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Abstract. Class relations are used whenever the semantics of entire classes are 
described, independently of single entities. This chapter focuses on class 
relations that define cardinality restrictions for a certain instance relation (e.g. a 
topological relation) between all entities of the involved classes. Typical 
examples are spatial semantic integrity constraints or ontologies of geospatial 
entity classes. Reasoning on such class relations allows for the detection of 
inconsistencies and redundancies in sets of class relations. Therefore the logical 
properties of the applied instance relations and those of the cardinality 
restrictions have to be considered, in particular symmetry and compositions, but 
also other inferences. The chapter provides a summary of research and a 
discussion of open issues for future work on class relation reasoning. 
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1   Introduction 

The inclusion of spatial and temporal concepts, rules and relations should be a main 
consideration when designing geographic ontologies (Agarwal, 2005). The 
corresponding formalization of spatial and temporal relations and hierarchies to enable 
a consistent representation of real world phenomena is still one of the major research 
themes in GI Science. While research on spatio- temporal relations and their logical 
properties has been relatively intense in the last two decades (Cohn and Hazarika, 
2001), the definition of corresponding class relations and their logical properties is a 
relatively new field. Nevertheless, it is of particular interest for geographical 
information, since the concepts of such data often refer to spatial relationships which 
can be represented by class relations (e.g. “alluvial forests are surrounded by a 
floodplain”). As already argued by Donnelly and Bittner (2005) the facilitation of 
interoperability requires a clear distinction if a relation holds among classes of entities 
(i.e. universals, feature classes or types) or among concrete entities (i.e., instances, 
objects or individuals), in particular when the logical properties of the relations are 
analyzed. Typical class relations are inheritance/generalization relations (Brachman, 
1983; Baumeister and Seipel, 2006). This chapter focuses on class relations that define 
cardinality restrictions for a certain relation between all entities of the involved classes. 
Thereby the class relations neither specify the exact number of instances of the classes 
nor the particular relations between single entities. The constrained instance relation 



can be of any kind; for geographical information typical examples are the topological 
(Egenhofer and Herring, 1991) or metric relations (Frank, 1992) between spatial 
entities. 

The following example shall illustrate the definition of such class relations and the 
feasibility to infer implicit knowledge with them. The entity relationship diagram in 
Figure 1a contains the three classes Airport, Forest and Airport Tower. Among the 
classes three class relations are defined:  
 

• airports and forests are either disjoint or meet. 
• every airport contains at least one airport tower and every airport tower is 

contained by an airport. 
• forests and airport towers are disjoint. 

 

 
Fig. 1. Entity-Relationship Diagram of the three entity classes and their class relations 

Such relations are commonly defined in an ontology or as semantic integrity 
constraints as part of a data model (Tarquini and Clementini, 2008; Mäs et al., 2005; 
Mäs and Reinhardt, 2009). In Figure 1b the last of the three class relations is left out. 
Considering that the applied instance relations are the topological relations between 
areal entities defined in (Egenhofer and Herring, 1991), it is relatively obvious that two 
diagrams have the same restriction on the relation between the classes Forests and 
Airport Towers. Since every forest meets or is disjoint from every airport the entities 
of these classes can have intersecting boundaries, but their interiors are disjoint. Since 
every airport tower is contained by an airport an airport tower has an intersecting 
interior with this airport, but no intersecting boundary. Therewith is no intersection 
between any airport tower and any forest possible, even if the third class relation is not 
explicitly defined. For quality assurance this means that the third class relation (i.e. 
semantic integrity constraint) does not need to be proven if a data set is conform to the 
first two. This shows that such a detection and removal of redundant constraints 
enables the reduction of the calculation costs of a quality check. In practice, this can be 
of great value, since the constraint sets used, for example, by utility companies or 
public agencies can easily contain hundreds of constraints. 

Similar examples can be found in many disciplines, also in “non-spatial” ontologies 
like in biomedicine (Donnelly et al., 2006): from “every vertebra has some cartilage as 
a proper part” and “every vertebra is a proper part of some vertebral column and every 
vertebral column has some vertebra as a proper part”, it follows that “every vertebral 



column has some cartilage as a proper part”. For a triple of class relations, like those in 
the two examples, it is easy to imagine that the third relation could also be in 
contradiction to the restrictions implied by the other two. Also two relations that apply 
to the same classes can specify contradicting restrictions. Therefore, the internal 
consistency of such sets of class relations must be assured.  

Most ontologies deal with the description of classes and therefore with the formal 
description of relations among those classes. Nevertheless, class relations other than 
inheritance/generalization relations are hardly used for the inference of implicit 
knowledge or analyzed for conflicting assertions. The examples illustrate the need of 
methodologies to compare, manage and consistently integrate class relations. A 
consistency check of class relations must include implicitly defined constraints, 
because the constraints do not necessarily directly contradict. Conflicts might, for 
example, result from other constraints defined within a triple of classes. The objective 
of this chapter is to summarize available approaches for the detection of explicit and 
implicit redundancies and contradictions and inequalities in sets of class relations. 

A class relation can be defined in terms of an instance relation (e.g. the topological 
relation “disjoint”) or a disjunction of instance relations (e.g. “meet or disjoint”). It is 
obvious that the reasoning properties of such class relation are influenced by those of 
the applied instance relation. Therefore it is reasonable to use and extend the reasoning 
properties and methods of instance relations for reasoning based on class relations. The 
formal theory of relations of individuals is the necessary foundation for the formal 
theory of class relations (Donnelly et al., 2006). Nevertheless, a relation among classes 
is not necessarily subject to the same logical properties as a relation between instances. 
The cardinality restrictions must also be considered for reasoning.  

Spatial reasoning approaches often refer to qualitative descriptions of spatial entities 
and their relations. Qualitative representations are characterized by making only as 
many distinctions in the domain as necessary in a given context (Hernández, 1994). 
Typical examples are spatial relations like “a is inside b", “c is north of d" and “e is 
longer than f". The different aspects of space, like topology, orientation, distance and 
shape, are usually represented by different spatial relations (Cohn and Hazarika, 2001). 
To solve reasoning problems based on such knowledge representations, special 
purpose inference mechanisms have been developed. An advantage of such approach is 
that certain constraints which always hold in the spatial domain do not have to be 
modeled and verified in each situation anew (Freksa, 1991). For example, once the 
composition of a set of topological relations has been calculated and verified, the 
corresponding composition table (Egenhofer, 1994; Grigni et al., 1995) can be used 
whenever a set of these relations is analyzed. Such compact representation of 
knowledge should be an integral part of a spatial reasoning system. The class relation 
reasoning approaches discussed in this chapter also refer to qualitative descriptions and 
make use of the knowledge about the logical properties of the spatial relations.  

In the following section a set class relations is defined, that allows for a qualitative 
representation of cardinality restrictions. This set is then exemplarily used to explain 
the reasoning properties of class relations like their symmetry, composition and 
conceptual neighborhood, and to demonstrate how these inference methods link to the 
logical properties of the instance relations. After that some open issues for class 
relation reasoning are discussed. 



2   Cardinality Properties and Class Relation Definition 

Class relations are used whenever the semantics of entire classes are described, 
independently of any knowledge about specific single entities. A class relation is 
defined in terms of an instance relation or a disjunction of instance relations in 
combination with a cardinality restriction. Cardinalities express the number of 
elements of a set. Class relations define a cardinality restriction for a certain relation 
between the individuals of one or more classes (Mäs, 2009a). 

For the definition of class relations some basic assumptions have to be fulfilled. 
First, every instance has to be a member of some class. Second, the involved classes 
must have at least one instance, that is, empty classes are not feasible. Since class 
relations are linked to individual relations, the third condition specifies that if a class 
relation is defined, there exists at least one corresponding individual relation among 
the instances of the classes involved. This chapter is restricted to binary relations 
defined between entity classes. Relations between three or more classes are not 
considered. 

In the following definitions the lowercase letters (‘a’, ‘b’ and ‘c’) denote variables 
for instances or individuals. Every instance must belong to an entity class. For entity 
classes the capital letters (‘A’, ‘B’ and ‘C’) are used as variables. Every class 
‘Inst(a,A)’ is the instantiation relation, meaning that individual ‘a’ is an instance of 
class ‘A’. The claim ‘r(a,b)’ means instance ‘a’ has the relation ‘r’ to instance ‘b’; ‘a’ 
and ‘b’ are said to participate in the relationship instance ‘r’. The meta-variable ‘r’ can 
stand for any binary relation between instances (e.g., a spatial or temporal relation) or 
for a disjunction of such relations. The validity of the binary relation depends on the 
properties of the instances (e.g., for spatial relations on the geometries of the 
instances). Instance relationships can be associated with a class relation ‘R’. For class 
relation definitions ‘R<cp>(A,B)’ denotes that ‘R’ relates the classes ‘A’ and ‘B’. The 
meta-variable ‘R’ can stand for any class relationship. Every ‘R’ is defined in terms of 
an instance relation ‘r’ (same letter(s) in lower case). In formulas this is made explicit 
by the claim ‘InstR(r,R)’. If a class relation is defined by an ‘R<cp>(A,B)’, at least one 
‘r’ must exist between the instances of ‘A’ and ‘B’, independently of the cardinality 
restriction. For example, if ‘MEET<cp>(A,B)’ is defined, at least one ‘meet(a,b)’ must 
exist. The placeholder ‘<cp>’ stands for the cardinality properties of the class relation. 
In the following, class relations that are not linked to a particular instance relation are 
referred to as abstract class relations. These are only used to define generic reasoning 
rules (e.g., ‘RLD RD LT (A,B)’). Only relations that incorporate a concrete instance relation 
are called class relations (e.g. ‘DISJOINT LT (A,B)’).  

A first approach for the formal definition of such class relations has been made by 
Donnelly and Bittner (2005). It was based on totality cardinality restrictions of the 
involved classes:  

𝐿𝐿𝐿𝐿(𝐴𝐴,𝐵𝐵, 𝑟𝑟) ≔ ∀𝑎𝑎 �𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑎𝑎,𝐴𝐴) → ∃𝑏𝑏�𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑏𝑏,𝐵𝐵) ∩ 𝑟𝑟(𝑎𝑎, 𝑏𝑏)��. (CP1) 

𝑅𝑅𝑅𝑅(𝐴𝐴,𝐵𝐵, 𝑟𝑟) ≔ ∀𝑏𝑏 �𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑏𝑏,𝐵𝐵) → ∃𝑎𝑎�𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑎𝑎,𝐴𝐴) ∩ 𝑟𝑟(𝑎𝑎, 𝑏𝑏)��. (CP2) 



The cardinality restrictions (CP1) and (CP2) define a totality for the class ‘A’ and ‘B’ 
respectively. (CP1) holds if every instance of ‘A’ has the relation ‘r’ to some instance 
of ‘B’. In set theory such relations are called left-total.  

(CP2) holds if for each instance of ‘B’ there is some instance of ‘A’ which stands in 
relation ‘r’ to it. This means that every instance of ‘B’ has the converse relation of ‘r’ 
to some instance of ‘A’. In this case the relation is right-total. 

In order to improve expressiveness this approach has been extended by 
unambiguousness cardinality restrictions in (Mäs, 2007): 

 

𝐿𝐿𝐿𝐿(𝐴𝐴,𝐵𝐵, 𝑟𝑟) ≔ ∀𝑎𝑎, 𝑏𝑏, 𝑐𝑐 �𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑎𝑎,𝐴𝐴) ∩ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑏𝑏,𝐵𝐵) ∩ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑐𝑐,𝐴𝐴)
∩ 𝑟𝑟(𝑎𝑎, 𝑏𝑏) ∩ 𝑟𝑟(𝑐𝑐,𝑏𝑏) → 𝑎𝑎 = 𝑐𝑐 � ∩ 𝐸𝐸𝐸𝐸(𝐴𝐴,𝐵𝐵, 𝑟𝑟). (CP3) 

𝑅𝑅𝑅𝑅(𝐴𝐴,𝐵𝐵, 𝑟𝑟) ≔ ∀𝑎𝑎, 𝑏𝑏, 𝑐𝑐 �𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑎𝑎,𝐴𝐴) ∩ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑏𝑏,𝐵𝐵) ∩ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑐𝑐,𝐵𝐵)
∩ 𝑟𝑟(𝑎𝑎, 𝑏𝑏) ∩ 𝑟𝑟(𝑎𝑎, 𝑐𝑐) → 𝑏𝑏 = 𝑐𝑐 � ∩ 𝐸𝐸𝐸𝐸(𝐴𝐴,𝐵𝐵, 𝑟𝑟). (CP4) 

𝐸𝐸𝐸𝐸(𝐴𝐴,𝐵𝐵, 𝑟𝑟) ≔ ∃𝑎𝑎∃𝑏𝑏�𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑎𝑎,𝐴𝐴) ∩ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑏𝑏,𝐵𝐵) ∩ 𝑟𝑟(𝑎𝑎, 𝑏𝑏)�.  

 
Class relations which hold (CP3) are left-definite and specify that for no instance of 
‘B’ there is more than one instance of ‘A’ which stands in relation ‘r’ to it. This 
property restricts the number of ‘r’ relations an instance of ‘B’ can participate in; the 
instances of ‘A’ are not restricted. The last term ‘Ex(A,B,r)’ ensures that at least one 
instance relation ‘r’ does exist between the instances of ‘A’ and ‘B’. 

(CP4) specifies that no instance of ‘A’ participates in a relationship ‘r’ to more than 
one instance of ‘B’. When this cardinality property is defined in a class relation all 
instances of ‘A’ are restricted while the instances of ‘B’ are not affected. The 
corresponding class relations are right-definite.  

Such cardinality restrictions are well established in data modeling and ontology 
engineering (Tarquini and Clementini, 2008; Donnelly et al., 2006). Since the four 
cardinality properties are independent of each other they can be combined for the 
definition of a class relation. For example, a class relation which defines that “every 
country contains exactly one capital and every capital is contained by exactly one 
country” requires all four cardinality properties (CR1). The class relation “every 
building is contained by exactly one parcel” would be based on ‘LT(Building, Parcel, 
contains)’ and ‘RD(Building, Parcel, contains)’ (Mäs, 2007). The other two cardinality 
properties are invalid (CR2).  

 

𝑅𝑅𝐿𝐿𝐿𝐿 𝑅𝑅𝑅𝑅 𝐿𝐿𝐿𝐿 𝑅𝑅𝑅𝑅(𝐴𝐴,𝐵𝐵) ≔ ∀𝑟𝑟 �𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑟𝑟,𝑅𝑅) → 𝐿𝐿𝐿𝐿(𝐴𝐴,𝐵𝐵, 𝑟𝑟) ∩ 𝑅𝑅𝑅𝑅(𝐴𝐴,𝐵𝐵, 𝑟𝑟) ∩
𝐿𝐿𝑇𝑇(𝐴𝐴,𝐵𝐵, 𝑟𝑟) ∩ 𝑅𝑅𝑅𝑅(𝐴𝐴,𝐵𝐵, 𝑟𝑟) �. (CR1) 

𝑅𝑅𝑅𝑅𝑅𝑅 𝐿𝐿𝐿𝐿(𝐴𝐴,𝐵𝐵) ≔ ∀𝑟𝑟 �𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑟𝑟,𝑅𝑅) → ¬𝐿𝐿𝐿𝐿(𝐴𝐴,𝐵𝐵, 𝑟𝑟) ∩ 𝑅𝑅𝑅𝑅(𝐴𝐴,𝐵𝐵, 𝑟𝑟) ∩
𝐿𝐿𝑇𝑇(𝐴𝐴,𝐵𝐵, 𝑟𝑟) ∩ ¬𝑅𝑅𝑅𝑅(𝐴𝐴,𝐵𝐵, 𝑟𝑟) �. (CR2) 

 
Therewith a formal definition of a class relation is based cardinality definitions as well 
as their negations. An investigation of all possible combinations of the four cardinality 
properties leads to the following categorization of abstract class relations: 



 
• one abstract class relation where all four properties are valid (CR1);  
• four abstract class relations that combine three of the four defined cardinality 

properties respectively and exclude the corresponding fourth; 
• six abstract class relations where two properties are valid and the other two 

are excluded (e.g. CR2); and 
• four abstract class relations where one property is valid and the corresponding 

other three are excluded. 
 

Additionally to these 15 abstract class relations two special cases have been considered 
in (Mäs, 2007). The first is a strict case of a left-total and right-total relation that 
specifies that all instances of ‘A’ must have a relationship instance of ‘R’ to all 
instances of ‘B’ (CR3). For class relations it is frequently occurring, for example if the 
instances of two classes are allowed to intersect: ‘DISJOINTLT RT-all(Streets, Lakes)’ 
(Mäs, 2008). 

The abstract class relation ‘Rsome(A,B)’ is defined for the situation that none of the 
four cardinality properties is valid, but nevertheless some instances of ‘A’ stand in 
relation ‘r’ to some instances of ‘B’ (CR4). ‘Rsome(A,B)’ is defined as not left-total and 
not right-total, which implies that some instances of ‘A’ and ‘B’ participate in a 
relation ‘r’ to an instance of ‘B’ and ‘A’ and some do not. Furthermore the exclusions 
of ‘LD(A,B,r)’ and ‘RD(A,B,r)’ specify that some ‘A’ and some ‘B’ participate in a 
relation r to at least two instances of ‘B’ and ‘A’. All cardinalities from “2” till “all-1” 
are valid for both classes. Therefore, it is a relatively imprecise representation of all 
cardinalities that the other 16 abstract class relations do not cover.  

 

 
All together the 17 abstract class relations are a jointly exhaustive set of relations. 
They enable the definition of class relations based on any binary instance relation. The 
set of 17 abstract class relations allows for a qualitative description of all possible 
(indefinitely many) cardinality properties. Only class relations, that base on the four 
cardinality properties (CP1) to (CP4) or RLT RT-all(A, B) (CR3) can precisely be defined. 
Further details on the definition of the abstract class relations can be found in (Mäs, 
2007 and 2009a). Other notations, like for example Entity-Relationship Diagrams, are 
more expressive with regard to the possible cardinality constraints. However, some of 
the reasoning concepts investigated in the following sections, require a discrete set of 
abstract class relations. Also, it is assumed that the introduced set of abstract class 
relations can precisely represent a majority of the class relations used in practice. 
Nevertheless, this set of abstract class relations is only exemplarily used here and the 
reasoning approaches can also be transferred to other sets of relations.  

𝑅𝑅𝐿𝐿𝐿𝐿 𝑅𝑅𝑅𝑅−𝑎𝑎𝑎𝑎𝑎𝑎(𝐴𝐴,𝐵𝐵) ≔ ∀𝑟𝑟∀𝑎𝑎∀𝑏𝑏 �𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑟𝑟,𝑅𝑅) ∩ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑎𝑎,𝐴𝐴) ∩ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑏𝑏,𝐵𝐵)
→ 𝑟𝑟(𝑎𝑎, 𝑏𝑏) �. (CR3) 

𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐴𝐴,𝐵𝐵) ≔ ∀𝑟𝑟 �𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑟𝑟,𝑅𝑅) → ¬𝐿𝐿𝐿𝐿(𝐴𝐴,𝐵𝐵, 𝑟𝑟) ∩ ¬𝑅𝑅𝑅𝑅(𝐴𝐴,𝐵𝐵, 𝑟𝑟) ∩
¬𝐿𝐿𝑇𝑇(𝐴𝐴,𝐵𝐵, 𝑟𝑟) ∩ ¬𝑅𝑅𝑅𝑅(𝐴𝐴,𝐵𝐵, 𝑟𝑟) ∩ 𝐸𝐸𝐸𝐸(𝐴𝐴,𝐵𝐵, 𝑟𝑟) �. (CR4) 



3   Transferring Logical Properties of Instance Relations to Class 
Relations 

In general, the logical properties of class relations, such as their symmetry, transitivity 
and reflexivity, depend not only on the properties of the applied instance relation, but 
also on the cardinality restrictions. Donnelly and Bittner (2005) have studied the 
transfer of logical properties of instance relations to class relations. It has been shown 
that some, but not all, logical properties of the instance relations transfer to the class 
relations.  

For the set of class relations defined in the previous section only the 
symmetry/converseness has been sufficiently researched jet. In (Mäs, 2007) it has been 
shown, how the converse of a class relation can be defined, if the converse relation of 
the corresponding instance relation is known. The converse of a class relation bases on 
the converse of the applied instance relation. If an abstract class relation is left-total / 
left-definite the converse relation is right-total / right-definite, and vice versa. The 
relations ‘Rsome’ and ‘RLT RT-all’ are symmetric. Table 1 summarizes this correlation 
between symmetry /converseness of instance relations and those of the corresponding 
class relations.  

 
ri converse instance relation. 
Ri converse class relation (defined in terms of ‘r’: ‘InstR(ri,Ri)’). 

Table 1. Symmetry/converseness of the class relations (Mäs, 2007) 

Individual 
Relation 
‘r’ is… 

Class Relation ‘R’ is… 
left- 

definite 
right-

definite 
left- 
total 

right- 
total 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑅𝑅𝐿𝐿𝐿𝐿 𝑅𝑅𝑅𝑅−𝑎𝑎𝑎𝑎𝑎𝑎 

Converse Class Relation ‘Ri’ is … 

symmetric R right-
definite 

R left- 
definite 

R right- 
total 

R left- 
total 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑅𝑅𝐿𝐿𝐿𝐿 𝑅𝑅𝑅𝑅−𝑎𝑎𝑎𝑎𝑎𝑎 

Not 
symmetric 

Ri right-
definite 

Ri left- 
definite 

Ri right- 
total 

Ri left- 
total 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖  𝑅𝑅𝐿𝐿𝐿𝐿 𝑅𝑅𝑅𝑅−𝑎𝑎𝑎𝑎𝑎𝑎

𝑖𝑖  

 
The following examples demonstrate the derivation of converse class relations. The 
class relations base on the symmetric instance relation ‘overlap’ and the converse 
relations ‘contains’ and ‘inside’: 

 
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑅𝑅𝑅𝑅 𝐿𝐿𝐿𝐿(𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)𝑖𝑖 ≔ 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝐿𝐿𝐿𝐿 𝑅𝑅𝑅𝑅(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊). 
 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿 𝑅𝑅𝑅𝑅 𝐿𝐿𝑇𝑇 𝑅𝑅𝑅𝑅(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)𝑖𝑖 ≔ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐿𝐿𝐿𝐿 𝑅𝑅𝑅𝑅 𝐿𝐿𝐿𝐿 𝑅𝑅𝑅𝑅(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶). 
  

The examples show that not all class relations are symmetric, even if they are based on 
symmetric instance relations.  

In a recent paper Egenhofer (2011) researched the inference of complements of 
class relations. Therefore, the applied instance relations must be part of a jointly 
exhaustive and pair wise disjoint (JEPD) set of relations. The complement of a class 



relation captures the relations that must hold between all instances of the related 
classes other than the instance relations covered by the original class relation. For 
example, the complement of the class relation “every building is inside or covered by a 
land parcel” captures the relations between all buildings and land parcels other than 
the hosts of the buildings: “every building meets or is disjoint from land parcels (it is 
not hosted by)”. 

For other logical properties of the class relations, like antisymmetry, transitivity and 
reflexiveness a detailed analysis is still outstanding. 

4   Composition of Class Relations 

The composition of binary relations enables the derivation of implicit knowledge about 
a triple of entities. If two binary relations are known, the corresponding third one can 
potentially be inferred, or at least some of the possible relations can be excluded. 
Examples of composition tables of instance relations can be found in (Egenhofer, 
1994) and (Grigni et al., 1995) for topological relations between areal entities and in 
(Hernández, 1994) and (Freksa, 1992a) for directional/orientation relations. Many 
other sets of binary spatial relations also allow for such derivations. As the examples in 
the introductory of this chapter illustrate, a transfer of this reasoning formalism to the 
class level is very useful the work with geographical data, but also for many other 
application domains. In the example two class relations have been defined:  
 

• airports and forests are either disjoint or meet. 
• every airport contains at least one airport tower and every airport tower is 

contained by an airport. 
 
The composition of these two class relations leads to:  
 

•  forests and airport towers are disjoint. 
 

It is obvious that the composition is depending on the composition of the applied 
instance relations, but the cardinality restrictions also have an influence. In (Mäs, 
2008) a two levels reasoning formalism has been proposed, which separates the 
compositions of the abstract class relations from those of the instance relations. 
Therewith the composition of the abstract class relations can be defined independently 
of a concrete set of instance relations. The composition table of the 17 abstract class 
relations is shown in Figure 2. 

To illustrate the two levels reasoning formalism and the use of the composition table 
the introductory example of Figure 1 is used. The composition of the instance relations 
of the three entities forest f1, airport a1 and airport tower t1 is in this case (Egenhofer, 
1994):  

 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∪ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑓𝑓1,𝑎𝑎1) ;  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎1, 𝑡𝑡1) → 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑓𝑓1, 𝑡𝑡1). 



 
Fig. 2. Composition table of the 17 abstract class relations (Mäs, 2008), the numbers are defined 

in the left column 

 
The composition of the abstract class relations is provided by the composition table in 
Figure 2 (row 17, column 14): 
 

𝑅𝑅1𝐿𝐿𝐿𝐿 𝑅𝑅𝑅𝑅−𝑎𝑎𝑎𝑎𝑎𝑎(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) ;  𝑅𝑅2𝐿𝐿𝐿𝐿 𝐿𝐿𝐿𝐿 𝑅𝑅𝑅𝑅(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)  
→ 𝑅𝑅3𝐿𝐿𝐿𝐿 𝑅𝑅𝑅𝑅−𝑎𝑎𝑎𝑎𝑎𝑎(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒) . 

 
The combination of the compositions of the two levels results in: 
 

[ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∪ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ]𝐿𝐿𝐿𝐿 𝑅𝑅𝑅𝑅−𝑎𝑎𝑎𝑎𝑎𝑎(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)  ;
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿 𝐿𝐿𝐿𝐿 𝑅𝑅𝑅𝑅(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) →
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐿𝐿𝐿𝐿 𝑅𝑅𝑅𝑅−𝑎𝑎𝑎𝑎𝑎𝑎(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)

 



 
Since the compositions of both levels have a unique result the combined composition 
is also unique. For a more detailed explanation and further examples of the 
composition it is referred to (Mäs, 2007 and 2008). 

 To allow for a more convenient use of the compositions of the abstract class 
relation some of them can be summarized by general rules, which deduce the 
composition results directly from cardinality properties. In (Mäs, 2008) some obvious 
rules were defined. The corresponding compositions are highlighted in grey in Figure 
2. Examples of these rules are:  
 

• If the first abstract class relation is not right-total and the second relation is not 
left-total the composition is always a universal disjunctionU .  

• If the first relation holds ‘R1LT RT-all(A, B)’ and the second is right-total the 
composition is always ‘R3LT RT-all(A,C)’. 

• If the first relation is left-total and the second holds ‘R2LT RT-all(B, C)’ the 
composition is always ‘R3LT RT-all(A, C)’. 

 
A set of rules that completely represents the composition table is subject of further 
research. Such rule set could enhance the understanding of the class relation 
compositions and would prove the correctness and completeness of the contents of the 
composition table. Furthermore, it would make the compositions transferable to other 
sets of abstract class relations and the composition tables of different sets comparable, 
respectively.  

 5   Conceptual Neighborhood of Class Relations 

The notion of conceptual neighborhood has been introduced by Freksa (1992b). It 
represents continuous transformations between relations by linking relations that are 
connected by an atomic change. Examples of conceptual neighborhood networks of 
spatio-temporal relations can be found for temporal interval relations (Freksa, 1992b; 
Hornsby et al., 1999), for topological relations between regions (Egenhofer and Al-
Taha, 1992), between regions and lines (Egenhofer and Mark, 1995), and between 
directed lines (Kurata and Egenhofer, 2006). The conceptual neighborhood of class 
relations has been introduced by Mäs (2008). In this approach, two class relations are 
considered as conceptually neighbored if they are linked to the same instance relation 
and they differ only in a single instance relation between two entities. The number of 
instances of the classes is considered fixed. 

In Figure 3 the conceptual neighborhood of ‘RLD RD(A, B)’ and ‘RRD(A, B)’ is 
exemplarily illustrated. All arrows symbolize one instance relation of the same kind ‘r’ 
(again: ‘InstR(r,R)’). In the example, the addition of a further instance relation between 
the instances ‘a2’ and ‘b1’ in the right box leads to a transition from ‘RLD RD’ to ‘RRD’ 
(row 1, column 3 in Table 2). An addition of an instance relation between other 
instances can lead to other transitions. The 17 class relations have 45 conceptual 
neighborhoods. Additionally nine class relations are conceptual neighbors of 
themselves (Table 2).  



 
Fig. 3. Conceptual neighborhood between ‘RLD RD(A, B)’ and ‘RRD(A, B)’ (Mäs, 2009a) 

Table 2. Conceptual neighborhood between the class relations: +/- corresponds to neighborhood 
through addition / removal of an instance (Mäs, 2009a), numbers are defined in the left column 

 
 

Since the conceptual neighborhood is defined through the addition or removal of a 
single instance relation, all neighborhoods are directed. Table 2 represents the 
neighborhoods, which result from an addition (‘+’) and those which result from a 
removal (‘-‘). The symbol ‘±’ marks class relations that are conceptual neighbors of 
themselves. If an addition or removal of an instance relation has changed a class 
relation it is impossible to get the same class relation again by further adding / 
removing of instance relations. The addition of instance relations ultimately leads to a 
‘RLT RT-all’ class relation. A removal leads to ‘RLD RD’. 

In (Mäs, 2008 and 2009a) some practical examples of the conceptual neighborhood 
of class relations and its relevance for the reasoning on class relation compositions 
have been discussed. For example, if three class relations hold for the classes ‘A’, ‘B’ 
and ‘C’: ‘MEETsome(A, B)’, ‘CONTAINSLD RD LT RT(B, C)’ and ‘DISJOINTLT RT(A, C)’. 
These relations are analyzed for conflicts through the comparison of the class relation 
composition ‘R(A,B);R(B,C)’ with the given ‘R(A,C)’. The compositions of the 
corresponding instance and abstract class relations are: 



 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎1, 𝑏𝑏1) ;  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑏𝑏1, 𝑐𝑐1) → 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎1, 𝑐𝑐1). 

 
𝑅𝑅1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐴𝐴,𝐵𝐵) ;  𝑅𝑅2𝐿𝐿𝐿𝐿 𝑅𝑅𝑅𝑅 𝐿𝐿𝐿𝐿 𝑅𝑅𝑅𝑅(𝐵𝐵,𝐶𝐶)  → 𝑅𝑅3𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐴𝐴,𝐶𝐶) . 

 
The combination of the compositions of the two levels results in: ‘DISJOINTsome(A,C)’ 
(row 4, column 13 in Figure 2) , which seems to be in conflict with the given third 
relation ‘DISJOINTLT RT(A,C)’. Figure 4 exemplarily illustrates this situation. Figure 4a 
shows a possible setting of instance relations between the classes ‘A’ to ‘B’ and ‘B’ to 
‘C’, and Figure 4b the inferred relations between ‘A’ and ‘C’. Thereby only those 
instances of ‘A’ and ‘C’ are related in Figure 4b, which are connected via an instance 
of ‘B’ in Figure 4a. In comparison to this, the Figure 4c shows that the given relation 
‘DISJOINTLT RT(A, C)’ possibly differs from ‘DISJOINTsome(A, C)’ by only one 
‘disjoint’ instance relation (in this case ‘a3’ to ‘c3’). Thus ‘DISJOINTsome’ and 
‘DISJOINTLT RT’ are conceptual neighbors (row 4, column 16 in Table 2). 

 

Fig. 4. Use of the conceptual neighborhood for the composition of class relations (Mäs, 
2009a) 

 
The three instance relations in Figure 4b are implied by the relations shown in Figure 
4a. The composition does not allow for any conclusion about further relations between 
the instances of ‘A’ and ‘C’. Also, it cannot be excluded that further pairs of ‘A’ and 
‘C’ instances are ‘disjoint’. Hence the composition of ‘MEETsome(A,B)’ and 
‘CONTAINSLD RD LT RT(B, C)’ does not contradict ‘DISJOINTLT RT(A,C)’ and the given 
triple of class relations is consistent. Beside ‘DISJOINTLT RT’, also the other direct 
conceptual neighbors of ‘DISJOINTsome’ ‘DISJOINTLT’ and ‘DISJOINTRT’ (row 4, 
columns 11 and 12 in Table 2), as well as ‘DISJOINTLT RT-all ’ as a conceptual neighbor 
of ‘DISJOINTLT RT(A,C)’ (row 16, columns 17 in Table 2) have no conflict. 

 Mäs (2008) correspondingly concluded with the generic rule: a class relation ‘R3’ 
is not in conflict with a composition ‘R1 ; R2  R3*’ if ‘R3*’ and ‘R3’ base on the 
same instance relation ‘r3’ (‘InstR(r3,R3)’ and ‘InstR(r3,R3*)’) and the addition of 
further ‘r3’ instance relations to ‘R3*’ can lead to a transition to class relation ‘R3’. 
For this the result of the composition ‘R3*’ and ‘R3’ do not need to be direct 
conceptual neighbors. There can also be further class relation transitions between the 
two class relations. Nevertheless the conceptual neighborhood points out which ‘R3’ 
class relations are valid, since it shows which transitions are possible for a certain class 
relation ‘R3*’. 



6   Constraint Satisfaction Problems in Class Relation Networks 

The previous sections discussed the reasoning properties of class relations. The 
application of these reasoning techniques for checking consistency in networks of class 
relations is a constraint satisfaction problem (CSP). Such detection of conflicts and 
redundancies in sets of class relations requires a network graph, in which the nodes 
represent the entity classes and the edges represent the class relations. In a consistent 
network of jointly exhaustive and pair wise disjoint (JEPD) relations, the following 
three requirements are fulfilled (Rodriguez et al., 2004). Proves of these requirements 
for class relation networks have been discussed in (Mäs, 2007 and 2009a): 

 
• Node consistency is ensured if every node has a self-loop arc, which 

corresponds to the identity relation (i.e., relation of an entity / entity class to 
itself). If a corresponding identity instance relation is available the identity class 
relation is in general ‘RLD RD LT RT(A,A)’; for example ‘EQUALLD RD LT RT(A,A)’ 
when using the topological relations areal entities.  
 

• Arc consistency is ensured if every edge of the network has an edge in the 
reverse direction, that is, every relation has a converse relation that is consistent 
with the network. As shown in Section 3, the converse of a class relation can be 
defined, if the converse relation of the corresponding instance relation is 
known. 
 

• Path consistency is ensured if all relations are consistent with their induced 
relations, determined by the corresponding intersection of all possible 
composition paths of length two (n = number of nodes): 
 

∀𝑖𝑖,𝑗𝑗𝑟𝑟𝑖𝑖,𝑗𝑗 = �𝑟𝑟𝑖𝑖,𝑘𝑘 ;  𝑟𝑟𝑘𝑘,𝑗𝑗

𝑛𝑛

𝑘𝑘=1

. 

 
In general, the algorithm for checking path consistency of a class relation 
network is similar to algorithms used for the instance relations (e.g. Allen, 
1983; Hernández, 1994). However, due to the higher complexity of the 
relations, the detection whether two relations between the same classes are in 
conflict is more extensive (Mäs, 2009a). 

7   Reasoning on Class Relations in Class Hierarchies 

So far, the existing reasoning approaches only consider classes without a hierarchical 
structure. For a class relation network this means that all nodes in the graph are 
considered at the same level and all edges are treated equally. For a practical 
application this is insufficient, since most data models and ontologies are hierarchically 
structured. The hierarchical organization makes it easy to distribute properties, since 
the properties and methods of a class depend on the properties of its superclass(es). 



The properties that are shared by a superclass and all its subclasses are defined only 
once with the superclass. The subclasses inherit all properties of their parent- / 
superclasses in the hierarchy (Brachman, 1983; Egenhofer and Frank, 1992). Such 
properties can be spatio-temporal or thematic attributes or explicitly defined relations 
between classes. If a class relation is defined in a class hierarchy it has an influence on 
the classes at the lower levels. It also results in additional logical rules and consistency 
requirements between the class relations of the different hierarchy levels. For example 
from: “Watercourse is a subclass of Waterbody” and “every Waterfall is an individual 
part of some Watercourse” it can be derived that “every Waterfall is an individual part 
of some Waterbody” (analogous to Bittner, 2009). Similar examples from the 
biomedical domain can be found in (Donnelly, 2006). Although these papers provide 
some inference rules they only consider the inference of specific class relations. A 
generic solution is subject of future research. Therefore, the remainder of this section 
shall illustrate some obvious dependencies of the class relations between super- and 
subclasses in a class hierarchy. 

For the following propositions it is assumed that all subclasses of a superclass are 
known and that all entities of the superclass belong to (exactly) one of the subclasses 
and vice versa. These assumptions are commonly made in ontologies (e.g. Bittner, 
2009). Further, all subclasses have only one superclass, i.e. multiple inheritance is not 
considered here.  

In a simple hierarchy with one superclass and two subclasses there are three edges 
between the classes and three edges for the identity class relations (Figure 5). The 
superclass (P1) subsumes the subclasses (S1 and S2)1. The class relations define 
cardinality restrictions of instance relations between the entities of the classes. 
Therefore class relations at a higher level or between the two successive levels 
subsume the class relations of the lower level. This leads to the following 
dependencies:  
 
D1:  The identity relation of the superclass (IdP1) subsumes the identity class relations 

of the subclasses (IdS1 and IdS2) and the class relations between the subclasses 
in both directions (RelS1S2 and RelS2S1) (see Figure 6). 

 
D2: The class relations that connect the two hierarchy levels subsume the identity 

relation of the related subclass and the class relations of all other subclasses to 
this subclass. For the scene shown in Figure 5 this means that RelP1S1 subsumes 
IdS1 and RelS2S1, and RelP1S2 subsumes IdS2 and RelS1S2 (see Figure 6 and 
Figure 7).  

 
D3: Therewith the identity relation of the superclass (IdP1) also subsumes all class 

relations that are connecting the two hierarchy levels (RelP1S1 and RelP1S2).  
 

 
1 Please be aware that all edges Figure 5 represent class relations that define cardinality 

restrictions and not the inheritance / generalisation relation between the classes. 



 
Fig. 5. Class relation network of a simple hierarchy with one superclass and two subclasses 

Figure 6 and Figure 7 schematically illustrate the class relations of the hierarchy of 
Figure 5. In the figures both subclasses have two entities. Again, the arrows represent 
the relations between the entities, which could be for example one of the topological 
relations ‘intersect’ or ‘disjoint’. Through the comparison of the arrows it is easy to 
comprehend the three interdependencies. 
 

 
Fig. 6. Example for the subsumption of class relations of a lower hierarchy level in the identity 

relation of the corresponding superclass 

 
Fig. 7. Example class relations that connect the two hierarchy levels 

 



The following Equations (H1) - (H3) define the interdependencies D1 - D3 for 
hierarchies with arbitrary many subclasses. The variables m and n are indices of the 
subclasses. Equations (H4) and (H5) define the interdependency for the class relations 
from the subclasses to the superclass (converse to the relations considered in Equations 
(H2) and (H3)).  
 

IdP = �𝐼𝐼𝐼𝐼𝑆𝑆1 , … , 𝐼𝐼𝐼𝐼𝑆𝑆𝑚𝑚  ,  𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆1𝑆𝑆2 ,𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆2𝑆𝑆1 , … ,𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑚𝑚𝑆𝑆𝑛𝑛 ,𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑛𝑛𝑆𝑆𝑚𝑚�  𝑚𝑚≠𝑛𝑛 (H1) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃 𝑆𝑆𝑚𝑚 = �𝐼𝐼𝐼𝐼𝑆𝑆𝑚𝑚 ,𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆1𝑆𝑆𝑚𝑚 , … ,𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑛𝑛𝑆𝑆𝑚𝑚�  𝑚𝑚≠𝑛𝑛 (H2) 

𝐼𝐼𝐼𝐼 𝑃𝑃 = � 𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃 𝑆𝑆1 , … ,𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃 𝑆𝑆𝑚𝑚� (H3) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑚𝑚 𝑃𝑃 = �𝐼𝐼𝐼𝐼𝑆𝑆𝑚𝑚 ,𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑚𝑚𝑆𝑆1 , … ,𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑚𝑚𝑆𝑆𝑛𝑛�  𝑚𝑚≠𝑛𝑛 (H4) 

𝐼𝐼𝐼𝐼 𝑃𝑃 = � 𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆1 𝑃𝑃 , … ,𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑚𝑚 𝑃𝑃 � (H5) 

 
Similar interdependencies can be found for class relations between a class hierarchy 
and a class outside of the hierarchy (Figure 8a), class relations that connect two 
independent class hierarchies (Figure 8b) and class relations between three hierarchy 
levels (Figure 8c). 
 

 
Fig. 8. Hierarchical settings with interdependent class relations 

These observations show that there are dependencies between the class relations of 
different hierarchy levels. The interdependencies of relations in class hierarchies result 
from the fact that the class relations at a higher hierarchy level subsume those of the 
lower levels. The entities of the classes of the subsuming relation are divided between 
the subclasses. Correspondingly, class relation subsumption means that the 
subsuming relation includes all instance relations of the subsumed class relations. 

At this stage the constraints that the subsumption exposes on concrete class relations 
are not defined. A detailed set of rules to describe the dependency for a set of abstract 
class relations or directly for cardinality properties is subject of future research. These 



rules will extend the consistency requirements in class relations networks, which are 
implied by their compositions and converses (Section 6). 

The four elementary hierarchical settings (Figures 5 and 8) and their 
interdependencies can serve as building blocks for an analysis of more complex class 
hierarchies. Therefore the constraints that are exposed by the interdependencies must 
be defined independently of the number of involved subclasses and also independent of 
the number of involved hierarchy levels.  

8   Further Open Issues 

The described inference approaches separately analyze the reasoning properties of the 
abstract class relations and those of the instance relations. However, some 
combinations of instance and abstract class relations lead to conflicts that cannot be 
found in this way. For example, the combination of ‘EQUALLD RT(A,B)’ and the abstract 
class relation ‘RLD RD LT RT(B, C)’ is impossible (Figure 9). This is due to the specific 
identity properties of the ‘equal’ instance relation and the cardinality properties of the 
two abstract class relations. 

 

 
Fig. 9. Inconsistent combination of class relations 

 
‘EQUALLD RT(A,B)’ requires at least one instance of ‘A’ that is equal to at least two 
instances of ‘B’, because it is defined as not right-definite (Equation CP4). Since equal 
is symmetric and transitive this implies that the corresponding ‘B’ instances are also 
equal (‘b1’ equals ‘b2’ in Figure 9). Thus if one of these ‘B’ instances has an instance 
relation to a ‘C’ instance, the other ‘B’ must have the same relation to this ‘C’. This 
means for the scene in Figure 9 that both ‘B’ should have the same instance relation to 
both ‘C’. This is in conflict with ‘RLD RD LT RT(B, C)’, because this class relation is 
defined as left-definite and right-definite (Equation CR1). A generic description of 
such conflicts is the subject of further research. 

9   Conclusion  

The interoperable exchange of data of different domains and application areas requires 
semantic descriptions of the data. The explicit knowledge about logical properties and 
interrelations between relations is fundamental for automated reasoning based on such 
descriptions (Bittner et al., 2009). The proposed class relations and reasoning methods 



provide a basis for the formalization of such knowledge. Nevertheless, the formal 
definition of class relations and their logical properties are still hardly researched yet.  

A relation among the classes is not subject to the same logical properties as the 
applied relation between instances because the cardinality restrictions must also be 
considered for reasoning. In general, the reasoning algorithms at the class level are 
similar to those of the instance relations. However, due to the higher complexity of the 
class relations, the detection of conflicts and redundancies is more extensive. This 
chapter summarizes current research results with regard to class relation reasoning 
based on properties like symmetry, composition and conceptual neighborhood. 
Therefore a set of 17 abstract class relations has been exemplarily used. This shall 
provide a basic framework, which can be extended for other possibly more complex 
types of class relations. Furthermore, future research should particularly concern the 
dependencies of class relations in class hierarchies, since the class concepts described 
in data models or ontologies are hierarchically structured, usually. 

Class relations can be used in combination with any type of instance relation. To 
enable a flexible use of reasoning algorithms, the inference rules must be defined in a 
generic way. This means they must hold for abstract class relations or directly for 
cardinality properties and separately integrate the logical properties of the instance 
relations.  

A major advantage of class relations is their logical soundness. Their logical 
properties allow for the detection of conflicts and redundancies in sets of class 
relations. This is of interest for many application areas, for example for the 
management of spatial semantic integrity constraints (Mäs, 2007), geospatial 
ontologies (Bittner et al., 2009), conceptual data modeling and usability evaluation 
(Mäs, 2009b). 

Most of the discussed reasoning algorithms have been implemented in a research 
prototype that is available at http://www.stephanmaes.de/classrelations.html . The tool 
is implemented as a plug-in of the Protégé ontology editor.  
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