Q+) in Rd as
presented in Step 3 of the proof of [CDM14, Thm. 2.1]. Let v̄F ∶=

ffl
Q vF and v̄G ∶=

ffl
Q vG. The

Poincaré-Wirtinger inequality shows

∥vF − v̄F ∥Lp(Q) ≤ c4 ∥DvF ∥Lp(Rd) ≤ c5 ∥FDv∥Lp(Q+) ≤ c6 ∥FDv∥Lp(Q) ,
∥vG − v̄G∥Lq(Q) ≤ c4 ∥DvG∥Lq(Rd) ≤ c6 ∥GDv∥Lq(Q) .

The map w ∶= v−vF −vG is a harmonic map in Rd and smooth by Weyl’s lemma. Let w̄ ∶=
ffl

Qw.
By the Poincare-Wirtinger, Caccioppoli and Sobolev inequalities, we obtain

∥w − w̄∥Lq(Q) ≤ c7 ∥Dw∥Lq(Q) ≤ c8 ∥Dw∥Lp(Q+)
≤ c9 (∥FDv∥Lp(Q) + ∥GDv∥Lq(Q)) ≤ c10 ∥GDv∥Lq(Q) .

Finally, note that w̄+ v̄F + v̄G =
ffl

Q v. The inequalities shown above now establish the claim with
Fv−fflQ v ∶= vF − v̄F and Gv−fflQ v ∶= w − w̄ + vG − v̄G.
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