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Abstract

We present an FCA-based axiomatization method that pro-
duces a complete EL TBox (the terminological part of an
OWL 2 EL ontology) from a graph dataset in at most expo-
nential time. We describe technical details that allow for effi-
cient implementation as well as variations that dispense with
the computation of extremely large axioms, thereby render-
ing the approach applicable albeit some completeness is lost.
Moreover, we evaluate the prototype on real-world datasets.

Introduction
Description Logics (DLs) (Baader, Horrocks, Lutz, Sattler,
2017) are formal languages used in knowledge-based sys-
tems that reason and make inferences about complex do-
mains, particularly where precision and explainability are
essential. By representing knowledge as ontologies built
with DLs, these systems can perform automated reasoning
to answer queries and thereby assist in making decisions
based on the encoded knowledge. DLs are fundamental to
the Semantic Web (Hitzler, Krötzsch, Rudolph, 2010) [1], a
vision of the World Wide Web where information is repre-
sented in a machine-readable format. They provide the log-
ical underpinning for the Web Ontology Language (OWL)
[2], which is widely used in the Semantic Web to enable bet-
ter interoperability across different applications, domains,
and natural languages.

In e-commerce, DL ontologies can be used to categorize
products into different classes and sub-classes based on their
attributes, features, and properties. This enables efficient
search and navigation for users on e-commerce platforms,
such as eBay and Alibaba (Shi, J. Chen, Dong, Khan, Liang,
Zhou, Wu, Horrocks, 2023). In finance, where accuracy and
explicability are crucial, the DL formalism enables clear and
unambiguous representation of financial concepts, such as
assets, liabilities, investments, and transactions. Two exam-
ples are the Financial Regulation Ontology (FRO) [3], and
the Financial Industry Business Ontology (FIBO) [4]. An-
other example is the Dow Jones Knowledge Graph (Hor-
rocks, Olivares, Cocchi, Motik, Roy, 2022), which does
not use DLs but similar Semantic Web technologies such
as SHACL (Bogaerts, Jakubowski, Van den Bussche, 2022).
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Moreover, DLs and ontologies have found extensive ap-
plications in healthcare and life sciences. The Systematized
Nomenclature of Medicine – Clinical Terms (SNOMED CT,
or SCT) [5] is an ontology that represents medical terms
used in electronic health records, such as clinical findings,
symptoms, and diagnoses. It is employed in clinical decision
support systems to assist healthcare professionals in making
accurate diagnoses, suggesting appropriate treatments, and
predicting outcomes based on patient-specific information.
The Gene Ontology (GO) [6], the world’s largest source of
information on the functions of genes, is a foundation for
computational analysis of large-scale molecular biology and
genetics experiments in biomedical research.

Among the different DLs, the EL family (Baader, Brandt,
Lutz, 2005, 2008) stands out as a lightweight option. EL is
designed to strike a balance between expressivity and com-
putational complexity, making it an ideal choice for appli-
cations where scalability and latency are crucial. It offers a
more restricted set of constructs compared to other DLs, but
can thus handle large-scale ontologies efficiently. The Web
Ontology Language includes it as the profile OWL 2 EL [7].

Every DL ontology is subdivided into two parts. The
ABox consists of factual statements about specific individu-
als or objects in the domain, such as assignment of individ-
uals to concepts and linkage between individuals by roles.
The TBox defines concepts and their hierarchy, roles and
their characteristics, and constraints or rules that govern all
individuals in the domain. By separating ABox and TBox, a
DL ontology provides a clear distinction between instance-
level and schema-level knowledge. This separation enables
reusing the same TBox across different ABoxes, which in
turn promotes scalability and maintainability, as changes in
the TBox are propagated to all associated ABoxes.

SCT and GO are formulated in EL. For instance, SCT
contains the TBox statement

Common cold
⊑ Disease ⊓ ∃causative agent.Virus

⊓ ∃finding site.Upper respiratory tract structure
⊓ ∃pathological process.Infectious process

which is a concept inclusion (CI) and expresses that a com-
mon cold (the premise) is a disease that has as pathological
process an infectious process, is caused by a virus, and can
be found in the upper respiratory tract (the conclusion). We



could express that Alice is diagnosed with common cold by
the ABox statement alice : ∃has diagnose.Common cold.

Building and maintaining DL ontologies is a laborious
task, especially for large domains. Knowledge engineers
and domain experts work together to transfer their know-
ledge into an ontology. While the ABox is usually filled with
observed data, constructing the TBox is a more complex en-
deavour. Assistance by automated approaches or guidance
by interactive approaches is often valuable. For instance, a
selection of individuals in the data can be described by a
single concept (Funk, Jung, Lutz, 2022; Funk, Jung, Lutz,
Pulcini, Wolter, 2019; Zarrieß, Turhan, 2013) that the ex-
perts integrate into the conceptual hierarchy of the TBox.
They can also model the schema of an ontology as a di-
agram (similar to UML class diagrams) that is then auto-
matically translated into a TBox (Sarker, Krisnadhi, Hitzler,
2016). New ontologies can be constructed from existing
ones as well. Two or more ontologies can be integrated
by ontology alignment (J. Chen, Jiménez-Ruiz, Horrocks,
X. Chen, Myklebust, 2023; Jimeno-Yepes, Jiménez-Ruiz,
Llavori, Rebholz-Schuhmann, 2009). Conversely, a part of
an ontology representing a sub-domain can be extracted by
modularization (Cuenca Grau, Horrocks, Kazakov, Sattler,
2008), uniform interpolation or forgetting (Lutz, Wolter,
2011; Zhao, Schmidt, Wang, Zhang, Feng, 2020), or other
techniques (Alghamdi, Schmidt, Del-Pinto, Gao, 2021).

Formal Concept Analysis (FCA) (Ganter, Wille, 1999) is
a mathematical theory that represents data as formal con-
texts in which objects are described by their attributes.
These attributes are similar to atomic statements in propo-
sitional logic and unary predicates in first-order logic. FCA
has two main applications: the concept lattice reveals the
conceptual hierarchy in the data (Wille, 1982), and the
canonical implication base is a complete set of implications,
i.e. it entails all implications valid in the data (Guigues,
Duquenne, 1986; Stumme, 1996). No complete set with
fewer implications exists (Distel, 2011; Wild, 1994). If the
data is not explicitly available but is only known by an ex-
pert, attribute exploration (Ganter, 1984) enables interactive
construction of the implication base.

The data analysis capabilities of FCA have been success-
fully employed in DLs, especially for the construction and
extension of DL ontologies. Given a finite set of concepts,
the hierarchy of all their conjunctions can efficiently be com-
puted (Baader, 1995). In order to support a bottom-up con-
struction of DL ontologies, one can first compute most spe-
cific concepts for all individuals and then efficiently build
the hierarchy of their least common subsumers (Baader,
Molitor, 2000; Baader, Sertkaya, 2004). An ontology should
be extended when it is incomplete since missing statements
have been identified that should be entailed. Interactively
completing the ontology using FCA is possible when atten-
tion is restricted to CIs over conjunctions from a fixed set of
concepts (Baader, Ganter, Sertkaya, Sattler, 2007). More-
over, it can be extended with new statements that are guessed
by machine-learning approaches based on knowledge-graph
embeddings (Jackermeier, J. Chen, Horrocks, 2023; Shi,
J. Chen, Dong, Khan, Liang, Zhou, Wu, Horrocks, 2023).
However, some of these embeddings fail to capture the se-

mantics (Jain, Kalo, Balke, Krestel, 2021) and, in effect, a
large amount of useless, false predictions might be gener-
ated. This major issue can possibly be remedied by novel
embedding approaches (Abboud, Ceylan, Lukasiewicz, Sal-
vatori, 2020; Asaadi, Giesbrecht, Rudolph, 2023).

Axiomatization is another approach to constructing on-
tologies. In general, axiomatization is the task of describing
a dataset (or any other formal object) by means of logical
statements or axioms, viz. such that a logical formula (in the
underlying logic) holds in the data iff. that formula is en-
tailed by these axioms. In addition, axiomatization enables
data analysis by transferring the given data into meaningful
logical statements. By a suitable choice of the logical for-
malism, interesting and condensed insights into the analyzed
data can be obtained.

In FCA, the canonical implication base axiomatizes data
in form of a formal context by means of implications in
propositional logic. By exploiting the similarity between
EL CIs and FCA implications, a complete EL TBox can
be axiomatized from observed graph data (Baader, Distel,
2008). If the data is deemed incomplete, the latter approach
can interact with the experts to ask for additional data when
the validity of a TBox statement cannot be determined yet
(Baader, Distel, 2009). Both the unsupervised and the in-
teractive approach terminate with a TBox that is sound and
complete for the provided data, i.e. it entails a TBox state-
ment if and only if that statement holds in the data. More-
over, the FCA-based axiomatization method was extended
towards more expressive DLs (Kriegel, 2017, 2019). Con-
fident CI bases axiomatize all CIs that are valid already for
a sufficiently large portion of all objects (Borchmann, 2013,
2015). There are also other interactive approaches (Klar-
man, Britz, 2015; Konev, Lutz, Ozaki, Wolter, 2017) but
which seem to have only limited practical value since the
experts are required to terminate the process manually when
they believe that the target TBox has been found (i.e. com-
pleteness of the constructed TBox is not guaranteed by the
approach, but must be detected by the experts).

Our contributions are as follows. We reconsider the FCA-
based approach to completely axiomatizing EL CIs from
graph data (Baader, Distel, 2008, 2009) and
1. thoroughly revise and simplify its technical description

including proofs,
2. equip it with support for already known CIs valid in the

data (thus enabling it for ontology completion),
3. analyze its computational complexity,
4. explain how further types of TBox statements supported

by the EL family that are not just syntactic sugar can be
completely axiomatized, viz. range restrictions and role
inclusions,

5. describe how it can be implemented efficiently,
6. introduce variations that dispense with the computation

of disjointness axioms or extremely large CIs without
practical relevance, thereby rendering the approach ap-
plicable in practise, albeit some completeness is lost,

7. and evaluate the implementation on real-world datasets.
For space restrictions, technical details and proofs can be
found in the extended version (Kriegel, 2023).



Preliminaries
The EL Family of DLs and OWL 2 EL
Fix a signature consisting of individual names (INs), concept
names (CNs), and role names (RNs). Concept descriptions
(CDs) are built by C ::= ⊤ | ⊥ | A | C ⊓C | ∃r.C where A
ranges over all CNs and r over all RNs. A TBox is a finite set
of concept inclusions (CIs) C ⊑D, range restrictions (RRs)
⊤ ⊑ ∀r.C, and role inclusions (RIs) R ⊑ s, involving CDs
C,D, RNs r, s, and role chains R ::= ε | r | R◦R. An ABox
is a finite set of concept assertions (CAs) a:C and role asser-
tions (RAs) (a, b) : r. An ontology consists of a TBox and an
ABox. The EL family and OWL 2 EL additionally allow for
nominals {a} in CDs, but we ignore these to avoid overfit-
ting in the axiomatization method. We also ignore concrete
domains (datatypes for strings, numbers, etc.) as no EL rea-
soner currently supports them. As syntactic sugar we have
disjointness axioms C1 ⊓ · · · ⊓Cn ⊑⊥, domain restrictions
∃r.⊤ ⊑ C, concept equivalences C ≡D, role equivalences
r≡s, transitivity axioms r◦r⊑r, and reflexivity axioms ε⊑r.

EL can be translated into first-order logic and thus has a
model-theoretic semantics, based on interpretations I con-
sisting of a non-empty set Dom(I), called the domain, and
of a function ·I that gives meaning to the INs, CNs, and RNs.

Reasoning is the process of deciding or enumerating con-
sequences of an ontology. An ontology O entails an axiom
α, written O |= α, if α is satisfied in every model of O. In
this case α follows from the axioms in O by logical infer-
ence. Entailment in the EL family can be decided in poly-
nomial time with the Completion algorithm (Baader, Brandt,
Lutz, 2005, 2008), which uses rules to materialize conse-
quences and is implemented in the reasoner ELK (Kazakov,
Klinov, 2015; Kazakov, Krötzsch, Simančik, 2014). Sub-
sumption is a special form of entailment: D subsumes C
w.r.t. T , written C ⊑T D, if T entails C ⊑D.

Simulations and the DL EL⊥
si

Given interpretations I and J , a simulation from I to J is
a relation S⊆ Dom(I)×Dom(J ) such that (S1) if x∈AI

and (x, y) ∈ S, then y ∈ AJ , and (S2) if (x, x′) ∈ rI and
(x, y) ∈ S, then (y, y′) ∈ rJ and (x′, y′) ∈ S for some y′.
We write (I, x) ⪯ (J , y) or just x ⪯ y if there is a simula-
tion from I to J that contains (x, y).

Since the empty relation is a simulation and the union of
simulations is a simulation, there is a maximal simulation
from I to J , denoted by SI,J . It is computable in polyno-
mial time by starting with the full relation and subsequently
deleting pairs that violate Condition (S1) or (S2). The rela-
tions ⪯ and SI,J are equal since x ⪯ y iff. (x, y) ∈ SI,J .

Simulations characterize the semantics of EL: we can
rewrite each CD C but ⊥ into a tree-shaped interpretation
IC with root xC such that CJ = { y | (IC , xC) ⪯ (J , y) }
for each J . The idea underlying the DL EL⊥

si (Lutz, Piro,
Wolter, 2010) is to replace (IC , xC) with an arbitrary finite,
pointed interpretation (I, x): it features the additional CDs
∃sim(I, x) where (∃sim(I, x))J := { y | (I, x) ⪯ (J , y) }.
ELsi and ELgfp (Baader, 2003) are polynomially equivalent.

We often use denotations ∃sim(C, c), ∃sim(D, d), . . . for
such CDs. For convenience we may use ABox notation: we

specify Dom(C) as usual but describe the function ·C by the
set {x :A | x ∈ AC } ∪ { (x, y) : r | (x, y) ∈ rC }.

Extensions of EL⊥
si CDs can be read off from maximal

simulations as follows, where S(x) := { y | (x, y) ∈ S }.

Lemma 1. (∃sim(C, c))I = SC,I(c)

Lemma 2. ∃sim(C, c) ⊑∅ ∃sim(D, d) iff. (D, d) ⪯ (C, c)
Given C := ∃sim(C, c), the set of its top-level conjuncts is

Conj(C) := {A | c ∈ AC }∪{ ∃r.∃sim(C, u) | (c, u) ∈ rC },
and C↾n denotes its unfolding into an EL CD up to depth n.

We introduce a rule-based calculus with which subsump-
tion w.r.t. a TBox T of EL⊥

si CIs can be decided.

⊑+-Rule. If there is an object x in Dom(C) and a CI
∃sim(E , e) ⊑ ∃sim(F , f) in T such that (E , e) ⪯ (C, x) but
(F , f) ̸⪯ (C, x), then yield the interpretation C′ with do-
main Dom(C′) := Dom(C) ∪ Dom(F) and function ·C′

:=
·C ∪ ·F ∪ {x :A | f ∈AF } ∪ { (x, y) : r | (f, y) ∈ rF }.
⊑⊥-Rule. If there is an object x in Dom(C) and a CI
∃sim(E , e)⊑⊥ in T such that (E , e) ⪯ (C, x), then fail.

Consider a CD C := ∃sim(C, c). Exhaustively applying both
rules either fails in which case C is unsatisfiable w.r.t. T
and we define CT := ⊥, or produces an interpretation C′

and then we set CT := ∃sim(C′, c). Moreover, let ⊥T := ⊥.
We call CT the most specific consequence of C w.r.t. T .

Proposition 3. Subsumption in EL⊥
si can be decided in poly-

nomial time. In particular, C ⊑T D iff. CT ⊑∅ D.

Formal Concept Analysis
FCA is concerned with analyzing a formal context K :=
(G,M, I), where G is a set of objects, M is a set of at-
tributes, and I ⊆ G × M is an incidence relation. We ex-
press by (g,m) ∈ I that the object g has the attribute m.
An implication is an expression U → V where U and V are
subsets of M . The context K satisfies U→V if every object
in G that has all attributes in U also has each attribute in V ;
and K is a model of an implication set L if it satisfies every
implication in L. Furthermore, L entails U → V , denoted
as L |= U → V , if U → V is satisfied in every model of
L. Implication entailment can be decided in linear time by
means of the algorithm LinClosure (Beeri, Bernstein, 1979).

An implication base of K relative to L is an implication
set B of which K is a model and that together with L is
complete, i.e. B ∪ L entails each implication satisfied in K.
The canonical implication base Can(K,L) can be computed
in exponential time with the algorithm NextClosure (Ganter,
1984), and no base with fewer implications exists.

FCA can be seen as EL without RNs and ⊥. In particular,
each formal context is an interpretation without RNs, and
implications U →V are CIs

d
U ⊑

d
V , using the syntactic

sugar
d
{C1, . . . , Cn} := C1 ⊓ · · · ⊓ Cn and

d
∅ := ⊤.

Axiomatization of EL TBoxes
We first focus on axiomatizing CIs. RRs and RIs will be
considered later. As input we expect graph data in form
of an interpretation I, which includes knowledge graphs,
graph databases, and RDF data: the CNs are the node la-
bels and the RNs are the edge labels. Preprocessing of a



knowledge graph might be necessary, e.g. to correctly treat
the metadata as well as to materialize the modelling conven-
tions (Krötzsch, 2019). Further given is a TBox T of which
I is a model and that contains known CIs that should be pre-
served by the axiomatization. Note that T might be empty.
We will compute a CI base in the following sense.
Definition 4. A TBox is complete for I if it entails all CIs
satisfied in I. A CI base of I relative to T is a TBox B of
which I is a model and such that B ∪ T is complete for I.

A CI base B together with the given TBox T axiomatizes
all CIs satisfied in I. We also call B a completion of T w.r.t.
I as we obtain a complete TBox by adding all CIs in B to T .

We will convert the interpretation I into a formal context
such that its implication base can be rewritten into a CI base
of I. We therefore use induced contexts (Rudolph, 2004).
Definition 5. Let M be a set of CDs. The induced context
is KI := (Dom(I),M, I) where (x,C) ∈ I iff. x ∈ CI .
Lemma 6. Given subsets C,D ⊆ M, the CI

d
C⊑

d
D is

satisfied in I iff. the implication C→D is satisfied in KI .
It follows that, if B is an implication base of KI , then

the TBox
d
B := {

d
C ⊑

d
D | C → D ∈ B } has I

as a model. Whether this TBox is complete depends on the
choice of the attribute set M, which we will address next.

Model-based Most Specific Concepts
For each subset X of Dom(I), we denote by XI the model-
based most specific CD (MMSCD) of X in I that is deter-
mined up to equivalence by (M1) X ⊆ (XI)I , and (M2) for
each CD C, if X ⊆ CI , then XI ⊑∅ C. We will omit
braces and write XII instead of (XI)I .

As in FCA the extended interpretation function C 7→ CI

and the MMSCD mapping X 7→ XI form a Galois con-
nection, i.e. all subsets X,Y of Dom(I) and all CDs C,D
satisfy the following properties (Baader, Distel, 2008).
(G1) X ⊆ CI iff. XI ⊑∅ C

(G2) XI ⊑∅ Y I if X ⊆ Y

(G3) X ⊆ XII

(G4) XI ≡∅ XIII

(G5) CI ⊆ DI if C ⊑∅ D

(G6) CII ⊑∅ C

(G7) CI = CIII

For cycles in the interpretation I, some MMSCDs might
not be expressible in EL⊥ but in EL⊥

si . The MMSCD of ∅
is ⊥ and the MMSCD of each singleton {x} is ∃sim(I, x).
MMSCDs of sets with two or more objects can be effi-
ciently computed with the powering, which is a permutation-
invariant representation of all powers of I of any arity.
Definition 7. The powering ℘(I) is the interpretation with
domain Dom(℘(I)) := ℘(Dom(I)) and interpr. function
·℘(I) where X ∈ A℘(I) if X ⊆ AI , and (X,Y ) ∈ r℘(I) if
Y is a minimal hitting set of { rI(x) | x ∈ X }.

Recall that a hitting set of a set S of sets is a set H such
that H ∩S ̸= ∅ for each set S ∈ S. We call H minimal if no
strict subset is a hitting set. All minimal hitting sets can ef-
ficiently be computed with the algorithm HS-DAG (Greiner,
Smith, Wilkerson, 1989; Reiter, 1987).

All MMSCDs but of ∅ are computable by the powering.

Proposition 8. XI ≡∅ ∃sim(℘(I), X) if ∅ ̸=X ⊆ Dom(I).

Axiomatization of CIs by means of FCA
The MMSCDs allow us to restrict attention to CIs of a par-
ticular form, viz. the set { C ⊑ CII | C is an ELsi CD }
would already be a CI base if it was finite. To see this, con-
sider a CI C ⊑ D satisfied in I. Then CII ⊑∅ D by (M2)
and thus C ⊑CII entails C ⊑D. The Galois property (G7)
further ensures that every CI C ⊑ CII is satisfied in I.

Each MMSCD XI is either ⊥ or, according to Propo-
sition 8, a conjunction of CNs and existential restrictions
∃r.Y I . For this reason, we let M consist of ⊥, all CNs,
and all ∃r.Y I where r is a RN and Y is a non-empty sub-
set of Dom(I). This definition is up to equivalence, i.e. if
Y I ≡∅ ZI for two subsets Y, Z ⊆ Dom(I), then it suffices
that M contains the attributes ∃r.Y I for all RNs r.

Due to our choice of M, we can now represent the conclu-
sion CII of any CI C⊑CII as a conjunction of atoms in M,
but this is not always possible for the premise C. We instead
use the partial closure C [II] which is closed everywhere
above the root: ⊥[II] := ⊥ and, if C ̸= ⊥, then C [II] :=d
{A | A ∈ Conj(C) } ⊓

d
{ ∃r.DII | ∃r.D ∈ Conj(C) }.

Lemma 9. {C [II] ⊑CII | C is an ELsi CD } is a CI base.

Since the latter CI base consists of CIs between conjunc-
tions over M, Lemma 6 implies that we can obtain other,
usually smaller CI bases by rewriting an implication base B
of the induced context KI into the TBox

d
B.

Moreover, we take the TBox T into account by transform-
ing it into the set LI,T consisting of the implications

• Conj(C [II])→{E | E ∈ M and C ⊑T E } for each CI
C ⊑D in T

• {E}→ {F} for each two E,F ∈ M with E ⊑∅ F .

Theorem 10. For each finite interpretation I and each EL⊥
si

TBox T of which I is a model, the TBox Can(I, T ) :=d
Can(KI ,LI,T ) is a CI base of I relative to T . It is called

canonical CI base and can be computed in time that is expo-
nential in Dom(I) and polynomial in T . If all CIs in T have
the form C ⊑ D[II], then it contains the fewest CIs among
all CI bases of I relative to T . Furthermore, there are finite
interpretations that have no polynomial-size CI base.

Of course, we can strengthen the given TBox T by replac-
ing every CI C⊑D with C⊑D[II] and then compute a min-
imal CI base of the interpretation I relative to this stronger
TBox. Alternatively, we could compute the CI base relative
to the unmodified TBox T and afterwards remove redundant
CIs, which follow from others, but it is unclear whether this
yields a CI base with the fewest possible number of CIs.

The next example shows that the computed CI base might
not be minimal if not every CI in T has the form C⊑D[II].

Example 11. Consider the following interpretation I.

I : w x

A

y

C

z

B,C
r r r

We further have the TBox T := {A ⊑ ∃r.B} of which I is
a model. Our goal is to compute the canonical CI base. We
therefore first determine all MMSCDs, these are:



• {w}I ≡∅ ∃r.(A ⊓ ∃r.(B ⊓ C))

• {x}I ≡∅ A ⊓ ∃r.(B ⊓ C)

• {y}I ≡∅ C ⊓ ∃r.(B ⊓ C)

• {z}I ≡∅ B ⊓ C

• {x, y}I ≡∅ ∃r.(B ⊓ C)

• {y, z}I ≡∅ C

• {w, x, y}I ≡∅ ∃r.⊤
• {w, x, y, z}I ≡∅ ⊤

We thus obtain the following induced context KI .

KI ⊥ A B C ∃r
.{
w
}I

∃r
.{
x
}I

∃r
.{
y
}I

∃r
.{
z
}I

∃r
.{
x
,y
}I

∃r
.{
y
,z
}I

∃r
.{
w
,x

,y
}I

∃r
.{
w
,x

,y
,z
}I

w · · · · · × · · × · × ×
x · × · · · · · × · × · ×
y · · · × · · · × · × · ×
z · · × × · · · · · · · ·

The implication set LI,T consists of all {E} → {F} where
E ⊑∅ F and of {A}→{∃r.{w, x, y, z}I}. Note that the lat-
ter evaluates to {A}→ {∃r.⊤} and thus does not fully cap-
ture the CI A⊑∃r.B. By transforming the canonical impli-
cation base of KI relative to LI,T , we obtain the canonical
CI base of I relative to T with the following CIs:

• B ⊑ C
• A ⊓ ∃r.{w, x, y, z}I ⊑ ∃r.{z}I ⊓ ∃r.{y, z}I
• C ⊓ ∃r.{w, x, y, z}I ⊑ ∃r.{z}I ⊓ ∃r.{y, z}I
• ∃r.{y, z}I ⊓ ∃r.{w, x, y, z}I ⊑ ∃r.{z}I
• ∃r.{w, x, y}I⊓∃r.{w, x, y, z}I⊑∃r.{x}I⊓∃r.{x, y}I
• A ⊓ C ⊓ ∃r.{z}I ⊓ ∃r.{y, z}I ⊓ ∃r.{w, x, y, z}I ⊑⊥
• B ⊓ C ⊓ ∃r.{z}I ⊓ ∃r.{y, z}I ⊓ ∃r.{w, x, y, z}I ⊑⊥
• ∃r.{w}I ⊓ ∃r.{x}I ⊓ ∃r.{x, y}I ⊓ ∃r.{w, x, y}I ⊓
∃r.{w, x, y, z}I ⊑⊥

• ∃r.{x}I ⊓ ∃r.{z}I ⊓ ∃r.{x, y}I ⊓ ∃r.{y, z}I ⊓
∃r.{w, x, y}I ⊓ ∃r.{w, x, y, z}I ⊑⊥

Specifically the second CI is superfluous as it can be de-
duced from the others. To see this, first note that it can be
simplified to A ⊓ ∃r.⊤ ⊑ ∃r.(B ⊓ C). Now, the premise
A⊓∃r.⊤ is subsumed by ∃r.B (since T contains A⊑∃r.B)
and thus subsumed by ∃r.(B ⊓ C) (since the CI base con-
tains B ⊑ C), which is the conclusion of the second CI.

To obtain a minimal CI base, we could replace the con-
clusion of the CI A ⊑ ∃r.B in T with (∃r.B)[II] =
∃r.(B ⊓ C). Then, the implication set LI,T would con-
tain {A} → {∃r.(B ⊓ C)} in place of {A} → {∃r.⊤} and
so the replaced CI could be fully captured.

The canonical CI base contains EL⊥
si CIs. We rewrite it

into EL to gain support by state-of-the-art reasoners, such
as ELK. We subdivide the rewriting into two steps. First,
we replace the premises in Can(I, T ) by suitable EL CDs.

Minimality is preserved since such a replacement does not
change the number of CIs in the base. In particular, we can
replace, in every conjunction

d
C that occurs as a premise,

each ∃r.XI by ∃r.(XI↾n) with the following choices for n.

• n is minimal such that (XI↾n)I = XII , which can be
determined by trying non-negative integers in ascending
order and picking the first for which the MMSCD XI

and its unfolding XI↾n have the same extension in I.
• n := 2|Dom(I)| · |Dom(I)|+ 1 (Baader, Distel, 2008)
• n is obtained from the MVF measure based on lengths

of simple paths in I or powers of I, seen as graphs
(Guimarães, Ozaki, Persia, Sertkaya, 2021).

Next, we replicate the cyclic structures within the conclu-
sions by means of EL CIs. Assume that B is obtained from
Can(I, T ) by replacing the premises as above. We obtain
an EL TBox B′ with auxiliary CNs that entails the same CIs
as follows. For each CI C ⊑ ⊥ in B, we add C ⊑ ⊥ to B′.
For each CI C ⊑

d
D in B, we add the following CIs to B′:

• C ⊑
d
{A | A ∈ D } ⊓

d
{ ∃r.X | ∃r.XI ∈ D }

• Y ⊑
d
{A | Y ∈ A℘(I) } ⊓

d
{ ∃r.Z | (Y,Z) ∈ r℘(I) }

for all Y reachable from any X in℘(I) with ∃r.XI ∈D

Due to structural sharing this transformation is considerably
smaller than the known one (Baader, Distel, 2008).

Axiomatization of RRs and RIs
As I satisfies a RR ⊤⊑∀r.C if

⋃
{ rI(x) | x ∈ Dom(I) } ⊆

CI , the most specific RR on r uses the MMSCD Y I of Y :=⋃
{ rI(x) | x ∈ Dom(I) } in place of C. We thus add these

RRs to the CI base, possibly after replacing ⊤⊑∀r.Y I with
⊤⊑ ∀r.Y and the CIs describing all Z reachable from Y .

Next, we show how RIs can be completely axiomatized.
Since I is finite, all RIs are regular in the following sense.

Proposition 12. For every RN s, the language LI(s) :=
{ r1 · · · rn | I satisfies the RI r1 ◦ · · · ◦ rn ⊑ s } is regular
and is accepted by a finite automaton As of exponential size.

The automata for all RNs can be converted into a com-
plete set of RIs, which we add to the CI base. We therefore
use the automata states as auxiliary RNs, and introduce the
RI p ◦ r⊑ q for each transition (p, r, q), the RI ε⊑ i for each
initial state i, and the RI f ⊑ s for each final state f in As. It
remains open how these RIs can be rewritten into equivalent
RIs without auxiliary RNs, but we believe this is possible.
However, many reasoners transform the RIs in a given on-
tology into automata anyway and for these the above RIs are
advantageous since the automata can easily be read off.

Theorem 13. For each finite interpretation I, a complete
TBox of EL CIs, RRs, and RIs satisfied in I can be com-
puted in exponential time. There are finite interpretations
for which such a TBox cannot be of polynomial size.

Implementation Details
Several steps employ maximal simulations and therefore a
performant algorithm for computing these is advantageous.
We adapt an approach to computing simulations between
graphs (M. R. Henzinger, T. A. Henzinger, Kopke, 1995)



such that it works with interpretations (which can be seen as
labelled graphs) and runs in parallel on multiple threads.

Computing the canonical CI base needs exponential time
in the worst case. We reduce the input interpretation I to
save computation time. The key observation is that we can
group together all objects in Dom(I) satisfying the same
CDs. By doing so, no counterexamples against CIs satisfied
in I are removed, and also no new counterexamples against
satisfied CIs are introduced. However, instead of checking
infinitely many CIs the following characterization comes to
the rescue: if I and J are finite, then (I, x) ⪯ (J , y) iff.
x ∈ CI implies y ∈ CJ for all C (Lutz, Wolter, 2010).
Thus, in order to decide whether two objects x and y in I
satisfy the same CDs, we check if the maximal simulation
SI on I contains (x, y) as well as (y, x). Based on this we
compute a weak reduction of I in polynomial time and show
that it fulfils a certain minimality condition.

To compute the attribute set M, we should not naı̈vely go
through all subsets of Dom(I) and compute their MMSCDs
because there are exponentially many subsets and MMSCDs
of different subsets are often equivalent. The following con-
sequence of Properties (G1)–(G7) helps us.
Lemma 14. The mapping ϕI : X 7→ XII is a closure op-
erator on Dom(I).

In order to avoid computing duplicates, we enumerate
all closures of ϕI with a multi-threaded version of the al-
gorithm Fast Close-by-One (FCbO) (Krajča, Outrata, Vy-
chodil, 2010). By Property (G4) and Proposition 8 all
MMSCDs are then obtained from the closures XII as
∃sim(℘(I), XII). The operator ϕI is computed with the
maximal simulation S℘(I),I from the powering ℘(I) to I.

Lemma 15. XII = S℘(I),I(X) if ∅ ≠ X ⊆ Dom(I).
To avoid fully constructing the exponentially-large pow-

ering, we lazily build only the part reachable from X when
a closure XII is computed.

For some datasets even these lazily constructed parts of
℘(I) are so large that they cannot be computed within rea-
sonable time limits. In order to detect such cases beforehand
and to not waste computation time, the prototype approxi-
mates, for the current object set at which the powering is to
be expanded, the number of successors — if it is larger than
10,000,000, the computation will be aborted. The result-
ing CI base will, however, not be complete anymore since
some attributes required in the set M could not be computed.
But, if completeness comes for the price of extremely large
CIs, which might not have practical relevance or suffer from
overfitting, then one can probably dispense with this goal.
Moreover, we also allowed to manually specify a smaller
limit on the number of successors and thereby to further re-
strict the size of CIs in the base. We turned this bound into a
conjunction size limit by also counting the CNs that label the
particular object set in℘(I). It remains unclear to which ex-
tent completeness is lost, and we leave the investigation as
future research. We expect that completeness is still guar-
anteed for all CIs that obey the conjunction size limit, but
modifications to the method might be needed to achieve this.

To compute the canonical implication base of the induced
context KI we employ the algorithm LinCbO (Janoštı́k,

Konečný, Krajča, 2021a,b, 2022). It is based on Close-by-
One (CbO) (Kuznetsov, 1993) and closures w.r.t. implica-
tions are computed with an improved version of LinClosure
that reuses counters. Like all CbO-based algorithms, it uses
the canonicity test to avoid duplicate computations of the
same closure. This test is integrated into the modified Lin-
Closure sub-routine, which enables early stop of unneces-
sary computation branches, and is additionally supported by
pruning rules. However, we need to extend LinCbO with
support for background implications.

Variations
Some CIs in the canonical CI base Can(I, T ) are disjoint-
ness axioms C ⊑ ⊥, which express that no objects in I are
described by C. Sometimes only the other CIs C ⊑ D are
desired as they describe the implications between CDs that
are satisfied and also witnessed in I. We have seen in ex-
periments that more than half of the computation time is
required for generating disjointness axioms. It is cheaper
to compute only the witnessed CIs since some intermediate
computation steps can be stopped early.
Definition 16. A CI C⊑D is witnessed in I if CI ̸= ∅ and
CI ⊆ DI . A TBox is witnessed complete for I if it entails
all CIs that are witnessed in I. A witnessed CI base of I
relative to T is a TBox B that consists of witnessed CIs and
for which B ∪ T is witnessed complete.
Proposition 17. Let Can+(I, T ) consist of all witnessed
CIs in the canonical CI base Can(I, T ). Then Can+(I, T )
is a witnessed CI base of I relative to T . Among all wit-
nessed CI bases of I relative to T it contains the fewest CIs.

To compute Can+(I, T ), we should exclude from the at-
tribute set M all CDs not describing any object in I. We can
avoid the expensive computation of such attributes ∃r.XI

by a modification of the employed algorithm FCbO. Further-
more, since the other algorithm LinCbO enumerates the im-
plications in a sub-order of set inclusion ⊆ on the premises,
we can stop a computation branch as soon as an implica-
tion has been found that is not witnessed in the induced con-
text KI (as it would yield a CI that is not witnessed in I).
In a similar way, we incorporate a conjunction size limit ℓ,
viz. we stop a branch when encountering an implication with
more than ℓ attributes in the premise.

If, instead, we want a CI base that is still complete for
disjointness axioms but which need not be minimal, then we
compute the attribute set M as usual, but before building
the induced context KI from it we remove every CD C not
satisfied in I, except ⊥, and store the fast disjointness ax-
iom C ⊑ ⊥ in an intermediate set that we will later add to
the computed CI base. Since thereby the size of KI is of-
ten significantly reduced, the computation of the canonical
implication base is much faster. The downside is, however,
that the final CI base is larger.

Apart from bounding the conjunction size, another effec-
tive way to avoid the axiomatization of impractically huge
CIs is to limit the role depth. Specifically, the role depth of
an EL CD is the maximal number of nestings of existential
restrictions. By modifications to the approach on Page 4, we
can also compute a CI base w.r.t. a role-depth bound n ≥ 0



which is, however, only guaranteed to be complete for all
CIs bounded by n. The case without a known TBox T
has already been considered (Borchmann, Distel, Kriegel,
2016). We show how such an existing TBox can be taken
into account, yielding a minimal CI base as for the unre-
stricted case if T also satisfies the role-depth bound n.

Theorem 18. Given a finite interpretation I, an EL⊥
si TBox

T of which I is a model, and a number n ≥ 0, then a CI base
of I relative to T for role depth n can be computed in time
that is exponential in Dom(I) and polynomial in T and n. If
all CIs in T are of the form C⊑D[II]↾n and bounded by n,
then it contains the fewest CIs among all CI bases of I rela-
tive to T for n. Furthermore, there are finite interpretations
of which no CI base for n has polynomial size.

As an application of Theorem 18, we can keep the CIs in
a base small by iteratively axiomatizing CIs from a given in-
terpretation I. We therefore increase the role-depth bound in
each step (starting with 0) and take all CIs in T as well as the
CIs from all previous steps as background knowledge. This
guarantees a CI base that is complete for all CIs when the
role-depth bound 2|Dom(I)| · |Dom(I)|+1 has been reached
(Baader, Distel, 2008). Alternatively, we could stop earlier
and as last step compute the canonical CI base from Theo-
rem 10 relative to T and all CIs from the previous steps.

Experimental Evaluation
We implemented [8] the axiomatization method in the pro-
gramming language Scala 3 [9] and we evaluate the proto-
type with the plethora of ontologies [10] from real-world ap-
plications used in the ORE 2015 Reasoner Competition (Par-
sia, Matentzoglu, Gonçalves, Glimm, Steigmiller, 2017).
This collection is split into OWL 2 EL and OWL 2 DL on-
tologies. The former cannot contain any CIs not expressible
in EL. For the latter, we syntactically transform as many ax-
ioms as possible into EL and remove the others. There is no
best way to do this since optimal finite EL approximations
need not exist (Haga, Lutz, Marti, Wolter, 2020). Removal
of unsupported axioms makes these ontologies weaker in the
sense that some logical consequences are lost; however, no
new, undesired consequences are thereby introduced. Each
test dataset is derived from such an ontology, viz. we treat
the ABox as interpretation I (under closed-world assump-
tion) and the TBox T as existing knowledge. If necessary,
we saturate I by means of the CIs in T . Altogether we ob-
tain 614 test datasets with up to 747,998 objects, of which
446 (72.64 %) are acyclic. The average number of triples per
object varies from slightly over 0 up to 25.39.

The prototype supports three modes in which disjointness
axioms are not computed (None), computed in the fast way
(Fast), or computed in the canonical way (Can.) as per The-
orem 10. It further allows for specifying a role depth bound
and a conjunction size limit. During the experiment, we
used all three modes and the settings (0, 32), (1, 8), (1, 32),
(2, 32), (∞, 32), (∞,∞) where the first parameter is the
role depth bound and the second is the conjunction size limit.
For every dataset, the prototype was executed once for each
configuration (mode and parameters).
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Figure 1: Computing reductions of the test datasets

The experiments were run on a small, old computer server
with two Intel Xeon E5-2640 processors (each with 6 CPU
cores, hyper-threading, 15 MB cache, 2.80 GHz frequency,
boost up to 3.00 GHz) and 96 GB DDR3-SDRAM main
memory. Modern laptops have faster processors but usually
only a smaller amount of main memory. As runtime envi-
ronment we used Oracle GraalVM EE 22.3.0 (Java 19.0.1).

For 599 (97.56 %) of the 614 test datasets the prototype
successfully computed the (weak) reduction. Figure 1 shows
computation times as well as size changes. In many cases,
the number of objects was significantly reduced and often
by more than one order of magnitude. Several reductions
contain fewer than ten objects, meaning that there is only a
small variety of different types of objects. We ignored these
for the subsequent experiment steps. Reductions could not
be computed for 13 (2.12 %) larger datasets with more than
300,000 objects due to out-of-memory errors (limit: 80 GB),
and for 2 (0.33 %) datasets due to timeouts (limit: 8 hours).

Figure 2 shows the computation times for the CI bases
(without reduction) and their sizes, including failures due
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Figure 2: Computing CI bases of the reduced test datasets

to timeouts (limit: 8 hours), out-of-memory errors (limit:
80 GB), or powering-too-large exceptions (conjunction size
limit: 10,000,000). However, we did not implement and
measure the rewriting of the CI base into EL, nor the ax-
iomatization of RRs and RIs. Computation finished for all
reduced datasets with no more than 100 objects. For reduced
datasets with up to 1,000 objects, the first errors due to insuf-
ficient computing resources occurred without a role-depth
bound. Between 1,000 and 10,000 objects, computations
failed without restrictions, but otherwise succeeded in the
majority of cases. Reduced datasets with more than 10,000
objects could only sometimes be axiomatized with very re-
stricted settings, given 8 hours time and 80 GB memory.

In summary, we clearly see that computation resources
can be saved if no disjointness axioms are wanted, or if they
are computed in the fast way. Furthermore, the parameters
allow us to control the overall resource consumption on the
one hand, but also the size and number of the CIs in the final
base on the other hand. We can avoid the computation of
huge CIs that might not have any practical relevance.

More details concerning all intermediate computation
steps can be found in the extended version (Kriegel, 2023);
a brief summary is as follows. Most expensive are the com-
putation of all MMSCDs and of the can. implication base
of the induced context. In more restricted settings the CDs
that could differentiate the objects are smaller and fewer, re-
sulting in fewer MMSCDs that can be computed in less time,
also yielding smaller induced contexts. Given all MMSCDs,
computing the induced context and the background implica-
tions is cheap and needs only seconds for most datasets.

Future Prospects
That the theoretical approach itself can be extended to more
expressive DLs has already been proven, but it is unclear
whether such an extended approach can still be efficiently
implemented and used in practice. From the perspective
of this article, this seems possible for DLs characterized by
simulations, e.g. ELI or Horn-ALC.

Regarding the presented approach, an interesting question
for future research would be whether one can give any kind
of completeness guarantee if a conjunction size limit is used
(e.g. every CI that also satisfies the limit is entailed). A
smaller task can be to investigate how range restrictions and
role inclusions can be integrated into the background know-
ledge after they have been computed but prior to axiomatiz-
ing the CIs, preferably yielding an overall minimal base.

It should be investigated whether the canonical CI base
can be obtained more efficiently from the fast CI base by
means of the algorithm in (Rudolph, 2007). The witnessed
CI base ignores all disjointness axioms. One could restrict it
even more by requiring that the number of objects satisfying
a CI premise must exceed an absolute or relative limit.

Furthermore, the computation can be speed-up with even
faster FCA algorithms for enumerating closures. The em-
ployed LinCbO algorithm is currently the fastest algorithm
for computing the canonical implication base, but it is unfor-
tunately only single-threaded. Developing a multi-threaded
variant is thus another future goal. It might already help to
change its depth-first behaviour. Apart from that one could
use a faster programming language (like C++), more com-
putation time, a faster server, or optimize the prototype.

A CI C ⊑ D is confident if the ratio |(C ⊓ D)I |/|CI |
exceeds a pre-defined limit but need not be 100% (Borch-
mann, 2013). Since a confident CI base extends a canonical
CI base by CIs of the form XI ⊑Y I , the prototype could be
upgraded as it already computes all MMSCDs XI and Y I .

We have not considered keys supported by the OWL 2 EL
profile. Learning of keys from RDF data using FCA has
been addressed in (Abbas, Bazin, David, Napoli, 2021,
2022; Atencia, David, Euzenat, Napoli, Vizzini, 2020). To
apply this approach to DL and OWL it must be extended
towards complex DL concepts in place of RDF classes.
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