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EXOTIC FUSION SYSTEM ON A SUBGROUP OF THE MONSTER

PATRICK SERWENE

Abstract. We prove that an exotic fusion system described by Grazian on a subgroup of the

Monster group is block-exotic, thus proving that exotic and block-exotic fusion systems are the

same for all p-groups with sectional rank 3, where p ≥ 5.

1. Introduction

Consider a prime number p and a finite p-group P . We define a fusion system as a category
where the objects are the subgroups of P , referred to as a category on P , and the morphisms are
injective group homomorphisms between these subgroups, subject to specific conditions. If these
morphisms adhere to two additional axioms, we term the fusion system saturated. For simplicity,
we shall henceforth use the term "fusion system" to mean "saturated fusion system."
Every finite group G gives rise to a fusion system FP (G) on a Sylow p-subgroup P of G, where the
morphisms are defined as conjugation maps induced by a fixed element in G, where they are well-
defined. A fusion system constructed in this manner is termed realizable, while one that cannot be
constructed as such is termed exotic. Let k be an algebraically closed field with characteristic p,
and let b be a block of kG. In this context, we can also define a fusion system on a defect group
P of b by defining the morphisms as well-defined conjugation maps induced by an element in G.
This fusion system is denoted by F(P,eP )(G, b), where (P, eP ) is a maximal b-Brauer pair. Not
every fusion system F can be realized in this way; if it can, we call F block-realizable; otherwise,
it is termed block-exotic. The following fact follows from Brauer’s Third Main Theorem (see
[8, Theorem 3.6]): If G is a finite group and b is the principal p-block of kG, i.e., the block
corresponding to the trivial character, with maximal b-Brauer pair (P, eP ), then P ∈ Sylp(G) and
F(P,eP )(G, b) = FP (G). Hence, any realizable fusion system is block-realizable. However, the
converse remains an open problem and has been conjectured for some time, see [1, Part IV,7.1]
and [3, 9.4]:

Conjecture 1.1. If F is an exotic fusion system, then F is block-exotic.

This conjecture is hard to tackle, since so far it has been mainly proved for one exotic family of
fusion systems at a time, see [7], [3], [9], [10] or [12]. Since block fusion systems "misbehave" with
regards to normal subgroups, a descend to normal subgroups and thus a reduction is not easily
done and requires more general structures, see [9] or [11] for an explanation.
In this paper, we prove Conjecture 1.1 for all fusion systems on p-groups with sectional rank 3,
where p ≥ 5. A group has sectional rank r when any of its subgroups has at most rank r. In [6],
fusion systems on p-groups of sectional rank 3 are studied and if we further assume that p ≥ 5,
Grazian proves in Theorem C that the only options for such a fusion system are either a unique
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exotic system on a group of order 75, or the fusion system of Sp4(p) on its Sylow p-subgroup. The
group of order 75 hosting the exotic fusion system is a maximal subgroup of a Sylow 7-subgroup
of the Monster group. Here we prove that the fusion system is block-exotic too, giving rise to our
main theorem:

Theorem 1.2. Let p ≥ 5 be a prime, P a p-group of sectional rank 3 and F be a fusion system
on P with Op(F) = 1. Then F is exotic if and only if it is block-exotic.

See [1] for details on (block) fusion systems or Section 2 of [10] for a more compact overview of the
terms needed. In the only remaining section we prove our main theorem.

2. Proof of Main Theorem

Fix P to be a maximal subgroup of a Sylow 7-subgroup of the monster. We prove that the exotic
fusion system on P described by Grazian in [6] is block-exotic too. We first reduce the problem to
quasisimple groups and state the reduction theorem we apply. Recall that a fusion system is called
reduction simple, when it has no non-trivial proper strongly F -closed subgroups, i.e. subgroups Q
such that ϕ(R) ≤ Q for all ϕ ∈ Mor(F) defined on R ≤ Q.

Theorem 2.1. [10, Theorem 3.5] Let P be a non-abelian p-group such that Z(P ) is cyclic and
let F be a reduction simple fusion system on P . If F is block-realizable, then there exists a fusion
system F0 on P and a quasisimple group L with an F0-block, where Op(F0) = 1.

Proposition 2.2. Let F be the exotic fusion system on P . If F is block-realizable, it is block-
realizable by the block of a finite quasisimple group.

Proof. Clearly P has cyclic centre. Assume 1 6= N ≤ P is strongly F -closed. In particular N EP ,
which implies Z(P ) ≤ N . Thus, as in the proof of [5, Theorem 4.3.1], we obtain N = P , which
means that F is reduction simple. By Theorem 2.1, there exists a fusion system F0 on P and
a quasisimple group L with an F0-block, where Op(F0) = 1. However, by Theorem C of [6] we
deduce F = F0. �

The following result is useful for proving block-exoticity.

Proposition 2.3. [10, Proposition 4.3] Let G be a quasisimple finite group and denote the quotient
G/Z(G) by G. Suppose G = G(q) is a finite group of Lie type and let p be a prime number ≥ 7,
(p, q) = 1. Let D be a p-group such that Z(D) is cyclic of order p and Z(D) ⊆ [D,D]. If D is a
defect group of a block of G, then there are n, k ∈ N and a finite group H with SLn(q

k) ≤ H ≤
GLn(q

k) (or SUn(q
k) ≤ H ≤ GUn(q

k)) such that there is a block c of H with non-abelian defect
group D′ such that D′/Z is of order |D/Z(D)| for some Z ≤ D′ ∩ Z(H).

Proposition 2.4. If G is as in the previous proposition, then G has no blocks with defect groups
isomorphic to P .

Proof. Recall |P | = 75 and Z(P ) ∼= C7. We apply the previous proposition with P taking the role
of D. Let H , D′ be as in its assertion with p = 7. Assume first H ≤ GLn(q

k) and let a be such
that |qk−1|7 = 7a. Then, since SLn(q

k) ≤ H , we have |D′| = |P/Z(P )| · |Z| = 74|Z| ≤ 74|Z(H)| ≤
74|Z(SLn(q

k))| ≤ 74+a. Now the block of kGLn(q
k) covering c has a defect group of order at most

72a+4. But it is a well-known fact, that (non-abelian) defect groups of GLn(q
k) have order at least

77a+1, see [4, Theorem 3C]. Thus, 77a+1 ≤ 72a+4, which is a contradiction. The case H ≤ GUn(q
k)

can be shown in the same fashion by considering the 7-part of qk + 1 instead of qk − 1. �



EXOTIC FUSION SYSTEM ON A SUBGROUP OF THE MONSTER 3

Proof of Theorem 1.2. By [6, Theorem C], the only exotic fusion system on such a group is a fusion
system on a maximal subgroup P of a Sylow 7-subgroup of the Monster with |P | = 75. Thus, by
[8, Theorem 3.6], we only need to prove block-exoticity of this system, denote it by F .
By Proposition 2.2, if F is block-realizable, we may assume that it is block-relizable by the block
of a finite quasisimple group G having P as defect group. We use the classification of finite simple
groups to exclude all possibilites for G. Clearly, we can assume that G is non-abelian.
Firstly, assume G/Z(G) is an alternating group Am. Then P is isomorphic to a Sylow 7-subgroup
of some symmetric group S7w with w ≤ 6. Define the cycle σi = ((i − 1)7 + 1, . . . , i7) and the
subgroup S′ = 〈σ1, . . . , σ6〉 ≤ Am. Then S′ ∈ Syl7(Am). But this group is abelian, which means
that P /∈ Syl7(Am).
Next, assume G is a group of Lie type. First assume the latter group is defined over a field of
characteristic 7, then P is a Sylow 7-subgroup of G by [2, Theorem 6.18] and thus F cannot be
exotic. In particular, we can assume G is defined over a field of order coprime to 7. However, by
Proposition 2.4, we see that case in cross characteristic is not possible either.
Finally, assume G/Z(G) is one of the sporadic groups. By, [3, Theorem 9.22], the fusion system of
a block of a sporadic group can not be exotic. This proves the theorem. �
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