
Published in: GIScience 2008, T.J. Cova et al. (Eds.)  
 LNCS 5266, pp. 234–248, 2008. 

© Springer-Verlag Berlin Heidelberg 2008 

Reasoning on Spatial Relations between Entity Classes 

Stephan Mäs 

 
AGIS - Arbeitsgemeinschaft GIS, University of the Bundeswehr Munich,  

Werner Heisenberg Weg 39, 85577 Neubiberg, Germany 
{Stephan.Maes}@unibw.de

Abstract. The facilitation of interoperability requires a clear distinction if a 
relation refers to classes of individuals or to specific instances, in particular when 
it comes to the logical properties of the involved relations. Class relations are 
defined whenever the semantics of entire classes are described, independently of 
single instances. Typical examples are spatial semantic integrity constraints or 
ontologies of entity classes. The paper continues research on spatial class 
relations by deepening the analysis of the reasoning properties of class relations. 
The work is based on a set of 17 abstract class relations defined in [11]. The 
paper provides a complete composition table for the 17 abstract class relations 
and redefines the concept of conceptual neighbourhood for class relations. This 
approach can be used to find conflicts and redundancies in sets of semantic 
integrity constraints or other applications of spatial class relations. 
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1   Introduction 

The definition of class relations and their logical properties did not attract much 
attention of the scientific community so far. But as already argued by [1] the 
facilitation of interoperability requires a clear distinction if a relation refers to classes 
of individuals or to concrete instances, in particular when it comes to the logical 
properties of the involved relations. The difference becomes obvious through simple 
natural language statements, like for example: “house #12 is contained by parcel 
#1234”. This is a simple statement about two entities related by the spatial relation 
contained by. Since contained by is the inverse relation of contains the statement also 
implies “parcel #1234 contains house #12”. A statement about the corresponding entity 
classes is “buildings are contained by a parcel”. Applying the symmetry of the instance 
relation again it becomes: “a parcel contains buildings”. These statements can be 
mistaken, since they should be understood as “every building is contained by some 
parcel”, but NOT as “every parcel contains some building”. This example shows the 
influence of words like “all” or “some” on the semantic of a statement. They define 
cardinality restrictions on the applied relation. For a human reader it is very often 
possible to interpret the correct semantics, but a formal description of such a statement 
must explicitly contain cardinality information. The example also shows that a relation 
among the classes is not subject to the same logical properties as a relation between 



instances and the cardinality information must be considered for reasoning. This has 
also been pointed out by [1] and [11]. 

Class relations define a cardinality restriction for a certain relation between the 
individuals of classes. The restriction is always valid for entire classes or subsets of 
classes and not exclusive for single instances. A class relation always links the 
cardinality restriction to an instance relation. Typical applications of class relations are 
ontologies of classes and semantic integrity constraints. For geographical information 
class relations are of particular interest, because a semantic description of such data 
requires class relations which are based on spatial instance relations, like e.g. 
topological or metric relations. The interoperable exchange of data of different 
domains and application areas requires semantic descriptions of the data. Class 
relations are useful for the formalization of these descriptions. The logical properties of 
the class relations support an automatic processing, querying and comparing of such 
descriptions. 

As shown in previous investigations [1] [11] it is useful to separately analyse the 
reasoning properties of the class relations and those of the instance relations. 
Therewith class relations can be flexibly used in combination with any kind of instance 
relation. In a previous paper a set of 17 abstract class relations has been defined, which 
is independent of concrete instance relations [11]. For these relations some basic 
reasoning concepts have been investigated. This paper continues these investigations 
particularly with regard to the composition of class relations and the conceptual 
neighbourhood of class relations. The following chapter will recapitulate the definition 
of basic cardinality properties and based on that the definition of the 17 abstract class 
relations. In the third chapter the composition of 17 class relations is investigated. The 
paper provides an overall analysis of all possible compositions, which has never been 
presented before. Furthermore the concept of conceptual neighbourhood, which has 
been so far only considered in combination with instance relations, is redefined for 
class relations. It is shown how these logics can be used to find conflicts in triples of 
class relations. 

2   Definition of Class Level Relations 

A class relation defines cardinality restrictions for a certain relation between all 
instances of the involved classes. In the following subchapters some basic cardinality 
properties are defined and used for the definition of class relations. It recapitulates the 
definitions made in [11]. For a more extensive elaboration refer to the original paper.  

2.1   General Definitions and Requirements 

For the definition of class relations the classes must conform to the following two 
preconditions. First, the involved classes must have at least one instance, i.e. empty 
classes are not feasible. As stated before class relations are linked to instance relations. 
Thus the second condition specifies that if a class relation is defined, there must at least 
one corresponding instance relation exist among the instances of the involved classes. 
The investigations in this paper are restricted to binary relations between entire entity 



classes. Relations between three or more classes or between subsets of classes (e.g. all 
blue houses as a subset of the class house) are not considered.  

In the following definitions small letters ‘x’, ‘y’, ‘z’, … denote variables for 
instances / individuals. Every instance must be associated to an entity class. For entity 
classes capital letters ‘A’, ‘B’, ‘C’, … are used. ‘Inst(x,A)’ means individual x is an 
instance of class A. The function ‘r(x,y)’ means instance x has the relation r to instance 
y; x and y are said to participate in the relationship instance r. The meta-variable r can 
stand for any relation between instances (e.g. topological relations between areal 
features [2], which are used in the examples the paper). Instance relationships can be 
associated to a class relation R. For class relation definitions ‘R(A,B)’ denotes that R 
relates the classes A and B. The meta-variable R can stand for any class relationship. 
Every R is related to an instance relation r. If a class relation R(A,B) is defined, at least 
one r must exist between the instances of A and B.  

2.2   Cardinality Properties of Class Level Relations  

Cardinalities represent the number of elements of a set. Class relations refer to an 
instance relation and restrict the cardinality of this relation between the instances of the 
involved classes. The restrictions are defined through cardinality properties. In [11] the 
following cardinality properties of class relations have been used.  

LT(A, B, r) : x(Inst(x, A) y(Inst(y, B) r(x, y))) .= ∀ → ∃ ∩   (CP1) 

RT(A, B, r) : y(Inst(y, B) x(Inst(x, A) r(x, y))).= ∀ → ∃ ∩  (CP2) 

The cardinality properties (CP1) and (CP2) define a totality for the class A and B 
respectively. (CP1) holds if every instance of A has the relation r to some instance of 
B. In set theory such relations are called left-total.  

(CP2) holds if for each instance of B there is some instance of A which stands in 
relation r to it. This means that every instance of B has the inverse relation of r to some 
instance of A. In this case the relation is right-total. The concepts of totality have also 
been used for the class relations defined in [1]. 

LD(A, B, r) : x, y, z[Inst(x, A) Inst(y, B) Inst(z, A)
r(x, y) r(z, y) x z] Ex(A, B, r).

= ∀ ∩ ∩ ∩
∩ → = ∩

 (CP3) 

RD(A, B, r) : x, y, z[Inst(x, A) Inst(y, B) Inst(z, B)
r(x, y) r(x, z) y z] Ex(A, B, r).

= ∀ ∩ ∩ ∩
∩ → = ∩

 (CP4) 

Ex(A, B, r) : x y(Inst(x, A) Inst(y, B) r(x, y)).= ∃ ∃ ∩ ∩  (CP5) 

Class relations which hold (CP3) are left-definite and specify that for no instance of B 
there is more than one instance of A which stands in relation r to it. This property 
restricts the number of r relations an instance of B can participate; the instances of A 
are not restricted. The last term ensures that at least one instance relation r does exist 
between the instances of A and B (CP5). 



(CP4) specifies that no instance of A participates in a relationship r to more than one 
instance of B. When this cardinality property is defined in a class relation all instances 
of A are restricted while the instances of B are not affected. The corresponding class 
relations are right-definite.  

Such properties of class relations are well established in data modelling, for 
example when total participation and cardinality ratio constraints are described using 
the Entity-Relationship notation. In such models a total participation is represented by 
a double line for the relation and cardinality ratio for example by a N:1 next to the 
relation signature (figure 1). In this example all buildings are restricted to be contained 
by exactly one parcel, while the parcels are allowed to contain an undefined number of 
buildings. Contains is the restricted instance relation. The number of different 
cardinality ratio constraints of such a notation is indefinite. This approach only 
considers a cardinality ratio of 0..1, which is representing the concept of 
unambiguousness.  

 
Fig. 1. Constraints in an Entity-Relationship Notation 

2.3   Class Level Relations 

The formal definition of class relations is based on the above defined cardinality 
properties left-definite, right-definite, left-total and right-total. These properties are 
independent of each other. This means that no property implies or precludes one of the 
other properties. If a class relation is only defined as right-total there is no information 
about its left totality and the unambiguousness available.  

As the example in figure 1 illustrates, the properties can be combined for the 
definition of a class relation. The class relation in the example is based on the 
topological instance relation contains and the cardinality properties left-definite and 
right-total. The other two properties are not valid. The corresponding class relation 
CONTAINSLD.RT(Parcel, Building) is based on the class relation defined in (CR1). 

LD.RTR (A,B) : LD(A,B, r) RT(A,B, r) RD(A,B, r) LT(A,B, r).= ∩ ∩¬ ∩¬  (CR1) 

In the following I will refer such class relations, which are not linked to a particular 
instance relation, as abstract class relations (e.g. RLD.RT(A,B)). In analogy to (CR1) 
the four cardinality properties can be used to define a set of 15 abstract class relations, 
where for each relation at least one of the four properties holds and the others are 
excluded, respectively. An investigation of all possible combinations leads to: 
 



− four abstract class relations where one property is valid and the corresponding other 
three are excluded, 

− six abstract class relations where two properties are valid and the other two are 
excluded, 

− four abstract class relations which combine three of the four defined cardinality 
properties respectively and exclude the corresponding fourth, 

− and one abstract class relations where all four properties are valid.  
 
Additionally to these 15 abstract class relations two special cases are considered in 
[11]. To achieve a jointly exhaustive set of relations one abstract class relation is 
defined for the situation that none of the four properties is valid but some instances of 
A stand in relation r to some instances of B (CR2). 

Second, a further abstract class relation is defined for the case that all instances of A 
have a relationship instance of R to all instances of B (CR3). This is a strict case of a 
left-total and right-total relation. For class relations it is frequently occurring, for 
example when no instances of two classes are allowed to intersect:  
DISJOINTLT.RT-all(Streets, Lakes). 

someR (A, B) : Ex(A, B, r) LD(A, B, r) RD(A,B, r)
LT(A, B, r) RT(A, B, r).

= ∩¬ ∩¬
¬ ∩¬

∩  (CR2) 

LT.RT allR (A,B) : x y(Inst(x,A) Inst(y,B) r(x, y)).− = ∀ ∀ ∩ →  (CR3) 

 
This set of 17 abstract class relations enables the definition of class relations based on 
any binary instance relation. For further details on the definition of the abstract class 
relations it is referred to [11]. Figure 2 shows an example for each of the abstract class 
relations.  

Table 1. Restrictions of the number of instances of the abstract class relations 

Minimal 
required 
instances 

Minimal 
required 
instances 

Abstract 
class 

relation 
A B 

Comparison 
number of A / 
number of B 

Abstract 
class 

relation 
A B 

Comparison 
number of A / 
number of B 

1. RLD.RD 2 2 - 10. RRD.RT 3 1 A > B + 1 
2. RLD 2 3 - 11. RLT 2 3 - 
3. RRD 3 2 - 12. RRT 3 2 - 
4. Rsome 3 3 - 13. RLD.RD.LT.RT 2 2 A = B 
5. RLD.RD.LT 1 2 A < B 14. RLD.LT.RT 2 3 A < B 
6. RLD.RD.RT 2 1 A > B 15. RRD.LT.RT 3 2 A > B 
7. RLD.RT 2 2 - 16. RLT.RT 2 2 - 
8. RRD.LT 2 2 - 17. RLT.RT-all 1 1 - 
9. RLD.LT 1 3 A + 1 < B     
 



Please note that class relations are not depending on fixed numbers of instances and the 
constellations represented in figure 2 are just exemplarily. Some abstract class relations 
require a minimum number of instances of A and/or B and a certain ratio between the 
instances of both classes. These restrictions are represented in table 1. 
 

 
Fig. 2. Examples of the 17 abstract class relations  

The set of the 17 abstract class relations is a qualitative representation of the 
constellation of instance relations between two classes. For every instance relation 
there is only one class relation valid for each pair of classes. Nevertheless it is possible 
to define more than one class relation between two classes, even when the applied 
instance relations are part of the same jointly exhaustive and pair wise disjoint (JEPD) 
set of instance relations. Based on the definitions of the cardinality properties and the 
abstract class relations [11] it can be proven that for a JEPD set of instance relations 
the corresponding class relations are also JEPD (hence each class relation definition 
excludes the cardinality properties which are not valid, see (CR1)) 



3   Reasoning on Class Relations 

The reasoning methods presented in this chapter can be used to find conflicts and 
redundancies in sets of class relations. As demonstrated in [1] and [11] the logical 
properties of class relations derive from the logical properties of the corresponding 
instance and abstract class relations. It has been shown that it is appropriate to analyse 
the reasoning properties of the abstract class and instance level relations independently 
of each other. For the abstract class relations it is reasonable to refer the logical 
properties to their cardinality definitions. The following sections investigate the 
symmetry, composition and conceptual neighbourhood of the 17 abstract class 
relations. 

3.1   Symmetry of Class Relations 

Logical properties class relations, like symmetry and transitivity, have been researched 
in [1]. As pointed out by [11] in particular the symmetry is of interest, since this 
property has to be proven to ensure the arc consistency of a class relation network. It 
has been shown that every class relation has an inverse relation, if the corresponding 
instance relation has an inverse relation or is symmetric. Most spatial relations fulfil 
this requirement. The symmetry properties of the class relations can be derived from 
the symmetry of the applied instance relations and the cardinality definitions of the 
abstract class relations ((CP1)-(CP5), (CR2) and (CR3)). The inverse of a class relation 
is also based on the inverse of the applied instance relation. If an abstract class relation 
is left-total / left-definite the inverse relation is right-total / right-definite and vice 
versa. Rsome and RLT.RT-all are symmetric. The following two examples demonstrate the 
derivation of inverse class relations. Here the class relations are based on the 
symmetric instance relation disjoint and the inverse relations contains and inside: 
 

(DISJOINT RD.LT (A,B) )i  =  DISJOINT LD.RT (B,A). 
(CONTAINS LD.RD.LT (A,B) )i  =  INSIDE LD.RD.RT (B,A). 

3.2   Composition of Class Relations 

The composition of binary relations enables the derivation of implicit knowledge about 
a triple of entities. If two binary relations are known the corresponding third one can 
potentially be inferred or some of the possible relations can be excluded. This 
knowledge can also be used to find conflicts in case all of the three relations are 
known. The compositions rules of a set of relations are usually represented in a 
composition table like it has been done for the topological relations between areal 
entities in [4][8] and for directional/orientation relations in [6][9]. Many other sets of 
binary spatial relations also allow for such derivations. 

The composition of class relations is hardly researched yet, but as shown in [11] it is 
also possible. This paper proposes a two level reasoning formalism, which separates 
the compositions of the abstract class relations from those of the instance relations (see 



figure 3). Therewith the composition of the abstract class relations can be defined 
independently of a concrete set of instance relations. 

 
Fig. 3. Two levels composition of class relations 

The following example demonstrates how the compositions of the abstract class 
relations are inferred. With the class relations R1LT.RT-all(A,B) and R2LD.RD.LT.RT(B,C) 
given, the relation between the classes A and C shall be derived. Such a situation is 
schematically represented in figure 4. All instances of A have the same instance 
relation r1 to all instances of B and all instances of B are related by r2 to one instance 
of C. To infer the composition of the abstract class relations every possible triple of A, 
B and C instances has to be separately analysed. Whenever the relation r1 between the 
instance of A and the instance of B and the relation r2 between the instance of B and 
the instance of C is given, the relation r3 (or a disjunction of possible relations) 
between the A and C instances can be inferred. The combination of the inferences of 
all possible triples of instances leads to the abstract class relation between A and C. If 
no triple of instances with r1 and r2 relations exists, then no inference for r3 is 
possible. Therewith the composition of the class relations leads to a universal 
disjunction  of all possible class relations. For the example shown in figure 4, each 
instance of A is related to every instance of C via some instance of B. Therewith it is 
obvious that all instances of A must have the same instance relation to all instances of 
C. Thus the composition of the abstract class relations must be:  

U

 
LT.RT all LD.RD.LT.RT LT.RT allR1 (A, B);R2 (B,C) R3 (A,C).− −⇒  

 
For the composition of the class relations this result must be combined with the 
composition of the instance relations, for example (taken from the composition table in 
[8]): 

meet(a, b);covers(b, c) disjoint(a, c) meet(a, c).⇒ ∪  
 
The combination of the compositions of the two levels results in: 
 

[ ]LT.RT all LD.RD.LT.RT LT.RT all
MEET (A, B);COVERS (B,C) DISJOINT MEET (A,C).− −

⇒ ∪  



 
Fig. 4. Possible scene defined by the class relations R1LT.RT-all(A,B) and R2LD.RD.LT.RT(B,C) and 

their composition R3LT.RT-all(A,C) 

For the example shown in figure 4 the derived composition is independent of the 
number of instances. This means that the composition of the given abstract class 
relations will always lead to the same result. The 17 abstract class relations have 289 
possible compositions. Many of them have differing results, depending on the number 
of instances of the three classes and the relative arrangement of the instance relations.  
This must be considered when the compositions are calculated.  

The influence of the relative arrangement of the instance relations on the 
composition is illustrated in figure 5. The two boxes show possible constellations of 
the R1LT.RT ; R2LT.RT composition. They only differ in an instance relation between the 
classes B and C: in the left box b1 and c2 are related whereas in the right box the 
instances b2 and c1 are related. The abstract class relations and the total amount of 
instance relations are the same. Nevertheless this difference will lead to different 
compositions. For the left constellation the relation between the instances a2 and c1 
can not be inferred and the composition is R3LT.RT (relation #16). The right constellation 
allows for a deduction of all four instance relations between A and C and thus the 
composition is RLT.RT-all (relation #17). The disjunction of all possible results leads to 
the composition of the abstract class relations: 

 
LT.RT LT.RT LT.RT LT.RT allR1 (A,B);R2 (B,C) R3 (A,C) R3 (A,C).−⇒ ∩  

 

 
Fig. 5. Example of how the relative arrangement of the instance relations influences the 

composition of the abstract class relations. 

 



In previous publications the composition of class relations has only been exemplarily 
investigated; an overall analysis of all possible compositions has never been presented. 
The calculation of this composition table is complex and costly. For the defined 
abstract class relations it requires an analysis of all possible arrangements of instance 
relations for up to 6 instances for each of the three classes. If both classes of one 
relation have 6 instances than there are about 68,7 billion arrangements possible. Each 
of these has to be separately analysed with all possible arrangements of the second 
relation. An analysis of classes with 7 or more instances does not lead to additional 
results in the composition. Making use of some heuristics this calculation can be 
further optimised. The overall composition table is shown in figure 6. 
 

 
Fig. 6. Composition table of the 17 abstract class relations 

 



Some of the compositions can be summarized by general rules, which deduce the 
composition directly from the cardinality properties. This allows a more convenient 
use of the composition. Some obvious rules are: 
 
− If the first abstract class relation is not right-total and the second relation is not left-

total the composition is always a universal disjunction U . 
− If the first relation is RLD.RD.RT (relation #6) and the second is not left-total the 

composition is equal to the second abstract class relation. 
− If the first relation is RLD.RD.RT (relation #6) and the second is left-total the 

composition has the same cardinality properties as the second relation, but it is not 
left-total. For RLT.RT-all (relation #17) this can be relation #6, #7, #10 or #12.  

− If the first relation is not right-total and the second is RLD.RD.LT (relation #5) the 
composition is equal to the first abstract class relation. 

− If the first relation is right-total and the second is RLD.RD.LT (relation #5) the 
composition has the same cardinality properties as the first relation, but it is not 
right-total. For RLT.RT-all (relation #17) this can be relation #5, #8, #9 or #11.  

− If one of the relations is RLD.RD.LT.RT (relation #13) the composition is always equal to 
the corresponding other abstract class relation. Because of this property RLD.RD.LT.RT 
can represent the identity relation of classes if it is combined with a identity instance 
relation, e.g. EQUALLD.RD.LT.RT (A,A). 

− If the first relation is RLT.RT-all (relation #17) and the second is right-total the 
composition is always RLT.RT-all. 

− If the first relation is left-total and the second is RLT.RT-all (relation #17) the 
composition is always RLT.RT-all. 

 
The compositions which are defined by these rules are highlighted in grey in figure 6. 
A set of rules which completely represents the composition table is a subject of further 
research.  

For the abstract class relations and their composition table the properties of a 
relation algebra [12] have been computationally checked. Some properties of the 
presented composition of abstract class relations are:  

 
− The inverse of an inverse relation is equal to the original relation: ( Ri )i  =  R. 
− All compositions with the identity relation (relation #13) are idempotent: 

R;RLD.RD.LT.RT  R and RLD.RD.LT.RT ;R  R. 
− The inverse of a composition is equal to the composition of the inverses of the two 

relations in reverse order:  (R1 ; R2)i =  R2i ; R1i. 
− The associative property (R1;R2);R3 = R1;(R2;R3) and the semiassociative 

property R; (U ; )= (R ; U );U U  [10] are not valid. Therewith the composition of 
the abstract class relations is nonassociative.  

3.3   Conceptual Neighbourhood of Class Relations 

The conceptual neighbourhood represents continuous transformations between 
relations through linking relations that are connected by an atomic change. [6] defines 



two relations in a representation as conceptual neighbours, “if an operation in the 
represented domain can result in a direct transition from one relation to the other.” 
Examples of conceptual neighbourhood networks of instance relations can be found for 
temporal interval relations in [7], for topological relations between regions in [3] and 
between regions and lines in [5]. 

The conceptual neighbourhood of class relations has not yet been researched. In this 
approach two class relations are considered as conceptually neighboured if they are 
linked to the same instance relation and only differ by a single instance relation 
between two entities. The number of instances of the class is considered as fixed. In 
figure 7 the conceptual neighbourhood of Rsome and RLT.RT is exemplarily illustrated. All 
arrows symbolize one instance relation of the same kind r. The addition of a further 
instance relation, represented by the dashed arrow in the right box, leads to a transition 
of the abstract class relation from Rsome to RLT.RT . 
 

 
Fig. 7. Conceptual neighbourhood between Rsome and RLT.RT 

The computation of all conceptual neighbourhoods between class relations requires 
an analysis of all possible arrangements of instance relations for up to 4 instances for 
both classes. A higher number of instances does not lead to additional results. For the 
17 class relations are all together 45 neighbourhoods existing. Since the neighbourhood 
is defined through adding or removal of a single instance relation all neighbourhoods 
are directed. Table 2 represents the neighbourhoods which result from an addition by a 
“+” and those which result from a removal by a “-”. If a class relation has changed 
though an addition / removal of an instance relation, it is not possible to get the same 
class relation again by further adding / removing of instance relations. The adding of 
instance relations will ultimately lead to RLT.RT-all (relation #17). A removal will lead to 
RLD.RD (relation #1)1. The numbering of the abstract class relations has been chosen 
such that for all class relations the relations which result from an addition have a 
higher number and all inverse relations are successive. Because of this order all 
removal neighbourhoods appear at the left bottom and all addition neighbourhoods at 
the right top in table 2. 

                                                           
1 For this relation both involved classes must have at least two entities, see table 1. 



Table 2. Conceptual neighbourhood of the class relations; +/- represents neighbourhood through 
addition/removal of an instance relation 

 
 

The following example shall illustrate the practical use of the conceptual 
neighbourhood of class relations. Three class relations are defined for the classes A, B 
and C: MEETsome(A,B), CONTAINSLD.RD.LT.RT(B,C) and DISJOINTLT(A,C). These 
relations shall be analysed for conflicts through comparing the composition of the class 
relations A to B and B to C with the given third relation between A and C. The 
compositions of the corresponding instance and abstract class relations are: 
 

meet(a,b);contains(b,c) disjoint(a,c).⇒  

some LD.RD.LT.RT someR1 (A, B);R2 (B,C) R3 (A,C).⇒  
 
Thus the combination of the compositions of the two levels results in:  
 

some LD.RD.LT.RT someMEET (A, B);CONTAINS (B,C) DISJOINT (A,C).⇒  
 
This result seems to be in conflict to the given third relation DISJOINTLT(A,C). Figure 
8 exemplarily illustrates this situation. The first box shows the given class relations and 
the second the inferred relation between A and C. In comparison with this the third box 
shows that the given relation DISJOINTLT(A,C) possibly differs from 
DISJOINTsome(A,C) by only one disjoint instance relation (in this case a3 to c2). 
Therewith DISJOINTsome(A,C) and DISJOINTLT(A,C) are conceptual neighbours. In 
figure 8 the three disjoint instance relations of DISJOINTLT(A,C) are implied by the 
class relations A to B and B to C. About further relations between the instances of A 
and C the composition does not allow for any conclusion. It can also not be excluded 
that further pairs of A and C instances are disjoint. Hence the composition of 
MEETsome(A,B) and CONTAINSLD.RD.LT.RT(B,C) does not conflict DISJOINTLT(A,C) and 
the triple of class relation is consistent. Beside DISJOINTLT(A,C) also the class 



relations DISJOINTRT(A,C) and DISJOINTLT.RT(A,C) as direct conceptual neighbours of 
DISJOINTsome() and DISJOINTLT.RT-all(A,C) as conceptual neighbour of 
DISJOINTLT.RT() would not conflict. 

 

 
Fig. 8. Use of the conceptual neighbourhood for the composition of class relations 

In general, a class relation R3 is not in conflict with a composition R1 ; R2  R3* 
if R3* and R3 are based on the same instance relation r3 and the addition of further r3 
instance relations to R3* can lead to a transition to class relation R3. For this the result 
of the composition R3* and R3 don’t need to be direct conceptual neighbours. There 
can also be further class relation transitions between the two class relations. 
Nevertheless the conceptual neighbourhood points out which R3 class relations are 
valid, since it shows which transitions are possible for a certain class relation R3*.  

Thus the check of conflicts in a triple of class relations consists of two steps: first 
the comparison of the composition of two relations with the given third. If they are 
equal the triple of relations is conform to the introduced composition of class relations 
and there is no obvious conflict. If these two relations are not equal the second step 
checks their conceptual neighbourhood as described above. If the given third relation is 
not a corresponding conceptual neighbour of the composition the triple of class 
relations is conflicting. 

4   Conclusion and Open Issues 

The scientific investigation of class relations is currently still in the early stages. This 
work continues research into spatial class relation by deepening the analysis of the 
reasoning properties of the class relations. It is based on a set of 17 abstract class 
relations defined in [11]. The paper focuses on the composition and conceptual 
neighbourhood of class relations. The definitions and reasoning rules of the class 
relations are described independently of a specific set of instance relations. The 
introduced two levels composition of class relations allows for a separate analysis of 
instance relations and abstract class relations. Therewith the overall reasoning 
formalism can be used with any spatial or non-spatial set of instance relations. The 
only requirements imposed on the instance relations are that they are part of a JEPD set 
of relations and have defined inverse relations and compositions. 

With the described logics it is possible to find conflicts and redundancies in 
networks of class relations. This can for example be applied to prove consistency of 



sets of spatial semantic integrity constraints or spatial relations between classes in an 
ontology. 

This approach is restricted to binary relations between entire entity classes. 
Relations between three or more classes or between subsets of classes are not 
considered. Further more, only total participation and a cardinality ratio of 0..1 are 
included as cardinality properties of the class relations. Nevertheless this framework 
provides a basis, which can be extended for other possibly more complex types of class 
relations. For an extension by further cardinality ratio constraints (e.g. 0..2) it has to be 
considered, that this will increase the calculation cost of the compositions 
exponentially.  

Further work can also deal with the direct derivation of the reasoning properties of 
the class relations from their cardinality properties. This will deepen the understanding 
of the logics and support possible extensions by additional cardinality properties. The 
two levels composition of class relations separates the compositions of the abstract 
class relations from those of the instance relations (figure 3). However, some 
combinations of instance and abstract class relations lead to conflicts which can not be 
found this way. For example the combination of EQUALLD.RT(A,B) and 
RLD.RD.LT.RT(B,C) (see figure 2: relation #7; relation #13) is not possible. This is due to 
the specific properties of the equal identity instance relation and the cardinality 
properties of the two abstract class relations. A general description of such conflicts is 
unsolved.  

As pointed out in table 1 some abstract class relations require a minimum number of 
instances in A and/or B and a certain ratio between the instances of both classes. For 
many entity classes the number of existing individuals is unknown or variable. For 
these classes the restriction of the number of individuals is irrelevant. However, for 
classes with a small and well defined number of instances (e.g. earth surface or 
continents) the designer of a data model or an ontology is in many cases aware of these 
numbers. The knowledge about these numbers and their correlation to the class 
relations can be included in reasoning about class relations. The restrictions on the 
number of instances also lead to restrictions of the composition and the conceptual 
neighbourhood. 
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