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Abstract. Semantic integrity constraints specify relations between entity 
classes. These relations must hold to ensure that the data conforms to the 
semantics intended by the data model. For spatial data many semantic integrity 
constraints are based on spatial properties like topological or metric relations. 
Reasoning on such spatial relations and the corresponding derivation of implicit 
knowledge allow for many interesting applications. The paper investigates 
reasoning algorithms which can be used to check the internal consistency of a 
set of spatial semantic integrity constraints. Since integrity constraints are 
defined at the class level, the logical properties of spatial relations can not 
directly be applied. Therefore a set of 17 abstract class relations has been 
defined, which combined with the instance relations enables the specification of 
integrity constraints. The investigated logical properties of the class relations 
enable to discover conflicts and redundancies in sets of spatial semantic 
integrity constraints. 
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1   Introduction 

Integrity, sometimes also called consistency, is a term originally used for the property 
of database systems of being free of logical contradictions within a model of reality. 
This model also contains defined integrity constraints that must hold on the database 
to grasp the semantics intended by the model [Egenhofer 1997]. Integrity constraints 
play a major role when the logical consistency of a data set has to be evaluated. For 
spatial data in particular constraints which comprehend the spatial peculiarities are of 
interest. While for database modelling a universally valid classification of integrity 
constraints is established and the constraint types are supported by most database 
systems, at present there is no sufficient integration of spatial integrity constraints and 
not even a theoretical basis for the formalisation of their contents and restrictions 
existing. This paper tries to contribute to a solution of these problems. It focuses on 
the formalisation of spatial semantic integrity constraints and the identification of 



conflicts and redundancies in sets of such constraints. Therefore we start with a 
categorisation of integrity constraints and point out how spatial integrity constraints 
integrate into this classification. Further the categorisation is used to outline the 
definition of spatial semantic integrity constraints. Since integrity constraints are 
defined at the level of entity classes the paper reviews the application of class 
relations in chapter 3. Based on that a set of 17 abstract class relations is defined 
which particularly supports the specification of spatial semantic integrity constraints. 
Another focus is on the investigation of the logical properties of the defined class 
relations. The reasoning algorithms investigated in chapter 4 enable to discover 
conflicts and redundancies in sets of spatial semantic integrity constraints. The 
practical value and the usability of the researched concepts are demonstrated in 
chapter 5, where a possible user interface for the definition of spatial semantic 
integrity constraints is designed. 

2   Integrity Constraints  

The restrictions defined by integrity constraints can be manifold. This paper focuses 
only on spatial semantic integrity constraints. The aim of this chapter is to categorize 
integrity constraints and to outline spatial semantic integrity constraints. 

2.1   Categories of integrity constraints  

In [Elmasri and Navathe 1994, pp. 638-643] the properties of integrity constraints for 
data modelling have been analysed. They propose the following classification of 
integrity constraints according to the type of the specified conditions:  
 
1. Domain constraints restrict the allowed types of values of an attribute.  
2. Key and relationship constraints refer to key values of entity classes, 

cardinalities of relationships between entity classes and participation requirements 
of relationships defined in the data model.  

3. General semantic integrity constraints are explicitly specified and usually more 
complex. They refer to the semantics of the modelled entity classes. Therefore they 
can not be specified as domain or key and relationship constraints. 

 
Spatial integrity constraints fit into two categories of this classification. Currently, a 
variety of database systems is already capable to handle the particular requirements of 
spatial data and provides predefined spatial data types. The constraints on this data 
types and the corresponding constraints on geometric and topological primitives are 
domain constraints. Such spatial integrity constraints are not discussed in this paper. 

The second category of spatial constraints is semantic integrity constraints. This 
paper focuses on the definition of such spatial semantic integrity constraints. 
Therefore the following subchapter will give a closer look at the restrictions which are 
specified by these constraints. 



2.2   What do Semantic Integrity Constraints Restrict? 

Following the definition of Elmasri and Navathe semantic constraints are based on 
relations between the involved entities or on specific properties of a single entity. The 
validity of the relations is based on the semantics of the entities. Semantic integrity 
constraints are defined at the level of the entity classes and have to be explicitly 
defined. The restrictions defined by semantic integrity constraints can be manifold 
and complex, what makes a differentiation of the kinds of defined restrictions 
necessary. An approach to a categorisation of integrity constraints according to the 
restricted data model elements was made by [Ditt et al. 1997] and later extended by 
[Friis-Christensen el al. 2001]. They differentiated the following integrity constraint 
categories: 

 
1. constraints referring to an attribute of a single entity 
2. constraints referring to at least two attributes of a single entity  
3. constraints referring to all entities of a single entity class 
4. constraints referring to an entity and its associated entities of various classes 
5. constraints referring to operations of entities. 
 
All five categories include semantic integrity constraints. In this paper we only 
consider the categories three and four, leaving out constraints restricting single 
entity’s attributes and operations of entities. We investigate integrity constraints on 
relations between the entities of a single or of two entity classes. As a further 
restriction we only consider binary relations which are not explicitly modelled. 
Relations which are explicitly defined in the data model are restricted by key and 
relationship constraints. Implicit relation can be deduced from the corresponding 
attributes of the involved entities. A typical example of such implied relations are 
topological relations (e.g. figure 1) between spatial entities [Egenhofer and Herring 
(1991)]. Usually they are not explicitly stored since they can be derived from the 
entity’s geometries. 
 

 
Fig. 1. Set of topological relations between areal entities 

 



All examples of class relations and integrity constraints given throughout the paper 
are based on the binary topological relations between areal entities shown in figure 1. 
However, the defined class relations can also be combined with any other instance 
relation. To enable for reasoning on the integrity constraints (chapter 4) the instance 
relation must be part of a limited, jointly exhaustive and pairwise disjoint (JEPD) set 
of relations. This requirement is necessary when the consistency of the class relations 
shall be checked making use of reasoning algorithms. Most spatial relations are part 
of such a JEPD set of relations. 

3   Integrity Constraint Definition based on Class Level Relations 

Integrity constraints are defined at the level of entity classes since they are always 
restricting entire classes or subsets of classes. When a database is checked against a 
spatial semantic integrity constraint, the checking procedure proves spatial relations 
between the involved instances. Thus a formalised description of such an integrity 
constraint must be linked to the instance relations the quality checking procedure 
applies. But as the following example illustrates instance relations are not suitable for 
integrity constraint formalisation. A natural language statement about two instances 
could be: “the watermill is overlapping the river”. Since overlap is a symmetric 
relation it also implies “the river is overlapping the watermill”. A corresponding 
semantic integrity constraint for the classes “watermill” and “stream” could be: “A 
watermill must overlap a stream”. Applying the symmetry of the instance relation 
again it becomes: “A stream must overlap a watermill”. These two statements about 
the classes obviously don’t have the same semantic and since not every stream is 
flowing through a watermill the second is not true. This example shows that instance 
relations can not clearly represent the semantic of statements about classes and that 
the formalisation of such statements requires specific class relations. [Donnelly and 
Bittner 2005] also identified this problem and provided an approach for the definition 
of class relations. The following subsections will review their solution with regard to 
an application for integrity constraint definition. Some class level relations don’t 
define violable restrictions on the involved classes and are therefore also not 
applicable as integrity constraints. Further on, some additional properties of class 
relations, which have not been considered by Donnelly and Bittner, are pointed out. 
Based on that a new set of class relations is defined which particularly supports the 
definition of integrity constraints. 

3.1 Definition of Class Level Relations 

Before the class relations can be applied it must be ensured that the classes conform to 
the following two requirements. First, the involved classes must have at least one 
instance, i.e. empty classes are not feasible. As stated before class relations are linked 
to individual relations. Thus the second condition specifies that if a class relation is 
defined, there must be at least one corresponding individual relation existent among 
the instances of the involved classes. 
 



x,y,z Denote variables for individuals / instances. Every instance 
must be associated to a class. 

A, B, C Denote variables for classes. Every class must have at least 
one instance. 

Inst(x,A) Means individual x is an instance of class A. 
r(x,y) Means individual x has the relation r to individual y; x and 

y are said to participate on the relationship instance r. The 
meta-variable r can stand for any relation of individuals 
(e.g. topological relations). Every relationship instance r 
can be associated to a class relation R. 

R(A,B) Denotes that R relates the classes A and B. The meta-
variable R can stand for any class relationship. Every R is 
related to an individual relation r. If a class relation R(A,B) 
is defined at least one r must be existent between the 
instances of A and B. 

 
Based on these variables and functions [Donnelly and Bittner 2005] define the 
following class relations:  
 

D&B
someR (A,B) : x y(Inst(x,A) Inst(y,B) r(x, y)).= ∃ ∃ ∩ ∩   (D&B1) 

D&B
all 1R (A,B) : x(Inst(x,A) y(Inst(y,B) r(x, y))).− = ∀ →∃ ∩  (D&B2) 

D&B
all 2R (A,B) : y(Inst(y,B) x(Inst(x,A) r(x, y))).− = ∀ →∃ ∩  (D&B3) 

D&B D&B D&B
all 12 all 1 all 2R (A,B) : R (A,B) R (A,B).− − −= ∩  (D&B4) 

D&B
all allR (A,B) : x y(Inst(x,A) Inst(y,B) r(x, y)).− = ∀ ∀ ∩ →  (D&B5) 

 
D&B
someR (A, B)

)

)
)

holds if at least one instance of A stands in relation r to some instance of 
B. relations are very weak, but nevertheless useful for example when 
class relations are defined in an ontology. Integrity constraints which are only based 
on such relations are not expedient, since they only specify that a relation universally 
exists in reality without any concrete cardinalities. Within a data set the relation is in 
principle possible, but does not necessarily occur within the modelled part of reality. 
This means that a data set, which is usually representing parts of the reality, can either 
contain individuals that have the relation or it doesn’t; both cases are conform to the 
integrity constraint. Since a violation against constraints which are only specifying 

relations is not possible, such constraints are not useful for quality 
assurance. This changes if relations are specified in conjunction with a 
defined set of entities, like for example a relation r holds for some entities of A and B 
within a certain area (possibly defined by an individual entity of C). Therewith the 

D&B
someR (A, B

D&B
someR (A, B

D&B
someR (A, B



constraint is violable by the subsets of A and B and useful for quality assurance. Since 
the definition of such subsets can be manifold and complex the analysis in this paper 
is restricted to binary relations between entire entity classes, leaving out subsets of 
classes. 

D&B
all 1R (A,B− )

)

)
)

)
) )

)

) )

)

holds if every instance of A has the relation r to some instance of B. In 
set theory such relations are called left-total. This class relation can be used to define 
the integrity constraint of the above mentioned windmill / stream example: 

 specifies the overlap relation for all windmills 
but it doesn’t include all streams. 

D&B
all 1OVERLAPS (Windmill,Stream)−

D&B
all 2R (A, B− holds if for each instance of B there is some instance of A which 

stands in relation r to it. This means that every instance of B has the inverse relation 
of r to some instance of A. is right-total / surjective.  D&B

all 2R (A, B−
D&B
all 12R (A, B− combines the definitions of (D&B2) and (D&B3). It holds if every 

instance of A stands in relation r to at least one instance of B and for each instance of 
B there is at least one instance of A which stands in relation r to it. R is left-total and 
right-total.  

This differentiation of class relations according to the totality of the involved 
individuals of the entity classes is very useful for the definition of integrity 
constraints. The class relations define constraints on all individuals of A (D&B2), all 
individuals of B (D&B3) or on all individuals of both arguments A and B (D&B4). In 
data modelling such definitions are called participation constraints on the relation. 
They specify whether the existence of an entity depends on its relation to another 
entity via the relationship type [Elmasri and Navathe 1994]. , 

 and  define total participation constraints on their 
relationship instances, since at least one of the classes is totally effected. 

defines a partial participation constraint since not necessarily all 
instances of the classes A and B have the relationship instance. 

D&B
all 1R (A,B−

D&B
all 2R (A, B−

D&B
all 12R (A,B−

D&B
someR (A, B

A specific case of  is defined by the relation, which holds 
if all instances of A have an relationship instance of R to all instances of B. This 
relation is very strong, since it defines restrictions on all relations between all 
individuals of the arguments A and B. Therewith the corresponding integrity 
constraints are very restrictive but for example useful when all instances of two 
classes are not allowed to intersect: . 

D&B
all 12R (A,B−

D&B
all allR (A, B−

D&B
all allDISJOINT (Streets,Lakes)−

Beside the total participation constraint the  relationship defines a so 
called cardinality ratio constraint, which specifies the number of relationship 
instances an entity can participate in [Elmasri and Navathe 1994]. In this case the 
number of B entities (i.e. “all” instances of B) defines in how many relationship 
instances each entity of A is participating and vice versa. 

D&B
all allR (A, B−

In data modelling total participation and cardinality ratio constraints are well 
established, for example when using the Entity-Relationship Model as a notation. In 
such models a total participation is represented by a double line for the relation and 
cardinality ratio for example by a N:1 next to the relation signature (see figure 2). In 



this example all buildings are restricted to be contained by only one parcel, while the 
parcels are allowed to contain an undefined number of buildings. 

 
Fig. 2. Total Participation and Cardinality Ratio Constraints in an Entity-Relationship Model 

The number of different cardinality ratio constraints of such a notation is infinite. 
Thus it is impossible to represent them all by separate class relations. But since some 
of them are indispensable for the definition of integrity constraints we decided to 
extend the framework of class relations of [Donnelly and Bittner 2005] by the concept 
of unambiguousness. Correspondingly the following class relations are defined: 
 

Left D
D&B
some

R (A, B) : x, y,z(Inst(x,A) Inst(y, B) Inst(z,A)

r(x, y) r(z, y) x z) R (A, B).
− = ∀ ∩ ∩ ∩

∩ → = ∩
 (1) 

Right D

D&B
some

R (A, B) : x, y,z(Inst(x,A) Inst(y, B) Inst(z, B)

r(x, y) r(x,z) y z) R (A, B).
− = ∀ ∩ ∩ ∩

∩ → = ∩
 (2) 

 
RLeft-D(A,B) relations are left-definite / injective and specify that for no instance of B 
there is more than one instance of A which stands in relation r to it. This relation 
restricts the number of R relations an instance of B can participate; the instances of A 
are not restricted. The last term ensures that at least one instance relation 
r does exist between the instances of A and B. 

D&B
someR (A, B)

The right-definite relations RRight-D(A,B) specify that no instance of A participates 
in a relationship instance of R to more than one instance of B. When this relation is 
defined all instances of A are restricted while the instances of B are not affected. 

Both relations are very useful for the definition of integrity constraints, since they 
restrict the number of possible relations of the involved individuals to a maximum of 
one. 

3.2   Class Level Relations for Integrity Constraint Definition 

The main properties of the class level relations used in the previous chapter are left-
definite, right-definite, left-total and right-total. These properties are independent of 
each other, what means that no property implies or precludes one of the other 
properties. If a class relation is only defined as right-total there is no information 
about its left totality and the cardinality ratio available. For the definition of integrity 
constraints this situation is insufficient since the constraint relations should allow for 



combinations of properties as well as their negations. Therefore we define a new set 
of class relations which implies adjustments to achieve sets of pairwise disjoint 
relations.  
 

D&B D&B D&B
some some all 1 all 2

Left D Right D

R (A, B) : R (A,B) R (A,B) R (A, B)
R (A,B) R (A,B).

− −

− −

= ∩¬ ∩¬ ∩

¬ ∩¬
 (3) 

 
Rsome(A,B) is similar to the definition (D&B1) of [Donnelly and Bittner 2005] but 
while  contains all other defined class relations these are now excluded. 
Rsome is defined as not left-total and not right-total, what implies that some instances 
of A/B participate in a relation r to an instance of B/A and some don’t. Furthermore 
the exclusions of RLeft-D(A,B) and  RRight-D(A,B) specify that some A/B participate in a 
relation r to at least two instances of B/A. Hence Rsome is only valid for classes with 
more than two instances. 

D&B
someR (A,B)

 
D&B D&B

LD Left D Right D all 1 all 2R (A, B) : R (A, B) R (A, B) R (A, B) R (A, B).− − − −= ∩¬ ∩¬ ∩¬  (4) 

D&B D&B
RD Left D Right D all 1 all 2R (A, B) : R (A, B) R (A, B) R (A, B) R (A, B).− − − −= ¬ ∩ ∩¬ ∩¬  (5) 

D&B D&B
LT Left D Right D all 1 all 2R (A, B) : R (A, B) R (A, B) R (A, B) R (A, B).− − − −= ¬ ∩¬ ∩ ∩¬  (6) 

D&B D&B
RT Left D Right D all 1 all 2R (A, B) : R (A, B) R (A, B) R (A, B) R (A, B).− − − −= ¬ ∩¬ ∩¬ ∩  (7) 

 
The definitions (4) to (7) specify class relations which are either left-definite, right-
definite, left-total or right-total. The corresponding other properties are excluded. 
 

D&B D&B
LD.RD Left D Right D all 1 all 2R (A, B) : R (A, B) R (A, B) R (A, B) R (A, B).− − − −= ∩ ∩¬ ∩¬  (8) 

D&B D&B
LD.LT Left D Right D all 1 all 2R (A, B) : R (A, B) R (A, B) R (A, B) R (A, B).− − − −= ∩¬ ∩ ∩¬  (9) 

D&B D&B
LD.RT Left D Right D all 1 all 2R (A, B) : R (A, B) R (A, B) R (A, B) R (A, B).− − − −= ∩¬ ∩¬ ∩  (10) 

D&B D&B
RD.LT Left D Right D all 1 all 2R (A, B) : R (A, B) R (A, B) R (A, B) R (A, B).− − − −= ¬ ∩ ∩ ∩¬  (11) 

D&B D&B
RD.RT Left D Right D all 1 all 2R (A, B) : R (A, B) R (A, B) R (A, B) R (A, B).− − − −= ¬ ∩ ∩¬ ∩  (12) 

D&B
LT.RT Left D Right D all 1

D&B D&B
all 2 all all

R (A, B) : R (A, B) R (A, B) R (A, B)

R (A, B) R (A, B).
− − −

− −

= ¬ ∩¬ ∩ ∩

∩¬
 (13) 



 
The definitions (8) to (13) combine pairs of the four defined class relation properties 
and exclude the corresponding others. A special case is (13) which additionally 
excludes . D&B

all allR (A, B− )

B).

∩

)

∩

)

 
D&B

LT.RT all all allR : R (A,− −=  (14) 

 
Definition (14) is equivalent to (D&B5). RLT.RT-all is left-total and right-total and holds 
if all instances of A have a relationship instance of R to all instances of B.  
 

D&B D&B
LD.RD.LT Left D Right D all 1 all 2R (A, B) : R (A, B) R (A, B) R (A, B) R (A, B).− − − −= ∩ ∩ ∩¬  (15) 

D&B D&B
LD.RD.RT Left D Right D all 1 all 2R (A, B) : R (A, B) R (A, B) R (A, B) R (A, B).− − − −= ∩ ∩¬ ∩  (16) 

D&B
LD.LT.RT Left D Right D all 1

D&B D&B
all 2 all all

R (A, B) : R (A, B) R (A, B) R (A, B)

R (A, B) R (A, B).
− − −

− −

= ∩¬ ∩

∩¬
 (17) 

D&B
RD.LT.RT Left D Right D all 1

D&B D&B
all 2 all all

R (A, B) : R (A, B) R (A, B) R (A, B)

R (A, B) R (A, B).
− − −

− −

= ¬ ∩ ∩ ∩

∩¬
 (18) 

 
The definitions (15) to (18) combine three of the four defined class relation properties 
respectively and exclude the corresponding fourth. Particular attention must be given 
to the class relations which are left-total and right-total ((17) and (18)). In case only 
one instance of A or B exists left-total and right-total class relations are always left-
definite or right-definite, respectively. Furthermore they will also hold (D&B5). Thus 
it is necessary to separate the relations (17) and (18) from (14), which is done by the 
exclusion of . Therewith the relations (17) and (18) are not possible if 
class A or class B has only one instance.  

D&B
all allR (A,B−

 
D&B

LD.RD.LT.RT Left D Right D all 1

D&B D&B
all 2 all all

R (A, B) : R (A, B) R (A, B) R (A, B)

R (A, B) R (A, B).
− − −

− −

= ∩ ∩

∩¬
 (19) 

 
Definition (19) specifies class relations which are left-definite, right-definite, left-total 
and right-total. Similar to the definitions (17) and (18) is excluded to 
distinguish the relation from (14) for the case that A and B have only one instance. In 
this case the relation can’t occur. 

D&B
all allR (A,B−

All together the definitions (3) to (19) specify 17 class relations which can be 
combined with any binary instance relations to associate classes. With the exception 



of Rsome(A,B) all of these relations specify restrictions which can be used as integrity 
constraints for quality assurance of the data. 

Depending on the relations it is possible to define more than one class relation 
between two classes, even when the applied instance relations are part of the same 
JEPD set of relations. Figure 3 illustrates such an example, where two classes can be 
restricted by three topological class relations. In this scene every instance of A meets 
one and contains another instance of B. One instance of B meets two instances of A 
and some are disjoint from all instances of A. Other than those three relations are not 
occurring. The corresponding integrity constraints are the class relations defined in 
(11), (15) and (14):  

 
MEET RD.LT (Entity Class A, Entity Class B) 

CONTAINS LD.RD.LT (Entity Class A, Entity Class B) 
[ ]LT.RT all
MEET CONTAINS DISJOINT (A, B)

−
∪ ∪  

 

 
Fig. 3. Scene of two entity classes which could be defined by three class relations 

The possibilities of such combinations of class relations are limited if they rest on 
instance relations which are part of a JEPD set of relations. For example if RLT.RT-all is 
defined no second RLT.RT-all relation and no class relation based other instance relations 
of that domain is possible between the two classes. 

4   Reasoning on Semantic Integrity Constraints 

This chapter investigates the logical properties of the class relations defined in the 
previous section. For the work with integrity constraints these properties can be very 
useful; for example they enable to discover inconsistencies and redundancies in a set 
of integrity constraints.  



4.1   Reasoning on the Symmetry of the Class Relations 

The transfer of logical properties of instance relations to class relations, like their 
symmetry and transitivity, has been researched by [Donnelly and Bittner 2005]. The 
purpose of this subchapter is to deepen the analysis of symmetry properties of the 
defined class relations. Spatial relations between instances are usually either 
symmetric or have a well defined inverse relation. Table 1 shows the correlation 
between symmetry properties of instance level relations and those of the 
corresponding class level relations. 
 

ri Inverse instance relation. 
Ri Inverse class relation. 

Table 1. Symmetry properties of the class relations 

Class Relation R is… Individual 
Relation r 

is… 
left- 

definite 
right-

definite 
left- 
total 

right- 
total Rsome RLT.RT-all 

symmetric R right-
definite 

R left- 
definite 

R right- 
total 

R left- 
total Rsome RLT.RT-all 

Not 
symmetric 

Ri right-
definite 

Ri left- 
definite 

Ri right- 
total 

Ri left- 
total 

i
someR  i

LT.RT allR −  

 
The following examples illustrate the use of table 1 for class relations defined for the 
scene shown in figure 3. The class relations are based on the symmetric instance 
relation meet and the inverse relations contains and inside: 
 

(MEET RD.LT (A, B) )i  =  MEET LD.RT (B,A). 
(CONTAINS LD.RD.LT (A, B) )i  =  INSIDE LD.RD.RT (B,A). 

 
The examples show that not all class relations are symmetric, even when they are 
based on symmetric instance relations. But it can be proven that if an instance relation 
is symmetric or has an inverse relation there exists also an inverse relation for each of 
the corresponding class relations. 

4.2   Correlation between Class Relations and the Number of Individuals 

For many entity classes the number of existing individuals is unknown or variable. 
For these classes the dependency between class relations and the number of 
individuals of a class is irrelevant. But for classes with a small and well defined 
number of individuals the designer of a data model is in many cases aware of these 
numbers. Such classes are for example earth surface or continents. Another example 
is the class “capital” which can only have one instance if the area of interest is 
restricted to a single “country”. The knowledge about these numbers and their 
correlation to the class relations should be included when reasoning on class relations.  



As already stated in chapter 3.2 some class relations are not valid if one or both of 
the involved classes have less than three instances. The only class relation that is 
possible if both classes have only one instance is RLT.RT-all. If class A has one instance 
the only possible class relations are RLD.LT, RLT.RT-all and RLD.RD.LT; if B has one 
instance only RRD.RT, RLT.RT-all and RLD.RD.RT .  

The definition of class relations can also be restricted if the number of instances is 
more than one. If the number of instances of one of the classes is known, some class 
relations allow for conclusions about the number of instances of the other class. These 
reasoning properties are shown in the following list of theorems:  

 
Count(A)  Denotes the number of individuals of the class A. 

T1 LD.RD.LTR (A, B) Count(A) Count(B).→ <  

T2 LD.RD.RTR (A,B) Count(A) Count(B).→ >  

T3 LD.LT.RTR (A, B) Count(A) Count(B).→ <  

T4 RD.LT.RTR (A,B) Count(A) Count(B).→ >  

T5 LD.RD.LT.RTR (A,B) Count(A) Count(B).→ =  

 
Furthermore the number of instances can restrict the possible combinations of class 
relations between two classes. For example if exactly two instances of A exist, only a 
combination of two RLD.RT(A,B) class relations can be defined for one set of JEPD 
instance relations. A third RLD.RT(A,B) would require at least one more instance of A.  

4.3   Composition of Class Relations 

The composition of binary relations enables for the derivation of implicit 
knowledge about a triple of entities. If two binary relations are known the 
corresponding third one can potentially be inferred or some relations can be excluded. 
Examples of composition tables of instance relations can be found in [Egenhofer 
1994] and [Grigni et al. 1995] for topological relations between areal entities and in 
[Hernandez 1994] and [Freksa 1992] for directional/orientation relations. Many other 
sets of binary spatial relations also allow for such derivations. 

A transfer of this reasoning formalism to the class level would be very useful for 
the work with integrity constraints and other applications of class relations. In general 
the composition of class relations is not independent of the composition of instance 
relations. The composition of class relations is possible if the applied instance 
relations belong to the same set of JEPD relations and this set allows for compositions 
at the instance level. Using for example the 17 class relations together with the 8 
topological relations between regions (see figure 1) would result in 136 topological 
class relations and almost 18500 compositions. Since such an amount of compositions 



is hardly manageable we propose a two level reasoning formalism, which separates 
the compositions of the abstract class relations from those of the instance relations. 
For lack of space we don’t derive all compositions in this paper, but the following 
three examples shall illustrate the general approach. For the compositions of the 
applied instance relations we refer to the composition table of binary topological 
relations between areal entities of [Egenhofer 1994]. 

 The first example derives the composition from the two abstract class relations 
R1LT.RT-all(A,B) and R2LT.RT-all(B,C). Therewith all instances of A have a relationship 
instance of R1 to all instances of B and all instances of B have a relationship instance 
of R2 to all instances of C. Since all instances of A have the same kind of relation to 
all instances of B and all instances of B participate in same kind of relation to all 
instances of C, it is obvious that all instances of A must have the same relation to all 
instances of C. In other words every possible triple of instances of A, B and C is 
related by the same relations. Thus the composition of the abstract class relations 
must be:  

LT.RT all LT.RT all LT.RT allR1 (A,B) R2 (B,C) R3 (A,C).− − −∩ ⇒  
 

For the combination of this result with the instance level compositions two cases have 
to be distinguished. If the composition of the instance relations is unique (i.e. it results 
in only one relation) the combined composition is also based on that single relation 
like in the following example:  

 
equal(a, b) disjoint(b, c) disjoint(a, c).∩ ⇒  

LT.RT all LT.RT all LT.RT allEQUAL (A, B) DISJOINT (B,C) DISJOINT (A,C).− −∩ ⇒ −
 

 
If the instance relation composition results in a disjunction of instance relations the 
combined composition also leads to a disjunction in the class relation, for example:  

 
meet(a, b) covers(b,c) disjoint(a, c) meet(a,c).∩ ⇒ ∪  

[ ]LT.RT all LT.RT all LT.RT all
MEET (A, B) COVERS (B,C) DISJOINT MEET (A,C).− − −

∩ ⇒ ∪
 
In this example it is derived that all instances of A have one of the relations disjoint or 
meet to all instances of C. 

For the second example the R1LT.RT-all relation between the classes A and B is kept 
and the relation between B and C is R2RD. Therewith no instance of B participates in a 
relationship instance of R2 to more than one instance of C and some instances of B 
and C are not related by a relationship instance of R2. A possible scene that 
implements the two abstract class relations for the instance relations meet and 
contains is shown in figure 4. As the figure illustrates, for every possible triple of 
instances the relation between the instances of A and B is meet (instance of R1) but 
only triples which include the instances b1 and c1 have contains (instance of R2) as 
relation. In general R3 can only be derived for the triples of instances which have an 
R2 relation. In figure 4 this are only the relations a1 to c1 and a2 to c1 with the 
instance composition:  

 
meet(a, b) contains(b, c) disjoint(a, c).∩ ⇒  



 
Fig. 4. Scene that implements MEETLT.RT-all (A, B) and CONTAINSRD(B,C) 

Figure 4 also shows that there are many other relations possible between instances of 
A and C. Thus it is not possible to derive a unique class relation; all of the abstract 
class relations (3) to (19) are possible. The only implication is that some (but not 
necessarily all) of the instances of A and C participate in the relation that results from 
the instance composition. Thus the composition of the abstract class relations is  
 

LT.RT all RDR1 (A, B) R2 (B,C) R3 (A,C).− ∩ ⇒ U
 

 
RU denotes the universal disjunction of all class relations of (3) to (19) 

of the corresponding instance relation r.  
 
It might be possible that the number of instances of the classes allow for an exclusion 
of some of the class relations from the disjunction (see section 4.2). For the example 
in figure 4 the combined composition is: 
 

LT.RT all RDMEET (A,B) CONTAINS (B,C) DISJOINT (A,C).− ∩ ⇒ U
 

 
Instance compositions which don’t result in a unique relation are treated in analogy to 
the first example. 

In the third example R1some relates the classes A and B and R2RD the classes B and 
C. This implies that some (not all) instances of A and B are related by a relationship 
instance of R1 and some (not all) instances of B and C are related by a relationship 
instance of R2. This doesn’t mean that a triple of A, B and C instances exists, which 
includes both instance relations r1 and r2. Thus the instance composition is not 
possible and also the composition of the abstract class relations leads to no restriction 
of possible relations. The combined composition is undetermined: 

 
some RDR1 (A,B) R2 (B,C) (A,C).∩ ⇒ UU  

 



U denotes the universal disjunction of instance relations of the 
corresponding set of relations, for example for topological relations 
the disjunction of all 8 relations shown in figure 1. 

 
These examples show that the composition of the defined class relations is 

possible. It can be extended with similar derivations to all possible compositions. The 
two levels of compositions can be separately analysed and therewith the reasoning 
formalism can be used with any spatial or non-spatial set of instance relations. In 
general the composition of class relations is not independent of the composition of 
instance relations. The class level composition is only possible if the corresponding 
instance relation can be derived. 

4.4   Consistency of Class Relation Networks  

The application of reasoning algorithms for checking consistency and discovering 
redundancies in networks of instance relations has for example been demonstrated in 
[Egenhofer and Sharma 1993] and [Rodríguez 2004]. The proof of consistency of a 
network of binary relations is a constraint satisfaction problem. In a consistent 
network of JEPD relations the following three constraints are fulfilled: node 
consistency, arc consistency and path consistency. The reasoning properties of class 
relations investigated in the previous subchapters provide the basis to check these 
three consistency requirements in networks of class relations.  

Node consistency is ensured if every node has an identity relation. For the class 
relation networks this means that every class must have a relation to itself. If a 
corresponding identity instance relation is available the identity class relation is in 
general ; for example when using the topological 
relations of figure 1. 

LD.RD.LT.RTR LD.RD.LT.RTEQUAL (A, A)

A network of relations is arc consistent if every edge of the network has an edge in 
the reverse direction, i.e. every relation has an inverse relation. It has been shown in 
section 4.1 that if an instance relation is symmetric or has an inverse relation there is 
also an inverse relation for each of the corresponding class relations. For instance 
relations this is the only requirement to proof the arc consistency. As exemplified in 
section 3.2 it is possible to define more than one class relation between two classes, 
even when the applied instance relations are part of the same JEPD set of relations. 
This is a fundamental difference to the instance relations and has to be considered 
when checking the arc consistency at the class level. If there are combinations of class 
relations defined their consistency has to be proven, because not all class relations can 
be combined (see section 4.2). This also includes the available knowledge about the 
number of instances. If the number of instances of more than one class is known also 
the theorems (T1) – (T5) have to be checked for those classes. This shows that the arc 
consistency of networks of class relations is more complex to prove than for networks 
of instance relations, but it is possible to exclude inconsistencies. 

For the proof of path consistency the compositions of all possible node triples must 
be checked. Therefore the composition of the class relations investigated in the 
previous subchapter can be used. 



5   Stepwise Definition of Semantic Integrity Constraints 

The logical properties of class relations investigated in the previous section can be 
used to check the consistency and to find redundancies in a set of integrity constraints. 
Thus the corresponding reasoning algorithms should be applied when the semantic 
integrity constraints are defined to discover inconsistencies as early as possible. 
Figure 5 shows a possible user interface for the definition of semantic integrity 
constraints between two classes.  
 

 
 

Fig. 5. User interface for the definition of semantic integrity constraints between two classes 

Therewith the definition of an integrity constraint based on the defined class relations 
is compiled in four main steps: 

Firstly the user selects the entity classes which shall be restricted by the constraint. 
After the selection previously defined and implied semantic integrity constraints 
between these two classes are displayed on the right side of the window. For the 
definition of spatial integrity constraints the geometry types of the entity classes must 
be known, because some spatial relations are only valid for certain geometry types. 
Hence the geometry types should be either known by the system or can be read from 



available data model or schema information like UML models (Unified Modeling 
Language) encoded in XMI (XML Metadata Interchange) or GML application 
schema (Geography Markup Language) documents. If there is no information about 
the geometry types of the entity classes available or if some entity classes have more 
than one geometry a corresponding listbox for each entity class should be added to the 
interface. If the user is aware of the number of existent instances he can enter them 
after the selection of entity classes.  

Secondly, the user selects the type of semantic constraint he wants to define for 
example topological, metric, directional or other non-spatial constraints like temporal. 
These types are classified according to the semantic domains of the individual 
relations. 

As a third step the user selects one or more instance relations which the class 
relation of the desired integrity constraint is based on. The assortment of instance 
relations made available by the interface is adjusted to geometry types of the entity 
classes and the type of semantic integrity constraint selected in the previous steps. As 
stated before the geometry types of the entity classes must be known, because for 
example the valid topological relations between line entities differ from those 
between areal entities. Here a categorisation of topological relations like the one given 
in [Egenhofer and Herring 1991] for the region, line and point geometries is 
necessary.  

The fourth step is the selection of the desired properties of the class relation which 
have been introduced in the previous sections of the paper. The four class relation 
properties can be separately activated which is much more convenient for the user 
than selecting one of the 17 defined class relations. To ensure that the user inputs 
conform with the 17 class relations only check boxes which lead to valid class 
relations are enabled. For example the “all to all instances” check box is only enabled, 
when left-total and right-total are checked while the other three aren’t. The final 
integrity constraint relation results out of the combination of the selected instance 
relation(s) and the activated class relation properties. The interface shown in figure 5 
contains the settings of the previous example integrity constraint which defines an 
OVERLAPRD.LT relation between the classes “watermill” and “stream”. 

6   Conclusion 

The paper defines abstract 17 class level relations which enable a formalised 
specification of semantic integrity constraints. The investigated reasoning concepts 
can be used to find conflicts and redundancies in sets of spatial semantic integrity 
constraints. The definitions and reasoning rules of the class relations are described 
independently of a concrete set of instance relations, what makes them applicable for 
many spatial and non-spatial relations. The only requirements on the instance 
relations are that they are part of a JEPD set of relations and have defined inverse 
relations and compositions. Further work will be on the implementation of the 
introduced approach for checking consistency of sets of integrity constraints to prove 
the introduced reasoning concepts. 



The formalised specification of integrity constraints is improving their 
management and usability, which will finally result in an improvement of data 
quality. If an integrity constraints can be composed of other integrity constraints a 
dataset automatically complies with this constraint if it has been checked against the 
composing constraints. Hence the exclusion of redundant integrity constraints 
minimises the number of integrity constraints which have to be verified during a 
quality check and therewith it is reducing calculation costs.  

The investigation of the categories of integrity constraints revealed that there are 
many different kinds of semantic integrity constraints, but not all of them can be 
covered by this approach. Nevertheless this framework provides a basis that can be 
extended by other, possibly more complex types of semantic integrity constraints. As 
one possible next step semantic constraints on attributes could be included. 

The defined class relations are not restricted to applications as integrity constraints. 
As originally suggested by [Donnelly and Bittner 2005] they can also be useful for the 
definition of relations between classes in an ontology. Moreover the reasoning 
concepts can be used to check the consistency of the relations in such ontology or to 
discover conflicts in the concepts defined in different ontologies. 

The use of the introduced concepts is currently restricted by the unavailability of 
composition tables for many of the spatial or non-spatial relations. For a broader 
application at least composition tables for topological relations between entities with 
simple geometries like points or linestrings must be available. The application of 
other spatial relations is mostly hampered by the lack of a common understanding of 
their concepts. 
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