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Abstract: Mass customization, small batch sizes, high variability of product types and a changing
product portfolio during the life cycle of an industrial plant are current trends in the industry. Due to
an increasing decoupling of the development of software and hardware components in an industrial
context, compatibility problems within industrial control systems arise more and more frequently. In
this publication, a strategy concept for compatibility testing is derived and discussed by means of a
literature review and applied research. This four-phase strategy concept identifies incompatibilities
between software and hardware components in the industrial control environment and enables
test engineers to detect problems at an early stage. By automating the compatibility test on an
external I-PC, the test can be run both when new software is installed on the industrial controller
and when the controller is restarted. Thus, changes to the components are constantly detected and
incompatibilities are avoided. Furthermore, early incompatibility detection can ensure that a system
remains permanently operational. Based on a discussion, additional strategies are identified to
consolidate the robustness and applicability of the presented concept.
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1. Introduction

Modern trends in manufacturing are characterized by mass customization, small batch
sizes, high variability in product types, and a changing product portfolio during the life
cycle of an industrial plant [1]. These trends imply more complex plants [2] that support
changes in physical layout, including major engineering upgrades. The complexity of
plants, including automation hardware and automation software, is increasing. As the
percentage of system functionality realized by software increases, concepts to support
automation engineers in dealing with this complexity are urgently needed [3].

Automated testing can help minimize the resources required for software development.
However, changes to software necessitate the re-evaluation of functionality through testing.
To reduce resource consumption, existing relevant tests can be re-run after ensuring their
compatibility with the software after the changes [4]. If a software or its environment are
changed, it is necessary to check, on the one hand, whether the desired function is fulfilled
and, on the other hand, whether there are any unwanted changes or side effects [5].

The compatibility test as mentioned in this manuscript is based on the use of an
industrial programmable logic controller (PLC). These controllers are a crucial technological
foundation for automating industrial processes. Despite the advent of Industry 4.0 and the
industrial internet, it is reasonable to anticipate that these controllers will remain essential
for tomorrow’s production to a significant degree [6]. In order to use PLCs in the future,
important paradigms of Industry 4.0 need to be followed. These paradigms (P1–P4) also
build the basis for the compatibility test in this manuscript.
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P1: Introduction of Basic Web Technologies

PLCs need to incorporate web servers and HTML pages for browser-based configura-
tion and diagnosis.

P2: Global Networking of Process Data

Additional modules must enable bidirectional process data transmission between
PLCs and supervisory systems using web technologies.

P3: Introduction of Service Principles

The integration of service functions in PLCs using standardized protocols allows for
service-based access to process data.

P4: Virtualization of PLCs

PLCs must be able to be used as a virtualized representation in the cloud.
In the proposed concept, the target and actual state of the software and hardware

components are an essential part of the compatibility test. A stringent test procedure, which
can always be repeated in exactly the same way, forms the framework for the concept and
is also presented in this paper. The development of a test script, which generates the result
table from the compared target and actual states, was not part of this work. However, we
have outlined what components such a test script would have to incorporate.

As a result of the compatibility test, the concept offers an overview of found incompati-
bilities and shows possible reactions. The concept was tested and evaluated on a module of
the P2O-Lab [7] of the TU Dresden. The results met the concept requirements, allowed for
the detection of incompatibilities, and were therefore published as a German preprint [8].

In the following sections of this manuscript, the used research methods are explored
to introduce the reader to the state of the art. The two important concepts of Software-
in-the-Loop and Hardware-in-the-loop are explained. In Section 3, the proposed concept
is outlined. The proof-of-concept (Section 4) is explained thereafter and is followed by a
discussion (Section 5) and a conclusion (Section 6), summarizing the main aspects of this
manuscript. At the end of this work, future research directions (Section 7) are outlined.

2. Methods and State of the Art

The analysis of the requirements for the proposed concept was backed by a theoretical
examination of the existing compatibility testing strategies in virtual commissioning (VC)
and cyber security (CS). These strategies serve as a valuable foundation for developing a
compatibility testing concept and are described in the following sections of this article (see
Sections 2.1–2.4).

The primary criterion for inclusion in compatibility testing, for both VC and CS, was
the presence of a model to test against. Consequently, only two test strategies met this
criterion and were classified as essential for compatibility testing.

In the following section, the most important literature findings, which were found to be
most beneficial to the proposed concept, are highlighted. From virtual commissioning of the
testing strategies, Software-in-the-Loop (SiL) and Hardware-in-the-loop (HiL) were found
to be a good source of guidance for the development of the proposed concept. The find-
ings from current developments in the literature are highlighted in Sections 2.1 and 2.2.
The other major literature topic which was used to influence the concept development was
cyber security. The test strategy of anomaly-based detection (see Section 2.4), from the topic
of cyber security, was found to be connected to an approach which could be used for the
proposed concept.

2.1. Software-in-the-Loop

In the SiL approach, a virtual PLC is instantiated to test the automation code associated
with the behavior models in the simulation layer [9].
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This approach makes it possible to integrate software components with an environ-
mental simulation [10]. In addition, this approach enables very fast testing of different
scenarios and control algorithms and their flexibility.

The costs for implementing an SiL environment are around sixty times lower than
those for an HiL environment. The SiL environment can be available to any developer,
while separate equipment is required for HiL [10].

SiL tests are carried out by running the software on normal PC hardware, which
makes it possible to identify the most important errors in the functional area. However,
the compiler and the processor of a PC may behave differently than on the final automation
platform [11].

2.2. Hardware-in-the-Loop

In the HiL approach, a real physical PLC is connected to a simulation layer that
executes the system’s behavior models.

All VC processes are based on a virtual model that is connected to a PLC. In the case
of an HiL simulation, the PLC is a real hardware controller [12]. Consequently, it is possible
to carry out the VC with the PLC, which is then integrated into the production system.
According to Mazza [11], this is particularly interesting for the following processes:

1. The validation of PLC control strategies based on a virtualized environment with the
ability to represent the expected dynamics of the real machine.

2. The improvement or comparison of real-world measured data with simulated data
(e.g., from virtual sensors).

3. Supporting operators during real machine operation through simulated predictions
or diagnostics fed by a ’digital twin’ with real data from the field.

2.3. Use of SiL and HiL for the Concept

To summarize, the following reasons can be found why the VC strategies SiL and HiL
are very useful:

1. Control strategies can be virtually validated without endangering human lives
or machines.

2. Costs can be reduced thanks to the possibility of debugging (error correction could
occur too late during the design process).

3. Operators can familiarize themselves with the control systems, including those under
construction, thanks to the creation of virtual systems.

4. Errors can be found within a few minutes with the help of ‘virtual time’
through simulation.

2.4. Anomaly-Based Detection

Anomaly-based detection uses statistical methods and artificial intelligence to detect
unknown attacks [13]. Ourston et al. [14] presented an approach that uses hidden Markov
models to detect complex cyber attacks. This method is able to address the problem of multi-
stage attacks. Experimental results have shown that this method is more effective than
classical machine learning techniques, such as decision trees and artificial neural networks.

Mukkamala et al. [15] developed a method for detecting attacks using K next neighbor
algorithms (KNNs) and support vector machines (SVMs). KNNs and SVMs were used to
create classifiers based on a list of features. Experimental results showed that KNNs and
SVMs are able to detect anomalies and known intruders. Pan et al. [16] developed a hybrid
method for detecting attacks by combining KNNs and decision tree algorithms. Exper-
imental results showed that KNNs can detect DoS and probing attacks more effectively
than detecting unauthorized access from a remote machine and authorized access to local
superuser attacks.

Zhang et al. [17] developed a method based on random forests to detect network intru-
sions. This method was demonstrated on an intrusion detection data-set. The experimental
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results showed that the proposed method can achieve a high detection rate with a low false
positive rate.

Gaddam et al. [18] developed an anomaly detection approach using cascading K-
Means clustering and ID3 decision tree learning algorithms. This method was used to
analyze a data-set of network anomalies. Experimental results showed that the detection
accuracy is up to 96.24% with a false positive rate of 3%.

Liao and Vemuri [19] developed a classifier for intruder detection using the k-nearest
neighbor (kNN) algorithm. This method was used to classify the behavior of programs as
normal or intrusive. Experimental results showed that the kNN classifier can effectively
detect attacks with a low false positive rate.

Sabhnani and Serpen [20] analyzed an intrusion detection data-set using a set of
machine learning algorithms. The data-set includes four types of major attacks, including
probing, DoS, user-to-root, and remote-to-local attacks. Simulation results showed that
certain classification algorithms are more effective for a particular attack category.

Lee et al. [21] introduced an attack detection method based on cluster analysis to
proactively detect DoS attacks. A hierarchical clustering algorithm was used to analyze a
data-set for attack detection. Experimental results showed that this method is capable of
detecting DoS attacks.

3. Proposed Concept

For the proposed concept, an SiL approach, based on [9], and an HiL approach,
based on [12] strategies from VC, highlight the crucial role of a pre-established model in
conducting effective tests. Additionally, from the field of CS, the strategy of anomaly-based
detection, as described by Ourston et al. [14], emphasizes the use of a predefined model to
detect deviations and potential attacks.

Based on this insight, it becomes evident that a model, referred to as the target state, is
fundamental in compatibility testing. This target state encompasses the intended software
and hardware configurations for compatibility testing.

In contrast to the target state, akin to the SiL or HiL strategies, there is the system to be
tested, whether simulated or the physical PLC, to which the test is applied. In the proposed
context of compatibility testing, the system under test is referred to as the actual state. It
represents the current state of the hardware components connected to the PLC and the state
of the software running on these devices. These two main points, the determination of a
target and the actual state, form the foundation of the compatibility testing concept.

The model checking and anomaly-based detection strategies from VC and CS can
be adapted for use in the context of software uploading and restarting by introducing an
additional component external to the PLC. This additional component takes on the role of
monitoring the PLC and automatically initiating a compatibility check whenever a software
update is pending or the PLC undergoes a restart. In the proposed concept, as outlined in
Section 3, this external component is an industrial PC (I-PC). The I-PC runs a test script
responsible for managing the software upload to the PLC and monitoring the software
restart process of the PLC.

The proposed concept consists of four phases (see Figure 1). Phase one conducts an
automated self-test on the PLC connected to a test I-PC. This ensures basic PLC operation
requirements, like CPU and I/O module presence, memory checks and power availability
(see Section 3.1).

Phases two and three determine the actual and target state of software and hardware
components in the system. First, the actual state (see Section 3.3) of the system is determined;
then, the determination of the target state (see Section 3.2) follows. It is important to note
that the proposed concept is not generally applicable. The proposed concept is based on
the TIA Openness API as a foundation for the determination of the actual and target state.
The Openness API of the totally integrated automation (TIA) portal from Siemens offers an
application programming interface (API) for integrating third-party or custom software
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solutions with the Siemens ecosystem. The TIA portal also provides developers with the
option to program and configure PLCs remotely.

In the fourth phase, the test compares the target and actual states to identify differences
and categorizes incompatibilities in error detection tables (see Section 3.5).

Figure 1. Proposed compatibility test sequence.

3.1. PLC Self-Test

The PLC self-test includes the self-testing and diagnosis of the PLC under test. As re-
quired by DIN EN 61131-2, manufacturers of PLC systems must provide means for self-
testing and diagnosing the operation of these systems. Furthermore, the self-test must
allow a statement about the proper condition of a PLC system.

The PLC self-test according to DIN EN 61131-2 must provide diagnostic means to
perform the following actions:

1. Monitoring the application program (watch dogs);
2. Checking the integrity (freedom from errors) of the memory;
3. Checking the correctness of the data exchanged between the memory, processing unit

and I/O modules;
4. Checking the power supply of the system;
5. Monitoring the state of the main processing unit.

The output of the PLC self-test is essential to determine the suitability of the PLC for
compatibility testing. The self-test provides the basis for meeting the hardware require-
ments of the compatibility test. A system which is not in proper condition, i.e., which does
not pass the self-test, cannot be used as part of the concept for testing the compatibility
between software and hardware.

3.2. Export and Import of Target State

Before the target state can be imported to check compatibility with the new hard-
ware, the files required for the import must first be obtained. Depending on the use case,
the requirements for importing the target state differ.

3.2.1. Use Case A—Determination upon PLC Restart

For use case A, the target state is imported from stored data on the test PC, representing
the last known actual state before the PLC restart. To ensure an automated sequence, the test
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PC retains the last actual state, making it available for compatibility tests after a PLC restart.
A continuous ping between the test script and the PLC detects restarts, triggering automatic
compatibility checks. See Figure 2 for the relevant components. Since the target state is
already on the I-PC during a restart, it is simply loaded by the test script.

Figure 2. Determination of the target and actual state at restart.

3.2.2. Use Case B—Determination upon PLC Update

To install new software on the PLC, the target state comes from user-provided update
data. These data typically include a TIA project file, which is first opened using the TIA
Openness API. The open-source software TiaExportBlocks [22] extracts variable tables in
XML format from the TIA project and exports them to an XML file. The hardware topology
is exported as an AML file [23] using the CAx export function of the TIA Openness API.

This process results in software data in XML format and hardware data in AML format
(CAEX standard) [24].

The test script now has the target state for the software and hardware, which is
essential for the compatibility check. The CAEX format in AML uses the PLCopen XML
standard [25] for machine-readable hardware topology.

By determining the target state, the necessary hardware and software information is
collected for comparison with the actual state in the next step. See Figure 3 for a visual
representation of this process.

Figure 3. Determination of target and actual state during software update.
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3.3. Determination of the Actual State

To determine the current state of the software and hardware components, the network
state is first assessed using the DCP Scan. Then, the I-PC programmatically contacts the
PLC via the Siemens TIA portal Openness API [26].

The DCP “Identify All” command is initially broadcasted over the PROFINET network
connected to the test PC. PROFINET (Process Field Network) is an industrial Ethernet
standard which is widely used in industrial automation applications for real-time commu-
nication between industrial devices such as PLCs, sensors, actuators and other automation
components. This command, illustrated in Figure 4, helps identify PROFINET devices
physically connected to the network and supporting the DCP protocol. These devices, once
found, return hardware information such as the device name, IP address, firmware version
and MAC address via the DCP “GET” command.

Subsequently, the PLC software is downloaded to the I-PC through the TIA Openness
API. Upon successful download, the AML file for the hardware configuration is generated
by selecting “Export CAx data” from the “Tools” tab.

Additionally, variables in the PLC code can be automatically exported to machine-
readable XML files from an open project using the open-source software “TiaExportBlocks”.

Figure 4. DCP command flow, based on [27].

3.4. Comparison of Target’s Actual State

The core element of the concept is the comparison of the target and actual state, which
emerges from the previous chapters. The components and IDs of the target software are
compared to the actual software from the PLC, and the imported expected hardware AML
structure is compared to the determined DCP scan output. In doing so, the differences are
identified and possible problems and inconsistencies are revealed.

When looking at the differences, incompatibilities between the hardware and software
components can be identified and categorized in a table (see Section 3.5). The complete
comparison process is automated by a custom test script on the I-PC. This automated test
process can be performed when new software is uploaded or when the system is rebooted.

The comparison of the two states is implemented by a test script which runs on the
I-PC. Since the implementation of this test script was not in the scope of this work, any
types of computation requirements or PLC programming language limitations are yet to
be determined.

3.5. Error Detection Table

Shown below is the error detection table (Table 1) that is automatically created by
the test script as a result of the compatibility check. In order to improve accessibility,
the resulting error table can be accessed via the Human Machine Interface from which the
compatibility test was administered. The different rows are divided by components of the
test flow, as shown in Figure 1. Possible reactions to the incompatibilities found are also
included in the table. To simplify the notations within Table 1, the following abbreviations
are introduced:
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• Hardware (H/W).
• Software (S/W).
• Not available (n.a.).
• Locally solvable problem (L).
• Remotely solvable problem (R).

Table 1. Error and inconsistency detection table.

Stage Detectable Error Reaction

1—PLC self-test

CPU, E/A-Modul n.a. Repair hardware on site, install, replace (L)
Error in the application program Check code and update (R)

Data exchange faulty Check PLC (L)
Memory integrity violated Check memory (L)

Comm. Interface n.a. Check power supply (L)

2—Import and export of the target state

Error in the logic of the PLC code Fix logic errors in code (R)
H/W topology n.a. Check file structures (R)

SPS code n.a. Check file structures (R)
File/XML structure incorrect Re-export and import AML (R)

3—Determination of the actual software state
PLC code n.a. Check connection to PLC (L)

PLC system n.a. Check connection to PLC (L)
PLC in wrong network Check network configuration (R)

4—Determination of the actual hardware state

No H/W devices found Check connections (L)
DCP scan unsuccessful Check if DCP protocol is supported (L)

Data from device not retrievable Check connections (L)
H/W device in wrong network Check network configuration (R)

3.6. Reactions to Incompatibilities

The reactions outlined in Section 3.5 offer a framework for test engineers to respond
effectively to identified incompatibilities. It is important to note that these reactions are not
automated by the system and require intervention from the test engineer.

The proposed concept for reacting to incompatibilities involves pinpointing which
location in the system action is needed to resolve the issues. Additionally, the error detection
table identifies whether a specific incompatibility can be fixed remotely (R) or if an on-site
engineer intervention (L) is required.

4. Proof of Concept

In the following, the TIA portal and other software tools from Siemens will be used
explicitly to evaluate the strategy concept using a reference system to conduct a proof of
concept. The evaluation method to be used is a test of the concept on a real plant.

4.1. Proof of Concept Criteria

The criteria for the evaluation correspond to the following requirements for the com-
patibility test:

A. The compatibility test must make a statement about the compatibility, i.e., the com-
patibility of the simultaneous operation of the hardware and software components
connected to the PLC, and display this to the test engineer.

B. The compatibility check must be able to run automatically during the PLC restart or
during the loading of software onto the PLC.

C. The result of the compatibility check must enable a statement to be made about the
incompatibilities and errors found.

D. At the end of the compatibility check, the test engineer should be shown appropriate
reactions to the incompatibilities and errors found.

E. The compatibility check should work with hardware and software from different
manufacturers in the industry.
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4.2. Reference System

The evaluation was carried out by testing the installation of new software on a hard-
ware PLC on a reference system from the biopharmaceutical equipment supplier Sartorius.
The concept presented for the compatibility check was applied and carried out. Two Sarto-
rius industrial control systems were used as possible real-world application examples for
the compatibility test. There were two different control system models which were used
for the proof of concept.

One of the models contains a so-called software PLC. A virtual instance of a fully
configurable and usable PLC is created on the I-PC. Communication with the field devices
is then realized via an I/O module connected to the I-PC. Most engineering companies also
use automation scripts in their systems, which make it easier to process updates.

The second model uses a regular hardware PLC. This is supplied by an external power
supply and connected to the I-PC via PROFINET to enable the PLC to be programmed.
The hardware PLC is physically connected to the field devices via digital and analog
I/O modules.

The assumed real-world existing systems were developed by Sartorius with the TIA
portal from Siemens and are therefore suitable for demonstrating the application of the
concept. However, no Sartorius control system could be used to evaluate the concept on site.
Therefore, the individual steps of the compatibility test were evaluated on a similar system
in the form of a decentralized periphery ET200 from Siemens in the P2O-Lab [7] at TU
Dresden. The industrial control systems in the P2O-Lab mostly correspond to real-world
models with hardware PLCs.

4.3. Evaluation Procedure

In order to evaluate the proposed concept, the necessary steps as defined before were
carried out in manual sequence. The following tasks were carried out:

1. Powering up the PLC and conducting PLC self-test.
2. Preparation of the I-PC and installation of the TIA portal.
3. Performing a connectivity check between the I-PC and PLC.
4. Determining the actual software status by downloading the PLC software and export-

ing it to XML using TIAExportBlocks; see Figures 5 and 6.
5. Determining the actual hardware status by exporting the AML file; see Figure 7.
6. Determining the software target state by importing the update file and exporting it

to XML.
7. Determining the hardware target state by importing the update file and exporting it

to AML.
8. Comparing the target and actual status.

4.4. Evaluation Results

As the target and actual states were available in XML and AML at this point, the dif-
ferences between the states could be identified by comparing them. It was noticed that a
PROFINET HMI device specified in the software target state, which was to be addressed
by the PLC, could neither be found in the loaded hardware configuration of the AML file
nor in the DCP scan.

The new software update contained a change that would have led to an incompatibility
of hardware and software if the data had been transferred to the PLC. Accordingly, variables
were used in the PLC control code that referred to the non-existent HMI. As a result of the
comparison of the target and actual state, the incompatibilities found were shown in the
error detection table and made visible to the test engineer.

The test engineer was advised to check the device connections. This enabled him to
determine whether it was just a connection error. The HMI device in question was actually
found on the module. It was recognized that the PROFINET connection of the device was
not properly connected and therefore the device could not be found. Once the error had
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been rectified locally by the test engineer’s appropriate response, the software update could
be transferred to the connected PLC using the TIA portal.

comparison target and actual state

Detected Error Reaction

H/W device HMI01 not present in actual state check device connections (L)

Figure 5. Determine the current software status of the PLC.

Figure 6. TiaExportBlocks after successful export.
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Figure 7. Export the actual hardware status of the PLC to AML.

5. Discussion

The compatibility check concept presented gives test engineers of industrial control
systems an overview of incompatibilities before they occur during operation of the control
system. Differences between the target and actual status are shown and possible reactions
are identified.

By using an I-PC, the compatibility check is carried out automatically when the PLC
is restarted or new software is installed. This means that errors and inconsistencies are
detected at an early stage and can be rectified accordingly.

The concept facilitates an automated comparison of the hardware and software of
a PLC’s target and actual states, allowing for the detection of inconsistencies or incom-
patibilities. This check can be applied when restarting the PLC or when updating the
software. The error detection methods in Section 3.5 offer an overview of potential errors
and reactions. These tables are not complete and cover more inconsistencies in practice
than presented, but have been condensed to focus on the core concept.

The concept relies solely on Siemens software and the TIA portal. Future work could
explore extending it to other major industrial control manufacturers, contributing to broader
research in this domain.

Since the proposed concept does not include an own implementation of a test script,
this could also be a useful extension to further verify the applicability of the presented
concept. The script could be a starting point for a more in-depth analysis of how the concept
could be integrated into other domains of industrial control systems, where different types
of data-sets are available.

During the implementation of the proposed concept, the following technical challenges
had to be faced:

Communication Protocol Variability

Supporting multiple communication protocols used by PLCs, such as Modbus,
PROFIBUS, PROFINET and EtherNet/IP.

Version Complexity

Ensuring compatibility across different versions of PLC firmware and software, in-
cluding updates and changes in communication protocols.

Operating System Dependencies

Handling compatibility with different operating systems required by PLC program-
ming environments and communication software.
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Hardware Interface Compatibility

Ensuring compatibility with diverse hardware interfaces and communication modules
used by PLCs for connecting to devices.

Data Format Standardization

Addressing the challenge of diverse data formats and structures exchanged between
PLCs and the I-PC.

6. Conclusions

In this work, the need for automated compatibility testing is outlined and underpinned
by a concept, based on a literature review. The findings of the literature review were
presented in the chapter on the state of the art, existing test strategies from VC and CS
were discussed, and the concept of compatibility from various literature sources was
brought together and examined. The SiL and HiL strategies from the VC and anomaly-
based detection from CS were considered to be particularly relevant and decisive for the
compatibility testing presented in this study.

Based on this, the most important requirements for the concept were then derived and
identified by means of a requirement analysis.The results of the requirement analysis are
shown in the concept section of this work.

Furthermore, it was discussed how the strategies determined from the VC and CS
can be transferred to the processes of restarting the PLC and installing new software on
the PLC.

The proposed concept for carrying out an automatic compatibility check was devel-
oped using applied research into the early detection of incompatibilities. A four-phase
concept was presented, which is characterized by the comparison of the target and actual
states of the software and hardware components.

As a result of the compatibility check, the concept offers an overview of the incompati-
bilities found and shows possible reactions.

The functionality of the concept was implemented and evaluated on a module of the
P2O Lab at TU Dresden. The results met the concept requirements and made it possible to
identify incompatibilities.

7. Future Directions

There are numerous avenues for further research in the field of compatibility testing,
building upon the theoretical basis established in this work. These possibilities include
the following:

1. Implementation Variations: Expanding on the presented concept by creating various
implementations to assess its flexibility and adaptability to different scenarios. Other
scenarios could also involve completely different industry domains.

2. Multi System Compatibility: Trying to implement the concept with other PLC types
from Siemens, such as LOGO or S7-1200.

3. Multi Vendor Compatibility: evaluating and extending the concept to encompass
software and hardware configurations from a range of manufacturers, providing a
more comprehensive solution.

4. Automated Test Script: developing a test script that automates the different phases of
the concept, streamlining the compatibility testing process.

5. Data Source Extension: expanding the concept to incorporate data from addi-
tional sources for determining target and actual states, enhancing its robustness
and applicability.

6. Fully Automated System: In the future, fully automated compatibility testing systems
could significantly benefit test engineers and integrators of industrial control systems.
This would enable the early detection of incompatibilities in various Industry 4.0 com-
ponents, particularly in the face of new hardware and software developments and
changes to existing PLC architectures.
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These research directions show potential to advance the field of compatibility
testing, making it a valuable asset in the ever-evolving landscape of industrial con-
trol systems.
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The following abbreviations are used in this manuscript:

AML Automation Markup Language
CAEX Computer-Aided Engineering Exchange
CS cybersecurity
DCP Discovery and Configuration Protocol
DoS Denial of Service
H/W hardware
HiL Hardware-in-the-loop
I-PC Industrial Personal Computer
I/O Input/Output
KNN K next neighbor algorithm
PLC programmable logic controller
S/W software
SiL Software-in-the-Loop
SVM support vector machines
TIA totally integrated automation (software from Siemens)
VC virtual commissioning
XML Extensible Markup Language
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