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ABSTRACT

This paper introduces a novel method utilizing speech-
based digital assistants and large language models
(LLMs) to streamline the creation of simulation mod-
els for Job Shop Scheduling Problems (JSSP). The
system simplifies the process by allowing natural lan-
guage interactions for ontology-based model gener-
ation. The study evaluates the performance of vari-
ous LLMs in ontology-based simulation modeling by
benchmarking their ability to extract and assign seman-
tical entities and relations. We found that ChatGPT-4-
Turbo is able to correctly identify all model elements
given in descriptions of the production scenarios we
tested, while less resource-intensive and open source
models like Mixtral-8x7b and Zephyr-beta perform
well in a less complex scenario. The findings demon-
strate the potential of integrating LLMs and natural
language processing in simulation modeling, signifi-
cantly enhancing efficiency and reducing the need for
manual modeling.

INTRODUCTION

The JSSP as a classical optimization problem from the
field of production planning is a widely studied area of
research. The aim is to determine the optimal sequence
in which the orders are to be processed on the ma-
chines in order to optimize various target parameters.
These include various time- and cost-based, human-
and environment-centered parameters (Destouet et al.,
2023). The development of an adequate simulation
model is often complex and time-consuming and re-
quires specially qualified staff or external experts. In
particular, the modeling of different scenarios often
involves a large amount of manual work (Agalianos
et al., 2020). Destouet et al. (2023) emphasize the
need for quickly adaptable simulation models in pro-
duction systems in order to incorporate unforeseen de-
viations and thus increase the resilience of the overall

production process. Especially in brownfield applica-
tions there is no homogeneous, digital infrastructure
for automatically generating or updating the simula-
tion models, so that the information needed has to
be inserted manually. To reduce complexity, merge
heterogeneous data and quickly adjust model param-
eters, Xiaochen Zheng and Kiritsis (2022) and May
et al. (2022) recommend the use of semantic data struc-
tures such as knowledge graphs and ontologies, which
serve as the foundation for digital twins of production
systems. However, Khadir et al. (2021) argue that on-
tology creation is “time-consuming, error-prone and
the maintenance is laborious” and refer to the methods
of “ontology learning”, which deal with the automatic
creation of ontologies using various data sources. In
order to minimize the effort required to create and
maintain production simulation models and the un-
derlying ontology, we investigate the suitability of a
speech-based digital assistant for creating a job shop
simulation in this paper. For this purpose, we present
a new method based on LLMs to formalize the natu-
ral language input into a job shop ontology, which is
validated and fed into a simulation tool.

BACKGROUND

Simulation modeling involves domain experts and sim-
ulation experts. While the former can articulate the
inner workings of real-world systems, the latter de-
velops a conceptual model from this knowledge and
translates it into a simulation model. While this syn-
ergy aims to replicate and analyze real systems within
simulated environments accurately, it is not only time
and resource-intensive, but also a recurrent task due
to the iterative nature of the simulation modell devel-
opment process (see Fig. 1). Integrating LLM-based
voice assistants to streamline and enhance this process
through natural language interactions could reduce
the effort required in the model development phase of
a simulation study, enabling faster model validation
cycles and thus faster simulation studies.

The use of voice-based digital assistants in the pro-
duction environment is a growing field of research
(Ludwig et al., 2023). The intuitive, flexible use and
the high information density of natural language make
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Figure 1: The modelling process as part of the steps
needed to conduct a simulation study according to
Banks (2010, p. 15).

the potential of a voice assistant obvious. The em-
ployee can move around the store floor and, in dialog
with the digital assistant, describe the structure that
he or she sees in real life, significantly reducing the
abstractness of the model description. LLMs, such
as ChatGPT or Mixtral-8x7b (Jiang et al., 2024), al-
low the comprehensive evaluation of the content of
language input, making it possible to evaluate and for-
malize complex system descriptions. Automatically
enriched text inputs (so-called “prompts”) incorpo-
rate already defined entities from the ontology into
the context of the employee’s speech input, so that
the application focus is predetermined. The syner-
getic combination of LLMs and semantic knowledge
structures combines the respective advantages and pro-
vides a data structure that can be further processed by
other system components. In this way, the language
understanding and generalizability of the LLMs are
combined with the clearly defined form, visibility and
extensibility of semantical data structures (Pan et al.,
2024).

We connect the research field “Ontology-based Pro-
duction Simulation” for the integration of ontologies
into simulation models with the field of “Ontology
Learning”, to create and extend ontologies automati-
cally (e.g. based on text input) using the Web Ontology
Language (OWL).

Ontology-based Production Simulation

The use of ontologies as a basis for setting up and
operating production simulation systems offers poten-

tial in terms of flexibility, transferability, reusability
and expressiveness. Salman Saeidlou and Jules (2019)
show a multi-agent job store scheduling system that
validates and exchanges information between differ-
ent system components through a manually created
ontological data structure. Zhu et al. (2019) also show
the potential of a semantic graph for modeling a JSSP
with regard to the definition of simulation-relevant en-
tities and restrictions. May et al. (2022) synchronize
the states of the simulation model with the stored on-
tology and thus enable the replicability of individual
situations in order to use them to simulate different
scenarios. Serrano-Ruiz et al. (2022) point out the
advantage of creating a clear terminology with the
help of ontologies in an industrial context and use the
flexibility to model faults in the simulation model.

Ontology Learning

In order to exploit the aforementioned advantages of
using ontologies to address the JSSP, but with minimal
manual modeling effort and improved accessibility,
we use ontology learning methods for an automatic,
dialog-like construction of the simulation models. The
automatic generation and population of ontologies has
been studied for decades (Wong et al., 2012). Khadir
et al. (2021) distinguish between two main approaches:
Linguistic and statistical approaches and Machine
learning approaches. In the former method, statis-
tical and stochastic models are combined with lin-
guistic properties. This includes common methods,
such as term frequency-inverse document frequency
to assess the importance of individual words, or the
use of lexico-syntactic patterns to analyze sentence
structures. The second approach builds on this and
uses machine learning methods to accurately evaluate
language. These include modern transformer-based
deep learning models that are suitable for creating
semantic graphs, such as generalized models like GPT-
3 (Brown et al., 2020) and specialized models like
REBEL (Huguet Cabot and Navigli, 2021). Further
studies show the potential of LLMs for generating
semantic graphs, although for other contexts (Bellan
et al., 2023). Trajanoska et al. (2023) show the advan-
tage of generalized over specialized language models,
as these also take implicitly expressed information into
account in the modeling. For this reason, we decide to
use generalized LLMs and compare them in terms of
ontological modeling abilities using natural language
input.

Web Ontology Language

We use OWL as the semantic data structure, as it pro-
vides well-defined entities and relationship types as
well as restriction definitions (W3C, 2004). Due to the
widespread use of OWL, we assume that the concepts
occur extensively in the training data of the LLMs.
Therefore simple prompting instructions are sufficient
for extracting OWL entities and relations from the nat-
ural language input. Formally, an OWL ontology O



consists of the following concepts:

O = (TBox,ABox)

where

TBox = (C,RO, RD, A)

ABox = (I,RO,A, RD,A)

The Terminological Box (TBox) contains the concepts
of the domain and specifies description rules. C is a
set of classes that represent the concepts of entities
(e.g. Machine, Job, Task). RO is a set of object prop-
erties that describe relations between entities (e.g. Job
has Task). RD are relations that assign attributes to
entities (e.g. Task hasDuration integer). A are axioms
for creating constraints (e.g. a Job has at least one
Task) and can be evaluated with the help of reasoning
algorithms.

The Assertional Box (ABox) contains the concrete
individuals I (e.g. “Drilling Machine 2000”) and their
assertions RO,A and RD,A , which refer to the con-
cepts of C, RO and RD of the TBox.

METHOD

We present a new method for language-based creation
of simulation models that combines the capabilities of
LLMs with those of ontologies. This involves going
through four different stages for the iterative enrich-
ment and validation of a given simulation ontology,
which serves as the basis for the simulation application
(see Fig. 2). We describe the individual components
in more detail below:

Dialog Handling

The dialog handling module is the dialog interface for
the employee. It translates the voice input into text
and uses synthesized voice output to ask questions if
information is unclear or missing. We use Whisper
(Radford et al., 2023) as a speech-to-text converter, the
SpeechSynthesis-Web API (MozDevNet, 2023) gener-
ates the speech output.

Entity And Relation Extraction

The extraction of OWL elements is a central compo-
nent of the overall system. Based on the input text
and the existing ontology content, the system creates
prompts that contain instructions for extracting and
classifying spoken information. Simon et al. (2023)
has already shown the basic suitability for formaliz-
ing data based on text sources using the example of
ChatGPT3. However, since there is a wide range of
LLMs that have various advantages and disadvantages
(in terms of cost, availability, resource requirements,
data protection, etc.), we compare various models in
the evaluation chapter with regard to their performance
in entity and relation extraction. We use an ontology
reasoner to infer types of individuals that only occur in
data property assertions or object property assertions
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Figure 2: Structure of the system

in the extraction step, but are not explicitly assigned
by the LLM.

Entity And Relation Validation

The third step checks the extracted entities and rela-
tions for completeness and plausibility. For this pur-
pose, we again use an ontology reasoner that performs
the validation based on constraints previously defined
in the TBox. If contradictions or missing information
are detected, the dialog module is notified, which al-
gorithmically formulates queries and sends them to
the employee. For example, the ontology specifies
that each machine group must consist of at least one
machine by using a cardinality restriction. If the em-
ployee declares a new machine group to be simulated
but forgets to enter the specific machine, the reasoner
recognizes the invalid restriction and the system specif-
ically asks for the missing information to be added.

Ontology Population

The final processing step inserts the complete, valid
entities and relations into the ontology ABox (“popula-
tion”). This includes the detection and correct filtering
of duplicated data.



Inferring Model Parameters

Based on the knowledge stored in the ontology, this
step extracts relevant entities and relations and map
them to the expected input data of the simulation ap-
plication. This can include the modeled systems con-
figuration, its state and its order backlog as provided
by the speech input. For our evaluation, we set up a
JSSP model using the Python-based discrete-evemt-
simulation framework salabim (van der Ham, 2018)
as an example of a simulation software.

EVALUATION

The use of LLMs plays a decisive role in the function-
ality of the overall system. However, especially in an
industrial context, organizational and technical frame-
work conditions must be taken into account, which
may exclude the use of certain models. We have se-
lected 7 different LLMs: openAI’s ChatGPT4-turbo
and ChatGPT3.5 as well as Alphabet’s Gemini Pro
are LLMs with a very large number of parameters and
are only available via the providers’ cloud systems.
As the description of the production system and it’s
production processes involves sensitive company data,
compatibility with the company’s data protection regu-
lations must be considered. ChatGPT4-turbo currently
leads the MT-Bench score and the MMLU score and
is therefore considered the most powerful LLM avail-
able (as of january 2024). Llama-2 70b from Meta
and Mixtral-8x7b from Mistral AI are freely avail-
able. However, due to their size, they require powerful
workstations to operate, which may result in additional
initial acquisition and operating costs. We decided to
use CodeLlama 34B instruct as a model tuned for cod-
ing tasks in order to evaluate the performance of OWL
modeling. Zephyr-beta as fine tuned version of Mistral
AI’s Mistral 7B is the smallest tested model and is able
to run on common personal computer systems.

We evaluate two simulation scenarios S1 and S2
with different sizes and compare the performance of
each model measuring correctly extracted and assigned
OWL entities and relations by calculating Precision
and Recall. To minimize the randomness of the output
and thus obtain repeatable results, we set the param-
eter temperature and the parameter Top-p-value to 0
for all models. The prompt input initially consists of
the instruction to extract individuals, data property as-
sertions and object property assertions based on the
(previously spoken) text in the context of a production
simulation. Element labels should be formulated in the
singular. All existing classes, individuals, data proper-
ties and object properties from the simulation ontology
are specified, with the note that not all of them have to
be included. All experiments are conducted in English.

S1 describes a production system with a lathe and
a drilling machine, with three jobs with respective
duedates, to which 4 tasks with respective durations
are assigned. This results in 9 individuals, 7 data
property assertions and 8 object property assertions.
S2 contains two machine parks, one with 2 turning

machines and one with 2 drilling machines. There
are 5 orders with respective due dates, which include
7 tasks with respective durations. This leads to 18
individuals, 11 data property assertions and 18 object
property assertions that need to be extracted. The full
speech input in S2 reads as follows:

“Our production system consists of two ma-
chine groups, the drilling machines and the
milling machines. There are two milling
machines and two drilling machines. There
are five production orders consisting of pro-
duction tasks. The “series drilling” order
must be drilled for half an hour. The order
for the Hansens company must be milled
for 2 hours. The “cuboid” order must first
be milled for 1 hour and then drilled for an-
other 20 minutes. The order from the hous-
ing construction department must be drilled
for 10 minutes. The hold-downs must first
be milled for half an hour and then drilled
for another half an hour. The order for the
Hanses company is particularly important,
it has to be finished in 4 hours. The or-
ders of cuboids, series drilling and housing
construction should leave our production in
eight hours. The hold-down devices have
until 16 hours.”

ChatGPT-4 is the only model that performs flaw-
lessly in both scenarios and shows a human-like on-
tology modeling performance, choosing meaningful,
self-explanatory labels for the elements. Zephyr as
the smallest model extracts almost all concepts in a
meaningful way and beats significantly larger models.

We evaluate two metrics for individuals. The Detec-
tion measurement describes the number of correctly
recognized individuals, Assignment indicates the cor-
rect type assignment of the correctly detected individu-
als. The “implicit” detection defines the identification
of individuals based on assigned data property asser-
tions or object property assertions using predefines
domain or range definitions. In the case of data prop-
erty assertions, Detection also indicates all correctly
recognized relations; the measurement of the respec-
tive correctness of the Subject and the Value relates
to correctly recognized data property assertions. Sim-
ilarly, we apply the same metric to the specification
of correctly extracted object property statements, mea-
suring the assignment of the correct Object instead
of the Value according to the OWL specification. We
calculate the arithmetic mean to summarize Precision
(“Prec.”) and Recall (“Rec.”) for each model in both
scenarios.

Table 1 shows the different extraction performances
of the models for both scenarios. We have listed the
respective model size in parameters under the model
name. In general, we found no correlation between
model size and modeling performance. Most models
perform better in the less complex S1. The average
precision of the analyzed LLMs for S1 is 0.97, the
recall is 0.94.



Table 1: Comparison of text-to-owl generation of different LLMs.

ChatGPT4-
turbo

Gemini Pro ChatGPT3.5 Llama-2 70b Mixtral-
8x7b

CodeLlama
34B instruct

Zephyr-beta

1.76 TM 600 B 175 B 70 B 46.7 BM 34 B 7 B
Prec. Rec. Prec. Rec. Prec. Rec Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

Sc
en

ar
io

S1

I Explicit Detection 1 1 1 1 1 1 1 1 1 1 1 0.56 1 1
Implicit Detection - - - - - - - - - - 1 0.44 - -
Assignment 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RD,A Detection 1 1 1 1 1 1 1 0.85 1 0.71 1 1 1 0.85
Subject 1 1 0.43 0.43 0.43 0.43 1 1 0.6 0.6 1 1 1 1
Value 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RO,A Detection 1 1 1 1 1 1 1 0.88 1 0.5 1 0.5 1 0.88
Subject 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Object 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Average 1 1 0.93 0.93 0.93 0.93 1 0.97 0.95 0.85 1 0.94 1 0.97

Sc
en

ar
io

S2

I Explicit Detection 1 1 1 0.39 1 0.39 0.88 0.39 1 0.61 1 0.39 0.5 0.5
Implicit Detection - - 1 0.61 1 0.61 - - 1 0.39 1 0.22 - -
Assignment 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RD,A Detection 1 1 1 1 1 1 0.83 0.45 0.91 0.91 0.83 0.45 1 0.36
Subject 1 1 1 0.82 0.45 0.45 0 0 0.5 0.5 1 1 1 1
Value 1 1 0.82 0.78 0.85 1 0.8 0.8 0.8 0.8 1 1 0.25 0.25

RO,A Detection 1 1 1 1 1 1 0.29 0.11 1 0.94 1 0.61 0.27 0.17
Subject 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Object 1 1 1 1 1 1 1 1 1 1 0.36 0.36 1 1

Average 1 1 0.98 0.95 0.91 0.93 0.72 0.59 0.9 0.89 0.9 0.75 0.75 0.66
MMixed expert model: not all parameters will be used for processing a prompt.
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Figure 3: Precision score of the LLMs for S1 and S2
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Figure 4: Recall score of the LLMs for S1 and S2

Figure 5: Screenshot of the simulation model instanti-
ated by description S2 using the salabim framework

In the more comprehensive S2, CodeLlama 34B
instruct shows that fine-tuning with code brings signifi-
cant advantages in OWL modeling, so that it performs
better than the Llama-2 70b, which shares the same
model architecture but is twice as large. Behind Llama-
2 70b, Zephyr performs worst, hallucinating several
additional entities and relations and choosing abstract
descriptions for the elements (e.g. it uses “job1” in-
stead of “series milling job”). Another problem is the
high precision in finding the subjects in combination
with the low precision of the (apparently) extracted
values of the data property assertions. In this way, the
model extracts relationships that conform to the OWL
TBox, but are incorrect in terms of content, which is
not noticeable during the algorithmic reasoning pro-
cess. Using ChatGPT4-turbo’s output, we are able to
successfully instantiate a simulation model based on
textual input (see fig. 5)



CONCLUSION

In this paper, we combine findings from the research
areas of “Ontology-based Production Simulation” and
“Ontology Learning” and present a flexible digital as-
sistant for the simple construction of production sim-
ulation models based on natural language input. The
evaluation focuses on the extraction step, in which
the ontological data structure is generated from the
spoken text. For this purpose, we compare the perfor-
mance of different LLMs using two production sce-
narios. ChatGPT4-turbo consistently shows error-free
modeling. For less extensive descriptions, significantly
smaller, freely available models also deliver good re-
sults (cf. Zephyr-beta, CodeLlama 34B instruct in
S1).

The generic, ontology-based system architecture
makes it possible to use it for other types of produc-
tion simulations. The integration of additional data
sources is a further object of investigation, so that the
ontology uses existing (company) data to record infor-
mation that is to difficult by using voice input (e.g. the
shopfloor layout). The use of smaller LLMs is desir-
able as they are freely available and allow local execu-
tion due to lower resource consumption. However, as
performance decreases with more extensive scenarios,
large descriptions require a split into smaller parts and
the extracted ontological elements to be subsequently
merged. Furthermore, CodeLlama 34B instruct shows
that fine-tuning on code tasks has a positive effect
on the understanding of OWL modeling. The fine-
tuning of LLMs specifically for OWL modeling tasks
is promising and represents a research gap.
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