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Abstract. Mixed state analysis [1] has been proposed to detect interdependencies between time
series by assessing the predictability of variables by means of embedded data using samples of
more than one variable (mixed states). By this way bidirectional coupling could be distinguished
from unidirectional one and the direction of the latter could be detected. The motivation of our
paper goes beyond the detection of the nature of coupling (unidirectional or bidirectional) and aims
at quantification of the degree of coupling in each direction. We propose to take the improvement
of the predictability of one variable by additionally considering another variable as a quantitative
measure of the coupling from the second variable to the first. This approach somehow meets the
information theoretic concept of transfer entropy and it is also applicable to short time series. We
demonstrate the use of this approach to coupled deterministic discrete maps and to EEG data.

INTRODUCTION

In many applications, especially in the field of physiological signal processing, one is
interested in the detection of synchronization (or interdependencies in general) between
systems (or subsystems) generating the signals. Recently different methods aiming to
detect different kinds of synchrony (phase synchrony, generalized synchrony) have been
applied to EEG signals [2], [3]. Synchrony, in a strict sense, is a symmetrical feature;
once the systems are fully synchronized, drive and response systems are indistinguish-
able. Two systems also can both influence the dynamics of each other in an asymmetric
fashion. Thus, the proper detection of such (uni- or bi-)directional dependence is impor-
tant and can provide new insight into the characterization of underlying dynamics.

Mixed state analysis has been proposed [1] to detect interdependencies by assess-
ing the predictability of variables by means of embedded data using samples of more
than one variable (mixed states). The deterministic structure of multivariate data was
detected in [4] by constructing the mixed states of embedded samples of all variables;
interdependence was established by finding the embedding dimensions (no. of samples
of each channel) out of all possible combinations which minimize the prediction er-
ror. This method is practically feasible only for small number of variables and does not
quantify the interdependencies. In [5] transfer entropy was proposed as a measure of
directional interdependence. Since estimation of entropies based on probability distri-
butions in mixed state spaces requires a huge quantity of data, transfer entropy is not
suitable for limited data sets.

The primary aim of this study is to devise a measure which allows both (i) the



detection of the nature of hidden coupling (unidirectional or bidirectional), and (ii) the
quantification of the degree of coupling in each direction. We propose an index, based
on the concept of predictability improvement by the construction of mixed states1. By
several examples including simulated and real-life signals, we demonstrate that this new
index of predictability improvements successfully detects and quantifies the nature and
degree of interdependencies, respectively.

PREDICTABILITY IMPROVEMENT BY MIXED STATES

Predictability is a sine qua non for determinism. For a deterministic time series, a con-
tinuous function maps the past values onto the future values. One way to check the
existence of such a map is the following. The (scalar) time series,xi; i = 1; : : : ;N,
is embedded into the state spaceX , i.e. subsequent samples form a vector,xi =

xi;xi�l; : : : ;xi�(m�1)l (m - embedding dimension,l - time lag ). If neighboring vectors are
followed by their corresponding post-images while maintaining the closeness in neigh-
borhood sense, a continuous map (past to future) is assumed. The difference between
the predicted value (by means of the neighborhood) and the (original) future value of
a given point in state space is the prediction error. It is a measure of predictability, i.e.
the smaller the prediction error, the more predictable the time series. The mean squared
error, MSEx(X)2 (x predicted based on neighborhood inX ) is defined as:

MSEx(X) =
1
Nr

Nr

∑
i=1
(xi+h� xnni1;:::;k+h)

2 (1)

Herenni1;:::;k refers to the time indices of thek nearest neighbors in state space, andNr;h
are the number of considered vectors and the prediction horizon, respectively.(:) is the
mean operator. A locally constant prediction model is employed by taking the mean of
k nearest neighbors. This is computationally less expensive than the local autoregressive
model as discussed in [7].

In a similar way, mixed predictability is assessed in terms of the prediction error where
the prediction is based on the neighborhood in the mixed state spacesX �Y . The state
space vector in the mixed state space is formed out of samples from two time series:
xi;xi�l; : : : ;xi�(m�1)l;yi;yi�l ; : : : ;yi�(n�1)l (m+ n - embedding dimension, theoretically
two different lags for two time series are possible). The prediction error based on mixed
states is MSEx(X �Y ).

We define predictability improvement (PIx(y)) of x with the help of additional infor-
mation from the state spaceY as

PIx(y) = MSEx(X)�MSEx(X �Y ) (2)

1 This concept, in its basic form, was proposed in [6] to measure primarily linear interdependence.
2 The time seriesxi is either normalized to zero mean and unit variance or the MSEx has additionally to
be normalized with respect to the covariance ofx i.



It is the difference between the (self-) predictability ofx and the mixed predictability of
x based on mixed statesX �Y .

We propose PIx(y) as a measure of the interdependence, i.e. to which extent the dy-
namics ofx is influenced by the dynamics ofy. PIy(x) can be measured in an analogous
way, which indicates the dependence in the opposite direction. The more the systemY
influences the future of systemX (e.g. the higher the terms involvingY in the state equa-
tions of X are due to higher coupling strength), the more the future ofx is clarified by
additional inclusion of the past ofy.

Remark: A similar idea holds for the transfer entropy [5], which measures the flow of
information from signaly to x (and vice versa). It is the difference between the entropy
rate ofx alone and the entropy rate based on transition probabilities which additionally
include the past values ofy. Transfer entropy and predictability improvement, both being
a difference of measures of uncertainty with and without a helping signal, measure how
much the future is clarified by an additional knowledge of the past of another signal.

RESULTS

We demonstrate the use of predictability improvement with examples including simu-
lated and real-life signals.

Consider an one dimensional ring lattice of 100 unidirectionally coupled tent maps

xm(i+1) = f (εxm�1(i)+(1� ε)xm(i)); m = 1; : : : ;100 (3)

with f (x) = 1� 2j:5� xj. The strength of the unidirectional coupling is varied from
ε = 0 to ε = 0:05. Figure 1 shows the predictability improvements in both directions
for the parameters settingm = n = l = h = k = 1 (results, computed with 104 points,
are averaged over 10 runs with random initial conditions after discarding 104 points
as transients). As expected, PIx1(x2) is approximately zero since there is no direct
coupling fromx2 to x1, whereas PIx1(x2) reflects the strength of the coupling in the
other direction. The direct comparison with transfer entropy [5] shows that the index
based on predictability improvement can produce equivalent results with one tenth of
the data.

It is to be noted that the method based on predictability improvement cannot dis-
tinguish between fully synchronized and uncoupled systems. The same holds for the
transfer entropy since both methods measure the degree of interdependence as long as
the systems are not fully synchronized. Thus, the proposed index is sensitive to coupling
strength up to perfect synchronization.

Next, consider two bidirectionally coupled identical Henon maps [1]

x(i) = a� x(i�1)2+b� x(i�2)+ cyx � (x(i�1)2� y(i�1)2)

y(i) = a� y(i�1)2+b� y(i�2)+ cxy � (y(i�1)2� x(i�1)2) (4)

with a = 1:4;b = :3. The coupling strengths in both directions are independently varied
cxy;cyx = 0; : : : ;0:36. The predictability improvements withm = 2;n = h = k = 1 of
104 points after 104 transients are shown in Figure 2. The proposed index successfully
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FIGURE 1. Predictability improvements PIx2(x1)-solid, PIx1(x2)-dashed and the theoretic transfer
entropyTx1!x2-dotted as a function of unidirectional coupling strength.

reflects the coupling strengths in both directions up to synchronization. The difference
of the predictability improvements in both directions reflects the asymmetry of the
coupling.
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FIGURE 2. Predictability improvements, PIx(y)-left and PIy(x)-middle as a function of the coupling
strengths in both directions. right: Difference of the predictability improvements reflecting the asymmetry
of the coupling up to synchronization

Next, we applied the proposed index to multivariate EEG signals from 20 subjects, (10
musicians and 10 nonmusicians) recorded (at 128 Hz sample frequency) while listening
to music (90s Bach, French Suite Nr. 5) and at resting condition (eyes closed) [2]. The
predictability improvements were calculated in both directions for all pairs between 19
electrodes for subsequent and nonoverlapping windows of 10s length. We chosel =
5;m= 10 in accordance with usual embedding techniques for scalar time series (mutual
information and false nearest neighbors) andk = 10;n = 5 free choice motivated by a
case study of one subject. We have to report that (2) can acquire negative values (while
transfer entropy is nonnegative). This refers to the worsening of prediction by forcefully
adding information from other signal, which might be a signature of independence. Here
only positive values of PI are considered. The results were statistically (Wilcoxon test,
p = 5%) compared between the groups as well as between task and resting condition.



The differences of the (self-)predictabilities between the two groups while listening
to music (Figure 3) reflect the different degrees of determinism of each electrode region.
The individual (self-)predictabilities provide the basis with respect to which the pre-
dictability improvements between different electrode channels are measured. The sig-
nificant differences of PI between musicians and nonmusicians while listening to music
are topographically presented in Figure 3. Higher information transfer took place be-
tween multiple cortical areas in the brain in musicians as compared with non-musicians
while listening to music. The detailed analysis will be reported elsewhere.

It might be noted that the interpretation of the detected flow of information as mea-
sured by the proposed index should be different from the interpretations of other indices,
which treat synchrony and interdependency in a common framework. In a recent result
[8], the two features, (flow of information and synchrony) even get opposite signs.
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FIGURE 3. Upper left: Position of the 19 electrodes on the scalp according to 10-20 electrode-
placement system (recordings with respect to the averaged ear-lobes signals). Lower left: Significant
differences of (self-)predictabilities of musicians with respect to nonmusicians while listening to mu-
sic (black-increase, white-decrease). Middle/right column: Topographical maps showing significant in-
crease/decrease of predictability improvements of musicians compared to nonmusicians while listening to
music. Arrowheads roughly represent the flow of information. Intra- and inter- hemispheric connections
are presented separately (upper/lower part).

DISCUSSION

A novel index based on predictability improvement of one signal with the help of ad-
ditional information from another signal by the reconstruction of mixed state spaces is
proposed to detect both the nature and the degree of hidden interdependences between
signals. In several examples, it has been shown that this index reveals asymmetries in
coupling even when the data are few and noisy (like EEG). However, like in all meth-
ods based on state space reconstruction, proper choices of embedding and prediction



parameters play an important role in the successful application of this new index. Also,
by means of any directional measure of interdependence including the proposed one,
we cannot prove the presence of actual coupling strengths, neither we can exclude the
influences of many other systems. The method of surrogate data [9] might be helpful to
provide a confidence limit, which can exclude the spurious couplings measured by the
applied index - this is a scope of future study.
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