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Abstract—In this paper, we investigate the domain names
of servers on the Internet that are accessed by IoT devices
performing machine-to-machine communications. Using machine
learning, we classify between them and domain names of servers
contacted by other types of devices. By surveying past studies
that used testbeds with real-world devices and using lists of top
visited websites, we construct lists of domain names of both types
of servers. We study the statistical properties of the domain
name lists and train six machine learning models to perform
the classification. The word embedding technique we use to get
the real-value representation of the domain names is Word2vec.
Among the models we train, Random Forest achieves the highest
performance in classifying the domain names, yielding the highest
accuracy, precision, recall, and F1 score. Our work offers novel
insights to IoT, potentially informing protocol design and aiding
in network security and performance monitoring.

Index Terms—IoT, domain names, machine learning, security

I. INTRODUCTION

Domain name classification enables detecting both phishing
and domain names generated by domain generation algorithms
(DGAs) [1]–[3]. Phishing domain names are used by malicious
servers that pose as legitimate ones and lure users into provid-
ing sensitive information and credentials. On the other hand,
DGAs run on malware-infected devices and generate domain
names to help the infected devices contact the Command
& Control (C&C) servers. The domain name classification
techniques could also be applied in the Internet of Things
(IoT) environments. IoT devices often need to communicate
with servers on the Internet to which they connect using their
domain names [4].

In this paper, we study IoT from a different viewpoint by
studying the domain names of the servers on the Internet
that IoT devices interact with and classify between them
and servers contacted by other types of devices. We are
interested in IoT devices that perform strictly machine-to-
machine (M2M) communications. The servers such devices
contact might be IoT-specific backend servers to which they
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relay information, receive commands and updates, or other
generic servers not exclusive to IoT.

We compile two lists of domain names. Using packet cap-
tures of real devices, initially filtering the traffic of IoT M2M
devices, we construct a list of domain names of servers that are
contacted by these devices. This list we call IoT M2M Names.
The remaining packet captures we use to construct a list of
domain names of servers exclusively contacted by other types
of devices, never by IoT M2M devices. This list we call
Other Names.

For the rest of the paper, we will refer to IoT M2M Devices
as IoT M2M Devices and IoT devices that are not M2M,
generic devices, and human users as Other Devices.

The end goal is to study the domain names of servers
contacted by IoT M2M Devices and classify between them
and the domain names of servers that cater to Other Devices.

Previous works [2], [3], [5], [6] use lists of top visited
websites as a negative class in domain name classification
problems. We also use two top lists, namely Cisco Umbrella
1 Million [7] (hereafter referred to as Cisco) and Tranco Top
1M [8], [9] (hereafter referred to as Tranco) to evaluate the
performance of the models with such lists and the validity of
using them in IoT domain name classification.

First, we construct the two lists, IoT M2M Names and
Other Names. We use the public datasets from 12 previous
studies (See Appendix A). Filtering the traffic of IoT M2M De-
vices, we use it to construct the IoT M2M Names set. The
remaining traffic, the traffic of Other Devices, is then used to
construct the Other Names set. This is followed by a data pre-
processing phase that includes several sanitization tests and a
study of the statistical properties of the domain names. Finally,
we train six machine learning models to classify between
IoT M2M Names and Others Names, Cisco, Tranco and a list
comprising the three sets, and evaluate the performance of the
machine learning models.

Our work studies IoT from a new perspective by studying
the domain names of the servers contacted by IoT M2M De-
vices.
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We study the composition and the statistical properties of
these domain names. Such insight helps shed light on domain
names of IoT servers used by IoT M2M Devices as we present
our findings about what the average domain name of such
servers looks like and identify patterns and particularities if
found. This could be helpful to model and generate M2M IoT
domain names that align with the average domain name of
that type—for instance, aiding protocol design such as name
compression for constrained devices [10]. Furthermore, the
machine learning models we trained successfully classified
IoT M2M Names and Others Names, and the performance
evaluation we performed indicated the ability of the models
to be generalized to unseen data. This capability could aid in
detecting outliers in M2M IoT networks. For example, non-
M2M traffic in networks consisting solely of M2M IoT devices
could be detected.

The remainder of the paper is organized as follows. Sec-
tion II provides background information, while Section III
outlines the methodology employed. Section IV presents the
results obtained and Section V discusses the key takeaways.
Finally, Section VI discusses related work, and, Section VII
concludes the work.

II. BACKGROUND

A. IoT M2M Names and Other Names

IoT M2M Devices usually contact servers on the Internet to
relay information about the physical world or from which they
receive commands and firmware updates [4]. These devices
rely on domain names as an indirection mechanism to connect
to IP endpoints, simplifying maintenance. This allows, for
example, a transparent change of server addresses, as only
the mapping in the DNS would need to be changed. The
IoT M2M Devices are typically pre-configured with the domain
names of the servers they might need to contact, and they
obtain the addresses of these servers by resolving the domain
names via DNS. Beyond address resolution, future IoT devices
might also use DNS to identify the service bindings of these
servers, e.g., whether they use the TCP-based HTTP/2, the
QUIC-based HTTP/3, or other services such as CoAP, using
SVCB resource records [11], [12].

The domain names of such servers exhibit distinct con-
struction characteristics influenced by various factors. An IoT
backend server, for example, might have a name that correlates
with its high-level function. For example, a collection of IP
cameras might have a backend server whose domain name is
cam.example.com. Moreover, large IoT backend service
providers tend to adopt a naming convention for their servers,
which follows the pattern below [4]:

<subdomain>.<region>.<second-level-domain>,

where <subdomain> could be the name of the IoT service
or the protocol name, <region> refers to the location of
the server, and <second-level-domain> could be the
second-level domain of the service provider or a name related
to the IoT service.

Last, being involved in M2M communications, some
IoT M2M Names may contain machine-friendly character
sequences that do not prioritize legibility or memorability and
are challenging for humans to comprehend.

Meanwhile, Other Names, i.e., domain names of servers
catering Other Devices do not follow the same patterns. Since
servers with such domain names serve a wide range of devices
and human users, the legibility and memorability of their
domain names are prioritized.

In this work, we visualize the differences between the two
types of domain names by studying their statistical properties.
We then move to classify them using machine learning.

B. Word2vec for Word Embedding

Before inputting them into machine learning models, the
domain names have to be processed to obtain a real-valued
vector representation of them. There are several options to
achieve this. One way is through Natural Language Processing
(NLP). NLP methods aim to obtain the real-valued vector
representation of the textual data. This includes, for example,
character level embedding [2], [5], [13], which gives each
character a fixed-size real-valued vector representation. An-
other NLP method is the Term Frequency-Inverse Document
Frequency (TF-IDF), which assigns an importance value to
each text element based on its frequency of appearance [6].
A different way of processing textual data is the extraction of
hand-crafted features, which studies the text, tries to extract
properties, and uses these properties as a real-valued vector
representation of the text [6], [14].

The method we use in this paper to obtain the real-valued
vector representation of the domain names is Word2vec. In
the context of NLP, this is also called word embedding.
Word2vec [15], [16] is one of several word embedding tech-
niques, and it uses a shallow neural network to convert each
word to a vector of real numbers. Word2vec captures semantic
relationships between words, and the resulting real-valued
vectors depend on the context of each word within the text.
Two possible architectures for Word2vec exist, Continuous
Bag-of-Words (CBOW) and Skip-gram. CBOW estimates the
vector representation of a target word based on the context
(i.e., surrounding words) of this word. The number of sur-
rounding words considered within the context is specified by
a window size. Two words that appear regularly together in a
text would have vector representations geometrically close to
each other in space. Consequently, words that do not appear
together in the text are assigned vector representations that are
distant geometrically. For Skip-gram, the model predicts the
words before and after a target word based on the window size.
Between CBOW and Skip-gram, we chose to go with CBOW
as it is less expensive computationally and faster to train [16].

III. METHOD

The objective of our study is to gain a better understanding
of IoT M2M Names and to evaluate the performance of com-
mon machine learning models in the classification between
IoT M2M Names and Other Names. We construct a dataset
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Fig. 1: Our method applied in this paper.

of domain names resolved by real IoT M2M Devices and a
dataset of domain names resolved by real Other Devices. In
addition, we use two top lists, namely Cisco and Tranco. We
sanitize the datasets to ensure that only valid domain names are
used. We then familiarize ourselves with the datasets through
a statistical analysis.

To train the machine learning models, we need a real-valued
vector representation of the domain names, which we generate
using Word2vec. Last, we train six machine learning models
to classify between IoT M2M Names and Other Names, Cisco,
and Tranco. Figure 1 summarizes our steps.

A. Data Collection

In our analysis, we use two types of domain name lists. The
first type includes a list that contains domain names of servers
contacted by IoT M2M Devices, i.e., IoT M2M Names. The
second type includes Other Names, a list of domain names of
servers contacted by Other Devices, and two top lists, namely
Cisco and Tranco. The following explains how we constructed
the lists of domain names.

1) IoT M2M Names: The IoT M2M Names list should
contain domain names of servers on the Internet contacted
by IoT M2M Devices, e.g., IoT backend servers that provide
services to IoT M2M Devices such as a server that saves the
footage from IP cameras or servers from which IoT M2M De-
vices receive commands and software updates. This list may
also include domain names of servers that are not IoT-specific
but are nevertheless contacted by IoT M2M Devices.

We use 12 public datasets that have been gathered in
prior work. The datasets we used are IoTFinder [17],
YourThings [18], MonIoTr [19], IoTLS [20], three datasets
from the USC/ISI ANT project [21]–[23], Edge-IIoTset [24],
IoT Sentinel [25], IoT Network Intrusion Dataset [26], UNSW
IoT traffic traces [27], and UNSW IoT attack traces [28].
See Appendix A for a summary of the 12 datasets we used.
These datasets contain packet captures collected in testbeds
that included real devices, of which are IoT M2M Devices.
Each is available as a set of PCAP files, including DNS
messages sent from and received by the devices.

We filtered the PCAP files and extracted the unique DNS
responses received by each device. Some datasets also con-
tained captures from devices that were not strictly involved

TABLE I: Number of unique domain names after the resolver
test.

Dataset IoT M2M Names Other Names Cisco Tranco

Resolvable 1 417 4 903 896 093 970 644
Unresolvable 1 134 1 477 103 907 29 356

Total 2 551 6 380 1 000 000 1 000 000

in M2M communication, such as desktop PCs, smartphones,
gaming consoles, or smart TVs. We removed the captures of
these devices but used them to construct Other Names (see
below). Finally, we extracted the queried domain names from
the resulting DNS responses. The resulting dataset, which we
called IoT M2M Names, contained 2551 unique domain names.

2) Other Names and Top-visited Websites Lists: The Other
Names list should contain a list of domain names of servers
used by devices not engaging in M2M communication or
which are used by humans directly. We construct Other Names
using traffic from the devices we excluded in the previous
step. In addition, we use two top lists which are used as a
negative class in domain name classification problems [2], [3],
[5], [6]. There are several lists of this kind, each with criteria
for calculating popularity.

The three lists we use are:
• Other Names: While preparing the IoT M2M Names

list, we filtered out the network traffic of devices that
did not conform with our criteria for IoT M2M Devices,
i.e., Other Devices. This allowed us to construct a dataset
of real domain names of servers contacted by such de-
vices. The dataset contained 6380 unique domain names.

• Cisco: The Cisco Umbrella 1 Million [7] is a daily
published list of one million websites. Any domain name
could be included in the list. The ranking of each domain
name is based on the number of unique client IPs that
visited it [7]. The list for our evaluation was gathered on
September 21, 2023.

• Tranco: Tranco [8] is a research-oriented list of one
million domain names. The ranking of each domain name
is based on its average rank over the past 30 days from
four other popular domain name lists [9]. The list for our
evaluation was gathered on September 21, 2023, and thus
covers the period from August 22 to September 20, 2023.

B. Data Sanitization

We conduct a data sanitization process, which includes
several tests to ensure the validity of the domain names in
each list. We perform the following tests:
Resolver Test. For each list of domain names, we try to
resolve an A record for every domain name. We ensure that
domain names that exist but do not have the requested A record
are also counted as resolvable and account for empty non-
terminal nodes. The results of the resolver test are presented
in Table I.
Syntax Check. To ensure that all domain names in our lists
respect the same syntax rules, we use the syntax checking used



TABLE II: Number of unique domain names after the syntax
check.

Dataset IoT M2M Names Other Names Cisco Tranco

Accepted 1 415 4 895 888 297 970 644
Discarded 2 8 7 796 0

Total 1 417 4 903 896 093 970 644

TABLE III: Number of unique domain names after removing
the IoT domain names from the non-IoT datasets.

Dataset Other Names Cisco Tranco

Common with IoT Dataset 979 940 14
Remaining 3 916 887 357 970 630

Total 4 895 888 297 970 644

by Zonemaster [29]. The process starts with a normalization
procedure that replaces all the dots with the regular full stop
of Unicode '\u002E' (or '.' as a character). The next step
removes leading and trailing spaces. Next, a sequence of tests
is conducted.

• Check if the domain name starts with a dot,
• Check if the domain name has consecutive dots,
• Remove trailing dots if found,
• Check if any label in the domain name is longer than

63 characters,
• Check if the total length of the domain name is more

than 253 characters,
• Check if the domain name has only one label,
• Check if any label starts or ends with a hyphen ('-'),

and, finally,
• Check if the domain name has double hyphen ('--') at

positions 3 and 4 without it starting with 'xn'1.
If one of the checks fails, the domain name is discarded.

The results of the syntax check are presented in Table II.
Remove commons. Some domain names from the
IoT M2M Names might appear in Other Names or in the
top lists. Therefore, we remove the common domain names
between IoT M2M Names and the other datasets from the other
datasets. The resulting dataset sizes can be seen in Table III.
Final lists. After data sanitization, we obtain the final lists,
which will be used in the following steps. The final lists can
be seen in Table IV.

C. Statistical Study

We perform a statistical analysis of the domain name lengths
and number of labels in each list, for which the results can be

1i.e., not an Internationalized Domain Name (IDN)

TABLE IV: Number of unique domain names in the final
datasets.

Dataset IoT M2M Names Other Names Cisco Tranco

Domain Names [#] 1 415 3 916 887 357 970 630
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Fig. 2: Violin plots for name properties found for each domain
name in our datasets.

seen in the violin plots in Figure 2. Violin plots are similar
to box plots, showing key statistical properties. However, they
also estimate the probability density function (PDF) as a trace
that forms the “body” of the “violins” around the properties.

The violin plots allow us to easily spot a similarity between
domain names in IoT M2M Names, Other Names, and Cisco
in terms of domain name length and number of labels per
domain. This is due to the way each dataset is constructed.
The three datasets contain domain names as observed in the
DNS requests and are, therefore, more representative.

Tranco, on the other hand, is different from all the other
lists we are using. The average Tranco domain name has fewer
characters and labels than the average domain name from the
other lists. Tranco mainly contains second-level domains in the
form of domain.tld, while IoT M2M Names, Other Names, and
Cisco do not have that limitation.

In addition, we plot the relative frequencies of the top labels
in each list in Figure 3. The four lists have the same top two
labels, which form at least 20% of the total labels in each list.
Moreover, the top labels across all lists are predominantly Top-
Level Domains (TLDs), such as “com”, “net”, and “org”. This
implies that, when constructing an IoT M2M domain name,
little emphasis is placed on selecting specialized IoT-only
TLDs. Instead, the use of regular commercial TLDs seems
a common practice. This indicates that the domain names of
the different lists have, in general, similar TLDs and that the
TLD of a domain name does not give a strong indication about
the type of server that uses it as its domain name. We also see
that the majority of labels—approximately 70%–take less than
or equal to 4% each of the entire set.

The two studies above show that inspecting the length of
a domain name in characters, its number of labels, or its
TLD does not reveal information about whether this domain
name is that of a server that caters to IoT M2M Devices or
Other Devices. In the context of our work, these values do not
seem to be distinctive features to reveal the list the domain
name belongs to. The only exception could be the domain
names from Tranco, which are second-level domains that tend
to have limited number of characters.
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“others”.

D. Word2vec: Real-Valued Vector Representation of Domain
Names

Word2vec expects prose text as input, i.e., in the form of full
documents with connected sentences and ideas where it can be
used to capture the semantic relations. The challenge we face
when using Word2vec with domain names is that these domain
names do not form prose text. Instead, they are individual
labels separated by periods. As such, each domain name is
treated as a sentence, and each label is treated as a word. For
example, iot.backend.org contains three labels and is
transformed to “iot”, “backend”, and “org”. Another challenge
is the limited size of domain names, which results in limited
context and explains our choice of a window size of 3. After the
Word2vec algorithm is done, we obtain a real-valued vector
representation of each label. The dimensions of each vector
are set in advance. Before applying Word2vec, and to have
a consistent dataset in terms of size for training the machine
learning models, we pad the domain names by adding '*' as
a dummy label on the left of each domain name. The longest
domain name in our lists has 38 labels, so we pad all the
domain names to have 40 labels.

The parameters we used are as follows:

• Padding: To each domain name, we added '*' on the
left. Each '*' was treated as a dummy label (i.e., a
word), and they were added until all the domain names
were of length 40 labels (words).

• Word2vec: We used CBOW (Continuous Bag-of-Words
Model) with a window size of 3.

• Vectors: Each word was represented by a vector ∈ R32.

This vector representation can then be used to map each
domain name to a 32×40 real-valued vector (∈ R32×40). The
Word2vec process is depicted in Figure 4.

IV. RESULTS: DOMAIN NAME CLASSIFICATION

We train six machine learning models to classify
IoT M2M Names, and Other Names, Cisco and Tranco domain
names. We use the following models and refer to them using
the acronyms in parentheses: Naı̈ve Bayes (NB), Logistic Re-
gression (LR), K-Nearest Neighbors (KNN), Support Vec-
tor Machine (SVM), Decision Tree (DT), and Random For-
est (RF).

Text Corpus

∗ . . . name tld

∗ . . . sub example com

∗ . . . domain name tld

...

...

Domain name (= sentence)
padded to 40 labels (= words)

∗ 7→ a⃗

com 7→ b⃗
example 7→ c⃗

...
sub 7→ y⃗
tld 7→ z⃗

...

Word2vec Model

Word2vec

vector_size=32
window_size=3

(Train model){
a⃗, b⃗, c⃗, . . . , y⃗, z⃗, ...

}
⊆ R32

(a) Step 1: Generate Word2vec model as label to real-valued vector
mapping.

ML Models

Text
Corpus

[
a⃗, a⃗, . . . , k⃗, z⃗

]
...[

a⃗, a⃗, . . . , y⃗, c⃗, b⃗
]

...[
a⃗, a⃗, . . . , e⃗, k⃗, b⃗

]

Input Vectors
(
⊆ R32×40

)
∗ 7→ a⃗

com 7→ b⃗
example 7→ c⃗

...
sub 7→ y⃗
tld 7→ z⃗

...

Word2vec Model

NB

LR...
DT

RF

(b) Step 2: Use Word2vec model to generate input for machine
learning models from text corpus.

Fig. 4: Word embedding: After prepending '*' to each
domain name until it has 40 labels, Word2vec is used to
generate a real-valued vector representation of 32 × 40 real
numbers of each domain name.

After the sanitization process, IoT M2M Names contains
1415 domain names. From Other Names, Cisco, and Tranco,
we then pick 1415 domain names individually. We also
create an additional list of 1415 domain names by uniformly
sampling a Mix of Other Names, Cisco, and Tranco.

We select the 1415 domain names from Other Names,
Cisco, and Tranco in two ways:

• We take the top 1415 domain names or
• randomly choose them, uniformly distributed, from the

whole list.

After selecting 1415 domain names from each list, the
domain names are labeled accordingly, and a combined list is
constructed. The combined list is then processed via Word2vec
to obtain the real-valued vector representation of each domain
name. These real-valued vectors are used to train the machine
learning models. The models are trained as binary classifiers
between two classes, namely IoT M2M Names and Other



domain names where Other domain names belong to either
one of Other Names, Cisco, or Tranco, or a Mix of them. To
evaluate the performance of each of the models, we calculate
the resulting accuracy, precision, recall, and the F1 score in
subsection IV-A. Moreover, we perform in subsection IV-B
cross-validation to assess the robustness of the models and
their ability to generalize to unseen data. Lastly, we perform
in subsection IV-C an ablation test to analyze the impact of
the different labels of the domain names on the performance
of the models.

A. Performance Evaluation

In this section, we present our results after training several
machine learning models to classify between IoT M2M Names
and Other domain names. In each scenario, each list was
processed with Word2vec to obtain the real-valued vector
representation of each domain name of size 32× 40. We used
an 80-20 train-test split.

We train the machine learning models NB, LR, KNN, SVM,
DT, and RF. For each model, we calculate four parameters:
Accuracy, precision, recall, and the F1 score. We first calculate
the confusion matrix to identify true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN).
The values for our parameters are then produced using the
following formulas:

Accuracy =
TP + TN

TP+ TN+ FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 =
2

1
Precision + 1

Recall

=
TP

TP + FN+FP
2

(4)

Accuracy measures the ratio of positive predictions (TP and
TN) to all the predictions made by the model, see Equation 1.
Precision measures the ratio of true positive predictions (TP)
to all the positive predictions (TP and FP) made by the model,
see Equation 2. Recall measures the ratio of true positive
predictions (TP) to all the actual positive instances in the
dataset (TP and FN), see Equation 3. Finally, the F1 score is
the harmonic mean of precision and recall, see Equation 4.

The results for using the top 1415 domain names can be
seen in Figure 5. For the random selection of domain names,
see Figure 7.

1) Results when using top domain names from
Other Names, Cisco, and Tranco: The results of training the
models using the top 1415 domain names from Other Names,
Cisco, and Tranco are presented in Figure 5. Each graph
represents one of the four parameters obtained by the different
models. The six models we trained exhibited the strongest
performance when Tranco was used. The lowest performing
model when Tranco was used was NB, but it still achieved
values greater than 94% for the four parameters, while the rest
achieved values between 98% and 100% for the four parame-
ters. The lowest-performing model, regardless if Other Names,

Cisco Other Names Tranco Mix

NB LR KNN SVM DT RF
Machine Learning Model

0

20

40

60

80

100

A
c
c
u
ra

c
y

[%
]

6
5
.5

%

7
4
.6

%

8
2
.2

%

6
7
.8

%

8
3
.0

%

8
4
.8

%

6
8
.7

%

7
4
.9

%

8
3
.6

%

7
3
.3

%

8
1
.1

%

8
5
.3

%

9
6
.5

%

9
9
.5

%

9
9
.5

%

9
9
.1

%

9
9
.1

%

9
9
.5

%

8
0
.7

%

8
1
.3

%

8
7
.1

%

8
0
.7

%

8
8
.3

%

8
7
.5

%

(a) Accuracy.

NB LR KNN SVM DT RF
Machine Learning Model

0

20

40

60

80

100

P
re

c
is

io
n

[%
]

6
9
.4

%

7
3
.1

%

8
1
.6

%

6
6
.1

% 8
4
.6

%

8
4
.9

%

6
1
.4

%

6
9
.9

%

8
2
.9

%

6
6
.8

%

7
9
.0

%

8
3
.0

%

9
4
.1

%

1
0
0
.0

%

1
0
0
.0

%

9
9
.3

%

9
9
.3

%

1
0
0
.0

%

7
3
.2

%

7
4
.1

%

8
6
.2

%

7
3
.1

% 8
9
.1

%

8
1
.8

%

(b) Precision.

NB LR KNN SVM DT RF
Machine Learning Model

0

20

40

60

80

100

R
e
c
a
ll

[%
]

5
4
.3

% 7
6
.8

%

8
2
.5

%

7
1
.8

%

8
0
.4

%

8
4
.3

%

9
9
.6

%

8
6
.8

%

8
4
.3

%

9
2
.2

%

8
4
.3

%

8
8
.6

%

9
8
.9

%

9
8
.9

%

9
8
.9

%

9
8
.9

%

9
8
.9

%

9
8
.9

%

9
7
.9

%

9
7
.2

%

8
8
.9

%

9
8
.3

%

8
7
.8

%

9
6
.9

%

(c) Recall.

NB LR KNN SVM DT RF
Machine Learning Model

0

20

40

60

80

100

F
1

[%
]

6
0
.9

%

7
4
.9

%

8
2
.1

%

6
8
.8

%

8
2
.4

%

8
4
.6

%

7
6
.0

%

7
7
.5

%

8
3
.6

%

7
7
.4

%

8
1
.6

%

8
5
.7

%

9
6
.4

%

9
9
.4

%

9
9
.4

%

9
9
.1

%

9
9
.1

%

9
9
.4

%

8
3
.8

%

8
4
.1

%

8
7
.5

%

8
3
.9

%

8
8
.5

%

8
8
.7

%

(d) F1 score.

Fig. 5: Accuracy, precision, recall, and F1 score of each ML
model for the top 1415 domain names from Other Names,
Cisco, and Tranco, plus a uniformly sampled Mix of 1415
domain names from the three lists, each vs. the 1415 domain
names from IoT M2M Names.
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Fig. 6: Receiver Operation Characteristic (ROC) Curves for
the top 1415 domain names from Other Names. The Area
Under the Curve (AUC) is provided in the legend.

Cisco, or Tranco was used, is NB. NB achieved values below
70% for the four parameters when Cisco was used and low
accuracy, precision, and F1 scores when Other Names and
Mix were used. NB, however, achieved high recall values of
values > 97.9% when Other Names, Tranco and Mix were
used. The best-performing overall model with all the lists is
RF. RF achieved close to 99% for the four parameters when
Tranco was used. Moreover, RF achieved slightly lower values
for the four parameters for the rest of the lists, achieving values
between 87% and 92% for the four parameters with Cisco and
Mix. Even lower values were achieved for the four parameters
when Other Names was used with values ranging between
79.3% and 82%. The performance of the models is also
visualized in Figure 6, which shows the Receiver Operating
Characteristic (ROC) curves plotted for every model when
Other Names is used. ROC curves show the performance of the
models at different classification thresholds. A comparison can
be done between the performances of the models by comparing
the Area Under the Curve (AUC) of each one. In our case,
the ROC curves in Figure 6 further show the superiority of RF
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Fig. 7: Average accuracy, precision, recall and F1 score of each
ML model for 20 random picks of 1415 domain names from
Other Names, Cisco, and Tranco, plus a uniformly sampled
Mix of 1415 domain names from the three lists, each vs. the
1415 IoT domain names.

compared to the other models where its AUC = 0.93. NB, as
expected from the previous measurements, has the lowest AUC
of 0.69 and, therefore, has the lowest performance between the
six models.

2) Results when using random domain names from
Other Names, Cisco, and Tranco: The results of training
the models when using random 1415 domain names from
Other Names, Cisco, and Tranco are presented in Figure 7.
Each graph represents one of the four parameters obtained by
the different models. We trained the six models by randomly
choosing 1415 domain names from each list to generalize
our results further. This is particularly interesting when using
Cisco and Tranco, each containing close to 1 million domain
names. For each list, 100 random picks of 1415 domain names
were made, and the results presented are the average of each
of the four parameters over the 100 random picks.

The results over the 100 random picks are consistent with
the previous results obtained when using the top domain names
of Other Names, Cisco, and Tranco. The models performed
best when Tranco was used, with NB having the lowest
performance and the rest of the models achieving values
> 98% for the four parameters. The lowest performing model,
regardless of the list used is still NB, particularly when Cisco
is used as a non-IoT dataset where it achieved values in the
order of 60% for the four parameters. NB, however, achieved
high recall values of values > 82.3% when the lists other than
Cisco were used. The best-performing model, regardless of the
list used is still RF. RF achieved values in the order of 99%
for the four parameters when Tranco was used and had the
lowest performance when Other Names was used with values
in the order of 80% for the four parameters.

B. Cross Validation

We use cross-validation to assess the robustness of our
models and their ability to generalize to unseen data. When
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Fig. 8: Mean (colored bars) and standard deviation (error
bars) of accuracy, precision, recall and F1 score of the ML
models over five folds for the top 1415 domain names from
Other Names, Cisco, and Tranco, plus a uniformly sampled
Mix of 1415 domain names from the three lists, vs. the 1415
IoT domain names.

assessing a model using cross-validation, the dataset contain-
ing all the classes is divided into K folds or subsets, and the
model is trained K times. During every training instance, one
of the K folds is used as a testing dataset, while the remaining
K − 1 are used for training. We use Stratified K-fold cross-
validation to ensure that the distribution of classes in the folds
is similar to their distribution in the original dataset. Given the
size of the IoT M2M Names list, we used K = 5 to ensure that
each fold contains enough entries to provide a reliable estimate
of performance. K = 5 allows each model to be trained five
times. From Other Names, Cisco, and Tranco, we choose the
top 1415 domain names, which are added to the 1415 domain
names of IoT M2M Names. We show the results in Figure 8
as averages and standard deviation values of the evaluation
parameters over the five folds.

The colored bars in Figure 8 represent the mean of the four
parameters over the five folds, and the error bars at the top of
each colored bar represent the standard deviation. We notice
that the means of the four parameters over the five folds are
consistent with the results from the performance evaluation
we performed in Section IV-A while having a low standard
deviation which indicates that the models are stable across the
folds and that they are likely to generalize well to unseen data.

C. Ablation Test

An ablation test includes removing elements from the ML
model or suppressing a subset of the features to study the
effect they might have on the performance. We perform the
ablation test by removing one label at a time by replacing
the 32-dimensional vector representing the label with zeros.
We perform 40 training and testing sessions, ablating one
label in both the training and the testing datasets every time,
training, and finally evaluating the models. The results for
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Fig. 9: Ablation Test with Random Forest (RF).

RF when used with Other Names and Cisco are presented
in Figures 9a and 9b.

The stable performance observed when ablating the dummy
labels ('*') demonstrate that the padding we added to the left
of each domain name held no information and did not alter the
performance of the models. The second-to-last label, which is
the second-level domain (label 39), seems to have the highest
impact on the performance as the values drastically dropped
in both figures. For example, the accuracy and precision in
Figure 9b dropped by around 15 and 25 percent, respectively.
When the last label—the TLD of the domain name (label
40)—was ablated, however, values of the parameters did not
experience the same drastic decrease, and the effect of ablating
label 40 seemed equivalent to ablating the dummy labels. This
shows that the second-level domain of a domain name is the
most indicative of its class, while other labels including the
TLD do not provide information about it. This is consistent
with the results obtained in Figure 3, which showed that the
TLDs are common between all the lists of domain names.
Therefore, they are not distinctive about the class of the
domain name.

V. DISCUSSION

The size of IoT M2M Names.
Despite the large amounts of raw data we started with, the

size of IoT M2M Names remained relatively comparatively
modest after removing duplicates and sanitizing the data. This
is primarily due to the scope of our study which covers IoT
devices that engage in M2M communications. Such devices
exhibit limitations in their functionalities compared to IoT
devices that are not strictly M2M which explains the low
number of servers on the Internet these devices contact. Hence,
we noticed a low number of frequently contacted servers in
contrast to numerous servers that are less regularly or rarely
contacted.
Usage and limitations of top-lists. We used 2 known top-
lists, namely Cisco and Tranco, to evaluate the validity of
using such lists as negative class in contexts similar to ours.
We noticed that Tranco is the least valuable between the two as
the majority of domains in it are second-level domains which
does not reflect how domain names actually appear in DNS
traffic. Cisco, on the other hand, is suitable as the entries in it
are not limited to second-level domains and are included in the
list as seen in DNS traffic. Cisco also resembles the domain

names in IoT M2M Names and Other Names statistically.
The difference between Cisco and Tranco was most visible
when training and testing the machine learning models. Tranco
is easily distinguishable and so the models almost achieved
perfect scores with it. The performance was different with
Cisco which achieved a lower performance, but one which is
comparable to when Other Names, the list that contains real
domain names from real devices, was used. Cisco seems to
be the better option to be used as a negative class in domain
name classification problems with similar contexts.
Better sources of data. The domain names we used in this
work, namely IoT M2M Names and Other Names, were ex-
tracted from packet captures of testbeds that had real devices.
A better data source would undoubtedly require larger, more
diverse, testbeds that have more devices conforming with our
criteria for IoT M2M Devices. On the other hand, changing
the scope to include devices other than strictly M2M ones,
e.g., smart TVs, would certainly enlarge and diversify the list
of domain names.

VI. RELATED WORK

The Identification of IoT devices is a popular topic in IoT
research, primarily relying on machine learning techniques to
accurately distinguish various features of IoT devices. The
IoTFinder study [17] devised a multi-label classifier using ma-
chine learning techniques to identify IoT devices, generating a
statistical fingerprint for each device using DNS traffic traces.
The work in [25] presented a machine-learning-based model
to identify the types of IoT devices connecting to a network
and enforce security rules in vulnerable ones. The authors
in [27] suggested a multi-stage machine learning classifier to
identify IoT devices based on their network activity. The work
in [30] evaluated four machine-learning-based approaches of
IoT devices identification, concluding the need to retrain
the models to avoid a performance drop. The work in [31]
suggested an enhanced deep learning framework to identify
IoT devices.

Domain name classification using machine learning, on the
other hand, is also a recurring focus within research to detect,
for example, phishing and DGA-generated domain names. The
works in [1], [32] are recent systematic literature reviews about
using Deep Learning (DL) techniques for phishing detection.
The work in [13] suggests using DL techniques to detect
phishing websites but using raw domain names and applying
embedding to each character, conclude that using raw domain
names is computationally less expensive than other techniques.
The work in [14] also deals with raw URL data in what is
referred to as a lightweight URL-based phishing detection
and uses supervised machine learning techniques to extract
features. The authors in [6] use supervised machine learning
to detect phishing URLs based on features extracted from
the URL, such as the hostname, full URL, and the Term
Frequency-Inverse Document Frequency (TF-IDF), achieving
an accuracy of up to 94%. The authors in [2] and [3] use
Long Short-Term Memory (LSTM) networks to detect domain
names generated by DGAs. Other techniques include using



Generative Adversarial Networks [33], full-convolutional sys-
tems [5], and semi-supervised learning [34].

VII. CONCLUSION AND OUTLOOK

In this paper, we studied the properties of domain names
of servers contacted by IoT M2M Devices and trained several
machine learning models to classify between IoT M2M Names
and Other Names. We collected 12 public lists of domain
names using past studies and two top lists, Cisco and Tranco.
Our results showed that solely relying on the statistical prop-
erties of domain names does not indicate its type. We also
observed that the TLDs of IoT M2M Names are common
with Other Names and, therefore, are not indicative of their
class. The machine learning models we trained, on the other
hand, were successful in classifying IoT M2M Names and
Other Names, with Random Forest having the best (overall)
performance.

Looking forward, we aim to increase the size of the IoT
dataset either by adding datasets from future works that have
testbeds of real IoT devices or by setting up our own testbed.
In addition, we aim to train our models against lists of known
malicious domain names and domain names generated by
DGAs to enhance the security aspect of our classifier. Future
work may also include applying different word embedding
techniques and feature extraction methods.
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APPENDIX A
THE 12 DATASETS USED TO CONSTRUCT THE

IOT M2M NAMES LIST

We used 12 datasets from previous works to con-
struct IoT M2M Names. The datasets are: IoTFinder [17],
YourThings [18], MonIoTr [19], IoTLS [20], three datasets
from the USC/ISI ANT project [21]–[23], Edge-IIoTset [24],
IoT Sentinel [25], IoT Network Intrusion Dataset [26], UNSW
IoT traffic traces [27], and UNSW IoT attack traces [28].
Below is a summary of each one:

• IoTFinder [17]: IoTFinder is a multi-label classifier for
detecting IoT devices by studying passively collected
DNS traffic. The testbed contained 65 IoT devices. The
data were collected between August 1, 2019, and Septem-
ber 30, 2019.

• YourThings [18]: A study of home-based IoT devices to
assess their security properties. The testbed contained 65
IoT devices. The data were collected between April 10
and April 19, 2018.

• MonIoTr [19]: A study of information exposed in the
traffic of consumer IoT devices. The testbed contained 81
IoT devices. The data were collected between March 28
and May 8, 2019, as well as on September 1, 2019.

• IoTLS [20]: A study about the use of TLS in con-
sumer IoT devices. The testbed contained 40 IoT de-
vices. The data were collected between January 2018 and
March 2020.

• USC/ISI ANT project [21]–[23]: The ANT Lab is an
Internet research group at the University of Southern Cali-
fornia (USC) that has published several datasets related to
various network topics e.g., traffic, outage, and DNS. We
used three datasets from the USC/ISI ANT project. Two
datasets contain the bootup traces of 6 and 11 IoT devices,
respectively. The third dataset contains traffic observed in
a network of 14 IoT devices over a period of 10 days.

• Edge-IIoTset [24]: An IoT traffic dataset that includes
benign and attack traffic. The testbed contained 13 real
IoT devices. The benign traffic, which we used in this
paper, was collected between November 21, 2021, and
January 10, 2022.

• IoT SENTINEL [25]: IoT SENTINEL is a security
system that identifies devices present in the network and
monitors traffic from vulnerable ones. The testbed con-
tained 31 real IoT devices, and the traffic was collected
during the setup of each device.

• IoT Network Intrusion Dataset [26]: An IoT traffic
dataset that includes benign and attack traffic. The testbed

contained two real IoT devices. We used the benign traffic
in this paper.

• UNSW IoT traffic traces [27]: A study about classi-
fication of IoT devices in Smart Home environments.
The testbed contained 28 IoT devices, and the traffic was
collected between October 2016 and April 2017.

• UNSW IoT attack traces [28]: A study about detecting
volumetric attacks against IoT devices and the dataset
includes benign and attack traffic. The testbed contained
10 IoT devices, and the traffic was collected for 16 days.

Ethical Considerations. This work does not raise any ethical
issues.
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