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Figure 1. Coloring the Past: Reconstructing high-quality historical buildings from limited data and recovering color appearance from a
majority of gray-scale images. The figure shows photographs of the Hungarian National Theater over a long time period (left), reconstructed
mesh with color (middle), and shaded mesh + normal map (right).

Abstract

Historical buildings are a treasure and milestone of human
cultural heritage. Reconstructing the 3D models of these
building hold significant value. The rapid development of
neural rendering methods makes it possible to recover the
3D shape only based on archival photographs. However,
this task presents considerable challenges due to the
limitations of such datasets. Historical photographs are
often limited in number and the scenes in these photos
might have altered over time. The radiometric quality of
these images is also often sub-optimal. To address these
challenges, we introduce an approach to reconstruct the
geometry of historical buildings, employing volumetric
rendering techniques. We leverage dense point clouds
as a geometric prior and introduce a color appearance
embedding loss to recover the color of the building given
limited available color images. We aim for our work to
spark increased interest and focus on preserving historical
buildings. Thus, we also introduce a new historical dataset
of the Hungarian National Theater, providing a new
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benchmark for the reconstruction method.

1. Introduction

Historical buildings embody the unique characteristics
of cultural heritage and are seen as landmarks that connect
people across time and countries. They make history tan-
gible, yet they are vulnerable to temporal and man-made
changes. It is one of the main goals of UNESCO to protect
and preserve our cultural heritage which becomes possible
because of the rapid development of 3D technologies [42].

(Historical) images are usually processed in a Structure-
from-Motion (SfM) workflow to estimate the intrinsic and
extrinsic camera parameters and a dense 3D scene is con-
ventionally reconstructed using multi-view stereo (MVS)
[40]. With the advent of representing 3D scenes as Neu-
ral Radiance Fields (NeRF) [33], the published framework
facilitates the synthesis of photo-realistic images from novel
viewpoints, using a volumetric scene representation learned
from sparse and unstructured 2D images. The ability of
NeRF to interpolate and extrapolate from image data in-
troduces an unprecedented potential for reconstructing his-
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torical buildings using mostly historical photographs as a
source [29].

However, compared to the reconstruction of modern
buildings or scenes, recovering synthetic views and the
3D shape of historical buildings comes with several limi-
tations. A significant issue lies in the scarcity and the often-
compromised quality of available input data [21, 27, 34].
Many historical sites are documented solely through anti-
quated photographs, captured with obsolete equipment that
takes images with difficult radiometric properties such as
blurriness, lack of color, or absence of accurate camera pa-
rameters [9, 26, 36]. Additionally, only a limited number
of photos can be found and used, coupled with the exten-
sive temporal spread across which they were taken, which
means that inconsistencies are in both the structural state
of the buildings and in the photographic records themselves
[13, 26].

In this paper, we propose a method that tackles 3D recon-
struction and colored view syntheses for historical buildings
leveraging the sparse and low-quality input images. Fig. 1
shows the reconstruction results of our method. Given a
historical image collection dominated by gray-scale images
over different time, we are able to recover the colored 3D
mesh of the building. We also would like to raise interest in
the topic of historic monument reconstruction and the use of
historical photographs in the 3D reconstruction community.

In summary, our contributions are as follows:
• We propose a method that is able to reconstruct satis-

factory 3D geometry of historical buildings by lever-
aging sparse and low-quality images.

• We propose a color appearance embedding loss to ob-
tain a color synthetic view when the majority of photos
are gray-scale.

• Our method achieves better reconstruction results by
incorporating already existing data.

• We publish a historical dataset that showcases a
wide range of properties typically present in historical
datasets.

2. Related Work
Multi-view 3D reconstruction Reconstructing the un-
derlying 3D geometry from multiple images from differ-
ent viewpoints is a long-studied problem in the computer
vision field. Conventional multi-view stereo (MVS) meth-
ods [2, 7, 8, 22, 39, 41, 43], consider matching geometry pri-
ors such as depth [41] or using voxel as surface representa-
tion and project points back to the image to refine the ge-
ometry [39, 43]. A limitation of traditional approaches is,
that they often rely on discrete representations like depth
maps, or voxel volumes to model surface space. This ap-
proach can lead to substantial memory usage when dealing
with large scenes. Additionally, the process of finding cor-
respondences is generally vulnerable to noise, which can

affect the accuracy of the reconstruction. Learning-based
multi-view methods [31, 50, 53], usually use networks to
learn or extract features from color images with [10, 16, 57]
or without [50, 53] geometry priors. They are more robust
to noise and generalize across different scenes and objects.
However, they require large amounts of training data, which
can be computationally intensive and may not be available
for historical datasets.

Surface representation scheme During 3D reconstruc-
tion, the choice of surface representation method is crucial.
Traditional approaches often utilize discrete methods like
point clouds, polygon meshes, or discrete Signed Distance
Fields (SDF) [35,39,43]. On the other hand, learning-based
techniques, aided by neural networks, can employ continu-
ous surface representation methods. The most commonly
used property is density [31, 33], which indicates the trans-
parency value of the given point. However, this approach,
while effective for view synthesis, often fails in accurately
reconstructing geometry. It calculates an integrated opac-
ity value along a ray, rather than modeling an explicit sur-
face point. Alternatively, continuous SDF, another form of
surface representation, offers a more precise approach. It
calculates the distance from any point in space to the near-
est surface, indicating whether the point is inside (negative)
or outside (positive) the object. This representation enables
SDF-based methods [44, 50, 53], more accurate identifica-
tion of surfaces, and better handling of occlusions and view-
dependent effects compared to volume-only-based meth-
ods. NeuS [49], for instance, uses a differentiable rendering
framework that combines SDF with a radiance field, result-
ing in high-quality images that capture fine geometric de-
tails. Neus-Facto [56] propose a network without surface-
guided sampling and geometry prior. GeoNeus [16] uses a
sparse point cloud to supervise the SDF and a Photometric
consistency loss. This is not suitable for historical imagery
due to large illumination and appearance inconsistencies be-
tween images.

Historical building dataset The use of historical pub-
lic and press photography showing terrestrial scenes is
still a rather rare scenario for complex 3D reconstruction
[3, 12, 27], whereas historical aerial images are already
commonly and increasingly used in Structure-from-Motion
workflows [13, 15, 21, 28, 58]. Historical terrestrial images
are mainly used for special tasks such as horizon line detec-
tion [32], photographer recognition [9], and building height
estimation [14]. Other approaches focus on the integration
of historical images into further existing data such as terres-
trial laser scanning [4, 6], and contemporary photographs
[20, 30]. When working with historical images, the stan-
dard 3D reconstruction workflow is usually interrupted af-
ter sparse point cloud creation and camera pose estimation
because conventional MVS strategies fail to generate rea-
sonable surface representations [27].
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To overcome the difficulties posed by gray-scale, low-
quality, and sparse input images, we integrate a dense point
cloud as a geometric prior and introduce a novel color
appearance embedding loss. We are confident that our
methodology holds substantial value in preserving the his-
torical heritage of human culture.

3. Historical Dataset

Reconstructing historical buildings based on archival
photography provides significant value not only in the re-
search area but also considering the protection and preser-
vation of cultural heritage. However, historical images of
the same building are often scattered in multiple archives
with often unresolved copyrights and only a few historical
datasets are available for research purposes. Thus, we intro-
duce the Hungarian National Theater dataset.

This dataset includes 229 images of the Hungarian Na-
tional Theater directly released by us and another 136 im-
ages for which the access link is provided. Additionally,
we provide a dense point cloud and camera poses which
are registered using Structure from Motion (SfM). All pho-
tos were taken between 1875-1965. During this period, the
availability of color photography was limited. Thus, differ-
ent from the modern building image datasets, the vast ma-
jority of photos are gray-scale (over 90%) and only a small
portion is available in color ( Tab. 1). Another significant
difference is, that the building can slightly change over the
span of decades which is why we provide the capture dates
of the images.

Besides its cultural significance to the Hungarian peo-
ple, this dataset is a rare case of having a complete photo
collection covering the whole area around an old building
that is no longer present. All four sides appear in different
numbers of images in the dataset. This makes the dataset
suitable as a benchmark to evaluate the algorithms’ perfor-
mance regarding the number and quality of the input im-
ages. Fig. 2 shows the reconstructed point cloud and esti-
mated camera locations using SfM [40] from the National
Theater dataset. Fig. 3 shows example images of the facade
across time.

Dataset name Total Color Train
National Theater (Ours) 229 16 153
Hotel International [29] 19 1 18
Observatory [29] 37 3 33
St. Michael Church [29] 17 0 16

Table 1. Datasets statistics of National Theater dataset, three his-
torical datasets from [29].

These images are private and can be accessed upon purchase. We will
provide the link to these images.

Figure 2. Top down of view of a reconstructed point cloud of the
National Theater dataset: blue cameras stand for validation views,
orange cameras are training images, gray cameras are images that
can be obtained via request.

1875 1959 1964

Figure 3. Example imagesfrom the Hungarian National Theater
dataset.

Tab. 1 summarizes all information for the released his-
torical dataset and three further historical datasets [29].
We use these four datasets to test our methods in Sec. 5.
The first column shows the total number of images for the
dataset, the second column provides the number of color
images, and the third column shows the number of images
that we actually use to train our model. Due to the quality
of the images, not all of them are suitable. From Tab. 1
we can see that our dataset contains an order of magnitude
more images in total and more color images as well.

4. Method
The whole pipeline of our method is as follows. Given

a set of images {Ii}, for i ∈ {0, 1, . . . , n}, we first resize
the images to the same size, since the historical datasets
typically contain images with varying resolution. Then, the
corresponding extrinsic (poses) and intrinsic camera param-
eters are estimated using SfM [40]. We run a segmentation
method, similar to [44] to mask out irrelevant objects such
as people and cars. We generate two kinds of point clouds,
a sparse point cloud, directly using SfM [40] and a dense
point cloud P = {x1,x2, . . . ,xn} using the estimated cam-

Fortepan by UVATERV/FÖMTERV/Zsolt Pálinkás/Pál Breuer/Lajos Miklós
and Budapest City Archives: HU.BFL.XV.19.d.1.05.103/HU.BFL.XV.19.d.1.07.020
under CC-BY-SA-3.0
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era parameters by multiview stereo fusion [40]. We use the
dense point cloud as geometry prior together with images
to train an SDF-based differential rendering network with
color appearance embedding loss to estimate the geometry.

4.1. Backbones and Geometry Loss

We build our method on top of NeusW [44]. Our net-
work architecture consists of two parts, an SDF net and a
color prediction net. The SDF net estimates the signed dis-
tance value d ∈ R and a geometric feature f ∈ Rfn , for fn
is the dimension of the feature vector. Given point x ∈ R3,
the color prediction net outputs the rendered color c. In de-
tail, given points x, viewing direction v ∈ S2, we compute
normal n = ∇MLPSDF(x), and a feature vector f ∈ Rfn

with dimension fn.

(d, f) = MLPSDF(x) , (1)
ci = MLPCOLOR(x,v,n, ei, f) . (2)

where ei are appearance embeddings corresponding to each
input photo, optimized alongside the parameters of MLPs,
see [44] for more details. We first initialize a voxel grid by
the sparse point cloud similar to [44]. For image Ii with
camera center o, we shoot a ray from its pixels. The ray
r with direction v is {r(s) = o + vs|s ≥ 0}. We pass
the points along the ray to the SDF net to get the geometry
feature f and then pass these points to the color net to get the
color estimation. We reuse the SDF net for geometry loss
as well. For image Ii where we sampled ray from, we find
all points from the dense point cloud P , which are visible
from this image, denoted as Pi. The geometry loss [16] is

lg(x) = λ
1

|Pi|
∑
x∈Pi

|MLPSDF(x)| , (3)

where |Pi| is the number of points in the point cloud and λ
is a learnable parameter. During training, we sample rays
across multiple images for one batch and randomly choose
one image to compute the geometry loss for the point cloud
visible from that image. The geometry loss ensures that the
SDF net is guided by the dense point cloud.

We use a dense point cloud instead of the sparse point
cloud because we believe the dense point cloud provides
complementary information, see Fig. 4. Directly sam-
pling at the dense point cloud points to optimize the SDF
net allows us to bypass the ray marching procedure. In
NeusW [44] and our case, the sampling is directly depen-
dent on the SDF values. Good geometry prior, i.e. dense
point cloud will benefit SDF estimation first, and the im-
proved SDF will improve sampling again.

4.2. Color Appearance Embedding

To deal with the situation that most of the input images
are available as gray-scale, and only a small portion pro-

vides color channels, we propose a color appearance em-
bedding loss to recover color output. Previous methods treat
gray-scale images as color by setting the three channels to
equal values. This results in less-than-ideal appearance em-
bedding and a gray-scale output. The rendered color for a
ray r is

C ′(r) =

∫ +∞

0

w(t)c(r(t),v, f)dt , (4)

where w(t) is an unbiased and occlusion-aware weight
function used in [49]. The color net outputs a three-channel
color vector, to supervise it using gray-scale images, we use
perceptual weights [51] to convert the output color to gray-
scale value, i.e., for C ′(r) = (cr, cg, cb), we propose the
function g : R3 → R and

g(C ′(r)) = wrcr + wgcg + wbcb , (5)

where Wr = 0.2126, Wg = 0.7152 and Wb = 0.0722. The
loss for ray color C ′(r) in image with true color C(r) is

lc(r) =

{
1
2 |C(r)− g(C ′(r))|2, if r is gray-scale ,
1
2 |C(r)−C ′(r)|2, otherwise .

(6)

With the color appearance embedding loss, we weakly su-
pervise on gray-scale images and strongly on color images.

5. Experiments
Validation Dataset We evaluate our method on the his-
torical datasets listed in Tab. 1 and one modern dataset
which shows the Brandenburg Gate [54]. We exclude cer-
tain images in the historical dataset where the main object
is not visible or the building is demolished. The total num-
ber of images used for training is listed in Tab. 1. The his-
torical datasets consist of significantly fewer images com-
pared to the Brandenburg Gate dataset. They also introduce
challenges such as limited viewing angles (the Observatory
dataset), or a wide range of lighting conditions (the Ho-
tel dataset, see in Fig. 6). The Brandenburg Gate dataset
provides corresponding ground truth in the form of LiDAR
measurements [44]. Hence, we use it for quantitative eval-
uation. To close the gap between the modern and historic

Figure 4. Comparison of sparse (left) and dense (right) point cloud
generated by stereo fusion [40].
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domains, we transform 90% of the images in the Branden-
burg Gate dataset into gray-scale. To show the influence of
input data quantity, we sample 10 and 90 images from the
dataset.

Implementation Details For our method and its compar-
ison to other methods we build upon the implementation
of SDFStudio [56]. For dense point cloud generation, we
import the camera poses and feature matches obtained by
COLMAP [40] and a combination of state-of-the-art key-
point detector and feature matching algorithms [11, 23, 47]
via the bundler format and apply the segmentation masks.
We use 8 layers with 512 hidden units for the geometry
MLP and 4 layers with 256 hidden units for the color MLP.

For the historic datasets, we select a sampling radius
Vsfm roughly 2 times the radius of the encapsulating sphere
of the main object or building of interest. For the geometry
loss Eq. (3) we set λ = 0.1. The voxel grid used for accel-
erated sampling is updated every 5k iterations. We sample
the color network Eq. (2) at the vertices and save it as vertex
color. During inference, we use the average appearance em-
bedding vector for the color network. We remove floating
blobs occluding the view from the validation views discon-
nected from the object of interest for historic datasets. We
run all experiments on 4 NVIDIA A100 GPUs for 100.000
iterations with a batch size of 2048 per GPU. For the final
output mesh, we only extract a mesh within the Vsfm radius
using Marching Cubes [24] algorithm with a grid resolution
of 1024.

5.1. Surface Reconstruction Results

In this section, we show our surface reconstruction re-
sults in comparison to other methods. Fig. 7 shows our re-
constructed meshes for four different historical datasets and
its comparison to other state-of-the-art conventional [1] and
learning-based MVS algorithms [44, 56] in terms of recon-
struction quality. Tab. 2 shows the quantitative comparison
results on the Brandenburg Gate dataset.

In general, all of the methods achieve the best results
on the National Theater dataset, especially for the facade.
Qualitatively, our method recovers comparable meshes to
other methods. However, as we mentioned in Sec. 3, the
back side is more challenging due to the lack of images fac-
ing this side. We show the results from different viewing
angles in Fig. 5. All methods are able to recover the front
part of the Theater, but the back part is recovered unsatis-
factorily. NeusW [44] generates more noise compared to
Neus-facto [56] and ours. We are able to reconstruct the
scene without holes as opposed to Neus-facto [56]. For the
other datasets, Metashape (using conventional MVS) is only
able to recover a small part of the geometry or completely
fails, but it tends to provide a closed and clean surface.

For the Observatory dataset, in spite of the limited data
and challenging setting, learning-based methods can suc-

cessfully recover the main building with varying degrees of
artifacts. Our method gives the most complete and round
dome. However, the normal meshes (4th-row in Fig. 7) in-
dicate that we are able to recover the pillars correctly while
NeusW [44] fails on this part. A similar situation happens
in the Hotel and Church datasets, ours is able to recover thin
structures such as columns and chimneys. We attribute this
to the dense point cloud supervision. Finally, our method
can recover the colored meshes for the given datasets as
shown in the last column in Fig. 7.

Front right Normal Back left Normal
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Figure 5. Reconstruction result of different sides of our dataset
showing increasing difficulty in terms of number of images.
Clearly, the facade can be recovered with intricate detail by all
methods, followed by the right side which is satisfactory but
smaller deviations arise. The back left corner is the most difficult
which is very noisy for almost all methods. Still, ours provides
relatively cleaner and complete surface reconstruction.

St. Michael
Church

Hotel
International

Observatory

Figure 6. Example images from the historical datasets [29] The
lighting and view angles are largely changed in all datasets. Im-
ages are far from targeted buildings as well. All the features make
reconstruction challenging.

To quantitatively evaluate the 3D geometry reconstruc-
tion results, we provide precision (P), recall (R), and F1
score (F1) under three different thresholds of the gener-
ated meshes in Tab. 2 following the procedure of [44]. The
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Figure 7. Reconstructed mesh results compared to other methods. Metashape [1] can get clean geometry reconstruction but fails to get the
details. Our method is able to provide comparable mesh reconstructions while additionally recovering the color of the mesh.
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Low Medium High All (AUC)

Settings P R F1 P R F1 P R F1 P R F1
10

fr
am

es Metashape 73.0 8.0 14.4 85.0 15.4 26.0 91.2 19.1 31.6 88.7 22.2 35.0
NeusW 37.7 26.6 31.2 55.4 44.0 49.1 67.0 55.0 60.4 70.8 61.5 65.6
NeuS-Facto 40.1 25.7 31.3 56.8 40.8 47.5 68.0 51.3 58.5 72.2 58.2 64.2
Ours 38.6 27.8 32.3 55.0 43.5 48.6 66.0 53.0 58.8 70.3 59.2 64.1

90
fr

am
es Metashape 72.9 14.9 24.7 85.1 34.1 48.7 90.9 43.0 58.4 88.6 46.8 60.0

NeusW 59.7 44.7 51.1 73.7 59.4 65.8 81.1 66.0 72.8 81.3 68.6 74.1
NeuS-Facto 64.9 47.0 54.5 79.1 61.4 69.1 86.4 69.0 76.7 85.0 71.5 77.3
Ours 60.1 45.6 51.8 73.4 59.4 65.6 81.1 66.1 72.8 81.5 69.0 74.4

Table 2. Quantitative Comparison: We compare against other methods on two different settings of the Brandenburg Gate dataset. We report
the precision (P), recall (R), and F1 scores. The best results are in bold, and the second best are underlined. The numbers indicate that our
method is comparable to or outperforms other methods in terms of recall, especially in the 10-image setting, which is the most closed case
with historical datasets. For other cases, we still achieve comparable results.

precision indicates the accuracy of the reconstructed mesh
compared to the ground truth mesh and the recall indicates
the completeness of the results, the F1-score is a weighted
score computed using precision and recall. Fig. 8 illustrates
these metrics. The three thresholds (Low, Medium, and
High) correspond to 0.1, 0.2, and 0.3 meters respectively.
Additionally, the area under the curve (AUC) combines all

Predicted surface

Ground truth surface

Precision Recall

Figure 8. Demonstration of precision and recall. The red dots
are under the chosen threshold, so they are used to compute the
precision or recall, pink dots are over the threshold thus they are
ignored.

thresholds into a single metric.

The quantitative comparison of the Brandenburg Gate
dataset shows that we achieve results comparable to other
state-of-the-art methods on mesh reconstruction tasks. Our
method outperforms other methods in the 10-image sce-
nario (which is the most comparable case with historical
datasets) at Low threshold for R and F1-score, which means
that the mesh is more complete and closer to the ground
truth mesh. Metashape [1] gains high scores for precision
because it recovers the overall shape accurately. However,
the mesh is incomplete bringing down the total F1 score as a
result. Note that the image quality of the Brandenburg Gate
dataset is still superior to the images in historical datasets.

5.2. Ablation Study

To analyze the influence of our proposed loss functions
and the number of input images, we train our model us-
ing 10 images and 90 images from the Brandenburg Gate
dataset where we set 90% of images to gray-scale. To quan-
titatively evaluate the 3D geometry reconstruction results,
we also provide precision (P), recall (R), and F1 value (F1)
of the generated meshes in Tab. 3. The baseline setting is
NeusW [44] without geometrical loss term (3). We grad-
ually add only the color appearance loss (+ color), only
the geometrical loss based on two different point clouds (+
sparse geo, + dense geo), and finally our setting, i.e. with
color appearance loss and dense geometric loss. Tab. 3
shows that the color embedding loss slightly degrades the
geometry.

The dense point cloud supervision consistently outper-
forms the sparse point cloud supervision using the geome-
try loss. Fig. 9 visualizes the meshes for the ablation study.
The color appearance loss does not degrade the mesh qual-
itatively and results in small gains. That is in the 10-image
case it recovers the legs of the horses and recovers one or
more holes in both 10 and 90 images situations. In the case
of the 10-image input (comparable to historical datasets),
the sharp structure on the top left roof gets filled in the base-
line case. This is almost entirely eliminated with the color
appearance embedding loss.

6. Conclusion

Summary We introduced a new historical dataset that
has significantly more images than previous datasets and
also provide its point cloud along with camera information
which is generated via SfM. We propose a method that tack-
les challenges such as sparse and low-quality inputs, when
reconstructing 3D shapes using archival historical datasets.
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Low Medium High All (AUC)

Settings P R F1 P R F1 P R F1 P R F1
10

fr
am

es

Baseline 37.7 26.6 31.2 55.4 44.0 49.1 67.0 55.0 60.4 70.8 61.5 65.6
+ Color loss 37.4 26.7 31.1 54.9 43.6 48.6 66.6 55.0 60.3 70.0 61.8 65.4
+ Sparse geo 38.9 29.7 33.7 55.9 46.6 50.8 67.4 57.4 62.0 71.4 63.2 66.9
+ Dense geo 42.9 33.0 37.3 59.5 49.3 53.9 69.5 58.3 63.4 72.9 63.1 67.5
Ours 38.6 27.8 32.3 55.0 43.5 48.6 66.0 53.0 58.8 70.3 59.2 64.1

90
fr

am
es

Baseline 59.7 44.7 51.1 73.7 59.4 65.8 81.1 66.0 72.8 81.3 68.6 74.1
+ Color loss 60.1 45.3 51.7 73.4 59.2 65.6 80.8 65.8 72.5 81.0 68.3 73.9
+ Sparse geo 59.5 45.7 51.7 73.4 60.1 66.1 80.9 67.1 73.3 81.1 70.0 74.9
+ Dense geo 60.8 46.6 52.8 73.7 60.4 66.4 81.2 67.4 73.6 81.8 70.1 75.2
Ours 60.1 45.6 51.8 73.4 59.4 65.6 81.1 66.1 72.8 81.5 69.0 74.4

Table 3. Ablation Study: We report the precision (P), recall (R), and F1 scores over two different settings of the Brandenburg Gate dataset
for the ablation study. The best results are in bold, and the second best are underlined. The numbers indicate that the geometric priors,
especially the dense point cloud, contribute to the reconstruction. It gives the best results in overall settings for different scores in most of
the cases. Even though the color embedding appearance loss slightly deteriorates the results, it still gives comparable accuracy to the best
scores.

Ground truth Baseline + Color loss + Sparse geo + Dense geo Ours

10
fr

am
es

10
fr

am
es

90
fr

am
es

90
fr

am
es

Figure 9. Ablation study: reconstructed mesh and normal maps on the proposed losses and the number of input images on the Brandenburg
Gate dataset. The dense point cloud provides a better geometric prior compared to sparse situations, especially for the sparse input (10
frames) case (first two rows). Horse legs are recovered using the proposed method. Under the more dense input (90 frames) situation, the
baseline and other settings have provided relatively good results. Quantitatively, with only dense geometric loss still helps improve the
accuracy.
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We showed that incorporating existing data such as dense
point clouds can significantly improve the geometry recon-
struction. The dense point cloud supervision enhances the
reconstruction, especially the scenes with few images. It en-
ables thin structures and flat, texture-less wall segments to
be reconstructed and also recovers structures that are tem-
porally changing. Moreover, we propose a color appearance
embedding loss to recover the color of the generated mesh
of the historical buildings.

Limitations and future works The color appearance em-
bedding loss decreases the mesh accuracy quantitatively.
The capability of dealing with sparse input images still need
to be improved to be able to recover detailed 3D meshes
under more extreme situation. Next, we plan to explore
methods that are especially targeted at few-shot view syn-
thesis [17, 52] and reconstruction methods.
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A1. Used Code and Datasets
Tab. A.4 summarizes the code and datasets we use for evaluation and comparison. Our code and recorded datasets will be

made publicly available upon acceptance. For the pre-processing of the dataset, i.e., mask out humans and irrelevant objects,

Name type year link license

[1] Metashape code 2021 https://www.agisoft.com/ Proprietary
[44] NeuralRecon-W code 2022 https : / / github . com / zju3dv /

NeuralRecon-W
Apache-2.0

[56] NeuS-Facto, NeusW code 2022 https://docs.nerf.studio/nerfology/
methods/nerfacto.html

Apache-2.0

[40] COLMAP code 2016 https://colmap.github.io/ new BSD
[11, 23, 47] Hierarchical Local-

ization Toolbox
code 2023 https://github.com/cvg/Hierarchical-

Localization/
Apache-2.0

[54] Brandenburg Gate dataset 2020 https://www.cs.ubc.ca/˜kmyi/imw2020/
data.html

-

[29] Historic Building dataset 2022 https : / / www . gw . uni - jena . de / en /
faculty / juniorprofessur - fuer -
digital- humanities/research/jena4d-
stadtgeschichtsbuch

Creative Commons

Ours National Theater dataset 2023 will be public upon acceptance Creative Commons

Table A.4. Used datasets and code in our submission, together with reference, link, and license.

we use the NeuralRecon-W [44] codebase. For NeusW we used the SDF-Studio implementation.

A2. Mesh Visualization
We show in this section the reconstructed meshes of Brandenburg Gate [54] dataset, corresponding to Tab. 2.

A3. Rendering Visualization
In this section, we show the rendered view, which is the by-product of our method. We use volumetric rendering to get

high-fidelity surface which does not need root-finding when extracting meshes. In Fig. A.11 we show the results with and
without color loss on the Brandenburg Gate dataset corresponding to Fig. 9 (the second and the last columns) and Tab. 3. The
network can already recover the colors with only one color image.

Fig. A.12 shows the rendered images, depth, and normal maps of our method on the historical datasets corresponding to
the last column of Fig. 7. Note that the depth and normal maps are rendered directly without extracting meshes, different
from the mesh normal we show in Fig. 7. We are able to recover the color images as well, despite the limited color input
images. For the St. Micheal Church dataset, however, the recovered color is less successful compared to the other historical
datasets due to the fact that the dataset does not contain any color images. The color is only projected to gray-scale using the
perceptual weights without color supervision.
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Figure A.10. Reconstructed meshes comparison results for Brandenburg Gate [54] dataset.
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Figure A.11. Comparison results of novel view synthesis of Brandenburg Gate for baseline NeusW [44] and our method. With the color
appearance embedding loss, we can recover the color images as well.
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Figure A.12. Novel View Synthesis of historical datasets. The first column shows the ground truth view, the second column the rendered
color images, the third and fourth columns are normal and depth maps. The normal maps reflect more details for each ray than normal
from meshes. The normal of the meshes are restricted by the Marching Cubes resolutions.
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