
From Files to Streams: Revisiting Web History
and Exploring Potentials for Future Prospects

Lucas Vogel
lucas.vogel2@tu-dresden.de

TU Dresden
Germany

Thomas Springer
thomas.springer@tu-dresden.de

TU Dresden
Germany

Matthias Wählisch
m.waehlisch@tu-dresden.de

TU Dresden
Germany

ABSTRACT
Over the last 30 years, the World Wide Web has changed signifi-
cantly. In this paper, we argue that common practices to prepare
web pages for delivery conflict with many efforts to present content
with minimal latency, one fundamental goal that pushed changes
in the WWW. To bolster our arguments, we revisit reasons that
led to changes of HTTP and compare them systematically with
techniques to prepare web pages. We found that the structure of
many web pages leverages features of HTTP/1.1 but hinders the
use of recent HTTP features to present content quickly. To improve
the situation in the future, we propose fine-grained content seg-
mentation. This would allow to exploit streaming capabilities of
recent HTTP versions and to render content as quickly as possible
without changing underlying protocols or web browsers.

CCS CONCEPTS
• Information systems → World Wide Web; • Social and pro-
fessional topics→ History of computing.

ACM Reference Format:
Lucas Vogel, Thomas Springer, and Matthias Wählisch. 2024. From Files
to Streams: Revisiting Web History and Exploring Potentials for Future
Prospects. In Companion Proceedings of the ACM Web Conference 2024
(WWW ’24 Companion), May 13–17, 2024, Singapore, Singapore. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3589335.3652001

1 INTRODUCTION
From its first implementation to now, theWorld WideWeb (WWW)
has changed significantly. Initially, the Web was considered “a set of
associations, and in a way, the Web is a representation of mankind’s
knowledge” [7, Tim Berners Lee]. Thirty years later, “the Web is
now a gigantic global software platform” [45, Michael Janiak]. The
technologies and principles that enabled different applications and
services on top of the WWW, however, stayed fundamentally the
same.

TheWWW ismore than presenting aweb page. It is a system that
leverages multiple protocols on different layers to deliver (HTTP)
and render (HTML, CSS, and JavaScript) different types of content
supported by common tools. Many innovations that led to changes
in each part were driven by creating content more efficiently and

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0172-6/24/05.
https://doi.org/10.1145/3589335.3652001

delivering content faster—scalable content dissemination with min-
imal latency was and still is critical for successful web applications.
These changes have been, so far, mainly considered independently
of each other, even though they could achieve higher performance
gains if they are considered together. One example is the lack of
preparing web pages such that content is segmented into pieces to
benefit most from the streaming capabilities of HTTP/3.

In this paper, we systematically analyze why specific changes
have been made to help our research community identify room for
further improvements. We reflect on the different design decisions
of HTTP (§ 2) and common approaches to creating content (§ 3)
based on historical documents and discussions with key stakehold-
ers. We find that the lack of full advantages is a rather bad coinci-
dence (§ 4) and derive opportunities for future improvements (§ 5).

2 ON THE HISTORY OF HTTP
HTTP has evolved significantly since its inception. Originally de-
signed to deliver linked,mainly text-based documents, it has evolved
into an optimized protocol that enables various applications, includ-
ing complex real-time communication. Design decisions of HTTP
not only reflect the needs of emerging web applications and services
but also align with the state of the larger Internet ecosystem. For
instance, when the first web server implementation was released
in 1991 [17], HTTP was tailored to transfer linked files, and each
web page consisted of relatively few content pieces. This design
choice was inspired by FTP, a popular standard at the time for down-
loading files [62, 70]. HTTP underwent rapid changes as the Web
expanded over the following years. Now, modern web pages consist
of multiple content pieces, necessitating parallel delivery instead
of downloading them sequentially to form the final page—calling
for streams, supported in more recent HTTP versions.
HTTP/0.9. In 1991, Tim Berners-Lee designed HTTP “with sim-
plicity in mind” [10, 33]. A client requested a web page via a GET
request. The original proposal explicitly states that the server re-
sponse is HTML [10]. The server then responded with ASCII char-
acters representing the content of the resource, in this case, a file
on the server [59]. The design lacked error handling, so clients had
to examine the HTML output to determine if the data was received
successfully [58].

HTML is based on SGML syntax, as ISO already standardized
SGML in 1986 [41]. SGML was a file-based format, and to differen-
tiate both files, the file ending was designed so it could be renamed
from .sgml to .html [58]. From the beginning, HTML allows to
separate structure from layout, differentiating it from SGML’s more
generalized and integrated text processing approach [16, 41].

In summary, due to prior protocols such as FTP and existing file
formats at the time, the Web was designed to work with files. The

1

ar
X

iv
:2

40
3.

07
82

8v
1

 [
cs

.N
I]

 1
2

M
ar

 2
02

4

https://orcid.org/0009-0009-5097-4392
https://orcid.org/0000-0003-3221-6677
https://orcid.org/0000-0002-3825-2807
https://doi.org/10.1145/3589335.3652001
https://doi.org/10.1145/3589335.3652001

WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore Lucas Vogel, Thomas Springer, and Matthias Wählisch

lack of standardization of HTTP and issues, such as the inability to
recognize errors, required further protocol improvements, which
will be discussed next.
HTTP/1.0. Between 1993 and 1997, the Web grew exponentially
[31]. This growth motivated clearer documentation and some clean-
ups. In May 1996, HTTP/1.0 was published in RFC 1945 [12], an
informational document rather than a standard, collecting the com-
mon usage of existing implementations [33]. In HTTP/1.0 , every
request requires an individual TCP handshake, which is closed after
the answer is transferred [12], see Figure 1. The increase in web
pages led to a stronger focus on the presentation layer (see § 3).
HTTP now supported Content-Types [12], allowing for different
media to be transferred since the type of content was specified ex-
plicitly. This shift in perspective could have marked a turning point
for the Web, enabling truly mixed content in a single request. Until
today, a significant number ofmedia types have been registered [61],
maintained by IANA [40]. However, potentially because text-based
implementations already existed, and with document formats such
as images or CSS files, the file-based structure prevailed.
HTTP/1.1. HTTP/1.1, specified in 1997 in RFC 2068 [23] and later
RFC 2616 [24], addressed a fundamental performance problem of
HTTP/1.0 by introducing two features. First, instead of using in-
dividual TCP requests for every resource, which slowed down the
transmission because resources (e.g., images) required a handshake
as well, HTTP/1.1 allowed reusing one TCP connection for multi-
ple resources (see Figure 1) based on the Keep-Alive mechanism.
Second, HTTP/1.1 introduced request pipelining, where multiple
requests could be sent via a single TCP connection, i.e., a client can
send requests in order without waiting for the responses [25].

Session reuse and request pipelining directly addressed protocol-
level needs to present content faster. Using a single connection
for multiple types of content, such as CSS or HTML, improved
loading times, for example, by preventing the execution of the
TCP slow start algorithm multiple times. However, pipelining was
deactivated by default in a majority of modern HTTP clients [52]
due to multiple problems such as buggy proxies and the complexity
of implementation.

Starting in July 1997, the newly formed HTTP-NG Working
Group proposed several ideas for a new generation of HTTP [34].
They used the concept of multiplexing data into one single stream.
This concept would allow for faster transfer, as HTTP pipelining
must wait until a response is fully finished before new data can be
sent [52]. In 1999, the working group stopped and transferred the
outcome to the IETF [34].
HTTP/2. In 2009, Google announced SPDY, a project aiming
to improve web page loading speed by minimizing latency [8].
This approach also utilized multiplexing, with Google claiming
up to a 55% reduction in page loading time over SSL [1]. Some of
the inspiration was drawn from HTTP-NG [1]. As SPDY gained
more traction, the HTTP Working Group specified the HTTP/2
protocol in 2012, inspired by SPDY [30, 55]. In May 2015, HTTP/2
was published as RFC 7540 [9]. Some major technical improvements
include data compression, request prioritization, server push, and,
most notably, multiplexing requests. They allow for transferring
binary data in parallel in a different order based on prioritization,
as shown in Figure 1. Multiplexing is a significant step because it

changes the original design of a file-based protocol to streams. On
a protocol level, streams were the new way of transferring data
on the Web. Despite speed improvements, streams were primarily
used for transferring files, such as CSS, HTML, or JavaScript.
HTTP/3. Before HTTP/3, TCP was the preferred protocol for
transmitting HTTP [9, 25]. However, TCP acknowledges every
packet, causing delays if a packet is lost, as all streams are stopped.
This issue is known as HOL-blocking (head-of-line blocking) [5, 19].
Google started working on QUIC in 2012, an alternative to TCP,
TLS, and HTTP/2 [18]. QUIC is based on UDP and implements a
larger part of the stack, allowing for faster protocol updates.

In 2018, the IETF decided that “HTTP/QUIC” should be named
HTTP/3 [14, 39]. Later, QUICwas published as RFC 9000 [42] in 2021
and HTTP/3 as RFC 9114 [13] in 2022. HTTP/3 retains the stream-
based approach but introduces new features, such as per-stream
flow control. With the replacement of HTTP/2 by HTTP/3 and
TLS and TCP by QUIC, HTTP has become a specialized protocol
designed to transfer client content based on low-latency connection
setup and better system handling of lost packets [13].

In summary, HTTP has changed over the last 30 years. Web
content, however, has also changed, partly independently of HTTP,
partly to cope with its limitations. We discuss these changes next.

3 WEB CONTENT CREATION HISTORY
The limitations of HTTP also influenced the creation of web content.
In the context of this paper, the term “content” refers to code that is
sent to the user and processed there to be displayed as a web page.
The design choices for preparing code are sparsely documented
compared to protocol changes.
Beginning of Scripts and Styles. In 1990, the Web Browser
written by Tim Berners-Lee already included an editor for users
to modify content themselves [11]. Subsequent browsers, such as
the Line Mode Browser [26] or Viola [80], did not have a built-in
editor. Since then, the creation and consumption of web content
have diverged.

In October 1994, Håkon Wium Lie proposed Cascading HTML
style sheets (CHSS) just three days before Netscape’s announce-
ment [16, 47]. After collaborating with Bert Bos and significant
debates at WWW conferences, the first version of Cascading Style
Sheets (CSS1) was published in 1996 [16, 48]. Meanwhile, JavaScript
emerged in 1995, when Netscape added scripting into their browser,
realizing the need for a more dynamic web [54, 65]. This involved
two strategies. First, Brendan Eich was hired to work on a Scheme
at Netscape [22]. Secondly, Netscape collaborated with Sun (now
part of Oracle) to provide Java Applets [54, 65]. After Eich wrote a
prototype in 1995, it was named "LiveScript" by Netscape marketing
but later renamed to JavaScript [49, 65]. JavaScript was, and still is,
the prominent scripting language of the Web [49].
Early Development of Websites with JavaScript. The release
of the first DOM specification [6] in 1998 set the starting point for
extended JavaScript development, enabling dynamic web applica-
tions. According to various informal sources, developing JavaScript
with multiple files (separated for an improved developer experi-
ence) often used concatenation to produce one output file, which
could then be sent to the user [28, 43, 46]. These were individ-
ual, large global scripts [28]. One reason for this combination of

2

From Files to Streams: Revisiting Web History and Exploring Potentials for Future Prospects WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore

code, such as JavaScript or CSS, was loading time optimization.
Since HTTP/1.0 required a new TCP connection for every request,
combined with the various issues with HTTP/1.1 implementations
meant that combining resources could generally improve perfor-
mance [52]. Additionally, simultaneous connections to a single
endpoint were generally limited to six TCP connections per individ-
ual origin (a host name and port) by browsers supporting HTTP/1.1
[32, 69]. Consequently, combining resources was necessary, or Do-
main Sharding was required where multiple subdomains are used
to host a larger number of files [32]. Despite these restrictions,
JavaScript and CSS grew significantly in popularity, partially due
to the dotcom boom at the time [60]. Resource concatenation was
therefore utilized to improve performance.
The Dynamic Web. Since 1993, CGI scripts [67] have been a
standardized way of adding dynamic functionality to web pages by
running scripts on the server. However, security concerns emerged,
e.g., [36, 77]. Client-side code can avoid this issue by being executed
in the browser. Therefore, tools such as Java Applets, Adobe Flash,
and Shockwave gained popularity with the release of the Netscape
Plug-in API in 1996 [4, 53].

In 2005, Garrett introduced “Ajax” [27, 64], a new way of loading
content asynchronously. Before Ajax, presenting updated content
under the same URL often required a reload of the web page. Given
the connection overhead of HTTP/1.1, a complete reload of a page
slowed down the interaction speed [27]. The Ajax concept paved
the way for “Web 2.0.” [15, 64]. Partially to simplify the development
and implementation of Ajax, Resig introduced jQuery [66] in 2006,
which since then has been a popular library based on JavaScript.
jQuery is still used by 77% of all websites [63].

With the increasing popularity of jQuery, prior approaches were
less deployed. Java Applets were deprecated in 2017, and Shockwave
and Adobe Flash in 2019 and 2020 [3, 81]. Libraries such as jQuery,
Bootstrap, and Underscore simplify the developer experience [81]
and their success demonstrates that the broad adoption of new tech-
nologies depends on an easy-to-use development. The downside
is that such libraries can increase loading times as they must be
loaded completely before use. By default, this is render-blocking,
preventing the browser from displaying the page. Furthermore,
the use of libraries and an increasing amount of JavaScript also
result in web pages continuously growing in size. Even though
full page reloads are no longer necessary, the overhead of loading
large render-blocking libraries can still impact loading speed, even
with improved connection times and transfer speeds of HTTP/2 or
HTTP/3.
Start of Node.js and Bundles. In order to organize the increas-
ing amount of JavaScript code, developers separated code into in-
dividual files, which were then concatenated and used as global
scripts [28, 43, 46].

That changed when Node.js was introduced by Ryan Dahl in
2009 [20]. Node.js allowed JavaScript to run on a server and shipped
with a package manager called npm. Npm allowed developers to
install other packages and import (“require”) code when needed.
In contrast, JavaScript did not have a native module system until
2015 [28, 57]. This module system of Node.js enabled significantly
larger code bases. Node.js, however, was not intended to be used
in a browser. This changed when Browserify emerged in 2010 and

became popular in 2013 [29, 35]. Browserify allows using the Com-
monJS “require” syntax, allowing developers to use and require
npm packages while creating websites [28]. However, browsers do
not understand the “require” keyword, so Browserify transforms
all code into a browser-compatible version. All dependencies are
resolved and combined into a single file, called a bundle [28]. Even
though the primary goal of Browserify was different, it is often
cited as being the first influential bundler [28, 43, 46]. In summary,
bundling tools allow combining multiple code files. Before the re-
duction of the individual request overhead starting at HTTP/1.1,
bundling improved loading times, as fewer requests were required
to fetch all necessary data for page load while also improving the
developer experience.
Webpack. While Browserify could compile and bundle code, the
purpose-built compiler and bundler Webpack started development
in 2012 and gained popularity in ≈2015 [28, 29, 68]. In contrast to
Browserify, it was also designed to bundle other resources, such as
CSS or images [2]. This enabled the emergence of popular modern
frontend frameworks such as React or Angular, both of which
use Webpack. Especially with React gaining popularity, Webpack
overtook Browserify in popularity [29]. Splitting code is possible
with Webpack as a manual opt-in feature but is disabled by default
[78]. Webpack was designed for large projects [79]. However, it
was stated that for significantly large projects, it is suboptimal to
load the bundle as one large file [79].

Therefore, to this day, popular frontend frameworks and bundlers
like Webpack will produce large, individual files that, by default,
are render-blocking [29].

4 HISTORICAL OVERLAP OF PROTOCOL
CHANGES AND CONTENT CREATION

Contextualizing HTTP and content creation into historical context,
it becomes evident that changes to HTTP were misaligned in time
with changes to languages and content creation frameworks, as
shown in Figure 1. Until 2015, HTTP/1.1 (and predecessors) on
top of TCP led to an environment where larger but fewer requests
improved performance due to the recurring overhead of connection
establishment per request. To overcome the performance drawbacks
of HTTP and TCP, bundlers such as Webpack gained popularity
because using large individual files (bundles) fit the needs of devel-
opers and reduced performance penalties [28, 29, 57]. The major
drawback of bundling is code efficiency. If a project uses JavaScript
or CSS frameworks, the entire code base of the framework is usually
fully included in a bundle. This increases the total size of a web
page and, if loaded in the default render-blocking way, slows down
the loading time of web pages. A recent study revealed that the
majority of the most popular web pages still have this issue [73].

In 2015, with the advent of HTTP/2, the system changed. Now,
a single connection can multiplex various resources with different
priorities, allowing for the asynchronous transfer of smaller files
[9]. This change is in direct contrast to the concept of bundling
and the emergence of libraries, such as jQuery. Hofman, a Web
performance expert, called bundling an “anti-pattern” in HTTP/2
[37]. In principle, the content of a web page could be adapted again
to benefit from the features of HTTP/2. We describe one possible
approach next.

3

WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore Lucas Vogel, Thomas Springer, and Matthias Wählisch

1

Client

1
2

3

.html

.png

.jpg

.html

.png

.jpg

1

Client

.html

.js

.css

.html

.js

.css

HTTP/0.9 & HTTP/1.0 HTTP/1.1
multiple TCP Connections:

One TCP Connection:

Type

M
e
d
ia

n

A
ss

e
t

D
is

tr
ib

.
(i

n
 K

B
)

1

Client

.html1

2
3

1

2
3

1

2
3

1

3
2

.js

.css

1990 1995 2000 2005 2010 2015 2020

HTTP/0.9 1
.0 HTTP/1.1 HTTP/2 HTTP/3

Individual Requests Multiplexing/Streaming

JavaScript

CSS

Browserify

Webpack

P
ro

to
-

c
o
ls

L
a
n
g
u
a
g
e
s

&
F
ra

m
ew

o
rk

s

.html

.css

.js

HTTP/2 One TCP Connection:

1

Client

.html

.js

.css

.html

.css

.js

HTTP/3
One UDP/QUIC Connection:

Request Pipelining, Requests in Order Request and Response Pipelining, Streams, Prioritization

1

2
3

1

3
2

Streams, 0-RTT, No TCP HOL Blocking

Images

Figure 1: Historical comparison ofWeb technologies, including protocols and content creation and presentation features such as
bundlers, JavaScript, and CSS. A major change occurred when HTTP/2 was released (dotted line). Protocol deprecations are not
shown. Source for asset distribution data: HTTP Archive [38]. Images sizes are not stacked, as images are not render-blocking.

5 RE-IMAGINING THE CONTENT
STRUCTURE BASED ON HTTP/3

Most of the most popular web pages are still based on large, render-
blocking bundles, see § 4. This might be due to the lack of alter-
natives. In this section, we introduce one potential option to align
content creation with the potentials of emerging Web standards.
Basic Concept. While bundling uses the central concept of com-
bining resources, the next generation of web content should do the
opposite: split the content as much as possible. The main reason
for this design choice is code efficiency. If code is split into small,
individual pieces, then it can be loaded asynchronously on de-
mand. If planned correctly, the transferred code only contains data
required for rendering, which can significantly improve loading
times. This also matches recommendations by Hofman [37], who
suggested splitting as a solution. For example, jQuery or Bootstrap
include a large set of functions. Many web pages only need parts of
these functions, resulting in loading a large amount of unused code.
Splitting is relevant for CSS and JavaScript, as both can be loaded
externally and both can be render-blocking. Adding to Hofman,
the next generation of code processors should also take advantage
of the prevailing streaming technology available in HTTP/2 and
HTTP/3. This moves loading from an all-or-nothing approach to
the behavior of loading a web page as an ongoing process over
time. Such a concept has been highlighted in a study by Jahromi et
al. [44], stating that users do not wait for a complete result after an
interaction. Streaming can be used as a major advantage, presenting
the user with a continuously rendered version as the page loads
to enable subsequent actions. This, combined with the maximum
splitting approach, has the additional positive effect that a First
Contentful Paint (FCP) of a page can be fast, even in challenging
network conditions. Three main challenges remain to provide a
similar, fully automated system like bundlers:
Challenge 1: Content usage detection. The first step is the au-
tomatic generation of information about the type of code used and
where to split the code. For CSS, techniques such as Critical [56]
exist but are limited to the content above-the-fold. Other solu-
tions include the Essential framework, which addresses the issues
of Critical [75]. For JavaScript, approaches like tree shaking are

available and already in use by bundlers today [21]. They remove
dead code but identify dead code only on file or function level and
are bound to specific frameworks. One approach to improve the
situation is resumeability, where JavaScript code is loaded on de-
mand without breaking the web page. This approach requires less
developer effort and is framework-independent [72, 76].
Challenge 2: Content usage location and order. After detect-
ing and splitting the necessary code, it needs to be ordered and
interleaved so that only neighboring pieces of HTML, CSS, and
JavaScript depend on each other and, thus, only minimally block
rendering. For CSS, this involves matching selectors with the DOM
of a document. For JavaScript, this is still an open challenge, but
promising automation approaches have been proposed [50, 76].
Challenge 3: Streaming a web page. Lastly, the processed
data needs to be transferred by utilizing the streaming capabil-
ity of HTTP/2 and HTTP/3. Frameworks such as Turbo [71] and
Marco [51] demonstrated that streaming of web page chunks is
feasible and ready for production. A demo of a fully streamed page
was presented at The Web Conference 2023 [74].

It is worth noting that streaming is just one possible solution but—
looking at the continuous trend of ever-increasing web pages—it
appears a promising approach [38]. Prior work bolsters this ar-
gument, showing that streamed web pages significantly improve
loading times due to fine-grained page chunks and selecting only
required code [74].

6 CONCLUSION
In this paper, we presented a historical analysis of two major build-
ing blocks crucial for a fast World Wide Web: the content delivery
layer and the content presentation layer. We found that the de-
sign of both building blocks was mostly considered independently,
despite the potential benefits from joint design decisions. To im-
prove the situation, we sketched content segmentation aiming for
minimal render blocking. This proposal is transparent to content
creators and enables the use of streaming features of underlying
protocols. We hope that the insights of this paper do not only serve
as a reminder of the reasons why Web technologies evolved in
specific directions but also as path forward.

4

From Files to Streams: Revisiting Web History and Exploring Potentials for Future Prospects WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore

REFERENCES
[1] 2023. SPDY: An experimental protocol for a faster web. White Paper. Chromium.

https://www.chromium.org/spdy/spdy-whitepaper [Online; accessed 10. Oct.
2023].

[2] 2023. webpack. https://webpack.js.org [Online; accessed 6. Nov. 2023].
[3] Adobe. 2024. End of Life (EOL) for Adobe Shockwave. Technical Re-

port. https://web.archive.org/web/20220308095014/https://helpx.adobe.com/
shockwave/shockwave-end-of-life-faq.html [Online; accessed 29. Feb. 2024].

[4] Adobe Systems Incorporated. 2024. Adobe - Products : Adobe Shockwave Player.
Technical Report. https://web.archive.org/web/20120110005639/http://www.
adobe.com/products/shockwaveplayer [Online; accessed 29. Feb. 2024].

[5] M. Allman, V. Paxson, and E. Blanton. 2009. TCP Congestion Control. RFC 5681.
IETF. https://doi.org/10.17487/RFC5681

[6] Vidur Apparao, Steve Byrne, Mike Champion, Scott Isaacs, Ian Jacobs, Ar-
naud Le Hors, Gavin Nicol, Jonathan Robie, Chris Sutor, Robert Wilson, and
Lauren (Eds.) Wood. 1998. Document Object Model (DOM) Level 1 Specifi-
cation. W3C recommendation REC-DOM-Level-1-19981001. W3C. https:
//www.w3.org/TR/1998/REC-DOM-Level-1-19981001/

[7] Frank Bajak. 1993. A World of Data Coming to Your Fintertips. Wiring the Planet.
Part 2. San Francisco Examiner (May 1993), D1. https://sfexaminer.newspapers.
com/browse/the-san-francisco-examiner_9317/1993/05/31/

[8] Mike Belshe and Roberto Peon. 2009. A 2x Faster Web. Technical Report.
Chromium. https://blog.chromium.org/2009/11/2x-faster-web.html [Online;
accessed 10. Oct. 2023].

[9] M. Belshe, R. Peon, and M. Thomson. 2015. Hypertext Transfer Protocol Version 2
(HTTP/2). RFC 7540. IETF. https://doi.org/10.17487/RFC7540

[10] Tim Berners-Lee. 1999. The Original HTTP as defined in 1991. Technical Report.
W3C. https://www.w3.org/Protocols/HTTP/AsImplemented.html [Online;
accessed 14. Aug. 2023].

[11] Tim Berners-Lee. 2017. Tim Berners-Lee: WorldWideWeb, the first Web client.
Technical Report. https://www.w3.org/People/Berners-Lee/WorldWideWeb.
html [Online; accessed 2. Oct. 2023].

[12] T. Berners-Lee, R. Fielding, and H. Frystyk. 1996. Hypertext Transfer Protocol –
HTTP/1.0. RFC 1945. IETF. https://doi.org/10.17487/RFC1945

[13] M. Bishop. 2022. HTTP/3. RFC 9114. IETF. https://doi.org/10.17487/RFC9114
[14] Mike Bishop. 2023. HTTP/QUIC. What’s in a Name?. In IETF 103 Proceed-

ings. IETF. https://datatracker.ietf.org/meeting/103/materials/slides-103-httpbis-
httpquic-02

[15] Grant Blank and Bianca C Reisdorf. 2012. The participatory web: A user perspec-
tive on Web 2.0. Information, Communication & Society 15, 4 (2012), 537–554.

[16] Bert Bos. 2017. A brief history of CSS until 2016. Technical Report. https:
//www.w3.org/Style/CSS20/history.html [Online; accessed 2. Oct. 2023].

[17] CERN. 2016. Change History of W3C httpd. Technical Report. https://www.w3.
org/Daemon/Features.html [Online; accessed 14. Aug. 2023].

[18] Chromium. 2023. QUIC, a multiplexed transport over UDP. Technical Report.
https://www.chromium.org/quic [Online; accessed 16. Oct. 2023].

[19] Cloudflare. 2023. What is HTTP/3? Technical Report. https://www.cloudflare.
com/learning/performance/what-is-http3 [Online; accessed 16. Oct. 2023].

[20] Ryan Dahl. 2009. node-v0.x-archive: Major refactoring: program name now
’node’. Technical Report. https://github.com/nodejs/node-v0.x-archive/commit/
19478ed4b14263c489e872156ca55ff16a07ebe0 [Online; accessed 6. Nov. 2023].

[21] MDN Web Docs. 2024. Tree shaking - MDN Web Docs Glossary: Definitions of
Web-related terms | MDN. Technical Report. https://developer.mozilla.org/en-
US/docs/Glossary/Tree_shaking [Online; accessed 4. Jan. 2024].

[22] Brendan Eich. 2023. Popularity – Brendan Eich. Technical Report. https://
brendaneich.com/2008/04/popularity [Online; accessed 30. Oct. 2023].

[23] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee. 1997. Hypertext
Transfer Protocol – HTTP/1.1. RFC 2068. IETF. https://doi.org/10.17487/RFC2068

[24] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. 1999. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616. IETF. https:
//doi.org/10.17487/RFC2616

[25] R. Fielding and J. Reschke. 2014. Hypertext Transfer Protocol (HTTP/1.1): Message
Syntax and Routing. RFC 7230. IETF. https://doi.org/10.17487/RFC7230

[26] Henrik Frystyk Nielsen. 1998. Command Line Syntax for the Line Mode browser.
Technical Report. https://www.w3.org/LineMode/User/CommandLine.html
[Online; accessed 30. Oct. 2023].

[27] Jesse James Garrett. 2005. Ajax: A New Approach to Web Applications | Adaptive
Path. Technical Report. https://web.archive.org/web/20190119022701/https://
adaptivepath.org/ideas/ajax-new-approach-web-applications [Online; accessed
29. Feb. 2024].

[28] Devlin Glasman. 2023. A History of JavaScript Modules and Bundling, For the
Post-ES6 Developer | 8th Light. Technical Report. https://8thlight.com/insights/a-
history-of-javascript-modules-and-bundling-for-the-post-es6-developer [On-
line; accessed 30. Oct. 2023].

[29] Google. 2023. Google Trends - Browserify, Webpack, React, Angular. Technical Re-
port. https://trends.google.de/trends/explore?date=all&q=Browserify,Webpack,
React%20JS,Angular%20JS [Online; accessed 6. Nov. 2023].

[30] Google. 2023. Google Trends - SPDY. https://trends.google.de/trends/explore?
date=2009-01-01%202023-10-10&q=SPDY [Online; accessed 10. Oct. 2023].

[31] Mathew Gray. 1997. Web Growth Summary. Technical Report. https://stuff.mit.
edu/people/mkgray/net/web-growth-summary.html [Online; accessed 02. Oct.
2023].

[32] Ilya Grigorik. 2015. HTTP: HTTP/1.X - High Performance Browser Networking
(O’Reilly). High Performance Browser Networking (Nov. 2015). https://hpbn.co/
http1x/#domain-sharding

[33] Ilya Grigorik. 2015. HTTP protocols. O’Reilly Media, Inc., Sebastopol, CA, USA.
https://www.oreilly.com/library/view/http-protocols/9781492030478/ch01.html

[34] W3C HTTP-NG Working Group. 1999. (Proposed) HTTP-NG Working Group.
https://www.w3.org/Protocols/HTTP-NG [Online; accessed 10. Oct. 2023].

[35] James Halliday. 2010. browserify – Initial Commit. Git Com-
mit. GitHub. https://github.com/browserify/browserify/commit/
b0363ae3d5749b3f7e722b21c65484fdf634acf3 [Online; accessed 13. Nov.
2023].

[36] Shawn V. Hernan. 2001. phf CGI Script fails to guard against newline characters.
Vulnerability Note VU#20276. CERT Coordination Center. https://www.kb.cert.
org/vuls/id/20276 [Online; accessed 29. Feb. 2024].

[37] Erwin Hofman. 2022. The 2 main performance debts of HTTP/1. https://
www.erwinhofman.com/blog/two-main-performance-debts-of-http1 [Online;
accessed 3. Jan. 2024].

[38] HTTP Archive. 2024. HTTP Archive: Page Weight. Technical Report. https:
//httparchive.org/reports/page-weight [Online; accessed 28. Feb. 2024].

[39] HTTP (httpbis) Working Group. 2023. Working Group Minutes. QUIC and HTTP.
In IETF 103 Proceedings. IETF. https://datatracker.ietf.org/meeting/103/materials/
minutes-103-httpbis-00

[40] IANA. 2023. Media Types. https://www.iana.org/assignments/media-types/
media-types.xhtml [Online; accessed 2. Oct. 2023].

[41] ISO. 2023. Information processing — Text and office systems — Standard Generalized
Markup Language (SGML). Standard ISO 8879:1986. ISO. https://www.iso.org/
obp/ui/en/#iso:std:iso:8879:ed-1:v1:en [Online; accessed 2. Oct. 2023].

[42] J. Iyengar and M. Thomson. 2021. QUIC: A UDP-Based Multiplexed and Secure
Transport. RFC 9000. IETF. https://doi.org/10.17487/RFC9000

[43] Jacob Jackson. 2022. State of the Web: Bundlers & Build Tools. Technical Report.
https://byteofdev.com/posts/bundlers [Online; accessed 30. Oct. 2023].

[44] Hamed Z Jahromi, Declan T Delaney, and Andrew Hines. 2020. Beyond first
impressions: Estimating quality of experience for interactive web applications.
IEEE Access 8 (2020), 47741–47755.

[45] Michael Janiak. 2023. Why Modern Web Design Is No More: The
New Era of ’Product Design’. Website Services, Inc. (May 2023).
https://www.websitemagazine.com/web-design/why-modern-web-design-is-
no-more-the-new-era-of-product-design

[46] Nolan Lawson. 2017. A brief and incomplete history of JavaScript bundlers.
Technical Report. https://nolanlawson.com/2017/05/22/a-brief-and-incomplete-
history-of-javascript-bundlers [Online; accessed 30. Oct. 2023].

[47] Håkon Wium Lie. 1995. Cascading HTML Style Sheets – A Proposal. individual
proposal. W3C. https://www.w3.org/People/howcome/p/cascade.html [Online;
accessed 2. Oct. 2023].

[48] HåkonWium Lie and Bert Bos. 1996. Cascading style sheets, level 1. (Sept. 1996).
[49] Richard Macmanus. 2020. 1995: The Birth of JavaScript. Technical Report. Web

Development History. https://webdevelopmenthistory.com/1995-the-birth-of-
javascript [Online; accessed 30. Oct. 2023].

[50] Shaghayegh Mardani, Mayank Singh, and Ravi Netravali. 2020. Fawkes: Faster
Mobile Page Loads via App-Inspired Static Templating. In 17th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 20). USENIX
Association, Santa Clara, CA, 879–894. https://www.usenix.org/conference/
nsdi20/presentation/mardani

[51] Marko. 2023. Marko. https://markojs.com [Online; accessed 9. Jan. 2024].
[52] MDN. 2023. Connection management in HTTP/1.x. MDN Web Docs.

Mozilla. https://developer.mozilla.org/en-US/docs/Web/HTTP/Connection_
management_in_HTTP_1.x#http_pipelining [Online; accessed 10. Oct. 2023].

[53] Naif Mehanna and Walter Rudametkin. 2023. Caught in the Game: On the
History and Evolution of Web Browser Gaming. In Companion Proceedings of
The ACM Web Conference 2023. ACM, New York, NY, USA, 601–609. https:
//doi.org/10.1145/3543873.3585572

[54] Netscape Communications Corporation. 2023. Introducing Netscape Naviga-
tor 2.0. Technical Report. https://web.archive.org/web/19961026223230/http:
//www3.netscape.com/comprod/products/navigator/version_2.0/index.html [On-
line; accessed 30. Oct. 2023].

[55] Mark Nottingham. 2012. Rechartering HTTPbis from Mark Nottingham on 2012-
01-24 (ietf-http-wg@w3.org from January to March 2012). https://lists.w3.org/
Archives/Public/ietf-http-wg/2012JanMar/0098.html [Online; accessed 10. Oct.
2023].

[56] Addy Osmani. 2024. critical. Git repository. GitHub. https://github.com/
addyosmani/critical [Online; accessed 4. Jan. 2024].

[57] Addy Osmani and Mathias Bynens. 2018. JavaScript modules · V8. Technical
Report. https://v8.dev/features/modules [Online; accessed 6. Nov. 2023].

5

https://www.chromium.org/spdy/spdy-whitepaper
https://webpack.js.org
https://web.archive.org/web/20220308095014/https://helpx.adobe.com/shockwave/shockwave-end-of-life-faq.html
https://web.archive.org/web/20220308095014/https://helpx.adobe.com/shockwave/shockwave-end-of-life-faq.html
https://web.archive.org/web/20120110005639/http://www.adobe.com/products/shockwaveplayer
https://web.archive.org/web/20120110005639/http://www.adobe.com/products/shockwaveplayer
https://doi.org/10.17487/RFC5681
https://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/
https://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/
https://sfexaminer.newspapers.com/browse/the-san-francisco-examiner_9317/1993/05/31/
https://sfexaminer.newspapers.com/browse/the-san-francisco-examiner_9317/1993/05/31/
https://blog.chromium.org/2009/11/2x-faster-web.html
https://doi.org/10.17487/RFC7540
https://www.w3.org/Protocols/HTTP/AsImplemented.html
https://www.w3.org/People/Berners-Lee/WorldWideWeb.html
https://www.w3.org/People/Berners-Lee/WorldWideWeb.html
https://doi.org/10.17487/RFC1945
https://doi.org/10.17487/RFC9114
https://datatracker.ietf.org/meeting/103/materials/slides-103-httpbis-httpquic-02
https://datatracker.ietf.org/meeting/103/materials/slides-103-httpbis-httpquic-02
https://www.w3.org/Style/CSS20/history.html
https://www.w3.org/Style/CSS20/history.html
https://www.w3.org/Daemon/Features.html
https://www.w3.org/Daemon/Features.html
https://www.chromium.org/quic
https://www.cloudflare.com/learning/performance/what-is-http3
https://www.cloudflare.com/learning/performance/what-is-http3
https://github.com/nodejs/node-v0.x-archive/commit/19478ed4b14263c489e872156ca55ff16a07ebe0
https://github.com/nodejs/node-v0.x-archive/commit/19478ed4b14263c489e872156ca55ff16a07ebe0
https://developer.mozilla.org/en-US/docs/Glossary/Tree_shaking
https://developer.mozilla.org/en-US/docs/Glossary/Tree_shaking
https://brendaneich.com/2008/04/popularity
https://brendaneich.com/2008/04/popularity
https://doi.org/10.17487/RFC2068
https://doi.org/10.17487/RFC2616
https://doi.org/10.17487/RFC2616
https://doi.org/10.17487/RFC7230
https://www.w3.org/LineMode/User/CommandLine.html
https://web.archive.org/web/20190119022701/https://adaptivepath.org/ideas/ajax-new-approach-web-applications
https://web.archive.org/web/20190119022701/https://adaptivepath.org/ideas/ajax-new-approach-web-applications
https://8thlight.com/insights/a-history-of-javascript-modules-and-bundling-for-the-post-es6-developer
https://8thlight.com/insights/a-history-of-javascript-modules-and-bundling-for-the-post-es6-developer
https://trends.google.de/trends/explore?date=all&q=Browserify,Webpack,React%20JS,Angular%20JS
https://trends.google.de/trends/explore?date=all&q=Browserify,Webpack,React%20JS,Angular%20JS
https://trends.google.de/trends/explore?date=2009-01-01%202023-10-10&q=SPDY
https://trends.google.de/trends/explore?date=2009-01-01%202023-10-10&q=SPDY
https://stuff.mit.edu/people/mkgray/net/web-growth-summary.html
https://stuff.mit.edu/people/mkgray/net/web-growth-summary.html
https://hpbn.co/http1x/#domain-sharding
https://hpbn.co/http1x/#domain-sharding
https://www.oreilly.com/library/view/http-protocols/9781492030478/ch01.html
https://www.w3.org/Protocols/HTTP-NG
https://github.com/browserify/browserify/commit/b0363ae3d5749b3f7e722b21c65484fdf634acf3
https://github.com/browserify/browserify/commit/b0363ae3d5749b3f7e722b21c65484fdf634acf3
https://www.kb.cert.org/vuls/id/20276
https://www.kb.cert.org/vuls/id/20276
https://www.erwinhofman.com/blog/two-main-performance-debts-of-http1
https://www.erwinhofman.com/blog/two-main-performance-debts-of-http1
https://httparchive.org/reports/page-weight
https://httparchive.org/reports/page-weight
https://datatracker.ietf.org/meeting/103/materials/minutes-103-httpbis-00
https://datatracker.ietf.org/meeting/103/materials/minutes-103-httpbis-00
https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iso.org/obp/ui/en/#iso:std:iso:8879:ed-1:v1:en
https://www.iso.org/obp/ui/en/#iso:std:iso:8879:ed-1:v1:en
https://doi.org/10.17487/RFC9000
https://byteofdev.com/posts/bundlers
https://www.websitemagazine.com/web-design/why-modern-web-design-is-no-more-the-new-era-of-product-design
https://www.websitemagazine.com/web-design/why-modern-web-design-is-no-more-the-new-era-of-product-design
https://nolanlawson.com/2017/05/22/a-brief-and-incomplete-history-of-javascript-bundlers
https://nolanlawson.com/2017/05/22/a-brief-and-incomplete-history-of-javascript-bundlers
https://www.w3.org/People/howcome/p/cascade.html
https://webdevelopmenthistory.com/1995-the-birth-of-javascript
https://webdevelopmenthistory.com/1995-the-birth-of-javascript
https://www.usenix.org/conference/nsdi20/presentation/mardani
https://www.usenix.org/conference/nsdi20/presentation/mardani
https://markojs.com
https://developer.mozilla.org/en-US/docs/Web/HTTP/Connection_management_in_HTTP_1.x#http_pipelining
https://developer.mozilla.org/en-US/docs/Web/HTTP/Connection_management_in_HTTP_1.x#http_pipelining
https://doi.org/10.1145/3543873.3585572
https://doi.org/10.1145/3543873.3585572
https://web.archive.org/web/19961026223230/http://www3.netscape.com/comprod/products/navigator/version_2.0/index.html
https://web.archive.org/web/19961026223230/http://www3.netscape.com/comprod/products/navigator/version_2.0/index.html
https://lists.w3.org/Archives/Public/ietf-http-wg/2012JanMar/0098.html
https://lists.w3.org/Archives/Public/ietf-http-wg/2012JanMar/0098.html
https://github.com/addyosmani/critical
https://github.com/addyosmani/critical
https://v8.dev/features/modules

WWW ’24 Companion, May 13–17, 2024, Singapore, Singapore Lucas Vogel, Thomas Springer, and Matthias Wählisch

[58] Oxford Brookes University. 2002. History of the Web. Technical Re-
port. https://web.archive.org/web/20111226012516/http://www.weblab.isti.cnr.
it/education/documents/origins.pdf [Online; accessed 14. Aug. 2023].

[59] Steven Pemberton. 2022. On the Design of the URL. https://homepages.cwi.nl/
~steven/Talks/2020/10-09-urls/design.html [Online; accessed 14. Aug. 2023].

[60] Political Calculations . 2010. Here’s Why The Dot Com Bubble Began
And Why It Popped - Business Insider. Business Insider (Dec. 2010).
https://web.archive.org/web/20200406151705/https://www.businessinsider.
com/heres-why-the-dot-com-bubble-began-and-why-it-popped-2010-12

[61] J. Postel. 1994. Media Type Registration Procedure. RFC 1590. IETF. https:
//doi.org/10.17487/RFC1590

[62] J. Postel and J. Reynolds. 1985. File Transfer Protocol. RFC 959. IETF. https:
//doi.org/10.17487/RFC0959

[63] Q-Success. 2024. Usage Statistics and Market Share of JavaScript Libraries for
Websites, February 2024. Technical Report. https://w3techs.com/technologies/
overview/javascript_library [Online; accessed 29. Feb. 2024].

[64] Mike Ralphson. 2019. A brief history of Web APIs. DEV Community (Jan. 2019).
https://dev.to/mikeralphson/a-brief-history-of-web-apis-47k4

[65] Axel Rauschmayer. 2023. Chapter 4. How JavaScript Was Created. Technical
Report. https://web.archive.org/web/20221009110102/https://speakingjs.com/
es5/ch04.html [Online; accessed 30. Oct. 2023].

[66] John Resig. 2006. BarCampNYC Wrap-up. Blog Post. https://johnresig.com/blog/
barcampnyc-wrap-up/ [Online; accessed 11. Mar. 2024].

[67] D. Robinson and K. Coar. 2004. The Common Gateway Interface (CGI) Version 1.1.
RFC 3875. IETF. https://doi.org/10.17487/RFC3875

[68] sokra. 2012. Webpack – Initial Commit. Git Commit. GitHub. https://github.com/
webpack/webpack/commit/2e1460036c5349951da86c582006c7787c56c543 [On-
line; accessed 13. Nov. 2023].

[69] Daniel Stenberg. 2016. HTTP/2 connection coalescing | daniel.haxx.se. Technical
Report. https://daniel.haxx.se/blog/2016/08/18/http2-connection-coalescing

[Online; accessed 17. Jan. 2024].
[70] Daniel Stenberg. 2021. FTP vs HTTP. https://daniel.haxx.se/docs/ftp-vs-

http.html [Online; accessed 14. Aug. 2023].
[71] Turbo. 2024. Turbo: The speed of a single-page web application without having

to write any JavaScript. https://turbo.hotwired.dev [Online; accessed 9. Jan.
2024].

[72] Juho Vepsäläinen, Miško Hevery, and Petri Vuorimaa. 2024. Resumability-a New
Primitive for Developing Web Applications. IEEE Access (2024).

[73] Lucas Vogel and Thomas Springer. 2022. An in-depth analysis of web page
structure and efficiency with focus on optimization potential for initial page load.
In International Conference on Web Engineering. Springer, Switzerland, 101–116.

[74] Lucas Vogel and Thomas Springer. 2023. How Streaming Can Improve the World
(WideWeb). In Companion Proceedings of the ACMWeb Conference 2023. 140–143.

[75] Lucas Vogel and Thomas Springer. 2023. Speed Up the Web with Universal CSS
Rendering. In International Conference on Web Engineering. Springer, 191–205.

[76] Lucas Vogel and Thomas Springer. 2023. Waiter and AUTRATAC: Don’t Throw
It Away, Just Delay!. In International Conference on Web Engineering. Springer,
278–292.

[77] Bernhard Wagner. 1998. Controlling Cgi Programs. SIGOPS Oper. Syst. Rev. 32, 4
(Oct. 1998), 40–46. https://doi.org/10.1145/302350.302360

[78] Webpack Contributors. 2017. code splitting. Documentation. GitHub. https:
//github.com/webpack/docs/wiki/code-splitting [Online; accessed 6. Nov. 2023].

[79] Webpack Contributors. 2017. What is webpack. Documentation. GitHub. https:
//github.com/webpack/docs/wiki/what-is-webpack [Online; accessed 6. Nov.
2023].

[80] Pei-Yuan Wei. 1992. Overview, ViolaWWW. https://www.w3.org/History/
19921103-hypertext/hypertext/WWW/Viola/violaWWWAbout.html [Online;
accessed 30. Oct. 2023].

[81] Richard York. 2011. Beginning JavaScript and CSS development with jQuery. John
Wiley & Sons.

6

https://web.archive.org/web/20111226012516/http://www.weblab.isti.cnr.it/education/documents/origins.pdf
https://web.archive.org/web/20111226012516/http://www.weblab.isti.cnr.it/education/documents/origins.pdf
https://homepages.cwi.nl/~steven/Talks/2020/10-09-urls/design.html
https://homepages.cwi.nl/~steven/Talks/2020/10-09-urls/design.html
https://web.archive.org/web/20200406151705/https://www.businessinsider.com/heres-why-the-dot-com-bubble-began-and-why-it-popped-2010-12
https://web.archive.org/web/20200406151705/https://www.businessinsider.com/heres-why-the-dot-com-bubble-began-and-why-it-popped-2010-12
https://doi.org/10.17487/RFC1590
https://doi.org/10.17487/RFC1590
https://doi.org/10.17487/RFC0959
https://doi.org/10.17487/RFC0959
https://w3techs.com/technologies/overview/javascript_library
https://w3techs.com/technologies/overview/javascript_library
https://dev.to/mikeralphson/a-brief-history-of-web-apis-47k4
https://web.archive.org/web/20221009110102/https://speakingjs.com/es5/ch04.html
https://web.archive.org/web/20221009110102/https://speakingjs.com/es5/ch04.html
https://johnresig.com/blog/barcampnyc-wrap-up/
https://johnresig.com/blog/barcampnyc-wrap-up/
https://doi.org/10.17487/RFC3875
https://github.com/webpack/webpack/commit/2e1460036c5349951da86c582006c7787c56c543
https://github.com/webpack/webpack/commit/2e1460036c5349951da86c582006c7787c56c543
https://daniel.haxx.se/blog/2016/08/18/http2-connection-coalescing
https://daniel.haxx.se/docs/ftp-vs-http.html
https://daniel.haxx.se/docs/ftp-vs-http.html
https://turbo.hotwired.dev
https://doi.org/10.1145/302350.302360
https://github.com/webpack/docs/wiki/code-splitting
https://github.com/webpack/docs/wiki/code-splitting
https://github.com/webpack/docs/wiki/what-is-webpack
https://github.com/webpack/docs/wiki/what-is-webpack
https://www.w3.org/History/19921103-hypertext/hypertext/WWW/Viola/violaWWWAbout.html
https://www.w3.org/History/19921103-hypertext/hypertext/WWW/Viola/violaWWWAbout.html

	Abstract
	1 Introduction
	2 On the History of HTTP
	3 Web Content Creation History
	4 Historical overlap of protocol changes and content creation
	5 Re-imagining the content structure based on HTTP/3
	6 Conclusion
	References

