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This paper presents a novel approach to robust linear time-varying control design for

space launchers. It allows the controller to explicitly account for the launcher’s time-varying

dynamics and changing control objectives along the ascent trajectory. The latter are readily

incorporated via time-varying weighting functions into a mixed sensitivity design. For a

traceable and transparent control design, a physically motivated weighting scheme is applied,

which requires little tuning effort. The controller is obtained via a novel observer-based finite

horizon linear time-varying (LTV) synthesis approach. It provides a transparent structure

which is easy to implement. The approach is used to design a pitch controller for a flexible

expendable launch vehicle in atmospheric ascent tracking the open-loop guidance reference

signal.

Nomenclature

CA, CN = aerodynamic force coefficient in axial and normal direction

d = disturbance vector

e = error vector

F = linear fractional transformation

F = state feedback gain

G = generalized plant

J = moment of inertia, kgm2

K = controller

L = observer gain
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Ma = Mach number

m = mass, kg

P = plant model

q̄ = dynamic pressure, Pa

r = reference signal

S = sensitivity function

T = thrust, N

t = time, s

tf = final time of finite horizon, s

u, w = input of dynamic system

W = dynamic weight

x = state vector

y, z = output vector of dynamic system

α = angle of attack, deg

γ = upper bound on performance metric

θ = pitch angle, deg

ω = angular frequency, rad/s

I. Introduction

The atmospheric ascent of space launchers poses a formidable control problem. It requires the stabilization of an

aerodynamically unstable system, the fulfillment of tight tracking constraints, load alleviation to fulfill stringent

structural requirements as well as an optimal use of propellant. All these requirements must be fulfilled for constantly

changing environmental conditions, rapidly decreasing mass, and thus, varying launcher dynamics. In addition, the

launcher is subject to external disturbances, such as wind turbulence.

The state of the art approach to space launcher control is the application of linear time-invariant (LTI) control

methods. These methods are applied to design and synthesize single controllers for frozen points in time along the

trajectory. The resulting LTI controllers must then be scheduled along the trajectory. Examples for such control

designs are gain-scheduled proportional-integral-derivative (PID) controllers [1, 2], linear robust control methods

like mixed sensitivity H∞ design [3], and nonlinear optimization-based approaches such as structured H∞ design [4].

However, these approaches fail to cover the very nature of the ascent problem. The launcher’s dynamics are strictly
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time-varying over a finite horizon as the vehicle tracks a pre-calculated finite trajectory. LTI methods impose stability

and performance metrics on single frozen design points over an infinite time horizon, which contradicts the finite

time-varying characteristics of the problem. Most recently, a case was made for linear parameter-varying (LPV) control

of space launchers in [5]. Although, LPV control mitigates the ad-hoc scheduling problem, it misses the point that

launchers are strictly time-varying and operate on a finite time interval. LPV synthesis considers an infinite horizon

with corresponding requirements on stability and performance. It thus suffers from the same disadvantage as its LTI

counterpart. Further, an infinite set of possible trajectories is covered, which inevitably introduces conservatism. For

verification and validation, finite horizon linear time-varying (LTV) methods have been developed and successfully

applied to the launcher ascent problem, see, e.g., [6, 7]. The finite horizon LTV approach actually captures the launcher’s

behavior. Therefore, finite horizon linear time-varying (LTV) control synthesis presents the logical approach to launcher

control. However, no application of robust finite horizon LTV methods for the launcher control problem can be found in

literature.

This paper contributes a novel approach to design a structured mixed-sensitivity finite horizon LTV controller for

the launcher ascent problem. It explicitly considers the launcher’s time-varying dynamics in the controller synthesis

over a finite horizon. The synthesis enforces performance only on a specified time horizon rather than over infinite time

as LTI and LPV approaches. Hence, classical (infinite time) stability and norm constraints are lifted, which can be taken

advantage of for performance gains. The synthesis is conducted using a recently proposed structured mixed sensitivity

synthesis for LTV systems [8] presented in Section II. Requiring only the sequential solution of two unidirectionally

coupled Riccati differential equations (RDEs), it is computationally more efficient than state-of-the-art approaches,

see, e.g., [9]. Moreover, it provides a controller with a transparent pre-defined structure making it particularly easy

to implement. The control design is performed for a representative launcher model including flexible modes, which

is introduced in Section III. A highly traceable weighting scheme is applied, which is presented in Section III and

was first introduced in [10]. Time-varying weights represent changing control objectives along the ascent trajectory,

which are mainly imposed by the rapidly changing dynamic pressure. Similar ideas were used in, e.g., [11] and [12],

where varying weights represent uncertainties. The controller is validated via simulation using a high fidelity nonlinear

simulator in Section V. The simulations are conducted over a large set of perturbed launcher dynamics and realistic

wind turbulence as encountered by the launcher during ascent.

II. Background on Linear Time-Varying Systems
Systems following prescribed trajectories such as space launchers can be accurately modeled by explicitly time-

varying nonlinear dynamic systems. The linearization about the reference trajectory then provides a finite horizon linear
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time-varying system P of the general form:


Ûx(t)

y(t)


=


A(t) Bd(t) Bu(t)

C(t) Dd(t) Du(t)





x (t)

d (t)

u (t)


. (1)

In (1), x(t) ∈ Rnx is the state vector, u(t) ∈ Rnu the input vector, d(t) ∈ Rnd the disturbance vector, and y(t) ∈ Rny the

output vector. The system matrices are locally bounded continuous functions of time t. They are compatible size-wise

to the corresponding vectors, e.g., A(t) ∈ Rnx×nx . The explicit time dependence will be omitted regularly to shorten the

notation.

A finite horizon LTV problem nullifies classic stability arguments as linear systems have no finite escape time [13]

and system poles technically do not exist. Input-output norms present a more suitable metric for systems like launch

vehicles, see, e.g., [14, 15]. “Unstable” dynamics are tolerable as long as no signal grows out of specified bounds, i.e. a

specified norm gets too large. In principle, this characteristic can be exploited in the control design. The most common

measure for the size of signals inside the LTV framework is the L2[0, tf] norm:

‖u‖2[0,tf] =

[ ∫ tf

0
u(t)T u(t) dt

] 1
2

. (2)

In the course of the paper, the notation y = [Pd Pu]
[
u
d

]
is used to state the input-output map defined by the state space

representation (1) for zero initial conditions. The performance of such a finite horizon LTV input-output map can be

quantified by its finite horizon induced L2[0, tf] norm

‖P‖2[0,tf] := sup[
d
u

]
∈L2[0,tf],

[
d
u

]
,0

x(0)=0

‖y‖2[0,tf][ d
u

]
2[0,tf]

, (3)

where d ∈ L2[0, tf] and u ∈ L2[0, tf] imply y ∈ L2[0, tf]. An upper bound on ‖P‖2[0,tf] is provided by a generalization of

the Bounded Real Lemma (BRL) and can be found in [16].

[Pd Pu]K
r

d

e u
y

−

Fig. 1 Standard unity feedback control loop

In [8], the author’s proposed a novel observer-based induced L2[0, tf] controller synthesis procedure for LTV systems.

Fig. 1 shows the standard unity feedback control loop with time-varying plant P and time-varying controller K.
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Removing the controller from the interconnection yields the generalized plant G with input [ wu ] and output [ ze ]. Here,

the signals w and z represent measures for performance, e.g., the combination w = r and z = e measures the error in

response to changes in the reference, see, e.g., [17]. The closed loop interconnection of G and K is denoted by the

lower fractional transformation Fl(G,K). The approach in [8] synthesizes an LTV controller K minimizing the induced

L2[0, tf] norm of Fl(G,K):

min
K
‖Fl(G,K)‖2[0,tf] . (4)

where K has the fixed structure:


Ûξ

u


=


A(t) + B(t)F(t) + L(t)C(t) L(t)

F(t) 0



ξ

e


, (5)

In Eq. (5), L is a time-varying observer gain and F is a time-varying state feedback gain. The gains follow from

the solution of two unidirectionally coupled Riccati differential equations provided in the following theorem under

the assumption that the plant model (1) is strictly proper, i.e., Du = 0 and Dd = 0, to simplify the notation. The

theorem can be generalized to non-strictly proper plants at the cost of more complicated notation. However, usually

engineering problems like space launcher can be accurately represented by strictly proper models, e.g., by including

actuator dynamics in the model.

Theorem 1 (Observer-Based Controller Synthesis) Consider an LTV system (1). There exists an observer-based

controller K defined by Eq. (5) such that ‖Fl(G,K)‖2[0,tf] ≤ γ if the following two conditions hold.

1) There exists a continuously differentiable, symmetric positive semi-definite matrix function Z(t), t ∈ [0, tf] such

that Z(0) = 0 and

ÛZ = AZ + ZAT − ZCTCZ + BdBd
T . (6)

2) There exists a continuously differentiable, symmetric positive semi-definite matrix function X(t), t ∈ [0, tf] such

that X(tf) = 0 and

ÛX = −ĀT
X − X Ā + XT̄X + CT ŪC, (7)

with Ā = A − 1
1−γ2 ZC

T , T̄ = 1
1−γ2 ZC

TCZ + BuBu
T , and Ū = γ2

1−γ2 C
TC.

Proof: The proof is given in [8]. �

The solution of the RDE (6) provides the observer gain L = −Z CT . In the same way, the solution of the RDE (7)

guarantees the existence of a state feedback gain F = −Bu
T X . However, only the solution of the second RDE depends

on γ. Thus, only RDE (7) has to be solved repeatedly in a bisection over γ to find the norm optimal controller. The
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structured LTV synthesis provides the exact same induced L2[0, t f ]-norm as the original LTV output feedback synthesis

stated in, e.g., [9], [18], or [19]. However, the new approach is numerically more efficient due to the unidirectionally

coupled RDEs. It further guarantees a fixed controller structure. The standard approaches require the solution of two

bidirectionally coupled RDEs satisfying a spectral radius condition point-wise in time. Hence, two Riccati differential

equations have to be solved repeatedly. The spectral radius condition can only be checked after integration and potentially

renders a solution invalid which results in additional computational overhead. Moreover, the resulting controller has no

particular structure.

III. Space Launcher Control Design Problem

A. Launcher Model

The paper investigates the time-varying control design for an expandable launch vehicle (ELV). The ELV consists of

three solid rocket motor (SRM) stages and a liquid-propelled upper module. The considered time segment spans 16.5 s

to 103 s after lift-off. It covers the launcher’s atmospheric flight phase and concludes with the burnout of the first SRM.

1. Nonlinear Rigid Body Dynamics

During the atmospheric ascent, the space launcher can be treated as perfectly symmetric, with fully decoupled

pitch and yaw dynamics for small roll-rates [20, 21]. Thus, the pitch and yaw dynamics can be controlled by identical

controllers. Given the flight segment’s overall duration and velocity regime, the earth can be assumed flat and

non-rotating [20, 22] The control design considers the rigid body motion, first three bending modes and the tail-wags-dog

effect caused by the nozzle inertia. Fuel sloshing is not considered as only the upper module uses liquid propellant. An

illustration of the launcher’s pitch dynamics is given in Fig. 2. Forces are indicated by red and velocities by blue arrows.

The launcher’s nonlinear equations of motion (EoM) are formulated with respect to its instantaneous center of gravity G

in a body-reference coordinate system denoted by the subscript b. The xb-axis is aligned with the launcher’s symmetry

axis and is defined positive in the direction of forward travel. The zb-axis points downward, forming a right-hand system
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with the yb-axis. The launcher’s nonlinear EoM in the pitch plane are described by:

Üθb(t) =
∑

My(Ma, α, h, t)
Jyy(t,m)

− Ûθb
ÛJyy(m, t)
Jyy(m, t)

=
N(Ma, α, h, t)lGP(Ma,m, t)

Jyy(t,m)
− Ûθb

ÛJyy(m, t)
Jyy(m, t)

−
T(t)lCG(t,m)

Jyy(t,m)
sin δTVC(t) +

MN,y(m, t)
Jyy(m, t)

Üxb(t) =
∑

Fx(Ma, α, h, t)
m(t)

− Ûθb(t) Ûzb(t)

=
T(t) cos δTVC(t) − A(Ma, α, h, t)

m(t)
− g0(h) sin θb(t) − Ûθb(t) Ûzb(t)

Üzb(t) =
∑

Fz(Ma, α, h, t)
m(t)

− Ûθb(t) Ûxb(t)

= −
N(Ma, α, h, t)

m(t)
−

T(t)
m(t)

sin δTVC(t) + g0(h) cos θb(t) +
FN,z(t)
m(t)

− Ûθb(t) Ûxb(t)

Ûm(t) = −
1
vex
(t)T(t).

(8)

In Eq. (8),
∑

My is the sum of moments around the pitch axis formulated with respect to the center of gravity G. The

sum of forces in xb and zb direction are denoted by
∑

Fx and
∑

Fz , respectively. The launcher’s pitch angle corresponds

to the angle between the xb axis and the local horizon. It is denoted θb . The axial and normal accelerations are denoted

Üxb and Üzb . Finally, A and N are the axial and normal aerodynamic forces acting on the launcher’s center of pressure P.

local horizon

zb

x

xb

α
θb

mg

T

C
E

O

P

δTVC

trajectory

G

lCG

lOU

lEC

wz

V

N

A

lGP

U

Fig. 2 Expandable launch vehicle in body fixed reference frame
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They are defined by

A(Ma, α, h, t) = q̄(h, t) Sref CA(α,Ma)

N(Ma, α, h, t) = q̄(h, t)Sref CN (α,Ma),
(9)

with the dynamic pressure q̄(h, t) = 0.5ρ(h)V2(t), reference area Sref and aerodynamic force coefficients CA and CN .

These coefficients dependent nonlinearly on the Mach number Ma and the angle of attack. The variable V is the absolute

aerodynamic velocity of the ELV and is referred to as the launch vehicle airspeed. The density of the air ρ is calculated

according to the international standard atmosphere (ISA) [23]. The aerodynamic forces are expressed in body axes

rather than in a coordinate system attached to the aerodynamic velocity. Here, the axial and normal forces are defined in

the negative axis directions. Thus, A acts in negative xb direction and N acts in negative zb direction. In Eq. (9), the

angle of attack is approximated as

α(t) ≈
Ûzb(t) − wz(t)
Ûxb(t)

, (10)

where wz is the external wind disturbance aligned with the zb-axis.

The launcher’s thrust T acts at the nozzle reference point C. It can be rotated by the angle δTVC using the thrust

vector control (TVC) system. Due to the characteristics of the solid rocket motor, the thrust follows a predefined time

profile after ignition. Hence, the thrust at a certain point in time is given by:

T(t) = vex(t) Ûmex(t), (11)

where vex is the exhaust velocity and Ûmex the exhaust mass flow of the engine. The thrust profile (11) directly relates to

the launcher mass m through mex:

m(t) = m0 −

∫ t f

0
Ûmexdt = m0 −

∫ t f

0

T(t)
vex(t)

dt. (12)

The overall moment of inertia Jyy is defined with respect to the instantaneous center of gravity G and depends

directly on the launcher’s momentary mass. The same is true for the center of gravity itself. The altitude-dependent

gravitational acceleration g0(h) is calculated based on the world geodetic system 84 (WGS 84) [24] with a launch site

close to the equator. Moving the nozzle causes a reactive force and moment acting through the gimbal mechanism. This

is the so-called tail-wags-dog effect. The force and moment depend on the nozzle mass mN, nozzle inertia JN, and
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angular acceleration ÜδTVC:

FN,z = −mNlEC
ÜδTVC

MN,y = −(mNlEC lCG(m, t) + JN) ÜδTVC
(13)

The distance between nozzle reference point and the nozzle’s center of mass E is denoted lEC .

A second-order transfer function with unit stead state gain kTVC, natural frequency ωTVC = 50 rad/s, and damping

ratio ζTVC = 0.7 is used to model the dynamics of the thrust vector control system. The TVC dynamics are connected to

the launch vehicle rigid body dynamics via δTVC and ÜδTVC to model the tail-wags-dog effect given in Eq. (13). The

commanded TVC deflection δTVC,c is the sole control input. The TVC has a maximum deflection angle of ±5.5 deg and

maximum deflection rate of ±10.0 deg/s.

2. Flexible Body Dynamics

The ELV’s elastic deflection at any point along the vehicles symmetry axis is given by:

ε(x, t) =
∞∑
i=1

qi(t)φi(x), (14)

where x is the distance from the launcher geometry reference point O along the ELV’s longitudinal axis as depicted in

Fig. 2. The variable φi denotes the mass normalized i-th spatial mode shape in the pitch plane, and qi the generalized

coordinate of the i-th mode which satisfies:

Üqi + 2ζiωi(m) Ûqi + ω2
i (m)qi = Qi . (15)

The mode frequencies ωi are functions of the launcher mass m. The generalized force Qi associated with the i-th mode

is a function of the moments and normal forces acting on the launch vehicle. For the given launch vehicle, the bending

modes are mainly excited by the rocket engine. Assuming only first-order effects the generalized forces can be written

as:

Qi = −(TδTVC + mNlEC
ÜδTVC)φi(lOC) + JN ÜδTVC

∂φ(lOC)

∂x
. (16)

The length lOC denotes the distance of the launcher geometric frame’s origin O to the nozzle reference point C. The

flexible modes have a direct influence on the control system as they directly impact measurements provided by the inertial

measurement unit (IMU). Control feedback measurements include θIMU, ÛθIMU, and ÛzIMU which are the superimposed
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rigid body motion and elastic deformation at the IMU location lOU :

θIMU = θb −
∂ε

∂x

����
x=lOU

= θb −
∑
i

qi
∂φi
∂x

����
x=lOU

= θb −
∑
i

qi(t)σi(lOU )

ÛθIMU = Ûθb −
∑
i

Ûqi(t)σi(lOU )

ÛzIMU = Ûzb − ÛθblGU −
∑
i

Ûqi(t)φi(lOU )

(17)

The variable σi =
∂φi

∂x denotes the local rotation of the i-th mode.

3. Wind Model

The vertical component of a representative wind profile for the considered trajectory from an equatorial launch side

can be found in [25]. This vertical wind profile is estimated from the post-flight analysis of the Vega space launcher

flight VV05. Fig. 3 depicts the wind profile ( ) . This wind signal can be decomposed into a steady and a turbulent

component. Fig. 3 shows the steady component ( ). It builds up and decays similarly to the original VV05 profile.

The constant value in-between equals the calculated mean value of the VV05 profile. The turbulent wind component

has a varying maximum amplitude along the flight which decays to a value of zero after 65 s. Steady wind fields can be

estimated with good accuracy pre-flight. Turbulence is of stochastic nature. Thus, it has to be treated as such in the

controller evaluation to verify performance under non-nominal conditions. Hence, a turbulence wind filter is designed

based on the representative wind profile’s turbulent component [25]. The design approach originates from the classical

Dryden wind model described in, e.g., [26], which is based on the power spectral density of the turbulence. In a first

step, the deviation from the mean wind signal wz (i.e., the wind velocity ( ) minus the steady profile ( ) in Fig. 3)

is divided into five second long time segments spanning from 16.5 s to 66.5 s. Based on the wind profile in Fig. 3, zero

wind is assumed for times later than 65s after lift-off. Note that after 65 s the launcher has reached such a high altitude

that wind is no longer a factor. Given the time history of the reference wind signal wz , the power spectral density (PSD)

Ωwz ,k
of a segment k is calculated by

Ωwz ,k
(ω) = lim

tf,k→∞

2
π

1
tf,k

����∫ tf,k

0
wz,k(t)e−jωtdt

����2 , (18)

with tf,k defining the time span of the segment, where wz,k(t) has been truncated to have zero value outside the range 0

to tf,k . Hence, the PSD of a signal is determined by the average squared of its Fourier transform. In the present paper,

the internal Matlab function fft is applied for this purpose using a sampling rate of 100Hz. This calculation is repeated

for all segments n of the wind profile. In a second step, for each time segment, a transfer function upper bounding the

respective
��Ωwz ,k

�� is calculated. For this purpose, the internal Matlab function fitmagfrd is applied, which determines
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a minimum phase transfer function using log-Chebychev magnitude design. The fitted transfer functions are then

transformed into consistent state-space models. In the third an final step, an LTV representation Gwz ,LTV of the wind

filter is calculated by linearly interpolating the system matrices’ coefficients over the analysis horizon. By definition,

this filter shapes a white noise input nw(t) with a power spectral density Φnw = 1 into a continuous turbulence signal

with the same time-dependent/altitude-dependent spectral characteristics as the original signal wz . Here, the Simulink

internal band-limited white noise block is used to generate nw(t). Fig. 3 shows the envelope of 1000 wind signals ( )

created by the calculated turbulence filter superimposed with the steady wind profile. The comparison of two selected

signals ( ) with the original VV05 signal shows a good qualitative match. The generated wind signals are used

for the control performance evaluation in Section V. Note that the wind axes are aligned with the body-referenced

coordinate system. This assumption follows common definitions of certified wind models for higher altitudes, see, e.g.,

[26]. Only vertical wind is considered due to its immediate impact on the launcher’s angle of attack.

20 30 40 50 60 70

−20

0

20

40

Mission Time [s]

Ve
rti
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lW

in
d
[m

/s
]

Envelope Wind Filter
Selected Wind Signal
Steady Wind Profile
VV05 Estimate

Fig. 3 Vertical wind profiles

B. Atmospheric Ascent Problem

The atmospheric flight phase poses the most challenging launch segment. A multitude of performance requirements

are imposed on the launch system, while it accelerates through the densest atmosphere layers.

1. Trajectory Calculation and Linearization

The nominal trajectory of a space launcher through the earth’s atmosphere must fulfill multiple requirements. The

trajectory shall maximize the acceleration in the longitudinal axis of the launcher with the least amount of fuel possible

to reduce the necessary lift-off mass. Hence, the TVC deflection shall be approximately zero during the ascent. At the

same time, the static aerodynamic loads in the lateral direction shall be minimized, i.e., the angle of attack shall be

approximately zero. A maneuver called gravity turn fulfills both requirements [27, 28]. Under the constraint that only a

velocity component in xb-direction exists, i.e., α = 0, the normal acceleration due to curvature of the launcher trajectory
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and the gravitational acceleration on the launcher must compensate each other. The balance of both forces leads to the

set of equations:

Ûh = Ûxb sin θb ÛD = Ûxb cos θb

Üxb =
T − A

m
− g0 sin θb Ûθb = −

g0

Ûxb
cos θb

(19)

derived from the launcher’s equations of motion (8). In Eq. (19), h is the altitude and D is the downrange distance.

Solving Eq. (19) for a given h0, θ0, Ûxb0 and D0 provides a so-called pitch program for the launcher. Fig. 4 shows the

reference pitch angle θref, pitch rate Ûθref, velocity Vref, and altitude href for the considered kick-angle θ0 and thrust profile.

This ascent profile results in α ≈ 0 and δTVC ≈ 0 for nominal launcher dynamics and no external disturbances. A control
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Fig. 4 Reference gravity turn trajectory

system is required to stabilize the inherently unstable launcher dynamics while tracking the pitch program.

The controller synthesis from Section II requires an LTV representation of the ELV along the calculated gravity

turn trajectory. This LTV model is calculated by numerically linearizing the nonlinear dynamics in Eq. (8) over

the considered trajectory segment spanning 16.5 s to 103 s after lift-off using a step size of 0.5 s. The result is

a finite horizon LTV system P as defined in Eq. (1). The state vector including the linear actuator dynamics is

x = [∆θb,∆ Ûθb,∆ Ûzb,∆ Ûxb,∆qi,∆ Ûqi,∆δTVC,∆ ÛδTVC]T , the disturbance vector is d = ∆wz , the input vector is u = ∆δTVC,c,
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and the output vector is y = [∆θIMU,∆ ÛθIMU,∆ ÛzIMU]
T . The symbol ∆ refers to the deviation from the reference value on

the design trajectory.

2. Control Objectives

The control design considers the time horizon from 16.5 s to 103 s after lift-off; the start and end point of the gravity

turn maneuver. The first control objective is tracking performance under external disturbances such as atmospheric

turbulence. The launcher must accurately follow the reference trajectory, i.e. θref, ideally with zero error. The response

time to wind disturbances must be adequately fast, which requires sufficient controller bandwidth. Additionally, the

transient response shall be constrained regarding maximum overshoot and maximum Ûθ. Before engine burnout, i.e.,

shortly before the stage separation is triggered, the absolute value of the pitch error must be smaller than 0.5 deg. At

stage separation a maximum absolute pitch rate error of 0.5 deg/s is allowed. These values shall guarantee a clean stage

separation. Larger values (up to 1 deg absolute pitch error and 5 deg/s absolute pitch rate error) are acceptable before

stage separation, e.g., for load relief purposes.

The second control objective considers the reduction of aerodynamic loads on the launcher caused by wind

disturbances and trajectory perturbations. This objective is usually given in form of the maximum absolute value of the

static aerodynamic load q̄α, i.e, the product of momentary angle of attack and dynamic pressure. Fig. 5 shows the q̄α

bound of the considered launch vehicle over its Mach number. Load reduction can only be achieved by either turning

into the wind or drifting with the wind. Both approaches lead to a vertical drift away from the trajectory. Another

contributor to aerodynamic loads and the drift of the launch vehicle are uncertainties in thrust and mass. These lead to a

violation of the gravity turn equations (19) for the provided open-loop guidance profile θref. The result is a build-up of

α as well as a continuously increasing deviation from the design trajectory.

Limiting the drift away from the nominal trajectory poses the third control requirement. Large deviations from the

trajectory must be avoided as these are not correctable in later flight phases. At the moment of stage separation, the drift

is limited to ±20m/s for a safe separation. For load relief purposes, larger values are acceptable in the high dynamic

pressure region.

The last two control objectives concern the thrust vector control. First, the demanded TVC actuation shall neither

reach its deflection or rate limit (±5.5 deg and ±10 deg/s, respectively) nor exceed the actuator bandwidth limit of

50 rad/s. The second TVC objective concerns the required fuel reserves, and therefore directly the cost-critical lift-off

mass of the launcher. In order to maximize forward acceleration for a given thrust profile, the launcher shall not exceed

a given cumulated commanded thrust deflection (the so-called TVC consumption quantified by
∫ tf

0 |δTVC | dt). A typical

value for this type of launcher and trajectory segment is 250 deg s. Tab. 1 summarizes the discussed performance

requirements of the considered space launcher.

In general, tracking, drift, and load relief objectives contradict each other, as tracking a given pitch angle and limiting
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Fig. 5 Dynamic pressure q̄ along the trajectory and corresponding |q̄αmax |.

Table 1 Launch vehicle performance requirements

Requirement Metric Constraint

Load Performance |q̄α | < q̄α boundary

Tracking Performance
|∆θIMU | < 0.5 deg��∆ ÛθIMU

�� < 0.5 deg/s

Drift Performance | ÛzIMU | < 20m/s

Actuation
|δTVC | < 5.5 deg�� ÛδTVC�� < 10 deg/s∫ tf

0 |δTVC | dt < 250 deg s

drift under wind disturbance results in a significant aerodynamic load build-up. Tight pitch control in the region of high

dynamic pressure with large expected disturbances can result in a loss of the launch vehicle if q̄αmax is exceeded. Vice

versa, minimizing q̄α by allowing the launcher to drift with the wind results in a deviation from the trajectory too large

to correct and, thus, likewise in mission failure. Also, reducing the launcher’s drift rate requires a pitch motion, which

opposes pitch tracking. In summary, the control objectives for launch vehicles require a trade-off between trajectory

tracking and load alleviation. This trade-off is imposed by the dynamic pressure q̄ and expected wind disturbances, i.e.,

favoring load alleviation in the q̄max region and tracking later in the flight.

The time-varying launcher dynamics further complicate the control problem. Important dynamic properties of

the launcher can be characterized by the launcher specific parameters a6 =
∂N
∂α (t)

lGP

Jyy
and k1 =

TlCG

Jyy
(see, e.g., [21]).

The variable ∂N
∂α (t) denotes the partial derivative of N along the trajectory following from the numerical linearization.
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Fig. 6 Launcher specific moment coefficients along the trajectory.

The parameter a6 is a measure for the time to double of the pitch angle. Larger values of a6 indicate faster times

posing a more difficult control problem. Thus, there exists a time-varying minimum closed loop bandwidth threshold

along the ascent. The parameter k1 quantifies the launcher’s ability to counteract destabilizing aerodynamic moments

by deflecting the TVC. A larger value relates to higher control authority. Fig. 6 depicts the two parameters’ rapidly

changing values along the ascent showcasing the time-varying nature of the problem. Smaller ratios of k1/a6 pose a

harder pitch tracking problem. The smallest ratios occur in the high dynamic pressure region rendering the trade-off

between pitch tracking and load relief even more delicate. Hence, time-varying control is beneficial to not only account

for the time-dependent control objectives, but also the time-varying launcher dynamics.

IV. Structured Linear Time-Varying Launcher Control Design

A. Converting Control Objectives to Weighting and Tuning

An apparent and transparent translation of the time-varying control objectives to tuning rules is required for rapid

and traceable control designs. Hence, the proposed design uses a specifically parameterized four-block mixed sensitivity

formulation proposed in [10, 29]. Fig. 7 shows a graphical representation of the closed loop synthesis structure. It

[Pd Pu]

WuVu
−1

K

WeVe
−1Ve Vd

w2 w1z1 z2

e u
−

Fig. 7 Weighted four-block mixed sensitivity problem.

characterizes the control objectives in form of an induced L2[0, tf] norm optimization of the weighted closed loop with

15



the associated controller synthesis problem:

min
K



WeVe

−1 0

0 WuVu
−1



−SPd S

−KSPd KS



Vd 0

0 Ve




2[0,tf]

. (20)

The LTV observer-based control synthesis framework introduced in Section II can be easily applied to solve the

optimization problem. In (20), S = (I + PuK)−1 denotes the output sensitivity function [30]. It relates reference inputs

to control errors. Accordingly, KS relates reference inputs to control effort. The disturbance sensitivity SPd corresponds

to the impact of disturbances on the closed-loop.

The time-varying dynamic weighting filters Wu and We have the state space realization:


Ûξe

z1


=


0 BWe(t)

CWe(t) DWe(t)



ξe

ẽ


(21a)


Ûξu

z2


=


AWu(t) BWu(t)

CWu(t) DWu(t)



ξu

ũ


. (21b)

Based on the control objectives (see Tab. 1) and the expected disturbances, the dynamic weights We and Wu, as

well as memoryless scaling matrices Ve, Vu , and Vd are selected. The former represent principle design requirements

such as bandwidths and roll-offs. These requirements are mainly imposed by the plant dynamics. Once identified, they

usually remain unchanged and are not part of the iterative tuning process. The memoryless weights are then used for

the quantitative tuning of the controller to address, e.g., allowable control efforts or errors. Time-varying objectives

increase the tuning complexity. Hence, such an intuitive parameterization which also includes “non-tuneable” elements

is beneficial.

The weighting filter We affects the disturbance sensitivity. A high gain in We enforces a sensitivity reduction and

specifies tracking and disturbance rejection capabilities. The weight Weθ in the θIMU channel is selected with integral

behavior up to 3.5 rad/s and a magnitude of 0.5 beyond for times up to 40 s into the ascent. Doing so, sensitivity is

reduced up to the desired closed-loop bandwidth ωbw and peak sensitivity beyond this frequency is limited to a factor

of 1/0.5 = 2. The bandwidth is increased to a value of 4.0 rad/s between 50 s and 80 s until it reaches a maximum of

5.5 rad/s at stage-separation. The design aims for a closed-loop bandwidth, which is at least two-times faster than the

momentary unstable pitch pole along the trajectory (visualized by the red line in the Bandwidth plot in Fig. 8). It also

seeks to separate the closed loop bandwidth by a factor of at least nine from the TVC’s bandwidth. The first increase in
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bandwidth accounts for the increasing wind disturbance amplitudes (see Fig. 3). The final increase targets the required

tracking performance before stage separation. Faster control is necessary to keep pitch deviations and thus required

control moments small as the available control moment reduces rapidly before burnout. The explicit time-varying

parameterization of Weθ used for the synthesis is:


Ûξeθ

z1θ


=


0 0.5

2ωbw(t)
√
(1 − 0.52) 0.5



ξeθ

ẽθ


. (22)

The close loop bandwidth ωbw is provided in Tab. 2. To guarantee smoothness, piecewise cubic Hermite interpolating

polynomials (PCHIPs) are used to calculate the points in-between the grid points. A frequency-independent constant

weighting is chosen for the remaining feedback signals, namely ÛθIMU (We Ûθ
= 0.5) and ÛzIMU (We Ûz = 0.5). The rationale

is again to limit the peak sensitivity to less than 1/0.5 = 2. The weighting filter Wu determines the control sensitivity

and represents the actuator limitations as well as robustness requirements. It is selected with unit gain up to a roll-off

frequency ωwo of 25 rad/s, i.e., half the thrust vectoring control bandwidth and as high as the first flexible modes slowest

natural frequency. Beyond 25 rad/s, differentiating behavior is selected to enforce controller roll-off. The explicit

parameterization of Wu used for the controller synthesis is:


Ûξu

z2


=


−100ωro 100ωro

−99 100



ξu

ũ


. (23)

After the dynamic weights are set, the time-varying scaling factors V are selected, which are based on the control

objectives in Section III.B.2. The scaling factors Ve and Vu trade off tracking accuracy and control effort. They can

be selected based on the maximum allowable errors (Ve) and maximum allowable inputs (Vu) at specific trajectory

segments. The value of Ve is primarily based on the pitch tracking requirements along the trajectory. At the beginning

of the gravity turn, load relief is prioritized over pitch tracking and Ve is chosen to 0.75 deg in the θIMU channel (Veθ ).

The value is reduced to 0.5 deg at 50 s. The reduction at this time avoids large pitch angles where the disturbances

are expected large and the combination of instability and controllability is least favorable (see Fig. 6). This value also

represents the pitch angle requirement at stage-separation. Accordingly, Ve in the ÛθIMU channel (Ve Ûθ
) starts high and is

gradually reduced to slow down the transient behavior along the ascent. The final value of 0.5 deg/s equals the pitch

rate requirement at stage separation. A constant value of 15m/s is chosen for the weight Ve Ûz , which also equals the drift

rate requirement at state separation. It reduces the drift from the reference trajectory without overly negative impact on

load alleviation.

The value Vu assigns the available control action to counteract the previously specified maximum errors. The
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TVC saturation limit directly provides an upper bound for its maximum value. Vu also addresses the consumption

requirement. For the considered launcher, a value of 2.5 deg in the high pressure region is chosen and 3.0 deg elsewhere.

This choice also reduces the control effort in the high pressure region for load alleviation purposes. Finally, the ratio

Ve/Vd determines the trade-off between tracking performance and disturbance rejection. Hence, disturbance rejection is

favored in the high dynamic pressure range. The selected values for Vd are motivated by the expected gusts.

Table 2 Values of the weights along the trajectory

Tuning
Parameter

16.5 s 30 s 40 s 50 s 60 s 80 s 103 s

ωbw [rad/s] 3.5 3.5 3.5 4.0 4.0 4.0 5.5

Ve Ûz [m/s] 15 15 15 15 15 15 15

Veθ [deg] 0.75 0.75 0.5 0.5 0.5 0.5 0.5

Ve Ûθ
[deg/s] 3.5 3.5 3.5 3.5 3.5 2.0 0.5

Vu [deg] 3.0 3.0 3.0 3.5 3.5 3.5 4.0

Vd [m/s] 10 10 10 10 5 5 5

Tab. 2 summarizes the numerical values chosen for the elements of Ve, Vu , and Vd. For smoothness, PCHIPs are

again used to calculate the points in-between the grid points. Fig. 8 depicts the scaling factors along the trajectory.

B. LTV Controller Synthesis and Implementation

Using the weights provided in Tab. 2 and the LTV representation of the launcher (see Section III.B.1) the structured

LTV controller is synthesized. First, the observer gain L is calculated by solving a scaled version of the RDE (6). This

scaled RDE can be readily derived following the step by step explanations in [29]. It is solved using the Matlab solver

ODE15s [31], suitable for stiff differential equations, a typical property of RDEs, see e.g. [32]. The solution takes 2 s on

a standard desktop PC. Next, the state feedback synthesis is conducted using L in an augmented version of the state

feedback RDE (7). Matlab’s ODE15s solves this RDE repeatedly in a bisection over γ. The bisection calculates the

minimal feasible γ of 3.75 in 239 s. This γ value is the optimal solution of the output feedback problem (20). In total,

the controller synthesis requires approximately 241 s.

Finally, the structured finite horizon LTV controller is assembled from the feasible solutions of the RDEs, the plant

and weighting filter state space matrices and static weights. Fig. 9 shows the controller’s fixed, traceable, and easily

implementable structure. It consists of a dynamic part whose outputs are fed into the static state feedback controller.

The controller dynamics consist of three elements with clear interpretations. The first element, Integral Augmentation,

provides tracking properties with zero steady state error. We contains only integral dynamics and can be interpreted as

an integral (I) controller. The second dynamic part is the Luenberger Observer. The third dynamic element, namely
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Fig. 8 Tuning parameters and control requirements along the trajectory

Roll-Off Augmentation, provides the additional user-specified control roll-off for frequencies above 25 rad/s providing

extra robustness for high frequencies. The integrator in the integral augmentation appears explicitly. This property can

be exploited in the implementation, e.g., to include simple anti-wind-up compensation [33].

The low amount of time for synthesis and the transparent weighting scheme allow for a fast tuning process. Another

advantage of the structured LTV synthesis is that it allows significantly denser grids and higher order systems compared

to classic LTV output feedback synthesis and LPV approaches for launcher control, see e.g. [5]. Thus, significantly

more accurate representations of the launcher dynamics are possible in the synthesis. This is especially important for the

flexible dynamics, which can be easily included into the control design. The proposed controller synthesis hence directly

includes flex-mode attenuation and stabilization. Therefore, high-order bending filters can be avoided. Such bending

filters can easily be of 14-th order resulting in very high order control systems. In comparison, the present controller has

fourteen states in total. Moreover, these bending filters have to be tediously tuned by hand requiring expert knowledge.
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Note that no wind model is included into the synthesis for multiple reasons. First, the wind model would be

estimated by the observer and increase the controller order. Moreover, the influence on the closed loop performance, i.e.,

disturbance attenuation, is already covered by the requirements on sensitivity.

Although, the controller is synthesized with a dependence on time, time after lift-off does not present the most

suitable scheduling parameter for implementation. The obvious practical reasons are non-nominal flight times and

ascent profiles. Stage separation is usually triggered if the launcher’s forward acceleration decreases below a specified

threshold, e.g., 3m/s2, which indicates the burnout of the solid rocket motor. However, uncertainties in the combustion

process cause longer or shorter burn times. The results are later or earlier stage separations, respectively. Due to

thrust perturbations, also the momentary launcher dynamics at current points in time ti of the ascent would diverge

continuously from the nominal dynamics at ti , which were used to synthesize the controller K(ti). Longer flight times

can be accounted for by limiting the scheduling signal to the nominal separation time. However, the increasing mismatch

between momentary launcher dynamics and momentary controller K(ti) persists. This mismatch is especially critical

for flexible mode attenuation. The flexible modes’ natural frequencies depend on the launcher mass and therefore at a

given time ti on the past thrust profile. It is possible to replace time with an alternative scheduling parameter. Such a

parameter must be strictly monotonically increasing so that a one-on-one map to time exists. A suitable choice for

scheduling is the non-gravitational velocity, i.e. the integrated non-gravitational acceleration.

Non-gravitational velocity is the favorable scheduling parameter due to its direct dependence on the thrust and

mass profile. For example, lower average thrust corresponds to lower velocities and higher fuel masses at times ti than

nominal. These lower velocities actually correspond to “earlier” nominal dynamics on the synthesis grid. Hence, a

controller scheduled over non-gravitational velocity fits better to the actual launcher dynamics, which is beneficial for

robustness of, e.g, the flexible mode attenuation. For implementation, the synthesis time grid and the corresponding

controller dynamics are mapped onto the nominal ascent’s velocity profile. Non-gravitational velocity is then used

as scheduling signal in the nonlinear simulation. For smoothness, the controller matrices in-between the explicitly

calculated controller grid points are interpolated via PCHIPs. Note that thrust profiles which are on average higher than

the one used for design can result in maximum velocities which exceed the final nominal velocity. Hence, the maximum

value of the scheduling signal is limited to the final nominal velocity (corresponding to the controller K(T)).

V. Results

A. Nominal Performance Analysis

First, a simulation of the closed-loop model resulting from the interconnection of the nonlinear launcher dynamics

and the LTV controller is conducted in Simulink. The closed loop is excited by the wind signal from the Vega mission

VV05 as shown in Fig. 3. It induces a build-up of q̄α shown in Fig. 10, which stays at least a factor two below the q̄α
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limit bound depicted in red. The control signal counteracts the disturbance and keeps the absolute pitch angle deviation

θerr close to zero for the whole ascent and well below 0.5 deg at separation. The limit value at separation is indicated by

the shortened red line in Fig. 10. During the whole ascent, the absolute drift rate Ûz does not exceed 20m/s and the drift

rate requirement at separation is fulfilled. The required TVC deflection remains below the saturation limit at all times.

Thus, the controller displays excellent disturbance rejection and tracking. It is particularly noteworthy that no variation

in performance is visible, although the unstable dynamics of the launcher vary significantly over time (see Fig. 6). The

gravity turn maneuver takes 100.03 s, i.e., at this time forward acceleration falls below 3 s and separation is triggered. In

conclusion, the proposed control design approach proofs suitable for the time-varying launcher control problem with

realistic disturbances. All performance requirements are achieved and the shorter flight time did not pose a problem.

B. Robust Performance Analysis

The next simulation setup confirms the robustness of the LTV controller. It considers perturbed launcher parameters

as well as realistic, wind disturbance. A significant amount of uncertainty arises from the launcher’s aerodynamic

parameters, mainly due to limited testing. Most aerodynamic data solely rely on numerical methods. Moreover, the

launcher passes through the transonic regime (0.8 ≤ Ma ≤ 1.2), for which calculating accurate aerodynamic parameters

is complicated. One of the most challenging parameters to estimate is the center of aerodynamic pressure δlGP as the

payload fairing causes a complex, turbulent airflow. Due to its significant contribution to the launcher’s instability, a

±10% uncertainty δlGP is included in lGP . Additionally, ±10% uncertainties in the aerodynamic force coefficients CA

and CN are considered. The solid rocket motor’s thrust is considered with a constant uncertainty δT in the range of

±1.0%. This uncertainty is attributed to the exhaust mass flow Ûmex in Eq. (11) and covers combustion errors. The thrust
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Fig. 10 Nominal performance results under VV05 wind disturbance

perturbation directly affects the launcher’s velocity V and, thus, the dynamic pressure q̄ at a given point in time. It

further indirectly affects the velocity through the variation in propellant consumption over time, the related change in

weight and balance (G, Jyy , and m), and controllability (lCG). The thrust uncertainty is the main contributor to this

uncertainty. Therefore, no explicit mass and balance uncertainties are modeled. As neither the velocity nor mass profile

match the gravity turn trajectory calculated via Eq. (19), the launcher inevitably starts to drift away from its reference

trajectory.

Regarding the launcher’s flexible motion, the eigenfrequencies of the flexible modes ωi are considered uncertain in

a range of δωi ± 5%. They are further directly related to the launcher’s momentary mass and thus coupled with the

thrust uncertainty. This coupling causes additional parameter perturbations.

Furthermore, the TVC dynamics are treated as uncertain. This uncertainty set covers up to 5% uncertainty in

the TVC’s steady state gain δkTVC , damping ratio δζTVC , and eigenfrequency δωTVC . A time delay of 30ms is included

between the pitch controller and the TVC accounting for computational delays. Tab. 3 summarizes all uncertainties

considered in the controller analysis. The parameter variations in Tab. 3 are evaluated only on their respective vertices.

Hence, a total of 1024 parameter combinations are analyzed.

The wind disturbance is generated by the proposed turbulence filter superimposed with a constant wind field as

described in Section III.A.3. Thus, wind disturbances deviating from the VV05 profile but with similar spectral

characteristics can be evaluated. Thirty-seven unique turbulence signals are considered resulting in 37888 simulation
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runs.

Table 3 Uncertainty set used for the controller analysis

Parameter Notation Range

T δT ±1%

lGP δlGP ±10%

CA δCA ±10%

CN δCN ±10%

ωi δωi ±5%

kTVC δTVC,k ±5%

ζTVC δTVC,ζ ±5%

ωTVC δTVC,ω ±5%

Delay τ 30ms
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Fig. 11 Monte Carlo simulation results

Fig. 11 shows the envelope of the simulation results ( ) and the performance requirement ( ). A shortened

red line indicates that the requirement only needs to be fulfilled at separation. During the whole atmospheric ascent the

tracking error θerr remains small with the maximum absolute deviation of 1.30 deg occurring at the start of the gravity

turn caused by the fast initial wind build-up. Afterwards, |θerr | never exceeds 0.75 deg. The pitch deviation requirement

at stage separation is fulfilled. Note that the stage-separation time varies between 97.64 s and 101.93 s. The absolute
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Fig. 12 Histogram of consumption obtained from robust performance simulation

drift rate | Ûzb | does not exceed 20m/s at engine cut-off as required. Overall, good drift performance is achieved as | Ûzb |

never exceeds 21.7m/s. The maximum aerodynamic load occurs at 27 s with an absolute value of 108209Pa deg, which

is a factor of 2.1 below the local limit value indicated by ( ). The lowest safety margin is 1.2 and occurs 17 s into the

ascent. The safety factor never decreases below 2.6 in the most critical flight segment between 45 s and 65 s. Hence,

the design exhibits excellent tracking and disturbance rejection in the high dynamic pressure region as intended by

the applied time-varying weighting. The commanded control effort remains small over the whole trajectory, with a

maximum absolute TVC deflection of 2.2 deg at around 18 s. It remains well below the saturation limit of 5.5 deg over

the whole ascent. Fig. 12 shows a distribution of the calculated consumptions, i.e., the cumulative control effort along

the trajectory. The maximum consumption is 25.3 deg s, which is almost ten times lower than the threshold of 250 deg s.

At all times, tight pitch angle control in combination with good load reduction is achieved regardless of the launcher

dynamics and disturbances. This demonstrates the possibilities provided by a time-varying control design.

VI. Conclusion
A finite horizon LTV design for a space launcher in atmospheric ascent is presented. The synthesis explicitly includes

the launcher’s time-varying dynamics as well as the variation of the control objectives along the ascent trajectory. A

novel synthesis procedure for finite horizon LTV systems is applied, which yields a highly structured controller. The

optimization problem is convex providing a norm optimal time-varying controller, based on a comprehensible weighting

scheme solely based on principle system and control objective knowledge. The LTV approach therefore circumvents the

solution of hard nonlinear optimization problems derived from the H∞ framework. The concluding nonlinear analysis

over a set of realistic wind disturbances and model perturbations demonstrates the suitability of LTV control for the

ascent problem.
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