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Abstract

We present a criterion useful for inverse system design which establishes the correct functioning of op-amps. in
terms of network structure.

1 Introduction

One of the promising methods to transmit information on a chaotic carrier signal is the inverse system approach
[1]. The key idea is that the roles of input and output of the transmitter, the original system, are exchanged at
the receiver, which is therefore called the inverse system.

The receiver has to recover the information signal. If the output of the receiver asymptotically copies the
original input signal, we say that the receiver synchronizes. In order to do this the inverse system has to have
unique asymptotic behaviour. These things are discussed in-depth in [2] as well as the crucial result that a
synchronizing inverse can be achieved by appropriate choice of the output of the original system.

Usually, the circuit realization of this method uses both for the transmitter and the receiver a nonlinear dynamic
one-port [1], the voltage and current of which are treated alternatively as input and output (Fig. la). We have
shown [2] that the restriction to one-ports is not necessary. Indeed, the information signal can be injected into the
circuit by, say, a voltage source and any other voltage or current, not just the source current, can serve as chaotic
signal to be transmitted. This is to treat the circuit as two-port. The inversion of this input-output-situation can
be achieved, using an operational amplifier. One of the four possible situations is shown in Fig. 1b. We replaced
the op-amp. by a nullator-norator pair.
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Figure 1: Inverse system realization: the V' — I — V method (a) with a 1-port (b) with a 2-port

In the sequel we take it for granted that the inverse system synchronizes with the original system in case of
an ideal op-amp. But we still have to check that the non ideal characteristics of the operational amplifier do not
destroy the correct functioning of the inverse system. (The question of the correct functioning of circuits containing
op-amps. is a general one and not restricted to inverse system design. Allthough our results are applicable to all
these circuits we will stick to inverse systems here) The purpose of this paper is to give conditions which ensure that
the output of the inverse system deviates only slightly from the original information signal when the operational
amplifier saturates and has a single pole frequency characteristic.

2 State Equations

If too large an input signal is applied to the inverse system, it will be driven into saturation and the retrieved signal
will be heavily distorted. Therefore, we suppose that the dynamic range of the input signal is limited in such a way
that the output of the operational amplifier, when its ideal model is taken, stays well below the limits imposed by
the saturation effect of its non ideal model. This is necessary for correct functioning, but not sufficient. It could



still happen that the dynamic effects of the operational amplifier drive it into saturation. We use the following
model of the nonideal op-amp.:
TUo.ut + Vout = f(Uzn) (1)

where f(-) indicates a saturation characteristic depicted in Fig. 2a, i.e. the op-amp. is now regarded as an open
circuit at the input port and an inertial voltage controlled voltage source at the output port.

It is understood that the circuit structure can change crucially when a nullator-norator pair is replaced by a pair
of an open ciruit and an inertial vc. voltage source. Namely, the dimension of the state space (i.e. the number of
independent capacitor charges and inductor fluxes) may change. Furthermore, the appearence of input derivatives
in the system description (as is the case for inverse systems with reduced state space, cf. [2]) makes our slow-fast
approach (section 3) difficult to apply. Therefore, we require for the application of our approach that all capacitors
and inductors represent states in the ideal system as well as in the nonideal system.

The inverse system with ideal op-amp. is described by:

x = h(vout,X,s)
Vi, = 9(Vout,X,8) =0 (2)
whereas the system with model (1) of the op-amp. is described by:
x = h(vou,X,8)
TVout + Vout = f(9(vout, X, s)) (3)

Here x € IRY is the state vector, s(t) is the input signal and v, = g(vout, X, s) represents the two port characteristics
of the rest-network cf. section (3).
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Figure 2: (a) Saturation characteristic of the op-amp. f(vi,) (b) Inverse system as a connection of the op-amp.
two-port with the rest-network

3 Slow-Fast Approach

We have to show that the system (3) produces nearly the same signals as the ideal system (2) which moves on a
hypersurface Hiq in RN 2 : v, = 9(vout, x,8) = 0.

We take the following simplifying point of view: The dynamics of the ideal circuit are supposed to be much
slower than the additional dynamics caused by the frequency roll-off of the operational amplifier. This is due to the
very large slope A of f(-) at 0 at least if v;,, is not very very close to zero or large. Therefore, we analyse the fast
dynamics in the limit of constant x and constant s. This is that we consider the inverse system as the connection
of the operational amplifier, with its dynamic model, to the static rest-network, Fig. 2b.

TUout = f(g(vouta X, 3)) — Vout (4)
The set of dc-operating points of Equ. (4) Tou(x, s) for all x and s represents a hypersurface H.q in IR ™2 too,
which is described by:
— ,UOU
f 1(U0ut) = g(Vout, X, 5) = : (5)

A
Next we show that this hypersurface is close to the hypersurface H;q the system with ideal op-amp. is moving
on. Then we derive conditions to ensure that the hypersurface H.q is globally asymptotically stable under the
dynamics (4).



The dc-operating point can for specific circuits be shown to be unique and to depend continuously on the the
inverse of the slope A by applying criteria of [3]. Note, the dc-operating point of (4) is a solution of a resistive circuit
which consists of a nonlinear ve. voltage source: vyt = f(vin) and the static rest-network where capacitors and
inductors are replaced by voltage resp. current sources. Due to the continuity of the solution in % the hypersurface
Heq, i-e. the solution of (5) is close to H;q. This result can also be obtained by inspection of the intersection of
the two-port characteristics under the constraint i;, = 0, Fig. 3b.
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Figure 3: (a) Circuit to detect the static two-port characteristics under the constraint i, = 0: vin = g(Vout, X, )
(b) Inverse saturation characteristic of the op-amp. f !(vi,) and two-port characteristic of the rest-network
Vin = §(Vout, X, 5), the intersection of both determines the dc-operation point

From our slow-fast point of view, this dc-operating point varies slowly and the solution of the inverse system will
track it, provided it is asymptotically stable. In order to show this one can use a Lyapunov function w(veys, X, s) =

(Uout —Vout (Xys))z
I e—

’Li} = (vout - Eout(xa S)) ° (f(g(voutyxa S)) - vout) S 0 (6)
If g(vout,X,s) is a strictly decreasing function then, because f(-) is strictly increasing, f(g(vout,X,S)) — Vout 18
strictly decreasing as well. Both multipliers of (6) are zero at vout = Uout(X,s). This and the fact that they are
strictly increasing, resp. decreasing functions of v,,; proves the validity of (6).
It remains to show that g(vout,X,s) is a strictly decreasing function. In case v, = g(Vout,X,s) is strictly
increasing one can change the op-amp polarity to obtain correct functioning.

Proposition 1 Consider resistive networks which:

1. consist of resistors with strictly monotonic characteristics, independent sources and ideal op-amps

2. has for all source values exactly one solution.

If all admissible partial orientations, where exactly one source is oriented, lead to the same orientation of a
branch voltage (current) then all resistive networks with this structure have a strictly monotonic dependence of the
branch voltage (current) with respect to the source value.

An admissible orientation is an orientation of network branches which does not contradict Kirchhoffs Laws.
The branch orientations represent voltage and current differences of the solutions with different source values. This
proposition is derived from [3] where a proof is given.

In our slow-fast approach we are interested in the dependence v;, (vout). Therefore, we have to treat the two-
port as a resistive network according to Fig. 3a and to check the mentioned conditions. For this all slowly varying
states are replaced by sources, namely, capacitors (inductors) as voltage (current) sources.

If now all possible partial orientations, where the only oriented source is vyy¢, lead to the same orientation of
vin then the circuit has the monotonicity property necessary to stabilize the slow manifold.

The result of this orientation check does not depend on specific source values as it corresponds to a circuit
structure. Therefore all voltage (current) sources can be replaced by short (open) circuits as will be demonstrated
for an example in the next section.

4 Example: Colpitts Oscillator

We designed a transmission system using the Colpitts oscillator. For this we manipulated its basis-emitter voltage
with an information voltage signal. The original and inverse circuit are depicted in Fig. 4. Since the linear part of



the circuit is stable the inverse system synchronizes and recovers the information signal at least if an ideal op-amp.
is used for the two-port inversion. This has been confirmed by simulation experiments.
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Figure 4: Tranmission system using the Colpitts oscillator (a) Transmitter (b) Receiver

In Fig. 5a is the circuit structure shown, which corresponds to the inverse Colpitts system with an ideal op-
amp. i.e. a nullator-norator pair. In Fig. 5b the only possible partial orientation starting with v,y is shown.
This indicates that the inverse system has the necessary monotonicity property. And it is possible to choose the
op-amp. polarity so that the slowly varying dc-point near v;, = 0 is stabilized. In this case the retrieved signal
will be close to the desired information signal.
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Figure 5: (a) Circuit structure corresponding to the inverse Colpitts system of Fig. 4b) the controlled current
source of the transistor is modeled by an additional nonlinear resistor and a nullator-norator pair; (b) Network
structure for consideration of monotonicity with the only possible voltage orientation when v, is oriented, "=’
indicates that the branch is not oriented

5 Conclusion

Under reasonable assumptions on the system and its inverse, the circuit theoretic property of monotonic dependence
as discussed in [3] enables to assure the correct functioning of the inverse system and of op-amp. circuits in general
when saturation and dynamic behaviour of the operational amplifier is taken into account. We have verified this
property for a transmission system using the Colpitts oscillator.
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