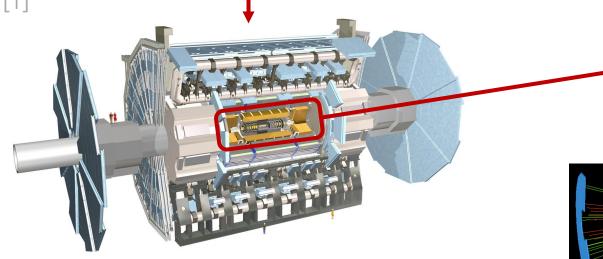


GEFÖRDERT VOM Bundesministerium für Bildung

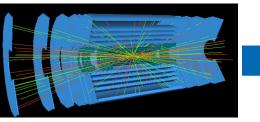
und Forschung


Convolutional Neural Networks on FPGAs for Processing of ATLAS Liquid Argon Calorimeter Signals

Anna Franke (anna.franke@cern.ch) Supervised by: Anne-Sophie Berthold, Nick Fritzsche, Markus Helbig, Rainer Hentges, Arno Straessner, Johann Christoph Voigt

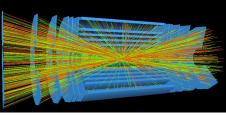
DPG Conference Karlsruhe March 05 2024

The ATLAS Detector at LHC



Large Hadron Collider (LHC)

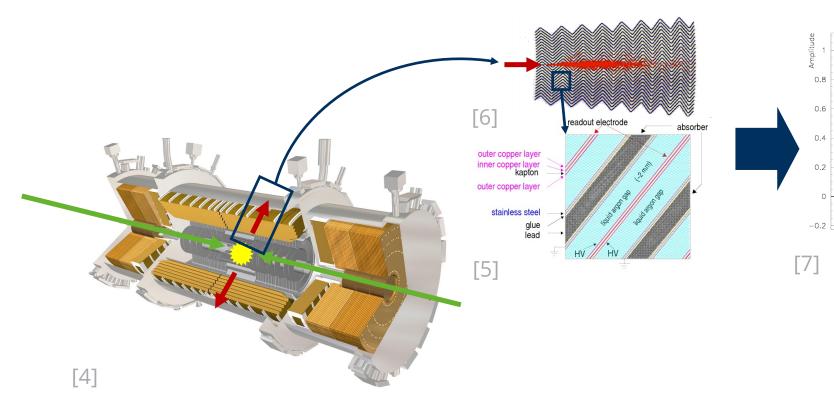
- proton bunches collide with **25 ns** spacing (40 MHz)
- 2029: start of High Luminosity LHC (HL-LHC)


ATLAS detector

- HL-LHC: up to 200 collisions per bunch crossing (BC) (currently ~ 60), **pileup increases**
- modifications at Liquid-Argon (LAr) calorimeter readout necessary

[3]

[2]


Convolutional Neural Networks on FPGAs for Processing of ATLAS Liquid Argon Calorimeter Signals Anna Franke (IKTP, TU Dresden) DPG Conference Karlsruhe 2024. March 5

2

LAr Calorimeter Readout

real time signal processing

Save ADC-values? (32 bit per BC and 182468 cells)

~ 1.7 PB for just one minute of runtime of LHC!

- absorber (Pb, Cu, W) and electrodes in accordion geometry
- liquid Argon (LAr) as active medium

- drifting ionisation electrons from electromagnetic shower raise triangular pulse
- shaped into **bipolar pulse**
- parameter of interest: amplitude ~ deposited energy

25 ns

300

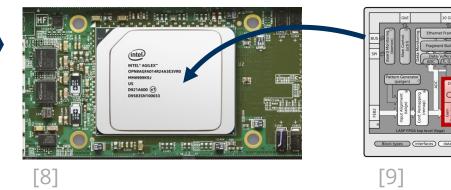
400

200

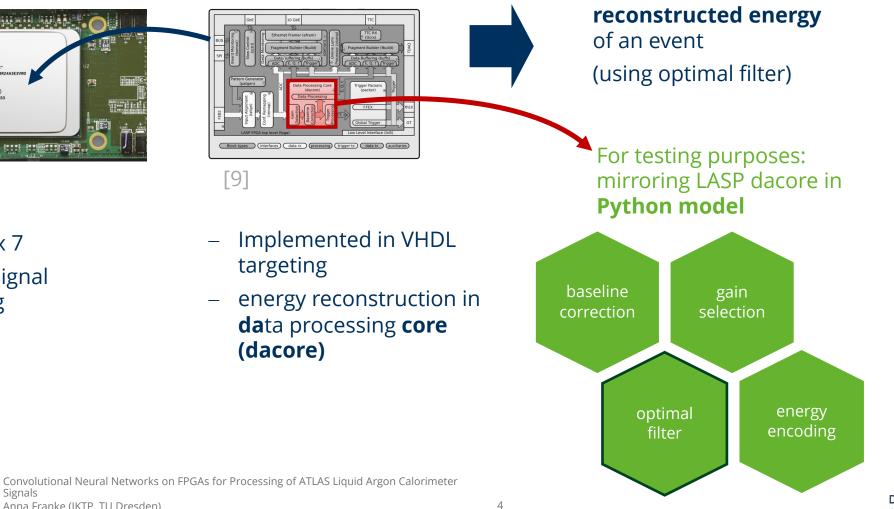
0

100

500 600 Time (ns)



Convolutional Neural Networks on FPGAs for Processing of ATLAS Liquid Argon Calorimeter Signals Anna Franke (IKTP, TU Dresden) DPG Conference Karlsruhe 2024. March 5

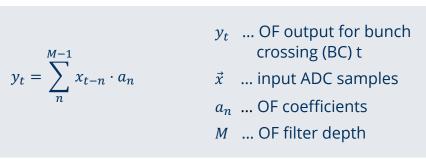

LAr Calorimeter Readout

FPGA - field programmable gate array

- Intel Agilex 7 —
- real time signal _ processing

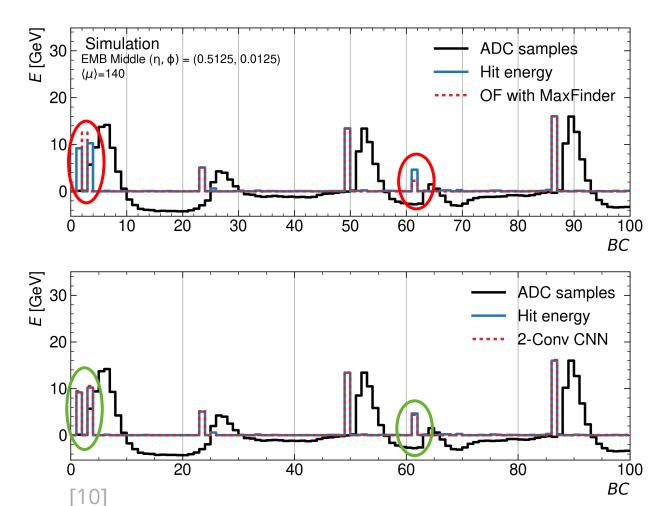
LASP (liquid Argon signal processor) - firmware

Signals Anna Franke (IKTP, TU Dresden) DPG Conference Karlsruhe 2024, March 5


—

—

Reconstruction of Energy

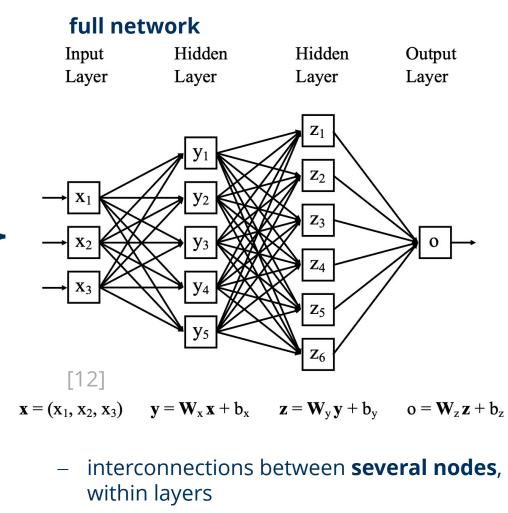

current way for energy reconstruction (OF)

- close signals cannot be resolved
- signals within undershoot underestimated

Convolutional Neural Networks (CNNs)

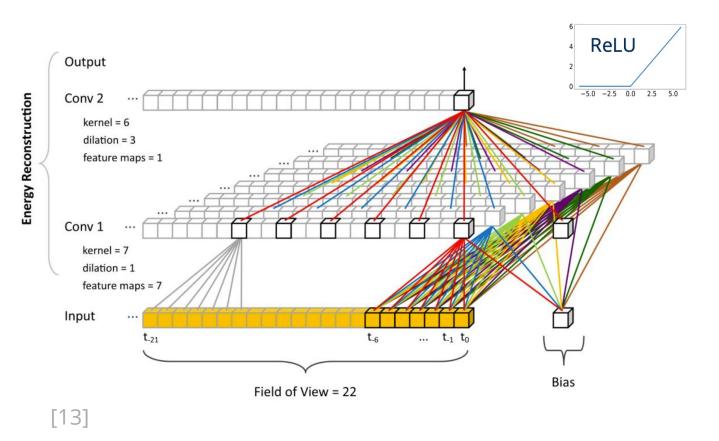
optimized to reconstruct overlapping signals





Convolutional Neural Networks on FPGAs for Processing of ATLAS Liquid Argon Calorimeter Signals Anna Franke (IKTP, TU Dresden) DPG Conference Karlsruhe 2024. March 5

Artificial Neural Network (ANN)

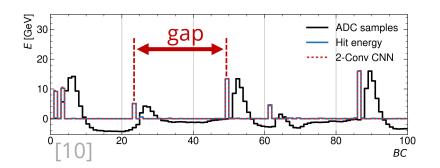

- during **training** output tuned to fit target

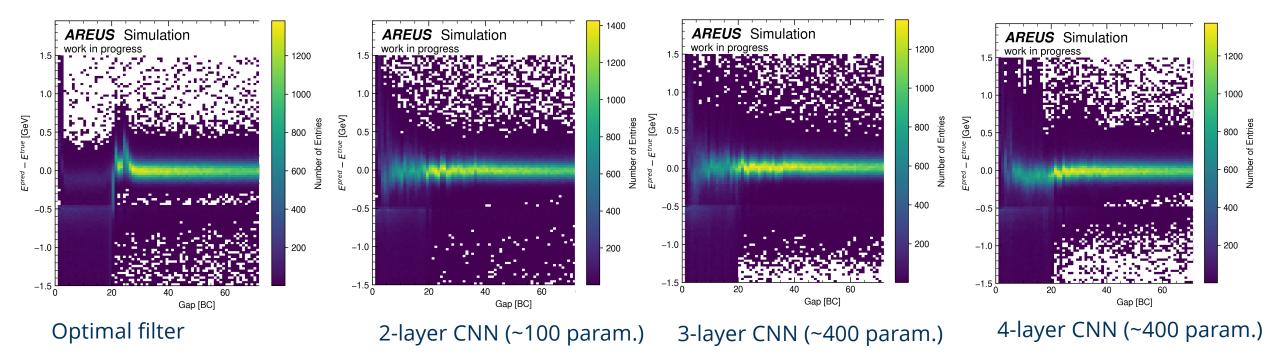
Convolutional Neural Networks on FPGAs for Processing of ATLAS Liquid Argon Calorimeter Signals Anna Franke (IKTP, TU Dresden) DPG Conference Karlsruhe 2024. March 5

DRESDEN Concept

CNNs for LAr Readout

- CNN as ANNs which are specialized to identify structures (e.g. pulses from LAr calorimeter)
- network size restricted by # of parameter (so far ~100) available on the FPGA
- more resources on Agilex FPGA: up to ~400 parameter possible
- architecture of CNN optimized by
 Hyperparameter search




Convolutional Neural Networks on FPGAs for Processing of ATLAS Liquid Argon Calorimeter Signals Anna Franke (IKTP, TU Dresden) DPG Conference Karlsruhe 2024, March 5

Energy Reconstruction on CNN

comparison of a well-trained 2-layer CNN (100 parameter) with 3- and 4-layer CNN **only trained during hyperparameter search**

Convolutional Neural Networks on FPGAs for Processing of ATLAS Liquid Argon Calorimeter Signals Anna Franke (IKTP, TU Dresden) DPG Conference Karlsruhe 2024. March 5

Summary

- upgrade of LHC to HL-LHC increases pile up of LAr calorimeter signal
- CNN suitable replacement for optimal filter for energy reconstruction in LASP Firmware
- larger number of parameters for CNN enables networks with more layers
- CNNs with 400 parameter show comparable or better energy resolution after hyperparameter search compared to trained network with 100 parameter

Outlook:

Quantized training of 400 parameter CNN

Sources I

Slide 2:

- [1] URL: <u>https://static1.bmbfcluster.de/3/4/3/8_ef6a5eef8f44963/3438meg_22ce2885dae52af.jpg</u>
- [2] Joao Pequenao. Computer generated image of the whole ATLAS detector. CERN. Mar. 27, 2008. URL: <u>https://cds.cern.ch/record/1095924</u>(visited on 20/02/2024).
- [3] Peter Vankov, ATLAS Upgrade for the HL_LHC: meeting the chalenges of a five-fold increase in collision rate.

CERN. Jan. 25, 2012. URL: <u>https://cds.cern.ch/record/1419213/</u> (visited on 20/02/2024).

Slide 3:

- [4] Joao Pequenao. Computer generated image of the ATLAS Liquid Argon. CERN. Mar. 27, 2008. URL: https://cds.cern.ch/record/1095928 (visited on 20/02/2024).
- [5] Nikiforou, Nikiforos, Performance of the ATLAS Liquid Argon Calorimeter after three years of LHC operation and plans for a future upgrade.

CERN. Jun. 28, 2013. URL: <u>https://cds.cern.ch/record/1558820/ (</u>visited on 20/02/2024)

- [6] Karl Jakobs. Lecture Material. CERN. 2015. URL: <u>https://www.particles.uni-freiburg.de/dateien/vorlesungsdateien/particledetectors/kap8</u>
- [7] ATLAS Collaboration. Monitoring and data quality assessment of the ATLAS liquid argon calorimeter. CERN. May 13, 2014. URL: <u>https://cds.cern.ch/record/1701107</u> (visited on 05/24/2023).

Sources II

Slide 4:

- [8] URL: <u>https://www.terasic.com.tw/cgi-bin/page/archive</u> .pl?Language=English&CategoryNo=142&No=1262 (visited on 20/02/2024).
- [9] Ma, Xiangyuan, Vachon, Brigitte. Developing Firmware and Algorithms for the Liquid Argon Signal Processor

CERN. 18 Aug, 2023. URL: <u>https://cds.cern.ch/record/2875234</u> (visited on 20/02/2024).

Slide 5 and 8:

[10] Berthold, Anne-Sophie. ML for Processing of ATLAS LAr Calorimeter Signals with FPGAs. CERN. 14 June 2023. URL: <u>https://cds.cern.ch/record/2863770</u> (visited on 20/02/2024).

Slide 6 and 7:

[11]–[13] Berthold, Anne-Sophie. Simulation Studies of Convolutional Neural Networks for the Real-Time Energy Reconstruction of ATLAS Liquid-Argon Calorimeter Signals at the High-Luminosity LHC. CERN. 21 Dec. 2023. In publication.

