
Introduction to Renormalization Theory and
Chiral Gauge Theories in Dimensional

Regularization with Non-Anticommuting γ5

Hermès Bélusca-Maïto,a∗ Amon Ilakovac,a†

Paul Kühler,b‡ Marija Mađor-Božinović,a§
Dominik Stöckinger,b¶ Matthias Weißwange,b‖

a Department of Physics, University of Zagreb,
Bijenička cesta 32, HR-10000 Zagreb, Croatia

bInstitut für Kern- und Teilchenphysik, TU Dresden,
Zellescher Weg 19, DE-01069 Dresden, Germany

March 17, 2023

Abstract
This review provides a detailed introduction to chiral gauge theories, renor-

malization theory, and the application of dimensional regularization with the non-
anticommuting BMHV scheme for γ5.

One goal is to show how chiral gauge theories can be renormalized despite the
spurious breaking of gauge invariance and how to obtain the required symmetry-
restoring counterterms. A second goal is to familiarize the reader with the theoretical
basis of the renormalization of chiral gauge theories, the theorems that guarantee the
existence of renormalized chiral gauge theories at all orders as consistent quantum
theories. Relevant topics include BPHZ renormalization, Slavnov-Taylor identities,
the BRST formalism and algebraic renormalization, as well as the theorems guaran-
teeing that dimensional regularization is a consistent regularization/renormalization
scheme. All of these, including their proofs and interconnections, are explained and
discussed in detail.

Further, these theoretical concepts are illustrated in practical applications with
the example of an Abelian and a non-Abelian chiral gauge theory. Not only the
renormalization procedure for such chiral gauge theories is explained step by step, but
also the results of all counterterms, including the symmetry-restoring ones, necessary
for the consistent renormalization are explicitly provided.
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1 Introduction
Except for gravity, all known fundamental particles and interactions in nature are de-
scribed by quantum gauge theories. The Standard Model (SM) of particle physics com-
bines the theories for electromagnetic, weak and strong interactions. It is based on the
gauge group SU(3)×SU(2)×U(1) and includes fermionic fields describing spin 1/2 quarks
and leptons and bosonic fields describing the Higgs boson and electroweak symmetry
breaking.

Exact solutions for quantum gauge theories rarely exist. Often, SM predictions
can be successfully evaluated in a perturbative treatment. Based on known exact so-
lutions of the free non-interacting quantum field theory, higher-order corrections can be
evaluated step by step. The higher-order corrections lead to Feynman diagrams with
closed loops and momentum integrations which lead to ultraviolet divergences. There-
fore, the higher-order amplitudes have to be regularized and renormalized. Equivalently,
a mathematically rigorous treatment has to inductively construct higher orders from
lower orders, where the construction has to respect fundamental requirements such as
causality, Lorentz invariance and unitarity of the time evolution. Practical regulariza-
tion/renormalization prescriptions that agree with such a rigorous approach are called
consistent schemes.

For so-called vector gauge theories, in which left-handed and right-handed fermions
have the same gauge interactions, an essentially perfect regularization/renormalization
framework is provided by dimensional regularization [1, 2, 3]. It is not only consistent in
the sense above, but it also manifestly preserves the fundamental gauge invariance at all
steps of calculations. Further, a useful practical tool is provided by the validity of the
quantum action principle [4], which enables the straightforward study of symmetries and
equations of motion on the level of Green functions. Alternative consistent schemes such
as analytic renormalization or Pauli-Villars regularization break gauge invariance. For
the status of further modern developments of alternative schemes we refer to Ref. [5].

However, a fundamental discovery of elementary particle physics is that electroweak
interactions act on chiral fermions, i.e., they treat left-handed and right-handed fermions
differently. Accordingly, the SM and all its extensions for potential new physics are chiral
gauge theories, in which left-handed and right-handed fermions interact differently with
gauge bosons. The presence of such chiral fermions and chiral interactions is manifested
through phenomena such as non-conservation of parity and charge conjugation invariance
of the weak interactions. Connected with chiral fermions is the possibility of chiral
anomalies [6, 7, 8], i.e. the possibility that classically conserved currents are not conserved
in the full quantum theory. Chiral anomalies lead to observed phenomena such as neutral
pion decay into two photons. Chiral gauge theories, however, can only be consistently
renormalized if chiral anomalies in currents coupling to gauge fields cancel. Although
the cancellation is valid in the SM [9, 10, 11], the potential presence of chiral anomalies
makes it impossible to define a consistent regularization/renormalization procedure that
manifestly preserves all symmetries involving chiral fermions. A particularly transparent
analysis can be given in terms of the non-invariance of the fermion path integral measure
[12, 13].

Within chiral models, dimensional regularization schemes meet the so-called “γ5-
problem”, which is a consequence of the fact that γ5 (similarly the Levi-Civita tensor
εµνρσ) is an intrinsically 4-dimensional quantity. The three basic properties, anticom-
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mutativity of γ5 with other γµ matrices, cyclicity of traces, and the non-zero trace of
products of γ5 with four different γµ matrices, cannot be simultaneously retained without
spoiling the consistency of the scheme. The usage of the naive scheme [14], including the
γ5 anticommutativity, is the most common in practical calculations, but it is restricted
to subclasses of diagrams [14, 15], and within it the γ5-matrix is ambiguously defined.
Giving up the cyclicity of the trace one has to introduce a consistent reading prescription
defining combinations of reading points for evaluations of noncyclic traces [16, 17, 18],
which makes the mathematical consistency of higher orders less transparent and ques-
tionable. Abandoning the anticommutativity of the γ5-matrix [1, 19, 2, 20, 21] leads to
the mathematically most rigorously established dimensional regularization scheme, the
so-called Breitenlohner-Maison/’t Hooft-Veltman (BMHV) scheme, for which all basic
quantum field theory properties were proven to be valid [22, 4, 23, 24].

Unfortunately, in the BMHV scheme with non-anticommuting γ5, some of the ad-
vantages of dimensional regularization are lost. In particular gauge invariance is not
manifestly valid in chiral gauge theories, reflecting the possibility of anomalies. Even if
the actual anomalies cancel, as in the SM, gauge invariance is broken in intermediate
steps, and the breaking has to be compensated by a more complicated renormalization
procedure. Instead of the typical textbook approach of generating a bare Lagrangian
and counterterms by a renormalization transformation of fields and parameters, spe-
cific symmetry-restoring counterterms of a more general structure need to be found and
included. Several recent works have begun to systematically investigate the practical ap-
plication of the BMHV scheme to chiral gauge theories and determine such counterterms
[25, 26, 27, 28], see also Ref. [29] for a compact summary.

The present review provides a detailed introduction into chiral gauge theories, dimen-
sional regularization, renormalization theory and the application of the BMHV scheme
to chiral gauge theories. Its intentions and motivations can be summarized as follows:

• We aim for a pedagogical review, starting at the level of typical quantum field
theory textbooks and containing detailed step-by-step explanations and illustrative
examples.

• On a practical level, we show how chiral gauge theories can be renormalized em-
ploying the BMHV scheme for γ5 and how the required symmetry-restoring coun-
terterms can be obtained and used. Thus we also provide an introduction to the
recent literature mentioned above. The general motivation is an increasing need for
high-precision (multi-)loop calculations in the SM and beyond, and an increasing
interest in mathematically rigorous treatments which avoid pitfalls such as incon-
sistencies, ambiguities or incorrect results.

• On a conceptual level, we discuss the theoretical basis of the renormalization of
chiral gauge theories. The existence of renormalized quantum gauge theories at all
orders, together with their physics interpretation, is a major result in theoretical
physics. It is based on a large set of complicated theorems and formalisms, ranging
from BPHZ theorems on causal and unitary renormalization to Slavnov-Taylor
identities and the BRST formalism, the theorems of algebraic renormalization,
and to the theorems guaranteeing that dimensional regularization is a consistent
regularization/renormalization scheme. All these relevant theorems, their role and
their interconnections are discussed and explained in detail. The proofs are either
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given or illustrated and explained.

• In line with the pedagogical goals, we use extensive cross-referencing between sec-
tions. Wherever possible, introductory sections develop intuition and expectations
of later steps, and later sections refer back to simpler, more qualitative explanations
and illustrations. In our citations we cite not only original works, but wherever
possible we also cite textbooks or other reviews, where further details can be found.
References to the remarks made at the beginning of this Introduction can be found
in the appropriate sections.

In the following we present an extensive outline of the individual sections.
In Section 2 the basic knowledge necessary for a discussion of chiral gauge theories in
dimensional regularization is presented:

• Beginning with key ingredients, first, non-Abelian Yang–Mills gauge theories and
spinors, chirality and chiral fermions are introduced, including required notions
from Lie group theory and Poincaré group representations. BRST invariance and a
corresponding Slavnov-Taylor identity are discussed in detail already at the classical
level. Turning to the quantum level, the notions needed for discussions of Green
functions and their generating functionals are introduced. Then Slavnov-Taylor
identities for Green functions and generating functionals are introduced, derived
from the path integral and interpreted in detail. The concluding subsection consid-
ers the case of an Abelian gauge theory, and simplifications and additionally valid
equations compared to the non-Abelian case are shown.

Section 3 gives a detailed introduction to dimensional regularization as a mathematically
well-defined regularization procedure which allows efficient computations and preserves
basic properties of quantum field theory:

• As a preview and to set the stage, the general structure of dimensional regular-
ization, renormalization and the counterterms as well as corresponding notations
are presented. Then D-dimensional extensions of 4-dimensional quantities are dis-
cussed, starting with the notion of the quasi D-dimensional space. The core of the
method are D-dimensional integrals. After listing their properties relevant for prac-
tical calculations, they are mathematically constructed in two ways, using parallel
and orthogonal spaces as well as via Schwinger parametrization. The definition
and properties of the metric tensor and its inverse are given. Of particular impor-
tance for chiral gauge theories are the definitions and properties of D-dimensional
γ matrices. Here an explicit construction of quasi-D-dimensional γ matrices is pro-
vided which is optimized for the study of chiral gauge theories. The extension to
D dimensions leads to the well-known γ5 problem; this problem is explained and
the BMHV scheme is presented together with its definitions and properties of the
γ5 matrix and the εµνρσ symbol.

• In addition to defining the regularization and constructing its basic elements, the
relationship of regularized Feynman rules to Lagrangians in D dimensions via a D-
dimensional Gell-Mann-Low formula is discussed. Special emphasis is put on the
relation between kinetic terms and corresponding propagators and chiral fermion-
gauge boson interactions. As an outlook and somewhat orthogonal topic, the vari-
ants HV, CDR, DRED and FDH of dimensional regularization schemes are briefly
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discussed. Their distinctions are of particular importance in the context of infrared
divergences and in the context of supersymmetric gauge theories.

In Section 4 the quantum action principle and regularized quantum action principle in
dimensional regularization are introduced. This is a set of relations between variations
of the classical action and variations of the Green functions of the resulting quantum
theory, which allow to express symmetries and symmetry violations of the regularized or
renormalized theory:

• First an instructive but formal derivation from the path integral is given, sidestep-
ping the need for regularization and renormalization. Then an exact proof of
the regularized quantum action principle within dimensional regularization is pre-
sented. This validity constitutes an important advantage of dimensional regular-
ization. Its role is illustrated by proving rigorously the all-order validity of the
Slavnov-Taylor identity for QCD, and explaining the extent of the validity of su-
persymmetry in the DRED scheme.

Section 5 is devoted to general renormalization theory, focusing on aspects not yet
specific to gauge theories. One goal is to explain the rigorous theorems guaranteeing that
regularization, renormalization and cancellation of divergences is possible and physically
sensible quantum field theories can be constructed at all orders. A second goal is to
analyze conditions for consistent regularization/renormalization procedures and to show
how we know that dimensional regularization is one such consistent procedure:

• Renormalization is introduced as a mathematical construction of time-ordered
products of free field operators in agreement with unitarity and causality of the
perturbative S-matrix. The “main theorem” of renormalization relates the con-
struction and its ambiguities to reparametrizations. Importantly, the ambiguities
and the reparametrizations are local in a well-defined sense. The relationships be-
tween the BPH approach and the R-operation, the BPHZ approach and the forest
formula and the usual counterterm approach are explained. Further, analytic regu-
larization is discussed as a conceptually interesting non-dimensional regularization
scheme which can facilitate all-order proofs.

• In the second subsection, the main theorem on dimensional regularization is re-
viewed. First an extensive discussion of the main statements is given — most
important is the applicability of dimensional regularization as a consistent regu-
larization/renormalization framework. Then the proof is sketched in detail. The
first steps set up Feynman graph theoretical notions, an organization of the loop
integrations and an optimized forest formula. Then the resulting integrals are in-
vestigated in detail, and an inductive proof can be given. All steps are explained
and illustrated with examples.

With the fundamentals of regularization and renormalization thus established, section
6 goes on to consider the case of quantized gauge theories and their renormalization. It
focuses on the compatibility of BRST invariance and Slavnov-Taylor identities, which
are vital for the correct physical interpretation of gauge theories, and the regulariza-
tion/renormalization procedure, which may in general spoil symmetries:
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• Revisiting first the familiar textbook case of a symmetry-preserving regularization
such as in QED or QCD reminds the reader of practically important concepts such
as renormalization transformations and puts into context the symmetry-breaking
case which is the central topic of this review.

• Focusing on this case of interest, the theory of algebraic renormalization is reviewed
as the framework in which rigorous and elegant proofs of the renormalizability of
gauge theories can be carried out, even if regularization procedures break symme-
tries. The quantum action principle of BPHZ renormalization emerges as the main
theoretical tool of this framework; hence a brief exposition of this tool is given, and
its connection to the quantum action principle in dimensional regularization is ex-
plained. The section then illustrates the inductive all-order proof of the restoration
of the spuriously broken symmetry by symmetry-preserving finite counterterms. It
also includes a brief discussion of anomalies, their cancellation conditions and an
outlook on further applications of algebraic renormalization.

• Finally, coming to the practical goal of this review, the formalism is specialized
to dimensional regularization. Here explicit equations for the computation of
symmetry-preserving counterterms are derived and the resulting structure of the
counterterm Lagrangian is discussed.

Section 7 gives a detailed illustration of the treatment of chiral gauge theories in the
BMHV scheme, using concrete examples:

• It focuses mainly on an Abelian example, a chiral QED model, discusses its struc-
ture, symmetry breaking as the result of the scheme, and the required counter-
term structure. It explains and compares several ways to determine the required
symmetry-restoring counterterms in practical calculations.

• The symmetry restoration is illustrated in detail for the photon self-energy case,
where it becomes apparent how the quantum action principle and Ward identities
have a crucial practical role in the calculations.

• For the chiral QED model, the calculations are generalized to the full one-loop
and the full two-loop level, and the new features arising at the two-loop level are
discussed.

• Finally, a detailed comparison of the Abelian chiral QED and a chiral non-Abelian
Yang-Mills theory is given at the one-loop level.
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2 Setup
In this section we collect background information on the main theoretical concepts needed
to discuss the renormalization of chiral gauge theories in dimensional regularization.
We begin with the general notions of Yang-Mills gauge theories and of spinors, γµ-
matrices and chirality. On the level of classical field theory, gauge invariance is then
extended to BRST invariance, including gauge fixing and Faddeev-Popov ghosts, and
BRST invariance is formulated as a Slavnov-Taylor identity (Secs. 2.1, 2.2, 2.3). In
Sec. 2.4 the basic objects of quantized field theories, Green functions and generating
functionals, are defined. Sec. 2.5 discusses the role and interpretation of the Slavnov-
Taylor identity on the level of the quantum field theory. Finally, Sec. 2.6 discusses the
case of abelian gauge theories, which involves additional identities. Much of the material
of this section can also be found in standard textbooks such as Refs. [30, 31, 32, 33, 34,
35, 36].

2.1 Yang–Mills Gauge Theories

We begin by summarizing the construction of general Yang-Mills gauge theories with
simple gauge group such as SU(N) or SO(N) and with generic matter fields.

The first ingredient is the gauge group. It is a Lie group in which all group elements
can be written as continuous functions of a certain number Ngen of parameters. The Lie
group can be associated with a Lie algebra with Ngen generators, called ta, a = 1 . . . Ngen.
The generators satisfy the commutation relations

[ta, tb] = ifabc t
c (2.1)

with antisymmetric structure constants fabc . There exists a set of generators for which
the structure constants are totally antisymmetric, such that we write fabc ≡ fabc ≡ fabc.
This is the case for sums of simple compact and U(1) subalgebras, see e.g. [32]. Any
set of matrices T a which satisfy the relation (2.1) is called a representation of the Lie
algebra.

One special representation, the so-called adjoint representation, always exists. It is
defined by

(T aadj)ij = −ifaij (2.2)

and thus a representation in terms of Ngen ×Ngen matrices. The commutation relation
(2.1) is fulfilled because of the Jacobi identity of commutators.

For any representation of the Lie algebra, we can form a representation of the Lie
group (at least locally in a region around the identity) by exponentiation,

U(θa) = e−igθ
aTa , (2.3)

where the θa are real parameters and where g is the gauge coupling.
Once the Lie group and Lie algebra are defined, we assume the existence of NF so-

called matter fields ϕi(x), i = 1 . . . NF . We collectively denote them as a tuple ϕ = (ϕi).
We further assume that there exists a representation of the Lie algebra in terms of
NF × NF matrices T a, and we define (local) gauge transformations of the matter fields
as

ϕi(x)→ U(θa(x))ijϕj(x) . (2.4)
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The representation may be reducible or irreducible. To simplify the notation we will
often suppress the indices and arguments and write the previous equation as

ϕ→ Uϕ . (2.5)

Next, we introduce the central elements of Yang-Mills gauge theories: the covariant
derivative Dµ and the gauge fields Aaµ. They are related as

Dµ = ∂µ + igT aAaµ (2.6)

where g is the gauge coupling. As the notation indicates, there is one vector field Aaµ for
each generator a = 1 . . . Ngen. The relation (2.6) is valid for any representation, and the
vector fields Aaµ are independent of the chosen representation. It is often useful to define
the matrix-valued and representation-dependent gauge field Aµ ≡ T aAaµ.

The fundamental requirement is that under a gauge transformation the covariant
derivative behaves as

Dµϕ→ UDµϕ . (2.7)

This is valid if and only if the matrix-valued gauge field transforms as

Aµ → UAµU
−1 − 1

ig
[∂µU ]U−1 . (2.8)

Finally, the field strength tensor can be defined as

Fµν = 1
ig

[Dµ, Dν ] . (2.9)

With this definition the field strength tensor is matrix-valued and dependent on the
chosen representation. We can decompose it as Fµν = T aF aµν and evaluate the previous
definition with the result

F aµν = ∂µA
a
ν − ∂νAaµ − gfabcAbµAcν . (2.10)

Here we see that the field strength tensors F aµν are independent of the chosen represen-
tation and are generalizations of the field strength tensor of electrodynamics.

At this point we collect all gauge transformations in compact and matrix-valued form
as

ϕ→ Uϕ , (2.11a)
Dµϕ→ UDµϕ , (2.11b)

Aµ → UAµU
−1 − 1

ig
[∂µU ]U−1 , (2.11c)

Fµν → UFµνU
−1 , (2.11d)

where the last equation directly follows from the definition (2.9). We also record the
gauge transformations for the fundamental fields in more explicit form, by taking the
parameters θa to be infinitesimal, as

ϕ→ ϕ− igθaT aϕ , (2.12a)
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Aµ → Aµ + ∂µθ − ig[θ,Aµ] , (2.12b)
Aaµ → Aaµ + ∂µθ

a + gfabcθbAcµ , (2.12c)

where we also set θ = T aθa. The last of the previous equations is particularly important.
It holds universally for any representation. It also contains the gauge coupling g. This
is at the heart of the universality of the gauge coupling, i.e. the physical statement that
one single gauge coupling governs all interactions of the gauge bosons with other gauge
bosons and with any matter fields. Note that this statement relies on the assumption of
a simple non-Abelian gauge group.

The renormalizable gauge invariant Lagrangian for this Yang-Mills theory can be
written as

Linv = LYM + Lmat , (2.13a)

LYM = −1
4F

aµνF aµν , (2.13b)

Lmat = Lmat(ϕ,Dµϕ) . (2.13c)

The concrete form of the matter field Lagrangian depends on details such as the spin of
the matter field and interactions between different matter fields.

2.2 Chiral Fermions

In this subsection we introduce the next ingredient — chiral fermions. A fundamental
discovery of elementary particle physics is that electroweak interactions fundamentally
act on chiral fermions, i.e. they treat left-handed and right-handed fermions differently.
Chiral fermions are also fundamental building blocks in many extensions of the Standard
Model, such as grand unified theories or supersymmetry.

Here we will first summarize general properties of 4-component, or Dirac or Majorana
spinors in 4 dimensions and then define the notion of chirality in this context. Thereafter
we also introduce the 2-component Weyl/van der Waerden spinor notation, which allows
an efficient understanding of many important relationships. We will then collect such
relationships.

2.2.1 General Representation-Independent Relations for γ Matrices and 4-
Spinors

Spinors are defined via their properties under Lorentz transformations. Therefore, we
begin with the reminder that a Lorentz transformation of ordinary 4-vectors is defined
by a matrix Λµν that leaves scalar products of 4-vectors invariant. Infinitesimal Lorentz
transformations are given by matrices of the form Λµν = δµν +ωµν with an infinitesimal,
antisymmetric matrix ωµν . A representation of the Lorentz group U(Λ) is (at least
locally) defined by specifying

U(δ + ω) = 1− i

2ωµνJ
µν (2.14)

with generators Jµν which must satisfy the commutation relations of the corresponding
Lie algebra,

[Jµν , Jρσ] = i(gνρJµσ − gµρJνσ + gµσJνρ − gνσJµρ) . (2.15)
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Now we can turn to spinors. The basic building blocks of 4-component spinor theory
are the γµ-matrices. They are 4 × 4 matrices satisfying the defining Clifford algebra
relation

{γµ, γν} = 2gµν1 . (2.16)

Here and everywhere else we use the mostly-minus metric. The fundamental importance
of these matrices is that they generate a representation of the Lorentz group. Indeed,
setting

Sµν = i

4 [γµ, γν ] , (2.17)

one can show that these Sµν satisfy the required commutation relations (2.15). Hence we
can now define the notion of a 4-component (Dirac or Majorana) spinor: a 4-component
spinor ψ is an object whose Lorentz transformation properties are given by

ψ
Λ=δ+ω−→

(
1− i

2ωµνS
µν
)
ψ . (2.18)

In addition to the γµ-matrices, the γ5 matrix and projection operators PL,R are
defined as

γ5 = iγ0γ1γ2γ3 = − i

4!εµνρσγ
µγνγργσ , PL,R = 1

2(1∓ γ5) , (2.19)

with the totally antisymmetric Levi-Civita (pseudo-)tensor εµνρσ with ε0123 = −1. These
matrices satisfy the additional equations

{γµ, γ5} = 0 , (γ5)2 = 1 , (PL,R)2 = PL,R , PLPR = 0 . (2.20)

Though not required in general, in many representations (including the chiral represen-
tation introduced below) the relations

(γµ)† = γ0γµγ0 , (γµ)∗ = γ2γµγ2 , (γµ)T = −C−1γµC , C = iγ0γ2 (2.21)

hold. In particular γ2 is the only imaginary matrix. We will assume these relations in
the following.

For any 4-spinor ψ we can define an adjoint spinor ψ̄ and a charge-conjugated spinor
ψC by

ψ̄ = ψ†γ0 , ψC = Cψ̄T . (2.22)

In this way, ψC is also a 4-spinor satisfying the transformation rule (2.18), and ψ̄ trans-
forms with the inverse matrix. One can show that bilinear expressions such as ψ̄1ψ2,
ψ̄1γ

µψ2 transform as Lorentz scalars and 4-vectors, respectively.

2.2.2 Chirality and Chiral Fermions

At the level of 4-component spinors, the concept of chirality is related to the γ5 matrix
and the projectors PL,R. Let us define for any 4-spinor ψ so-called left-handed and
right-handed spinors by

ψL = PLψ , ψR = PRψ . (2.23)

Then we can make three observations:

11



• The matrix γ2
5 = 1. Hence the eigenvalues of γ5 are ±1.

• The spinors ψL and ψR are eigenspinors of γ5 with eigenvalues −1, +1, respectively.

• The matrix γ5 and the projectors PL,R commute with the Lorentz generators Sµν .

Hence the left-handed and right-handed spinors are proper spinors in the sense of Eq.
(2.18), and they form two distinct invariant subspaces of the Lorentz representation: the
representation defined by Eqs. (2.17,2.18) is reducible.

We refer to the eigenvalue of γ5 as chirality; the left-handed and right-handed spinors
are chiral, or chirality eigenstates. In view of the above, chirality is a Lorentz invariant
property and its existence is linked to the structure of the Lorentz group representation
theory. For the general analysis we refer to Ref. [37] and, in particular, the textbooks
by Weinberg, Srednicki and Ryder [31, 35, 38]. The spaces of the left-handed and right-
handed spinors each define an irreducible representation of the Lorentz group — these
are the simplest nontrivial representations, which are commonly known as the (1

2 , 0) and
(0, 1

2) representations.
Slightly reformulating the previous statements, we may say that the left-handed

and right-handed spinors have different, independent Lorentz transformation proper-
ties. Hence in a Lorentz invariant field theory, left-handed or right-handed spinor fields
may appear independently. Specifically, gauge theories may be constructed in which left-
handed or right-handed spinor fields appear with different gauge group representations.
This is precisely what happens in case of the electroweak interactions. Chiral fermions
are the fermions described by such field theories based on chiral spinor fields.

2.2.3 Chiral Representation and 2-Component Spinor Formalism

Although many important relationships hold independently of any specific representation
of the γµ-matrices, it is useful to introduce here the so-called chiral representation, which
is given as follows by 2× 2 block matrices,

γµ =
(

0 σµ

σµ 0

)
, γ5 =

(
−1 0
0 1

)
, PL =

(
1 0
0 0

)
, PR =

(
0 0
0 1

)
. (2.24)

This representation uses the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(2.25)

and the following 4-vectors of 2× 2 matrices

σµ = (1, σk) , σµ = (1,−σk) . (2.26)

In this representation of γ-matrices, the Lorentz generators (2.17) take the form

Sµν =
(

i
4(σµσν − σνσµ) 0

0 i
4(σµσν − σνσµ)

)
. (2.27)

The block structure of all these matrices makes manifest that the Lorentz representation
is reducible and that the left-handed and right-handed spinor spaces are invariant under
Lorentz transformations.
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This block structure of the chiral representation suggests introducing individual 2-
component spinors for the left-handed and right-handed parts. In the following we will
briefly introduce the corresponding 2-component spinor formalism, which allows a very
transparent formulation for many important and useful equations. We mention that a
systematic theory of the Lorentz group representations automatically leads first to such
2-component spinors as the natural spinors for the (1

2 , 0) and (0, 1
2) representations and

that in such a context the 4-component spinors appear as secondary objects. We also
refer to the review [39] for an excellent account of 2-spinors and relationships between
formalisms and relationships between different conventions.1

To avoid confusion, in the remainder of the present subsection we will always denote
4-component spinors with capital Greek letters such as Ψ and 2-component spinors with
lower-case Greek letters such as χ, η. The relationship between a 4-component spinor Ψ
and 2-component spinors is given by the decomposition

Ψ =
(
χα
η̄α̇

)
. (2.28)

Here the indices α = 1, 2 and α̇ = 1, 2, and χα and η̄α̇ are two distinct 2-component
spinors. For the 2-component spinors we define Hermitian conjugation as

χ̄α̇ = (χα)† , χα̇ = (χα)† , (2.29)

and raising and lowering of indices as

χα = εαβχ
β , χα = εαβχβ , χα̇ = εα̇β̇χ

β̇ , χα̇ = εα̇β̇χβ̇ , (2.30)

with the antisymmetric symbol

εαβ = −εβα, εα̇β̇ = −εβ̇α̇, εαβ = εβα, εα̇β̇ = εβ̇α̇, ε12 = 1, ε1̇2̇ = 1. (2.31)

The Lorentz transformations of the original 4-spinors induce how the 2-spinors trans-
form. For an infinitesimal Lorentz transformation matrix Λ = δ + ω we can define the
2× 2 matrix

M(δ + ω)α β ≡ 1− i

2ωµν
(
i

4(σµσν − σνσµ)
)
α

β (2.32)

in accordance with the general Eq. (2.14). The explicit form of Sµν in Eq. (2.27) shows
that this is the transformation matrix for 2-spinors χα. The matrix M is a general
complex invertible matrix with det(M) = 1, i.e. M is an element of the group SL(2,C).
Elementary computations involving raising and lowering of indices and inspection of Sµν
show that in total, the four kinds of 2-spinors transform as follows:

χα → (M)α β χβ, (2.33a)

η̄α̇ → (M−1†)α̇ β̇ η̄
β̇, (2.33b)

1In our presentation we have chosen to start from the 4-component spinors despite the fundamental
nature of 2-component spinors. Our most important reason is that we aim to consider DReg, where there
is the γ5-problem which precisely means that the treatment of chirality and specifically 2-component
spinors is problematic, while the treatment of ordinary γµ-matrices remains possible.
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χα → χβ (M−1)β α, (2.33c)

η̄α̇ → η̄β̇ (M †)β̇ α̇. (2.33d)

These relations highlight explicitly that the four types of spinors have four different
Lorentz transformation rules. The efficiency of the 2-component spinor formalism is
strongly related to this use of the index notation to denote the different Lorentz rep-
resentations. The four representations are different but not all inequivalent: The fact
that εαβMβ

γ εγδ = (M−1)δ α shows that the spinors χα and χα transform in equivalent
(i.e. unitarily related) transformations — the (1

2 , 0) representation. Analogously, the
representations for η̄α̇ and η̄α̇ are both equivalent to the general (0, 1

2) representation.
The Lorentz transformation properties also suggest the following definitions for an

index-free notation for spinor products:

χη = χαηα , χ̄η̄ = χ̄α̇η̄
α̇ , (2.34a)

χσµη̄ = χασµαα̇η̄
α̇ , χ̄σ̄µη = χ̄α̇σ̄

µα̇αηα . (2.34b)

The expressions in the first line are clearly Lorentz-invariant scalar quantities, and a
calculation shows that the expressions in the second line transform as Lorentz 4-vectors.
The index-free notation and the conventions to denote the matrix indices of the σµ and
σ̄µ-matrices in this way reflect the Lorentz transformation properties of all these objects.

As announced, we will now use the 2-component formalism to write useful spinor
relations in a transparent way. We begin with the spinors and their conjugates,

Ψ =
(
χα
η̄α̇

)
, Ψ = (ηα χα̇) , ΨC =

(
ηα
χα̇

)
, ΨC = (χα η̄α̇) , (2.35)

i.e. these conjugations simply exchange the 2-component spinors and the index positions.
Chiral spinors take the forms

ΨL =
(
χα
0

)
, ΨL = (0 χ̄α̇) , ΨR =

(
0
η̄α̇

)
, ΨR = (ηα 0) . (2.36)

Examples of useful bilinear expressions for anticommuting spinors (which allow rear-
rangements such as χη = ηχ in view of ηαχα = −χαηα) are

Ψ1PLΨ2 = ΨC
2 PLΨC

1 = η1χ2, (2.37)
Ψ1PRΨ2 = ΨC

2 PRΨC
1 = χ1η̄2, (2.38)

Ψ1γ
µPLΨ2 = ΨC

2 (−PLγµ)ΨC
1 = χ1σ

µχ2 = −χ2σ
µχ1, (2.39)

Ψ1{1, γ5, γ
µ, γµγ5}Ψ2 = ΨC

2 {1, γ5,−γµ,−γ5γ
µ}ΨC

1 . (2.40)

Using the Hermiticity relations for 2-spinors

ψ
α̇ = (ψα)†, ψα̇ = (ψα)†, (ψ1ψ2)† = ψ2ψ1, (ψ1σ

µψ2)† = ψ2σ
µψ1, (2.41)

directly leads to the following equations for Hermitian conjugation of 4-component bilin-
ears:

(Ψ1PLΨ2)† = Ψ2PRΨ1, (2.42)
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(Ψ1γ
µPLΨ2)† = Ψ2PRγ

µΨ1, (2.43)
(Ψ1γ

µPRΨ2)† = Ψ2PLγ
µΨ1, (2.44)

(Ψ1{1, γ5, γ
µ, γµγ5}Ψ2)† = Ψ2{1,−γ5, γ

µ,−γ5γ
µ}Ψ1. (2.45)

At this point we stress again that all equations of this section are valid in strictly 4-
dimensional Minkowski spacetime. Later we will use dimensional regularization in which
2-component spinors are not directly defined. However, all equations for 4-component
spinors written in this section have been written in such a way that they remain valid
on the D-dimensional regularized level.

2.3 BRST Invariance and Slavnov-Taylor Identity

Though the construction of the Yang-Mills Lagrangian (2.13) is elegant and predictive,
the Lagrangian cannot directly be quantized. On the level of canonical quantization, the
canonical conjugate momentum field corresponding to Aa0 identically vanishes; on the
level of path integral quantization, the naively defined path integral is ill-defined due to
the integration over infinitely many gauge equivalent field configurations.

The well-known proposal by Faddeev and Popov modifies the path integral defini-
tion of the quantum theory by separating off this divergent factor [40]. Via a clever
manipulation the path integral can then be written in terms of a modified Lagrangian
which contains a gauge fixing term as well as terms with Faddeev-Popov ghost fields.
The interactions of the Faddeev-Popov ghosts are determined by the choice of the gauge
fixing. This path integral formulation also allowed to derive Slavnov-Taylor identities
which could then be used in the first proofs of renormalizability of Yang-Mills theories,
as discussed later in Sec. 6.

Historically, it was observed afterwards that the resulting Faddeev-Popov Lagrangian
is invariant under a new symmetry, the so-called BRST invariance [41, 42, 43, 44]. Here
we will directly start with this BRST invariance, which can be intrinsically motivated
and which provides an efficient formalism for setting up the quantization of Yang-Mills
theories. Our presentation has similarities to the presentation of the Kugo/Ojima formal-
ism in Ref. [45] and the presentations of the BRST and Batalin/Vilkovisky formalisms
in Refs. [46, 32].

The main idea is that the concept of local gauge invariance means that physics is
described by equivalence classes. Precisely speaking on the classical level, field configu-
rations which are related by local gauge transformations by definition describe the same
physical state. The BRST formalism implements this idea in an elegant way. It first
introduces the notion of ghost number Ngh. All fields introduced so far have vanishing
ghost number, but we shall introduce objects with positive or negative ghost number
later. The BRST formalism further postulates the existence of an operator s, the BRST
operator, which acts on classical fields and has the following properties and interpreta-
tions:

• It generalizes gauge invariance in the sense that: a field configuration X with ghost
number zero is “physical” if

sX = 0 . (2.46)
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• It generalizes gauge transformations and gauge equivalence in the sense that: two
“physical” field configurations X1, X2 with ghost number zero are physically equiv-
alent if some Y exists with

X1 = X2 + sY . (2.47)

As a side note, objects X which are total BRST transformations,

X = sY , (2.48)

are therefore “unphysical” in the sense that they are equivalent to the trivial field
configuration where all fields vanish (even if they also satisfy sX = 0).

• It is nilpotent,

s2 = 0 , (2.49)

and this nilpotency is important for the consistency of the previous two relations.

• In general, s acts as a fermionic differential operator which increases ghost number
by one. Specifically, on products of fermionic and bosonic expressions Fi, Bi it
satisfies the product rules corresponding to a so-called graded algebra,

s(B1B2) = (sB1)B2 +B1(sB2), (2.50a)
s(F1B2) = (sF1)B2 − F1(sB2), (2.50b)
s(F1F2) = (sF1)F2 − F1(sF2). (2.50c)

In order to define an operator with these properties, one first introduces ghost fields
ca(x), which are scalar fields with fermionic statistics and ghost number +1. As for the
gauge fields, there is one such ghost field for each gauge group generator a = 1 . . . Ngen,
and we can also write c = T aca with representation matrices T a. On the ordinary fields,
the BRST operator is then defined as an infinitesimal gauge transformation, see Eq.
(2.12), but with the replacement θa → ca,

sAµ(x) = ∂µc(x)− ig[c(x), Aµ(x)] , (2.51a)
sAaµ(x) = ∂µc

a(x) + gfabccb(x)Acµ(x) = (Dµc(x))a , (2.51b)
sϕ(x) = −igc(x)ϕ(x) . (2.51c)

Here we also used the covariant derivative acting on ghost fields, which is defined by
using the adjoint representation for the generators. The BRST transformation of the
ghost fields themselves is defined via the structure constants of the Lie algebra,

sca(x) = 1
2gf

abccb(x)cc(x) , (2.52a)

sc(x) = −igc(x)2 . (2.52b)

In this way, the BRST operator is indeed nilpotent if it acts on any combination of these
fields, and it clearly generalizes the original gauge transformations.

In this formalism introducing gauge fixing and associated ghost interaction terms
becomes very natural and transparent. The existence of two further kinds of fields is
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postulated, the antighosts c̄a and the Nakanishi-Lautrup auxiliary fields Ba (with ghost
number −1 and 0, respectively). From the present point of view these fields essentially
have the sole purpose of allowing the formulation of a gauge fixing. They form a so-called
BRST doublet, which means the following very simple BRST transformations

sc̄a(x) = Ba(x) , (2.53a)
sBa(x) = 0 , (2.53b)

which are again consistent with nilpotency. It is known that introducing such a BRST
doublet does not change the cohomology classes of the BRST operator [47]. In terms of
the interpretation specified above this means that introducing the BRST doublet does
not not change the physical content of the theory.

With these ingredients we can discuss Lagrangians of the type

Lfix,gh = s [c̄aXa] (2.54)

with some ghost-number zero object Xa. Evaluating the BRST transformation on the
right-hand side produces terms of ghost number zero, which are allowed terms in a
Lagrangian. Given the interpretations listed above, such Lagrangians are “unphysical”
since they are total BRST transformations. Similarly, adding such a Lagrangian to the
original gauge invariant Yang-Mills Lagrangian Linv+Lfix,gh does not change the physical
content.

Hence we may use this possibility to design a Lagrangian of this type that can be
used for gauge fixing, allowing straightforward quantization of the theory. The common
choice is

Lfix,gh = s

[
c̄a
(

(∂µAaµ) + ξ

2B
a
)]

= Ba(∂µAaµ) + ξ

2(Ba)2 − c̄a∂µ(Dµc)a . (2.55)

The B-fields are auxiliary fields in the sense that they have no kinetic term and have
purely algebraic equations of motion. They can hence be eliminated by their equations
of motion

Ba = −1
ξ
∂µAaµ, (2.56)

Lfix,gh = − 1
2ξ (∂µAaµ)2 − c̄a∂µ(Dµc)a . (2.57)

In this way the Lagrangian contains the usual ξ-dependent gauge fixing term, and the
way it was constructed led to corresponding ghost kinetic terms and ghost–antighost–
gauge boson interactions. The result of this construction is the same as the result of the
Faddeev-Popov approach.

Before turning to quantization, there is one final useful extension of the classical
Lagrangian. We note that most of the BRST transformations are local products of
fields, i.e. constitute non-linear field transformations. In a non-Abelian gauge theory, the
only exceptions are the BRST transformations sc̄a and sBa, which are linear or zero. In
an Abelian theory (where fabc would vanish), also the BRST transformations of ca and
Aaµ would be linear. In the quantized theory such field products will define composite
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operators that require dedicated renormalization. It is useful to introduce “sources” for
these composite operators, i.e. classical fields ρaµ(x), ζa(x), Yi(x),2 which couple to the
composite operators in the Lagrangian. We therefore define

Lext = ρaµsAaµ + ζasca + Yisϕi . (2.58)

Each source has negative ghost number such that the Lagrangian has total zero ghost
number, and each source has the opposite statistics of the original field, such that the
Lagrangian is bosonic. The dimensions of the sources are such that the Lagrangian
has dimension 4. Specifically, the sources ρaµ are fermionic with ghost number −1 and
dimension 3, the sources ζa are bosonic with ghost number −2 and dimension 4. By
convention, the BRST transformation of all sources vanishes.

In total, we can then define the full classical Lagrangian, which will be the basis of
quantization, as follows:

Lcl = Linv + Lfix,gh + Lext . (2.59)

Each of the three parts is individually BRST invariant. The first part is the gauge
invariant physical Lagrangian. It depends only on ordinary fields, on which BRST trans-
formations act like gauge transformations. The second part contains the gauge fixing
and ghost terms which allow quantization of the theory. Together they are a total BRST
transformation and hence BRST invariant and unphysical. The third part is BRST
invariant in view of the nilpotency s2 = 0. In total,

sLcl = 0 . (2.60)

The same statement can be rewritten in functional form. Defining the classical action

Γcl =
∫
d4xLcl (2.61)

allows to rewrite Eq. (2.60) as the Slavnov-Taylor identity

S(Γcl) = 0 (2.62)

with the Slavnov-Taylor operator

S(F) =
∫
d4x

(
δF

δρaµ(x)
δF

δAaµ(x) + δF
δζa(x)

δF
δca(x) + δF

δYi(x)
δF

δϕi(x) +Ba(x) δF
δc̄a(x)

)
. (2.63)

The Slavnov-Taylor identity (2.62) is the ultimate reformulation of gauge invariance of
the classical action after introducing gauge fixing, ghost terms and external sources for
composite operators. This identity will be a crucial ingredient in the renormalization
procedure.3

2These sources are not quantized and not integrated over in the path integral. These sources are
also called “external sources” or “external fields” or “antifields”. One may also regard them as local,
x-dependent parameters of the Lagrangian.

3 We remark that the choice of gauge fixing used in the present review is not the only option. Other
options include physical gauges such as axial gauge where no ghosts are required, or the background field
gauge, see e.g. Refs. [32, 34] for textbook discussions. Of particular interest for the present discussion
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2.4 Green Functions in Quantum Field Theory

In this subsection we introduce basic notation for quantum field theory required for our
discussion of higher orders and regularization and renormalization. We consider a generic
quantum field theory with dynamical fields φi(x) (these may be the gauge fields, matter
fields, ghost or antighost fields introduced in earlier subsections) and a Lagrangian L.

Fundamental objects of the full, interacting quantized theory are Green functions,
i.e. time-ordered expectation values of Heisenberg-picture field operators φHi in the full
vacuum |Ω〉 of the interacting theory:

Gi1...in(x1, . . . , xn) = 〈Ω|TφHi1 (x1) . . . φHin(xn)|Ω〉 . (2.64)

We also consider Green functions involving composite local operators O,

Gk1...km
i1...in

(y1, . . . , ym, x1, . . . , xn) = 〈Ω|TOHk1(y1) . . .OHkm(ym)φHi1 (x1) . . . φHin(xn)|Ω〉
≡ 〈TOk1(y1) . . .Okm(ym)φi1(x1) . . . φin(xn)〉 . (2.65)

Here φ denotes a generic quantum field, and the above expressions may contain different
kinds of such fields. Where unambiguous we shall write φi1(x1) ≡ φi1 . The second line
here introduces an alternative short-hand notation for such Green functions, where the
explicit symbols for the vacuum state and for the Heisenberg picture are suppressed. We
will often use this short-hand notation in the following.

Generally, Green functions are important since they encapsulate the essential infor-
mation of a given quantum field theory. We briefly remark how they particularly allow
constructing important observable quantities. The physical rest masses of one-particle
states are reflected in the poles of momentum-space two-point functions, as a result of
the Källen-Lehmann representation. S-matrix elements for scattering processes between
asymptotically free states are obtained via the Lehmann-Symanzik-Zimmermann reduc-
tion formalism, which can be derived from Haag-Ruelle scattering theory (see e.g. the
textbooks by Srednicki and Peskin/Schroeder [35, 33] and the monograph by Duncan
[49] for a particularly detailed account).4

A very useful tool for general discussions is the generating functional Z(J,K) for the
most general Green functions with elementary fields and composite operators. It can
be written by introducing sources (or “external fields”, i.e. fields which always remain
classical and never are quantized) Ji(x) for the elementary fields and Ki(x) for the
composite operators such that

Gk1...km
i1...in

(y1, . . . , ym, x1, . . . , xn) (2.66)

is the application of the background field gauge to the electroweak SM which includes chiral fermions
(and electroweak symmetry breaking) [48]. Later, in Sec. 6.2.4 we will further comment on proofs of
renormalizability and physical properties such as charge universality in these different gauges. The central
point of the present review is the application of the BMHV scheme for non-anticommuting γ5 to chiral
gauge theories. Here it is noteworthy that this application is essentially unchanged regardless whether
the gauge fixing of the main text or the background field gauge is used. The corresponding discussion
and the required computation of symmetry-restoring counterterms were carried out in Ref. [27]. The
main technical difference to the formalism presented here is that the dominant role of the Slavnov-Taylor
identity is replaced by a Ward identity reflecting gauge invariance with respect to background fields; the
overall logic and detailed calculational steps are essentially the same.

4An important subtlety is that Green functions are particularly defined in momentum space for off-
shell momenta. Physical observables are related to the on-shell limits, where Green functions may develop
infrared divergences. In the present review we will not discuss the specifics of the on-shell limits of Green
functions.
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= 1
Z(0, 0)

δm+nZ(J,K)
δiKk1(y1) . . . δiKkm(ym) . . . δiJi1(x1) . . . δiJin(xn) . . .

∣∣∣∣∣
J=K=0

.

In perturbation theory the Green functions are given by Feynman diagrams obtained
from the well-known Gell-Mann-Low formula. Specifically, in perturbation theory the
Lagrangian is split as L = Lfree+Lint, where the free part Lfree is bilinear in the quantum
fields, allowing quantization as a free field theory. This quantization then leads to free
field operators which we denote as φi without the superscript, and to a free vacuum
|0〉. The Gell-Mann-Low formula for the perturbative evaluation of Green functions then
yields an explicit construction of the generating functional:

Z(J,K) = 〈0|T exp
(
i
∫
d4x(Lint + Jiφi +KiOi)

)
|0〉

〈0|T exp (i
∫
d4xLint ) |0〉 . (2.67)

The evaluation of this formula via Wick contractions leads to Feynman rules and
Feynman diagrams. In Eq. (2.67) we also introduce a short-hand notation which we
will often use: all appearing fields and sources Ji, φi,Ki,Oi and the Lagrangian Lint
have the spacetime argument x, which is suppressed. Further there is a summation over
the index i, and the summation range extends over all quantum fields in the term Jiφi
and over all composite operators with sources in the term KiOi.

Another representation of the generating functional is given by the path integral

Z(J,K) =
∫
Dφ ei

∫
d4x(L+Jiφi+KiOi) , (2.68)

where Dφ is the measure of the integration over all field configurations and the quanti-
ties in the exponent are number-valued fields (either sources or path integral integration
variables). The same short-hand notation suppressing the arguments is used. We stress
that both equations (2.67) and (2.68) are formal and not yet fully defined: the literal
application of the Gell-Mann-Low formula leads to divergences unless the theory is reg-
ularized, and the path integral formula requires a precise definition of the path integral
measure. Both formulas will become well-defined via the process of regularization and
renormalization (this process can also be regarded as a constructive definition of the path
integral measure).

The full Green functions discussed so far are described by the most general Feynman
diagrams which are allowed to contain several disconnected components. It is possible to
define a second generating functional Zc which directly generates only connected Green
functions, i.e. the sums of connected Feynman diagrams. The relation is given by

Z(J,K) = eiZc(J,K) . (2.69)

For a proof that this generates precisely the connected Green functions see e.g. Refs.
[50, 51].5

For renormalization, one-particle irreducible (1PI) Feynman diagrams are most useful
since they are the smallest building blocks that suffice to discuss ultraviolet divergences
and counterterms. The corresponding 1PI Green functions can also be generated by a

5The conventions for the generating functionals differ slightly between most references. Our conven-
tions are essentially the same as in Ref. [33] except that our connected functional Zc = −E there.
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generating functional. This 1PI generating functional is called Γ, or effective action. It
is defined by a Legendre transform of Zc which replaces the sources by classical fields.

In order to prepare for the introduction of this 1PI generating functional Γ we make
two remarks: First we note that there is a mapping between the sources Ji and expec-
tation values of field operators φi. Specifically the first derivatives of the generating
functional Zc have the special interpretation as the expectation values of the field oper-
ators,

φclassi (x) ≡ δZc
δJi(x) = 〈φi(x)〉J,K . (2.70)

In contrast to Eq. (2.66), we have not set the sources to zero. Each choice of the sources
Ji(x) (for fixed Ki(x)) thus defines expectation values of the quantum field operators.
These expectation values are number-valued, “classical” fields φclassi (x). We may regard
these classical fields as functionals of the sources Ji(x) (for fixed Ki(x)), or we may
invert the relationship and regard the sources as functionals of the classical fields. In the
following we will always assume that the vacuum expectation values of the operators φi
vanish. Here this means that J = 0 is mapped to φclass = 0 and vice versa (for K = 0):

δZc
δJi(x)

∣∣∣∣∣
J=K=0

= 0 . (2.71)

The second remark is the following: In the classical limit, the path integral is dominated
by the classical field configuration minimizing the classical action. Hence, in the classical
limit (“cl.lim.”) and up to an irrelevant constant, we have

Z(J,K) = eiZc(J,K) cl.lim.−→ ei(Γcl(φclass,K)+
∫
d4xJiφclass

i )
∣∣∣
0= δΓcl

δφclass±J
, (2.72)

where Γcl =
∫
d4x(L+KiOi) is the classical action (including source terms for composite

operators), and where the ± signs apply for bosonic/fermionic fields φ, respectively.
This motivates the definition of a new functional Γ via the analogous, exact relation

Zc(J,K) = Γ(φclass,K) +
∫
d4xJiφ

class
i

∣∣∣
J=∓ δΓ

δφclass

. (2.73)

This relation is a Legendre transformation, which can be inverted to

Γ(φclass,K) = Zc(J,K)−
∫
d4xJiφ

class
i

∣∣∣
φclass= δZc

δJ

. (2.74)

In the Legendre transformation the sources Ki for composite operators act as spectators,
such that the relation

δΓ(φclass,K)
δKi(x) = δZc(J,K)

δKi(x) (2.75)

holds.
The functional Γ defined in this way has two very important properties. First, it is

equal to the classical action plus quantum corrections, i.e.

Γ(φclass,K) = Γcl(φclass,K) +O(~) , (2.76)
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where we reinstate explicit powers of ~ to count the number of loops. This justifies
the name “effective action”. Second, Γ generates one-particle irreducible (1PI) Green
functions. For the full proofs of these statements see e.g. the textbooks by Zinn-Justin
or Itzykson/Zuber [50, 51], and for detailed discussions including subtleties in cases with
spontaneous symmetry breaking see e.g. the textbooks by Weinberg or Brown [32, 52].

Let us introduce further useful notation related to Green functions and Γ. First, in
the following and in general we simplify the notation for Γ and write only φi instead of
φclassi for its arguments if no misunderstanding is possible.

Next we introduce notation for specific 1PI Green functions. Such concrete 1PI Green
functions in position space are obtained from derivatives of Γ with respect to the classical
fields as

Γφiφj ...(x1, x2, . . .) = δΓ
δφi(x1)δφj(x2) . . .

∣∣∣
φ=0

= −i〈φi(x1)φj(x2) . . .〉 1PI . (2.77)

In terms of Feynman diagrams, iΓφiφj ... corresponds to the set of 1PI diagrams with the
indicated external fields. When passing to momentum space via a Fourier transform, we
split off a δ-function corresponding to momentum conservation; symbolically

Γφiφj ...
∣∣∣F.T.(p1, p2, . . .) = Γφiφj ...(p1, p2, . . .)(2π)4δ(4)(∑n

j=1 pj) . (2.78)

Equations (2.72,2.76) show that naturally the source terms for composite operators
combine with the Lagrangian; hence it is motivated to absorb these source terms into
the Lagrangian. This is precisely what was done in Sec. 2.3 for certain important op-
erators corresponding to nonlinear BRST transformations, see Eq. (2.58). In this way,
the renormalization of such composite operators is fully integrated into the standard
renormalization procedure.

Sometimes, special operators need to be considered only in the simpler context of
single operator insertions. Let O be such an operator and KO the corresponding source,
treated as in Eqs. (2.67) or (2.68) or absorbed into the Lagrangian. The sources for all
remaining operators are collectively called K. Then, for single insertions of O a special
notation is defined:

O(x) · Z(J,K) = δZ(J,K,KO)
δ(iKO(x))

∣∣∣
KO=0

, (2.79a)

O(x) · Γ(φ,K) = δΓ(φ,K,KO)
δKO(x)

∣∣∣
KO=0

. (2.79b)

For particular 1PI Green functions with a single operator insertion we can write
(O(x) · Γ)φiφj ... (x1, x2, . . .) = −i〈O(x)φi(x1)φj(x2) . . .〉 1PI . (2.80)

In terms of Feynman diagrams, i (O(x) · Γ)φiφj ... corresponds to 1PI diagrams with the
indicated external fields and one insertion of a vertex corresponding to iO(x), where the
factor i results as usual from the exponential function in the Gell-Mann-Low formula
(2.67).

An important consequence is the lowest-order behaviour of the operator insertion into
Γ,

O · Γ(φ) = Oclass +O(~) , (2.81)
where Oclass is the classical field product corresponding to the operator O. This is in line
with the interpretation of Γ as the effective action.
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2.5 Slavnov-Taylor identities for Green functions and their interpreta-
tion

In Sec. 2.3 we introduced BRST invariance as a substitute for gauge invariance in presence
of a gauge fixing, and we found the BRST invariant classical action. The question
is now: How is this BRST invariance reflected in the full quantum theory? The most
general answer is that the off-shell Green functions introduced in Sec. 2.4 satisfy so-called
Slavnov-Taylor identities. Here, we provide a formal derivation of these Slavnov-Taylor
identities. This derivation is simple and elegant and allows an efficient understanding and
interpretation of the structure of the Slavnov-Taylor identities. It is however formal in the
sense that it ignores the procedure of regularization and renormalization; hence we will
later, in Sec. 6, need to discuss how this procedure might change the identities. There,
we will also discuss the important role of the Slavnov-Taylor identities in establishing the
renormalizability of Yang-Mills theories, including the decoupling of unphysical degrees
of freedom and the unitarity of the physical S-matrix.

We start from the BRST invariance of the classical action, which was already ex-
pressed by Eq. (2.60) and rewritten as the Slavnov-Taylor identity (2.62). Here we
rewrite it as an invariance relation

Γcl(φ,K) = Γcl(φ+ δφ,K) (2.82)

where φ denote all dynamical fields (Aµ, ϕi, c, c̄, B) and K denote all sources (ρµ, Yi,
ζ) and where the field transformations are given as

δφ = θsφ (2.83)

with an infinitesimal fermionic parameter θ such that δφ always has the same
bosonic/fermionic statistics as φ itself. Eq. (2.82) is meant at first order in θ and at
this order it is clearly equivalent to both Eqs. (2.60,2.62).

Now we use this invariance as a starting point and derive the Slavnov-Taylor identities
for the generating functional (2.68) in the path integral formulation. We assume that
the path integral measure is invariant under the same symmetry transformation φ →
φ+ δφ ≡ φ′ and therefore write

Z(J,K) =
∫
Dφ′ ei(Γcl(φ′,K)+

∫
d4xJiφ′i)

=
∫
Dφ ei(Γcl(φ,K)+

∫
d4xJiφi+Jiδφi) . (2.84)

The variation δφ only appears in the exponent. We can expand the right-hand side at
first order in δφ and subtract it from the left-hand side to obtain

0 =
∫
Dφ

(∫
d4xJiδφi

)
ei(Γcl(φ,K)+

∫
d4xJiφi) . (2.85)

This is already one basic version of the Slavnov-Taylor identity. We can rewrite it in
several ways to familiarize us with its interpretation.

• A first way is to replace the path integral with its interpretation as an operator
expectation value, in line with Eq. (2.70). Then we obtain

0 =
∫
d4xJi〈δφi〉J,K . (2.86)

23



This can be further rewritten by replacing the sources Ji in terms of derivatives
of Γ, the effective action or generating functional of 1PI Green functions, via the
Legendre transform (2.73) such that

0 =
∫
d4x〈δφi〉J,K

δΓ
δφi

, (2.87)

where again the sum over all fields i is implied and where the order of the factors
was exchanged to compensate the ± signs in the relation for Ji in Eq. (2.73). Both
of these equations have the forms of typical infinitesimal invariance relations. We
may also rewrite the previous equation as

Γ(φ,K) = Γ
(
φ+ 〈δφ〉J,K ,K

)
, (2.88)

valid to first order in the variation. This equation is directly analogous to the start-
ing point (2.82). It clarifies the interpretation of the Slavnov-Taylor identity as an
invariance relation for the full effective action Γ under symmetry transformations
given by 〈δφi〉J,K . An important distinction can now be made about these symme-
try transformations. In general the δφi are nonlinear products of fields (i.e. com-
posite operators), and generally the expectation value of a product is different from
the product of expectation values. In other words the symmetry transformations
may receive nontrivial quantum corrections. Hence the symmetry transformation
in Eq. (2.88) is in general different from the classical expression δφi which one
might have expected to appear.6 Only in the case where all δφi are linear in the
dynamical fields, the symmetry relation (2.88) corresponds to the same invariance
as Eq. (2.82).

• A second way to rewrite the Slavnov-Taylor identity (2.85) is by taking derivatives
with respect to the sources as in Eq. (2.66) to obtain identities for specific Green
functions. In this way, Eq. (2.85) leads to infinitely many identities of the kind

0 = δ〈Tφi1(x1) . . . φin(xn)〉J,K (2.89)
≡ 〈T (δφi1(x1)) . . . φin(xn)〉J,K + . . .+ 〈T (φi1(x1)) . . . δφin(xn)〉J,K ,

where the first line is defined as an abbreviation for the second line and the uniform
+ signs of all terms are correct because the transformation δ as defined by Eq. (2.83)
is of bosonic nature. In these identities Green functions involving ordinary fields φi
and the symmetry transformation composite operators δφi appear. In this form,
Slavnov-Taylor identities may be checked explicitly by computing Feynman dia-
grams for such Green functions. We can illustrate this with a simple but important
example. Taking the Yang-Mills theory of the previous subsections with fermionic
matter fields ψ, we can consider δ〈c̄ψiψ̄k〉 and use the BRST transformations in
Eqs. (2.51c,2.53) to obtain

0 = 〈TBψiψ̄k〉+ ig〈T c̄(cψ)iψ̄k〉 − ig〈T c̄ψi(ψ̄c)k〉 (2.90)

where the brackets indicate local composite operators. The auxiliary field B will
effectively be replaced by ∂µAµ via Eq. (2.56). In abelian QED, the ghosts are

6In the previous section we would have used the more explicit notation δφclass
i for the expression where

all fields are replaced by their classical versions, i.e. their expectation values.
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free and can be factored out of the matrix elements. Hence in QED this identity
simply leads to the familiar Ward identity between the electron self energy and
the electron–electron–photon vertex function. In non-abelian Yang-Mills theories,
the identity also relates the fermion self energy and the fermion–fermion–gauge
boson three-point function, but the relationship is more complicated and involves
nontrivial composite operators which need to be renormalized.

• A final way to rewrite the Slavnov-Taylor identity is to write it as functional equa-
tions for the generating functionals Z, Zc or Γ. Since we have coupled the nonlinear
classical symmetry transformation (2.83) to the sources K in the classical action
(2.58), the expectation values of nonlinear composite operators appearing in the
previous equations may be rewritten in terms of functional derivatives with re-
spect to K. A slight technical complication is that there are also linear symmetry
transformations which we have not coupled to sources, such as the BRST transfor-
mations of the c̄ and B fields. Precisely we can therefore replace the nonlinear δφi
by δ/δ(iKi) in the Slavnov-Taylor identity (2.85), but the linear δφi remain. If we
express the path integral in terms of the connected functional, Eq. (2.85) takes the
schematic form

0 =
∫
d4x

∑
δφi=nonlinear

Ji
δZc(J,K)
δKi

+
∫
d4x

∑
δφi=linear

Ji〈δφi〉J,K , (2.91)

where the expectation value in the last term really is a linear combination of ex-
pectation values of fundamental fields, i.e. a linear combination of φclassj as used in
Eq. (2.74) and thus equal to what we mean by δφclassi , where the index class will
be dropped again. The previous equation can be rewritten as an equation for the
1PI functional Γ by replacing the sources Ji via the Legendre transformation to Γ
and by using that the sources K are unaffected by the Legendre transformation as
expressed by Eq. (2.75). In this way we obtain

0 =
∫
d4x

∑
δφi=nonlinear

δΓ(φ,K)
δKi

δΓ(φ,K)
δφi

+
∫
d4x

∑
δφi=linear

δφi
δΓ(φ,K)
δφi

. (2.92)

This is literally the same equation as the Slavnov-Taylor identity for the classical
action with the Slavnov-Taylor operator (2.63), but rewritten for the full effective
action,

S(Γ) = 0 . (2.93)

This explains the reason why we rewrote the BRST invariance of the classical action
in section 2.3 as the Slavnov-Taylor identity using Eq. (2.63): This equation has
the potential of remaining valid without modification in the full quantum theory,
provided the above formal manipulations survive the regularization and renormal-
ization procedure.

Finally we comment on the validity of our derivation. The derivation assumed the clas-
sical action to be symmetric, the path integral to be well defined and the path integral
measure to be invariant under the symmetry. A full treatment must define the quantum
theory via the procedure of regularization and renormalization, which may be viewed as
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a constructive definition of the path integral and its measure, and which might change
the action e.g. by counterterms. An essential result of algebraic renormalization theory
(see below in Sec. 6) is that the above derivations are essentially correct up to local terms
in the following sense: If the above Slavnov-Taylor identity (2.93) is valid at some given
loop order, then at the next loop order it can at most be violated by a local functional
of the fields. Hence there is a chance that any such local violation can be cancelled by
adding local, symmetry-restoring counterterms. If this is possible the Slavnov-Taylor
identity indeed can be established at all orders in the renormalized theory.

In the present review we mainly work in dimensional regularization. In this context
the above derivation acquires a more literal meaning. In Sec. 4 we will discuss the so-
called regularized quantum action principle, which essentially states that all derivations
remain literally valid in dimensional regularization if all quantities are defined via reg-
ularized Feynman diagrams in D 6= 4 dimensions. In that case, however, it becomes
questionable whether the D-dimensional version of the classical action satisfies the same
symmetry (2.82) as the original 4-dimensional version. If this is not the case, there is
again a violation of the Slavnov-Taylor identity at the regularized level, which needs to
be studied and which may be cancelled by introducing symmetry-restoring counterterms.

2.6 Peculiarities of Abelian Gauge Theories

So far the discussions above focused on the non-Abelian case. However, there are some
peculiarities in the Abelian case that will be highlighted in this subsection.7 Obviously,
in an Abelian gauge theory there are less interactions than in the non-Abelian case,
with corresponding implications for higher order corrections. However, there are also
less restrictions by the gauge group, which leads to the need for an additional symmetry
condition to ensure a consistent renormalization of the Abelian coupling constant, as
discussed below. For further information of Abelian theories in this context we refer the
reader to [42, 53, 54, 55, 56], where they focused, in contrast to the present section, on
the Abelian case with spontaneous symmetry breaking, whereas the more general case
of the Standard Model and extensions was discussed in Refs. [57, 58, 59]. For a general
overview we refer to the textbook by Piguet/Sorella [47].

Starting with the classical Lagrangian of the Abelian gauge theory of quantum elec-
trodynamics; using the notation of section 2.3 we may write it in the same form as in
Eq. (2.59), this time, however, with

Linv = i ψi /Dijψj −
1
4F

µνFµν , (2.94)

with the covariant derivative Dµ
ij = ∂µδij + ieQiδijA

µ and the field strength tensor
Fµν = ∂µAν − ∂νAµ, with the gauge-fixing and ghost Lagrangian

Lfix,gh = s

[
c̄

(
(∂µAµ) + ξ

2B
)]

= B(∂µAµ) + ξ

2B
2 − c̄∂µ∂µc , (2.95)

with B = −(∂µAµ)/ξ and with the Lagrangian of the external sources

Lext = ρµsAµ + R̄isψi +Risψi , (2.96)
7In the absence of spontaneous symmetry breaking.
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where we used the concrete name Ri for the matter field sources instead of the generic
name Yi of Sec. 2.3. The classical action is then again given by (2.61).

The BRST transformations in the Abelian case, already used in (2.95), are provided
by

sAµ(x) = ∂µc(x) , (2.97a)
sψi(x) = −ieQic(x)ψi(x) , (2.97b)
sψi(x) = ieQic(x)ψi(x) , (2.97c)
sc(x) = 0 , (2.97d)
sc̄(x) = B(x) , (2.97e)
sB(x) = 0 . (2.97f)

It can be seen that in the Abelian case, except from the BRST transformations for the
fermions ψi and ψi, all other BRST transformations are linear in dynamical fields. Recall
that for a linear classical symmetry of the form

δφi(x) = vi(x) +
∫
d4y tij(x, y)φj(y) (2.98)

with number-valued kernel tij , its expectation value is identical to the classical symmetry
transformation (see also the discussions around Eqs. (2.88,2.91,2.92)), i.e.

〈δφi(x)〉J,K = vi(x) +
∫
d4y tij(x, y)〈φj(y)〉J,K = δφclassi . (2.99)

Hence, on the basis of equations (2.87) and (2.88) from section 2.5, the full effective
quantum action Γ is invariant under such linear classical symmetries as they do not
receive nontrivial quantum corrections. In other words, linear symmetry transformations
of the classical action Γcl are automatically symmetry transformations of the full effective
quantum action Γ.

In particular, the BRST-transformation of the photon Aµ is linear, and hence sAµ
does not receive quantum-corrections and the expectation value 〈sAµ〉J,K is identical
with the classical expression (sAµ)class.

Further, Ri and R̄i are external sources and the Abelian Fadeev-Popov ghost and
antighost completely decouple from the rest of the theory (cf. (2.95)). Hence, neither
Ri and R̄i nor the ghost c and antighost c̄ can occur in loops, they can only appear as
external legs, as there are no corresponding interactions and the external sources are not
dynamical fields, and thus cannot propagate. Consequently, none of the Abelian BRST
transformations obtain quantum corrections, or in other words, in the Abelian case the
BRST transformations do not renormalize.

In a theory with a non-Abelian simple gauge group G with gauge coupling g, the
generators T a are uniquely determined by choosing a representation. For this reason,
the couplings of all matter fields to the gauge fields ∝ gT a and of all gauge boson
self-interactions ∝ gfabc are uniquely determined up to one common, universal gauge
coupling g.

In contrast to this, in an Abelian gauge theory every diagonal matrix would be a
representation of the corresponding Lie algebra. Thus, the corresponding charges Qi of
the respective fermions could in principle be arbitrary real numbers. Group theory alone
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would allow these charges to obtain quantum-corrections, i.e. they could renormalize, and
could thus even take different values at every order in the perturbation theory. Hence,
due to the fact that the group structure of an Abelian gauge group is not as powerful
as the one of a non-Abelian gauge group the Abelian couplings need to be determined,
in all orders, by an additional symmetry condition to the full effective quantum action,
either by the local Ward identity or by the so called antighost equation.

The special simplicity of Abelian gauge theories and the existence of additional all-
order identities is technically reflected in several field derivatives of the classical action.
We begin with the antighost equation

δΓcl
δc(x) = �c̄(x) + ∂µρ

µ(x)− ieQiR̄i(x)ψi(x) + ieQiψi(x)Ri(x) . (2.100)

Additionally, varying Γcl w.r.t. the antighost and the external source of the photon yields

δΓcl
δc̄(x) = −�c(x) , δΓcl

δρµ(x) = sAµ(x) = ∂µc(x) , (2.101)

which can be combined to obtain the so-called ghost equation(
δ

δc̄
+ ∂µ

δ

δρµ

)
Γcl = 0 . (2.102)

The gauge fixing condition is obtained by varying Γcl w.r.t. the Nakanishi-Lautrup field
B

δΓcl
δB(x) = ξB(x) + ∂µA

µ(x) . (2.103)

Importantly, it can be seen that all of the above equations (2.100) to (2.103) are linear in
dynamical fields, e.g. δΓcl/δc(x) = (linear expression). In contrast, all other functional
derivatives of the classical action

δΓcl
δRi(x) = sψi(x) = ieQic(x)ψi(x) , (2.104a)

δΓcl
δψi(x) = i∂µψi(x)γµ + eQiψi(x) /A(x) + ieQiR̄

i(x)c(x) , (2.104b)

δΓcl

δR̄i(x)
= sψi(x) = −ieQic(x)ψi(x) , (2.104c)

δΓcl

δψi(x)
= i/∂ψi(x)− eQi /A(x)ψi(x)− ieQiRi(x)c(x) , (2.104d)

are non-linear in dynamical fields. The special feature of linear equations (2.100) to
(2.103) is that there are no quantum corrections expected which could spoil these linear
relations.8 Hence, we may require that these identities hold at all orders as part of the
definition of the theory, meaning that they also hold for the full effective quantum action

8For loop corrections we need interactions, and thus at least three dynamical fields which is not the
case here.
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Γ, i.e.9

δΓ
δc(x)

!= δΓcl
δc(x) ,

δΓ
δc̄(x)

!= δΓcl
δc̄(x) ,

δΓ
δρµ(x)

!= δΓcl
δρµ(x) ,

δΓ
δB(x)

!= δΓcl
δB(x) . (2.105)

The charges Qi of all fields explicitly occur in the antighost equation (2.100), and (2.105)
thus fixes the charges of the fields to all orders.

Additionally, we can derive the aforementioned Ward identity.10 Starting with the
Slavnov-Taylor identity for the abelian case

0 = S(Γ) =
∫
d4x

(
δΓ
δR̄i

δΓ
δψi

+ δΓ
δRi

δΓ
δψi

+ δΓ
δρµ

δΓ
δAµ

+B
δΓ
δc̄

)
, (2.106)

cf. (2.63) for the non-Abelian case, varying it w.r.t. the Fadeev-Popov ghost c(x), i.e.

0 = δS(Γ)
δc(x)

=
∫
d4y

[(
δ

δc(x)
δΓ

δR̄i(y)

)
δΓ

δψi(y) + δΓ
δR̄i(y)

(
δ

δc(x)
δΓ

δψi(y)

)

+
(

δ

δc(x)
δΓ

δRi(y)

)
δΓ

δψi(y)
+ δΓ
δRi(y)

(
δ

δc(x)
δΓ

δψi(y)

)

+
(

δ

δc(x)
δΓ

δρµ(y)

)
δΓ

δAµ(y) −
δΓ

δρµ(y)

(
δ

δc(x)
δΓ

δAµ(y)

)

+B

(
δ

δc(x)
δΓ
δc̄(y)

)]
(2.107)

=
∫
d4y

[(
δ

δR̄i(y)
δΓ
δc(x)

)
δΓ

δψi(y) −
δΓ

δR̄i(y)

(
δ

δψi(y)
δΓ
δc(x)

)

+
(

δ

δRi(y)
δΓ
δc(x)

)
δΓ

δψi(y)
− δΓ
δRi(y)

(
δ

δψi(y)
δΓ
δc(x)

)

−
(

δ

δρµ(y)
δΓ
δc(x)

)
δΓ

δAµ(y) −B
(

δ

δc̄(y)
δΓ
δc(x)

)]

= −ieQiψi(x) δΓ
δψi(x) + ieQiR̄

i(x) δΓ
δR̄i(x)

+ ieQiψi(x) δΓ
δψi(x)

− ieQiR
i(x) δΓ

δRi(x) − ∂µ
δΓ

δAµ(x) −�B(x) ,

where we used the fact that fermionic objects anti-commute and that δ/δc(x) is a
fermionic functional derivative. After the third equality we have moved δ/δc(x) past
the other respective functional derivative and utilized the antighost equation11 (2.100).

9In case of an Abelian gauge theory with spontaneous symmetry breaking, not all of these identities
are valid, but one may introduce background fields which allow obtaining a valid local Ward identity
and/or an Abelian antighost equation, see Refs. [54, 56].

10In fact, in the present case without spontaneous symmetry breaking and in presence of the identities
(2.105) the following Ward identity is equivalent to the Slavnov-Taylor identity.

11This is possible because the antighost equation is valid to all orders, see Eq. (2.105).
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We dropped the penultimate term of the second equality, as the RHS of the antighost
equation (2.100) does not contain a term depending on Aµ. Rearranging the last line we
obtain the functional form of the local Abelian Ward identity(

∂µ
δ

δAµ(x) + ieQi
∑
Ψ

(−1)nΨ Ψ(x) δ

δΨ(x)

)
Γ = −�B(x) , (2.108)

with Ψ ∈ {ψi, ψi, Ri, R̄i} and nΨ ∈ {0, 1, 0, 1}. The well known Ward identity for the
relation of the electron self energy and the electron-electron-photon interaction vertex
may then be deduced from this equation.12 Again, the charges Qi of all fields are fixed
as (2.108) is established to all orders. Consequently, the above statements imply a
non-renormalization of the field charges Qi, which means that a single counterterm is
sufficient to renormalize the Abelian coupling to all orders of the perturbation theory,
thus guaranteeing a consistent renormalization of the coupling constant.

The above identities, viewing them as part of the definition of the theory, constrain the
regularization and renormalization procedure. On the one hand, symmetry-preserving
(field and parameter) renormalization constants are constrained by the equations (mean-
ing in particular that certain combinations such as the gauge fixing term, or terms such
as R̄isψi do not renormalize). On the other hand, particularly the local Ward identity
(2.108) will be of interest in determining symmetry-restoring counterterms. It can be
used to interpret the breaking and restoration of the Slavnov-Taylor identity.

12Further discussions will be made later in Sec. 7 for the example of chiral QED.
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3 Dimensional Regularization
In a perturbative quantum field theory, Feynman diagrams with closed loops correspond
to higher orders in ~. They hence represent genuine quantum corrections and are of
fundamental interest. Such loop diagrams, however, are known to give rise to ultraviolet
(UV) divergences which need to be handled. The reason for this can easily be understood
by imagining a loop made of a propagator with coinciding end points. Since the prop-
agator is a distribution, one may expect this object to be ill-defined, as is the product
of distributions at the same space-time point in general. In fact, such loops correspond
to the exchange of virtual particles whose momenta are integrated over and which may
run up to infinity; hence the possibility of divergent integrals in momentum space. In
essence, the purpose of renormalization is to remove all divergences and assign a meaning
to such ill-defined expressions and ultimately to define physically meaningful results.

In practice, this means that we first need to isolate the aforementioned divergences
before they can be subtracted. In the typical setting, isolating divergences is achieved via
regularization, while their subtraction is performed via counterterms which are added to
the Lagrangian. The entire procedure constitutes the renormalization. Hence, in order
to obtain meaningful results at the quantum level, i.e. including higher order corrections,
one needs regularization and renormalization, as already mentioned at the end of Sec.
2.5.

There are several regularization schemes; here we focus on dimensional regularization
(DReg). In this present section 3 and the subsequent section 4 we provide an overview of
the main properties of DReg and of how to perform calculations using this regularization
procedure.

Dimensional regularization and its variants are the most common regularization
schemes in relativistic quantum field theories. These schemes have several key advantages
that make them particularly useful in practical, concrete computations. The structure of
integrals in formally D dimensions is essentially unchanged, allowing efficient integration
techniques. The divergent terms appear as 1/(D − 4) poles and can be isolated in a
transparent way. Lorentz invariance and gauge invariance of non-chiral gauge theories
is essentially kept manifest. Furthermore, fundamental properties such as equivalence
to BPHZ renormalization, consistency with the unitarity and causality of quantum field
theory, and consistent applicability at all orders are rigorously established. The key dis-
advantage is the problematic treatment of the γ5 matrix and the εµνρσ symbol. As a
result, gauge invariance is manifestly broken in chiral gauge theories. The treatment of
such theories is the main topic of the present review.

The previous statements are discussed in detail later in Sec. 5. That section will
explain that based on DReg, local counterterms exist which can subtract the UV diver-
gences. It will also explain how the regularization/counterterm/renormalization proce-
dure in DReg amounts to a rigorous and physically sensible construction of higher orders.
Then in section 6, we will consider DReg applied to gauge theories and see that (under
certain conditions where chiral gauge anomalies are absent) the Slavnov-Taylor identity
can be established at all orders in the renormalized, finite theory. In case DReg breaks
the symmetry in intermediate steps, the existence of symmetry-restoring counterterms
is then guaranteed.

The basic idea of DReg is to replace the 4-dimensional spacetime and the 4-
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dimensional momentum space by formally D-dimensional ones.13 In this way all integrals
become formally D-dimensional. DReg was put forward in several works by ’t Hooft and
Veltman [1], by Bollini and Giambiagi [2] and by Ashmore [3]. Specifically Ref. [1] al-
ready highlighted all key advantages and disadvantages mentioned above and showed
how to compute 1-loop and 2-loop Feynman diagrams using DReg.

In the following we begin the section by introducing our notation for the dimension-
ally regularized and renormalized effective quantum action and schematically sketch its
construction. This provides a short overview of the general structure of dimensional
regularization and renormalization (subsection 3.1).

Then we explain what the properties of D-dimensional integrals are and how these
integrals can be consistently defined (subsection 3.2). Together with the integrals, many
other quantities have to be formally continued to D dimensions, in particular momenta,
vector fields, metric tensors, and γ matrices. Subsection 3.3 focuses on such quantities
and delineate to what extent a purely D-dimensional treatment is correct and at which
points a distinction of 4-dimensional and D-dimensional quantities needs to be made in
calculations. In particular, it introduces the BMHV scheme for non-anticommuting γ5.

Subsection 3.4 describes an important feature of DReg which is not shared by all reg-
ularization methods: the precise expressions of regularized Feynman diagrams in D di-
mensions may be encoded in a formally D-dimensional Lagrangian, from which Feynman
rules are obtained in the usual way. This relation is obviously useful in the study of sym-
metries of regularized Feynman diagrams since properties of diagrams can be obtained
from properties of the regularized Lagrangian. In subsection 3.5 we discuss several vari-
ants of DReg such as regularization by dimensional reduction and further sub-variants.
We discuss relationships between the variants on the level of the regularized Lagrangians
and on the level of Green functions and S-matrix elements.

3.1 General structure of Dimensional Regularization and Renormal-
ization

Before we discuss properties of D-dimensional integrals and how to formally continue
certain quantities to D dimensions, and thus perform calculations in DReg, we briefly
introduce our notation w.r.t. the dimensionally regularized and renormalized effective
quantum action, the key quantity of the theory, and sketch its construction.

As mentioned above, UV divergences in loop integrals are isolated as 1/(D−4) poles in
DReg. These divergences must be subtracted using counterterms in order to renormalize
the theory. In general, such counterterms may not only contain these UV divergent but
also finite contributions.14 Here we sketch the renormalization procedure and introduce
useful notation.

The perturbative expansion is organized in terms of orders in ~, equivalent to orders
in loops. The classical action of order ~0 defining the theory is denoted S0 ≡ Γcl, the
counterterm action is denoted as Sct; the sum of the two is called the bare action Sbare.
In the following, symbols without an upper index denote all-order quantities, while for
perturbative expressions, an upper index i labels quantities of precisely order i, whereas

13With parametrisation D = 4− 2ε.
14The general counterterm structure of a dimensionally regularized theory using the BMHV scheme

makes use of further subdivisions of counterterms. This will be presented in Sec. 6 and illustrated in a
practical example in Sec. 7.
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quantities up to and including order i are labelled with an upper index (i). Using this
notation, the bare and the counterterm actions may be written as

Sbare = S0 + Sct, Sct =
∞∑
i=1

Sict, S
(i)
ct =

i∑
j=1

Sjct. (3.1)

In dimensional regularization and renormalization the perturbative construction of the
effective action is performed iteratively at each order of ~, i.e. at each loop order, starting
from the tree-level action S0. Then, a counterterm action Sict needs to be constructed
at each higher order i ≥ 1 which has to satisfy the two conditions that the renormalized
theory is UV finite and in agreement with all required symmetries.

The subrenormalized quantum action of order i is denoted by

Γisubren (3.2)

and obtained at order i by using Feynman rules from the tree-level action and coun-
terterms up to order i − 1. The counterterms Sict to be constructed at the order i are
subdivided into singular counterterms (which by definition contain only pole terms in
(D − 4) and are denoted by subscript sct) and finite counterterms (finite in the limit
D → 4 and denoted by subscript fct). By constructing and including singular countert-
erms of the order i we obtain

lim
D→4

(
Γisubren + Sisct

)
= finite, (3.3)

which determines the singular counterterms unambiguously. If necessary we may then
also include additional finite counterterms. Once the finite counterterms are determined,
we obtain

ΓiDRen ≡ Γisubren + Sisct + Sifct. (3.4)

This quantity ΓiDRen is finite and essentially renormalized, but it may still contain the
variable ε = (4−D)/2 and so-called evanescent quantities, which vanish in strictly D = 4
dimensions. Thus, the completely renormalized quantum action is obtained by taking
the limit D → 4 and setting all evanescent quantities to zero. This procedure is denoted
by15

Γi ≡ LIM
D→ 4

ΓiDRen. (3.5)

Some comments on the finite counterterms are in order. They can have two purposes.
On the one hand, it may happen that regularized quantum corrections spoil a symmetry
of the theory, such that e.g. the Slavnov-Taylor identity is invalid on the level of Eq.
(3.3). If the symmetry is part of the definition of the theory, finite counterterms must
be found and added such that the symmetry is valid on the renormalized level (3.5).
The purpose of counterterms is then not solely to remove UV divergences but also to
restore symmetries if necessary (and if possible). If no finite counterterms can be found
that restore the symmetry, the symmetry is lost. This situation is called an anomaly,

15We will sometimes synonymously refer to the completely renormalized and 4-dimensional quantum
action as Γiren, i.e. Γi ≡ Γiren, in order to emphasize that it is completely renormalized.
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or anomalous symmetry breaking. It signals an irreconcilable clash of the symmetry
and the quantum theory.16 The later Sec. 6.2.3 will provide a detailed discussion of the
symmetry restoration using finite counterterms.

On the other hand, the finite counterterms can also be used in order to fulfil cer-
tain renormalization conditions. In general, the choice of the finite counterterms (be-
yond symmetry restoration) is called a renormalization scheme. Popular examples of
renormalization schemes are on-shell or (modified) minimal subtraction schemes. In the
present review we will not further discuss renormalization schemes. For textbook-level
discussions of this important topic we refer to the books by Böhm/Denner/Joos and
Srednicki [34, 35].17

Finally, we reiterate that we have only sketched the general procedure and introduced
notation, but we have not yet proven that this procedure actually works. This will be
done in the later sections 5 and 6, and it is exemplarily illustrated in section 7 for the
case where finite symmetry-restoring counterterms are required.18

3.2 Integrals in D Dimensions

In this subsection we will discuss momentum integrations in DReg. As explained above,
in DReg we replace 4-dimensional spaces by formally D-dimensional ones. In this way
all integrals become formally D-dimensional and we can schematically write for the loop
integration measure ∫

d4k

(2π)4 → µ4−D
∫

dDk

(2π)D , (3.6)

where µ denotes a new, artificial mass scale, the dimensional regularization scale. Though
the basic idea [1, 2, 3] is simple, care is needed to avoid incorrect or inconsistent results.
After first detailed discussions in Ref. [61, 62, 22], very systematic definitions and analyses
of D-dimensional integrals were given by Breitenlohner and Maison [4] and by Collins
[63].

16If the symmetry is part of the definition of the theory or required for the consistency of the theory,
the theory must be abandoned.

17Although the main focus of the review is on the renormalization of Green functions, we provide
here a remark on the extraction of physical S-matrix elements via LSZ reduction as mentioned in Sec.
2.4. LSZ reduction involves the need for so-called wave function renormalization, which ties in with the
discussion of finite counterterms and renormalization schemes. In order to obtain properly normalized S-
matrix elements, Green functions need to be divided by √zi for each external line, where zi is the residue
of the corresponding two-point function at the pole corresponding to the rest mass of the considered
external particle i. This may be automatically achieved by choosing an on-shell renormalization scheme
for renormalized fields, where all such residues are equal to unity, see e.g. the discussion in Ref. [34].
If a different renormalization scheme is chosen, the wave function factor √zi may be different from
unity and needs to be explicitly taken into account, such as in the scheme proposed in Ref. [60] for the
electroweak Standard Model. In practical computations in DReg, it is actually often possible to carry out
the renormalization programme only partially, such that quantum fields remain unrenormalized and the
residue factors √zi remain divergent. After LSZ reduction and proper wave function renormalization,
nevertheless finite and correct S-matrix elements can be obtained.

18In textbooks and in practical computations, counterterms are often obtained by applying a so-called
renormalization transformation onto the tree-level action. Section 4.3 and, in more generality, Sec. 6.1
will also explain under which conditions this procedure is possible.
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3.2.1 Quasi-D-Dimensional Space

Before discussing integrals we discuss the simpler concept of a D-dimensional space. Let
us denote the original 4-dimensional Minkowski space as 4S and the formal, or quasi-D-
dimensional space as QDS. The question is which properties QDS can have and what its
relationship to the original space 4S can be.

Clearly, even on the regularized level we need the usual properties of linear combina-
tions. If two momenta pµ and qµ are elements of QDS, then also apµ + bqµ is an element
of QDS for any real or complex a and b, with the usual properties of linear combinations.
Hence QDS must constitute a proper mathematical vector space. However, there do not
exist mathematical vector spaces with dimensionality D if D is a non-integer real or
complex number.

The crucial observation [61] is that on the regularized level we need to accept that
arbitrary sets of momentum vectors may have to be treated as linearly independent.
Hence we need to accept that QDS must actually be an infinite dimensional vector space.
Correspondingly, what we call D-dimensional momentum vectors are actually elements
of QDS with infinitely many components (of course, in the case of physical momenta,
only four of them will be nonzero). It turns out to be possible to define objects and
operations on QDS with the desired properties which resemble D-dimensional behavior,
justifying the name quasi-D-dimensional space.

An important consequence for practical applications is that the original space 4S is
always a subspace of QDS,

4S ⊂ QDS , (3.7)
regardless whetherD > 4 orD < 4 orD is complex. Assuming the opposite relation leads
to mathematical inconsistencies, which will be discussed in the context of dimensional
reduction below in Sec. 3.5.

3.2.2 Properties of D-Dimensional Integrals

Now we turn to integrals over functions of vectors defined on QDS. Clearly, the plethora
of successful calculations and available multi-loop techniques (see e.g. the book [64])
provides ample evidence of the existence ofD-dimensional integrals and of the consistency
of their evaluations. Still, as stressed in Ref. [63], it is important to establish the existence
of D-dimensional integrals in general, and to prove the uniqueness of the results. In the
literature, different constructive definitions have been proposed. Here we will describe
the construction by Collins [63], which extends earlier work by Wilson [61].

We begin by listing important properties of D-dimensional integration given in Ref.
[63]. It is generally sufficient to discuss the case of Euclidean metric. D-dimensional
Minkowski spacetime can then be treated as one fixed time dimension combined with
(D−1)-dimensional Euclidean space, and in quantum field theory applications Minkowski
space integrals can be converted to Euclidean space integrals via Wick rotation. Depend-
ing on the context either Minkowski space or Euclidean space notation can be more con-
venient. For the following integrals we assume Euclidean space, with Euclidean metric
for scalar products of vectors.
Property a) Linearity: for all functions f1,2 and coefficients a, b,∫

dDk
(
af1(~k) + bf2(~k)

)
= a

∫
dDkf1(~k) + b

∫
dDkf2(~k) . (3.8)
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Property b) Translation invariance: for all vectors ~p ∈QDS,∫
dDkf1(~k + ~p) =

∫
dDkf1(~k) . (3.9)

Property c) Scaling: for all numbers s,∫
dDkf1(s~k) = s−D

∫
dDkf1(~k) . (3.10)

Property d) The D-dimensional Gaussian integral in D-dimensional Euclidean metric
has the value ∫

dDke−
~k2 = πD/2 . (3.11)

Using D-dimensional spherical coordinates to evaluate this rotationally symmetric
integral,

∫
dDk →

∫
dD−1Ω

∫∞
0 dkkD−1e−k

2 , implies the result for the surface of
D-dimensional sphere

ΩD ≡
∫
dD−1Ω = 2πD/2

Γ(D/2) (3.12)

which depends on the well-known Γ-function defined as Γ(z) =
∫∞
0 tz−1e−tdt for

Re(z) > 0 and by analytic continuation otherwise.

Remark: Properties a,b,c,d may also be viewed as axioms on the integration. Taken
together, they uniquely fix the integration [61].

Property e) Commutation with differentiation

∂

∂~p

∫
dDkf1(~k, ~p) =

∫
dDk

∂

∂~p
f1(~k, ~p) . (3.13)

Property f) Partial integration: The previous equation, together with translation in-
variance (3.9), implies the possibility for partial integration∫

dDk
∂

∂~k
f1(~k) = 0 . (3.14)

Property g) Two different integrations can be interchanged∫
dDp

∫
dDkf(~p,~k) =

∫
dDk

∫
dDpf(~p,~k) . (3.15)

Property h) If an integral is finite in 4 dimensions, the D-dimensional version is ana-
lytic in a region forD aroundD = 4 and in the external momenta, and it reproduces
the original value for D = 4.

Remark: The explicit construction of Refs. [63, 61] guarantees the existence of the
D-dimensional integration and allow to establish general properties. Uniqueness
together with existence implies “consistency” in the sense that one initial expression
in DReg will always lead to one unique final expression, no matter how and in which
order calculational steps are organized.
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3.2.3 Uniqueness and Construction of D-Dimensional Integrals Using Par-
allel and Orthogonal Spaces

For the full proofs of the properties listed above and for further properties we refer to Ref.
[63]. In the following we summarize the uniqueness proof and then sketch the integral
constructions of Refs. [61, 63].

We begin with the uniqueness of the D-dimensional integral. It is sufficient to assume
Euclidean metric, such that scalar products are given by ~p · ~k = p1k1 + p2k2 + . . . for
D-dimensional vectors ~p,~k. Ref. [61] starts from the observation that any function of the
form f(~p1 · ~k, . . . , ~pn · ~k,~k2) can be obtained from suitable combinations of derivatives19
of the generating function

g(s, ~p,~k) ≡ e−s~k2+~p·~k . (3.16)

Using linearity (3.8) it is sufficient to prove uniqueness of the integral over the generating
function g(s, ~p,~k). Using translation invariance to complete the square, scaling, and the
D-dimensional Gaussian integral we obtain∫

dDkg(s, ~p,~k) (3.9)=
∫
dDke−s

~k2+~p2/4s (3.17a)
(3.10)= s−D/2e~p

2/4s
∫
dDke−

~k2 (3.17b)
(3.11)= s−D/2e~p

2/4sπD/2 . (3.17c)

The integral over the generating function is uniquely fixed given the four properties (3.8,
3.9, 3.10, 3.11), establishing general uniqueness of the integral.

Now we sketch the D-dimensional integral construction proposed by Refs. [61, 63].
Suppose the function f(~p1 ·~k, . . . ~pn ·~k,~k2) is to be integrated over ~k, and we take seriously
that all these vectors are elements of QDS, which is actually infinite dimensional. The
result will depend on the n “external momenta” ~p1 . . . ~pn, and these span a subspace
which is at most n-dimensional. The basic idea is then that the space of all ~k can be
split into a “parallel” space and an “orthogonal” space. The parallel space is defined such
that it contains all n external vectors ~p1 . . . ~pn. It has a finite, integer dimensionality np.
Once the parallel space is fixed we can uniquely decompose any loop momentum and its
scalar products as

~k = ~k‖ + ~k⊥ ~pi · ~k = ~pi · ~k‖ ~k2 = ~k2
‖ + ~k2

⊥ . (3.18)

For this reason the ~k dependence of the integrand may be abbreviated as

f(~p1 · ~k, . . . ~pn · ~k,~k2) ≡ f(~k‖,~k2
⊥) , (3.19)

i.e. the ~k dependence is separated: the vector ~k‖ appears explicitly but it is an element
of a finite-dimensional vector space where ordinary integrals are defined. The orthogonal

19Derivatives with respect to ~p and s generate arbitrary polynomials in all components of ~k and ~k2,
multiplied by g(s, ~p,~k). Ignoring convergence questions, any function can be sufficiently approximated in
this way.
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components appear only as the square ~k2
⊥. This is the crucial simplification, which allows

the two-step definition where first the integral is split as∫
dDkf(~p1 · ~k, . . . ~pn · ~k,~k2) ≡

∫
dnpk‖

∫
dD−npk⊥f(~k‖,~k2

⊥) (3.20)

and second the D−np-dimensional integral on the right-hand side is defined via spherical
coordinates, using Eq. (3.12),∫

dD−npk⊥f(~k‖,~k2
⊥) ≡ ΩD−np

∫ ∞
0

dkkD−np−1f(~k‖, k2) . (3.21)

In these two steps the original D-dimensional integral has been defined in terms of a
series of ordinary integrals in one dimension and in np dimensions. The effect of the
regularization becomes manifest as the D-dependence in the exponent, which governs
the behaviour of the integrand at large k and at small k. If the function f has at most a
power-like divergence at large/small k, there is a range of D for which the k-integral is
well defined. Its value for arbitrary D is then defined by analytical continuation.

Ref. [63] provides detailed discussions of the independence of the choice of the parallel
space and its dimensionality np, of the analytical continuation in the variable D, and of
more general integrals.

We will now discuss the computation of such integrals with two examples, which
will illustrate several important general points. The examples are (we again work in
Euclidean space and use a dimensionless integration variable ~k)

Iall(D) =
∫
dDk~k2δ(~k2 − 1) , (3.22a)

I1(D) =
∫
dDkk2

1δ(~k2 − 1) . (3.22b)

Both integrals only depend on the dimensionality D. In both cases we essentially inte-
grate over the surface of the unit sphere, in the first case multiplied by ~k2 and in the
second case multiplied by k2

1. Since no direction is special, the second integral would not
change if we replaced k2

1 by any other k2
i with a fixed index i. We will discover a useful

relationship between the two integrals.
The first integral may immediately be computed by treating the entire ~k as ~k⊥. We

can apply the definition (3.21) and evaluate the integral as

Iall(D) = ΩD

2 . (3.23)

For the second integral we treat the first component as special and align the parallel
space along this first component (the explicit component k1 might also be regarded as
the scalar product ~p · ~k with a vector that happens to be ~p = (1, 0, 0, . . .)). Then the
integral becomes by definition

I1(D) =
∫ ∞
−∞

dk1k
2
1

∫
dD−1k⊥δ(~k2

⊥ − (1− k2
1)) . (3.24)

The D − 1-dimensional integral is now of the same type as Iall except in reduced di-
mensionality, and it is only nonzero if |k1| ≤ 1. Applying standard substitutions we
obtain

I1(D) =
∫ 1

−1
dk1k

2
1

ΩD−1
2 (1− k2

1)(D−3)/2 . (3.25)
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The remaining integral can be related to the definition of the Beta-function B(3/2, (D−
1)/2) by the substitution x = k2

1, and the result is

I1(D) = ΩD−1
2

Γ(3/2)Γ(D/2− 1/2)
Γ(D/2 + 1) . (3.26)

As announced these results illustrate important general points:

• The result (3.26) can be simplified by using the explicit result Γ(3/2) =
√
π/2, the

recursion relation zΓ(z) = Γ(z + 1) and the explicit result for ΩD in Eq. (3.12).
After simplification we obtain

I1(D) = ΩD

2D , (3.27)

where the (D − 1)-dimensional surface volume is replaced by the D-dimensional
one.

• As a result we simply obtain the relation

Iall(D) = DI1(D) , (3.28)

which agrees with the naive expectation from a D-dimensional space with D vec-
tor components despite the construction of QDS as an infinite dimensional vector
space.

• These two integrals Iall and I1 and their relationships will allow defining metric ten-
sors on the quasi-D-dimensional space QDS with appropriate properties resembling
D-dimensional behavior.

• Similar relationships are also the essence of the proof of the independence of the
choice of the parallel space in defining the integrals [63].

3.2.4 Construction of D-Dimensional Loop Integrals via
Schwinger Parametrization

In addition to the integral construction via parallel and orthogonal spaces, we also sketch
a second way to construct D-dimensional integrals. This second way was carried out and
used in particular in Refs. [22, 4]. It also realizes the four basic properties of linearity,
translation invariance, scaling and the generalization of the Gaussian integral (3.8, 3.9,
3.10, 3.11), but otherwise it is formulated specifically for loop integrals in Minkowski
space quantum field theory. It is based on the well-understood Schwinger parametriza-
tion, which has been developed for arbitrary loop integrals and used e.g. in BPHZ renor-
malizability proofs in Refs. [65, 66, 67] and in the context of analytical regularization
[68]. For general accounts, see also the books Refs. [64, 69]. We present here first a
simple example and then indicate the general case.

The example is a standard one-loop two-point function with loop integrand

i2ei(u
µ
1 (k+p)µ+uµ2 kµ)

[(k + p)2 −m2 + iε][k2 −m2 + iε] ≡
i2ei(u

µ
1 (k+p)µ+uµ2 kµ)

D1D2
(3.29)
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with loop integration momentum k and external momentum p, two equal masses and the
customary +iε prescription. We also allowed for a generating function in the numerator
similar to Eq. (3.16) with two vector-like parameters uµ1 , u

µ
2 such that derivatives at

u1,2 = 0 can generate arbitrary polynomials of propagator momenta in the numerator.
The Schwinger parametrization, or α-parametrization, uses the following replacement for
generic propagators,

1
[p2 −m2 + iε]ν = 1

iνΓ(ν)

∫ ∞
0

dααν−1ei(p
2−m2+iε)α , (3.30)

which is derived by substitution and by using the definition of the Γ function. In this
way the integrand (3.29) becomes∫ ∞

0
dα1dα2e

i(D1α1+D2α2)ei(u1·(k+p)+u2·k) (3.31)

and the appearing exponent is a quadratic polynomial in the loop momentum which, up
to the factor i, can be written as20

k2M + 2kµJµ +K +K ′ , (3.32)

or, by completing the square, as

k′2M − J2M−1 +K +K ′ , (3.33)

with

k′µ = kµ +M−1Jµ , (3.34a)
M = α1 + α2 , (3.34b)

Jµ = pµα1 + 1
2(u1 + u2)µ , (3.34c)

K = p2α1 + u1 · p , (3.34d)
K ′ = (iε−m2)(α1 + α2) . (3.34e)

Using this rearrangement in the exponent, the loop integral over k becomes essentially
a Gaussian integral over eik′2M . Using translation invariance and the scaling property
(3.9,3.10) and employing Minkowski metric we obtain∫

dDk

(2π)D e
i(k′2+iε)M = (4π)−D/2i1−D/2M−D/2 . (3.35)

The previous steps have transformed the integrand (3.29) into a product of a purely Gaus-
sian integrand and a remainder which does not depend on the integration momentum.
This leads to the following definition∫

dDk

(2π)D
i2ei(u1·(k+p)+u2·k)

D1D2
=(4π)−D/2i1−D/2

20Note that in this particular case, the quantity M is a number, while in the general case of multiloop
integrals M will be a matrix.
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×
∫ ∞

0
dα1dα2M

−D/2ei(−J
2M−1+K+K′) . (3.36)

In this way the D-dimensional integral is defined in terms of two standard integrals
over α1,2. The integrand depends on α1,2 via the exponential function and via the term
M−D/2, where the D-dependence enters.

This example can be generalized to arbitrary loop integrals, and it may be generalized
to numerator polynomials in the integration momentum. We provide here the result for
the general case of a 1PI graph G with L loops, loop momenta ki and I internal lines
with momenta `k, a generating function with parameters uk and a derivative operator
Z(−i∂/∂u) with respect to all the uk in the numerator (see e.g. [4, 64])

TG =
∫
dDk1 . . . d

DkLZ(−i∂/∂u) i
Ieiuk·`k

D1 . . . DI

∣∣∣∣∣
u=0

. (3.37)

Selecting specific choices of the operator Z and setting u = 0 after taking the derivative
produces specific numerators. Going through similar steps as before the integrand can
be rearranged into the form of pure Gaussian integrals, leading to the result and D-
dimensional definition

TG = cLD

∫ ∞
0

dα1 . . . dαIZ(−i∂/∂u)U−D/2eiW
∣∣∣∣∣
u=0

, (3.38a)

cD = i1−D/2(4π)−D/2 . (3.38b)

By definition the variables u have to be set to zero before performing the α integration.
The formula clearly corresponds to the one-loop example where L = 1, I = 2 and Z = 1
and

U = M = α1 + α2 , (3.39a)

W =
p2α1α2 − α1u2 · p+ α2u1 · p− 1

4(u1 + u2)2

U
+K ′ . (3.39b)

In the general case, the quantities in the result (3.38a) have the following properties:

• U is a so-called Symanzik polynomial in the α’s of degree L. All its terms have
unity coefficient, hence inside the α-integration range U is positive.

• The ultraviolet divergences (including subdivergences) of the original loop integral
are mapped to singularities of the α integrals at small α. As some of the α’s
approach zero, U vanishes with a certain power-like behavior, depending on the
original power counting of the Feynman diagram. The D-dependence of U−D/2
then effectively regularizes the divergences.

• The exponent W is a rational function in the α’s and depends on the external
momenta, the masses, and the uk variables.

The definition of the general loop integral (3.37) via Eq. (3.38a) provides not only a second
constructive definition of D-dimensional integration (which is of course equivalent to the
one in Sec. 3.2.2 thanks to the uniqueness theorem), but it also provides a starting point
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for practical computations, and it allows rigorous proofs of renormalizability and further
renormalization properties [22, 4].

For completeness we present here briefly the full computation of the one-loop example
(3.36) for the scalar numerator case where u1,2 = 0. With the substitutions α = α1 +α2
and β = α1/α we obtain

(3.36) = (4π)−D/2i1−D/2
∫ ∞

0
dα

∫ 1

0
dβα1−D/2e−iαQ(β) (3.40)

with

Q(β) = −p2β(1− β) +m2 − iε . (3.41)

The α-integration is given by the Γ function up to a substitution, so we obtain the final
expression

(3.36) = −i(4π)−D/2Γ(2−D/2)
∫ 1

0
dβQ(β)D/2−2 , (3.42)

which is the well-known one-dimensional integral representation of the result.

3.3 Metric Tensors, γ Matrices, and Other Covariants in D Dimensions

In this subsection we will discuss covariant objects used in DReg calculations, such as
momentum vectors kµ, vector fields Aµ(x), γµ matrices and the metric tensor gµν . We
will first provide a summary of the basic properties which are often sufficient in practical
calculations. Afterwards we will give details on the explicit construction of the required
objects on the quasi-D-dimensional space QDS. As in the case of integrals, the explicit
construction is important to guarantee the consistency of the calculational rules.

In the context of Eq. (3.7) we have seen that the original 4-dimensional Minkowski
space is necessarily a subspace of QDS. Hence strictly 4-dimensional objects always exist
in addition to the quasiD-dimensional ones, and we will discuss the relevant relationships.
At the end of the subsection we will discuss the objects γ5 and εµνρσ, which are tied to
strictly four dimensions.

3.3.1 Properties of D-Dimensional Covariants and γ Matrices

We begin with the main properties that can be used in calculations:

• Vectors or more general objects Xµ on QDS with upper indices such as kµ, Aµ(x),
γµ and gµν can be defined by the explicit values of their components. The index µ
takes infinitely many values and runs from 0, 1, 2, . . . to infinity.

• Indices can be lowered and raised with the D-dimensional metric tensor gµν and
gµν as

Xµ = gµνX
ν Xµ = gµνXν . (3.43)

We reiterate that we use a mostly-minus metric.
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• The D-dimensional metric tensor with a mostly-minus signature satisfies the ex-
pected relations

gµν = gµν =


+1 for µ = ν = 0
−1 for µ = ν = 1, 2, . . .
0 for µ 6= ν

(3.44a)

gµνg
µν = D . (3.44b)

These two relations extend the most important and obvious properties of the metric
tensor to D dimensions. They however seem contradictory since the indices take
infinitely many values and naively one might expect the contraction in the second
equation to diverge. The solution is to regard a contraction with the lower-index
gµν as a linear mapping, acting on upper-index quantities, instead of defining it
via summation over explicit index values. Below we will show in detail how this
idea reconciles the two equations (3.44) and gives meaning to general lower-index
quantities.

• Contraction with gµν commutes with D-dimensional integration, as e.g. in

gµν

∫
dDkkµkνf(k) =

∫
dDkgµνk

µkνf(k) =
∫
dDkk2f(k) , (3.45)

and if a tensor Tµν has only a finite number of nonvanishing entries, the expected
result with an explicit summation is obtained,

gµνT
µν =

∞∑
µ,ν=0

gµνT
µν = T 00 −

∞∑
i=1

T ii . (3.46)

• The γµ matrices may also be defined on QDS, i.e. for µ = 0, 1, 2, . . . up to infinity
such that they satisfy the basic relations

{γµ, γν} = 2gµν1 , γµγ
µ = D1 . (3.47)

A representation exists which satisfies the same relations for complex conjugation,
hermitian conjugation and charge conjugation as the ones of Eqs. (2.21) also for
all µ. Hence it is also possible to define spinors on QDS and to use the definitions
(2.22) for adjoint and charge conjugated spinors in D dimensions.
As a result, the following relations hold for bilinear expressions of anticommuting
spinors on QDS:

ψ̄1Γψ2 = ψC2 ΓCψC1 with ΓC = −CΓTC (3.48a)(
ψ̄1Γψ2

)†
= ψ̄2Γψ1 with Γ = γ0Γ†γ0 (3.48b)

and

{1, γ5, γ
µ, γµγ5}C = {1, γ5,−γµ,−γ5γ

µ}, (3.49a)
{1, γ5, γµ, γµγ5} = {1,−γ5, γ

µ,−γ5γ
µ}. (3.49b)

For more details on the γ5 matrix see Sec. 3.3.3.
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• The quasi-D-dimensional space actually is infinite dimensional and hence contains
the original 4-dimensional Minkowski space, as expressed in Eq. (3.7). On the level
of covariants we therefore can define the purely 4-dimensional metric tensor ḡµν
by the 4-dimensional entries ḡ00 = −ḡii = +1 for i = 1, 2, 3 and ḡµν = 0 in all
other cases. This tensor acts as a projector on the original Minkowski space. It
also allows defining a complementary projector, the metric tensor of the (D − 4)-
dimensional complement as ĝµν = gµν − ḡµν . In summary, all these tensors satisfy
the following equations:

D-dim. : gµν = ḡµν + ĝµν 4-dim. : ḡµν (D − 4)-dim. : ĝµν (3.50)

with the dimensionalities expressed by

gµνg
µν = D , ḡµν ḡ

µν = 4 , ĝµν ĝ
µν = D − 4 (3.51)

and the following contraction rules, expressing the projection and subspace rela-
tionships,

ḡµν ḡ
νρ = ḡµνg

νρ = gµν ḡ
νρ = ḡ ρµ , (3.52a)

ĝµν ĝ
νρ = ĝµνg

νρ = gµν ĝ
νρ = ĝ ρµ , (3.52b)

ḡµν ĝ
νρ = ĝµν ḡ

νρ = 0 . (3.52c)

• Since the metric tensors ḡµν and ĝµν act as projectors on the 4-dimensional and
(D − 4)-dimensional subspaces we can generally decompose any vector Xµ as

Xµ = X̄µ + X̂µ X̄µ = ḡµνX
ν X̂µ = ĝµνX

ν , (3.53)

such that e.g. squares and scalar products behave as

X2 = X̄2 + X̂2 XµY
µ = X̄µȲ

µ + X̂µŶ
µ X̄µŶ

µ = 0 . (3.54)

Similar relationships can be defined for tensors in obvious ways.

• As in Eq. (3.53) we can define 4-dimensional and (D − 4)-dimensional versions γ̄µ
and γ̂µ respectively, which satisfy

{γµ, γ̄ν} = {γ̄µ, γ̄ν} = 2ḡµν1 γµγ̄
µ = γ̄µγ̄

µ = 41 , (3.55a)
{γµ, γ̂ν} = {γ̂µ, γ̂ν} = 2ĝµν1 , γµγ̂

µ = γ̂µγ̂
µ = (D − 4)1 , (3.55b)

{γ̄µ, γ̂ν} = 0 , γ̄µγ̂
µ = 0 . (3.55c)

Traces of γ-matrices are defined such that

Tr(1) = 4 Tr(γµ) = 0 . (3.56)

With these relations all other traces of products of γ-matrices can be calculated.

• The properties of γ5 and εµνρσ are discussed below in Sec. 3.3.3.

• Generally, objects (covariants or operators) which vanish in purely 4 dimensions
are called evanescent. Examples of evanescent objects are all contractions with ĝµν
such as ĝµν itself, γ̂µ, or products such as γ̂µγ̂ν , γ̂µγ̄ν . Later we will see that many
objects related to γ5 or related to Fierz identities are also evanescent.
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3.3.2 Construction of D-Dimensional Covariants and γ Matrices

Now we describe how objects may be defined which satisfy these relations. The main
difficulties are to define the lower-index metric tensor and its contraction rules, and the
γµ-matrices. We essentially follow Collins [63] in the construction of all these quantities.

As mentioned above, at first sight it appears difficult to reconcile the different proper-
ties (3.44) of the D-dimensional metric tensor gµν . The basic idea is that fundamentally
tensors with lower indices can be viewed as multilinear forms, i.e. mappings of objects
with upper indices to numbers. In the case of infinite dimensional vector spaces it is
not always sufficient to specify their component values. For Euclidean metric and for a
general tensor T with components T ij Collins proposed the definition of δijT ij as an ab-
breviation of a mapping δ(T ). This mapping can be defined via a D-dimensional integral
[63]

δijT
ij = δ(T ) = A

∫
dDkT ijkikjδ(~k2 − 1) (3.57)

with normalization constant A = DΓ(D/2)/πD/2. For the integration momentum we
simply take ki = ki such that δijkikj = ~k2. The crucial point is that by definition the
index contraction is performed before evaluating the integral. As a special case, the
definition also contains a definition of the individual components

δij = A

∫
dDkkikjδ(~k2 − 1) . (3.58)

The calculations of the integrals in Eqs. (3.22) leading to Eq. (3.28) then show that

δijδij = D , (3.59a)
δij = δij . (3.59b)

The first of these relations demonstrates the effective D-dimensional behavior of the
metric tensor, and the second holds component-wise and shows that the individual com-
ponents have the usual values. However, the equations also show again that contraction
with δij is not defined by summation over explicit component values but via the integral
(3.57), where contraction and integration cannot be interchanged. Clearly,

∞∑
i,j=1

δijδij =∞ (3.60)

in contrast to the correct equation (3.59a).
By treating the space-like components of gµν analogously to the definition of δij

discussed above it is clear that we can define a metric tensor which indeed fulfills the
announced equations (3.44). General tensor contractions of the form Tµνgµν are defined
via integrals such as Eq. (3.57) and not via explicit summation over component values
— in general summation over indices does not commute with integration (which here
defines contraction). The exception are cases of tensors with only a finite number of
nonvanishing components, in which case Eqs. (3.44a,3.59b) immediately establish the
relation (3.46). In addition, the definition via an integral benefits from the fact that
different D-dimensional integrations can be interchanged, see Eq. (3.15). Therefore, gµν
may be pulled inside or outside integrals as exemplified in Eq. (3.45). In this way we
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have established all desired properties of the D-dimensional metric tensor by explicit
construction.

Next, we discuss the construction of γµ-matrices which satisfy the formally D-
dimensional relations (3.47). We define them similarly to Ref. [63]. We start from
any standard representation for the usual 4-dimensional γµ-matrices such as the repre-
sentation (2.24) and denote these 4 × 4-matrices now as γµ[4], µ = 0, 1, 2, 3. The usual
4-dimensional γ5-matrix is now denoted as γ[4]5 = iγ0

[4]γ
1
[4]γ

2
[4]γ

3
[4]. We assume a represen-

tation such as (2.24) in which the properties (2.21) hold, such that only γ2 is imaginary
and all others are real.

Then the formally D-dimensional γµ-matrices can be defined as infinite-dimensional
block matrices. Adapting the construction of Ref. [63], we first set for µ = 0, 1, 2, 3

γµ =


γµ[4] 0 0 · · ·
0 γµ[4] 0 · · ·
0 0 γµ[4] · · ·

. . .

 (µ = 0, 1, 2, 3) , (3.61)

where each entry corresponds to a 4 × 4 submatrix. To construct γµ with µ > 3, we
define the intermediate matrices γ̂(4k) by

γ̂(4) = γ[4]5 γ̂(4k+1) =


γ̂(4k) 0 0 0

0 −γ̂(4k) 0 0
0 0 −γ̂(4k) 0
0 0 0 γ̂(4k)

 (k ≥ 1) . (3.62)

In this way, γ̂(4k) is a real, hermitian, 4k-dimensional matrix which consists of ±γ[4]5-
blocks on the diagonal and which satisfies (γ̂(4k))2 = 1. Using these matrices, we define,
for any µ ≥ 4, the 22µ+1-dimensional real, anti-hermitian block matrix

γµ(2(2µ+1)) =
(

0 γ̂(4µ)
−γ̂(4µ) 0

)
(µ ≥ 4) (3.63)

and finally the infinite-dimensional block matrix

γµ =


γµ(22µ+1) 0 . . .

0 γµ(22µ+1)
... . . .

 (µ ≥ 4) . (3.64)

The γµ matrices defined in Eqs. (3.61,3.64) satisfy all properties announced in Sec. 3.3.1;
with the exception of the commutation relations of γ5 (see below) these are identical to
the purely 4-dimensional properties listed in Eqs. (2.16,2.19,2.21,2.22).21

21The construction of Ref. [63] is different in that the hermiticity/reality/charge conjugation properties
of the γµ matrices are different from Eqs. (2.21). Our construction corresponds essentially to a subset of
the γµ matrices of Ref. [63].
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3.3.3 Definition of γ5 and εµνρσ in DReg

A particularly problematic issue is the definition γ5 and the εµνρσ symbol in DReg — the
issue is often referred to as the “γ5-problem of DReg”. In 4 dimensions, three properties
hold for the γ5-matrix and traces:

{γ5, γ
µ} = 0, (3.65a)

Tr(γ5γ
µγνγργσ) = −4iεµνρσ, (3.65b)
Tr(Γ1Γ2) = Tr(Γ2Γ1) . (3.65c)

The last equality means that traces are cyclic. In D 6= 4 dimensions, it is inconsistent to
require these properties simultaneously, and one has to give up one of them. To exhibit
the problem we consider the trace tµ1...µ4 = Tr(γµ1 . . . γµ4γ5) and employ the following
series of steps, making use of equations (3.65).

Dtµ1...µ4 = Tr
(
γαγαγµ1 . . . γµ4γ5

)
= Tr

(
(2γαgαµ1 − γαγµ1γα) . . . γµ4γ5

)
= . . .

= 8tµ1...µ4 + Tr
(
γαγµ1 . . . γµ4γαγ5

)
= (8−D)tµ1...µ4 . (3.66)

In the first step, the D-dimensional contraction rule is used, leading to the factor D, in
the intermediate steps the γµ anticommutation rule is used four times, leading to the
factor 8. In the last step cyclicity and the anticommutation relation (3.65a) are used to
relate all terms to the initial trace. The outcome is that

(4−D)tµ1...µ4 = 0 , (3.67)

hence either D = 4 or the trace must vanish. In other words, for D 6= 4 two of the
equations (3.65) imply that the third equation is wrong. In order to set up a consistent
regularization which allows a continuous limit to 4 dimensions we need both D 6= 4 and
a non-vanishing trace at the same time, and therefore we need to give up the validity of
some of the equations (3.65).

As a result there is a plethora of proposals how to treat γ5. The standard one,
which is known to be mathematically well-defined and consistent, is the so-called BMHV
scheme [1, 4]. This scheme gives up the anticommutation property of γ5; it is consistent
in the sense that it is compatible with unitarity and causality of quantum field theory,
but it does not manifestly lead to the correct conservation/non-conservation properties
of currents and does not manifestly preserve gauge invariance of chiral gauge theories.

In the BMHV scheme, γ5 is defined in the identical way as in four dimensions,

γ5 = iγ0γ1γ2γ3 . (3.68)

This clearly treats the first, original four dimensions differently from the remaining (D−4)
dimensions. Accordingly, we obtain the modified anticommutation relations

{γµ, γ5} = {γ̂µ, γ5} = 2γ̂µγ5 , (3.69a)
{γ̄µ, γ5} = 0 , (3.69b)
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[γ̂µ, γ5] = 0 , (3.69c)

where as in Eq. (3.55) the split γµ = γ̄µ + γ̂µ into the 4-dimensional and (D − 4)-
dimensional parts was used. Only the original matrices γ̄µ fully anticommute with γ5.
In this way, D-dimensional Lorentz invariance is effectively broken by the regularization.
Similarly, this modification leads to a breaking of gauge invariance in chiral gauge theories
on the regularized level in DReg. This is clearly a drawback and a central topic of the
present review.

Similarly, the Levi-Civita εµνρσ symbol, defined as a fully antisymmetric object with
four indices is only well defined in purely 4 dimensions. Hence, using the split notation
we may write, as stressed in Ref. [4],

εµνρσ = ε̄µνρσ , ε̂µνρσ = 0 , (3.70)

and rewrite the definition of γ5 as

γ5 = − i

4! ε̄µνρσγ̄
µγ̄ν γ̄ργ̄σ , (3.71)

with the sign convention

ε0123 = −ε0123 = +1 , (3.72)

which was already used in Eq. (2.19). In practical computations often combinations of
two ε-symbols appear. The following 4-dimensional identity remains valid,

ε̄µνρσ ε̄αβγδ = −ḡµαḡνβ ḡργ ḡσδ ± . . . (3.73)

where the dots denote 23 further similar terms leading to total antisymmetrization in
the indices. Some calculations, e.g. the prescription by Larin [70] propose to elevate this
identity to the level of D dimensions i.e. to assume the validity of the corresponding
identity with formally D-dimensional metric tensors, i.e. effectively without the bars.
Let us remark that such a D-dimensional identity can ultimately lead to inconsistencies
in the sense that one initial expression could lead to different answers. To make this
inconsistency explicit we denote the right-hand side of Eq. (3.73) in D dimensions as
pµνρσαβγδ. Then consider the product of four ε-symbols

εµνρσεαβγδεµνρσε
αβγδ . (3.74)

This can be evaluated in two ways with the two results

either pµνρσαβγδp
αβγδ
µνρσ or pµνρσµνρσp

αβγδ
αβγδ . (3.75)

In strictly 4 dimensions, both expressions give 242 = 576 so there is no inconsistency.
However, assuming validity of these equations in D dimensions and using D-dimensional
metric tensors in the contractions, the two results are different:

either 24D(D − 1)(D − 2)(D − 3) or [D(D − 1)(D − 2)(D − 3)]2 . (3.76)

Hence in an amplitude involving such contractions of ε-symbols, the result is ambiguous,
except for the leading poles in 1/(D− 4). For this reason in a fully consistent treatment
only the 4-dimensional version of the identity (3.73) is valid [4].
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In view of the drawbacks of the BMHV scheme, many alternative versions of DReg
have been proposed in the literature. For instance, Ref. [14] has proposed that a fully
anticommuting γ5 may be used in certain Feynman graphs, in spite of the inconsistency
between Eqs. (3.65) mentioned above. Similarly, Refs. [71, 72] derived that in specific
applications correct results can be also be obtained using a simpler schemes with an-
ticommuting γ5. A well-known review of the situation was given by Jegerlehner [15],
where further arguments were presented that the “naive” anticommuting γ5 may be used
in many cases. Kreimer et al [17] have proposed a different kind of alternative to BMHV:
out of the three equations (3.65), the cyclicity of the trace is given up, but the anticommu-
tativity is kept. In this case, special attention must be paid to “subdiagram consistency”
as described in Ref. [72]: “It should give unique results independently of whether some
diagram is considered as a subdiagram, and independently of the order in which sub-
diagrams are calculated. Otherwise subdivergences could not be properly subtracted in
multiloop diagrams.” Ref. [17] introduces so-called “reading-point” prescriptions to deal
with this difficulty.

All these alternative proposals have in common that their general applicability to all
cases has not been established; hence the all-order proofs of renormalizability properties
of e.g. Refs. [22, 4, 73, 74] do not apply to them.

We also briefly comment on two recent investigations of the γ5-problem in alternatives
to DReg. Ref. [75] considered dimensional schemes in various slightly different imple-
mentations (e.g. the so-called four-dimensional helicity (fdh) scheme discussed in more
detail below in Sec. 3.5) from the point of view of practical one- and two-loop calcula-
tions. At the two-loop level, there is no single scheme that stands out as computationally
most efficient. Ref. [76] considered strictly 4-dimensional schemes as alternatives to di-
mensional regularization, in the hope that these schemes might offer practical advantages
with respect to the treatment of γ5. The considered class of schemes is wide and general
but contains only schemes which do not break gauge invariance as immediately as e.g.
the Pauli-Villars scheme. This reference showed clearly that all these schemes have very
similar problems for γ5 as dimensional schemes. The reason is that in those schemes the
regularization is essentially performed by replacement rules, and those replacement rules
do not necessarily commute with applying, e.g., the cyclicity of traces.

3.4 Relation to the Lagrangian in D Dimensions

This subsection is devoted to a seemingly simple statement, which however constitutes
another important advantage of DReg. DReg can already be formulated at the level
of the Lagrangian, and regularized Feynman diagrams can literally be obtained from a
D-dimensional version of the Gell-Mann-Low formula with a D-dimensional Lagrangian.
This fact allows a very efficient investigation of properties of regularized Green functions.
Examples are the all-order proof of the regularized quantum action principle (see Sec.
4.2) and the textbook derivation of renormalization group β functions and anomalous
dimensions from divergences in the counterterm Lagrangian (see e.g. the textbook by
Srednicki [35]).

The explicit construction of formally D-dimensional objects in DReg provides all
objects needed to formulate a D-dimensional Lagrangian. Fields φ(x) are defined as
functions of D-dimensional vectors xµ, i.e. of elements of the quasi-D-dimensional space
QDS. Metric tensors, derivatives, vector fields, and γ-matrices have all been extended
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to D dimensions as well. The construction of γ-matrices implies also a definition of D-
dimensional extensions of 4-spinor fields (which have infinitely many components in view
of Eq. (3.61)). For this reason any Lagrangian of a 4-dimensional quantum field theory
involving such fields can be naturally extended to D dimensions. 22

If a Lagrangian involves the γ5 matrix or the εµνρσ symbol, e.g. in case of chiral fermion
interactions, an extension to D dimensions remains possible, but the D-dimensional
version involves e.g. γ5 with its modified anticommutation relations (3.69). Hence in
such cases the resulting D-dimensional Lagrangian will not be invariant under formally
D-dimensional Lorentz transformations. This, however, does not preclude the application
of DReg.23

This issue illustrates a more general point. Though there is often a preferred choice,
the extension of any Lagrangian to D dimensions is in principle never unique. It is always
possible to change so-called evanescent terms in the Lagrangian, i.e. terms that vanish in
4 dimensions. If γ5 is present, this possibility is obvious. E.g. a 4-dimensional expression
ψ̄γµPLψ may be extended to the following three inequivalent D-dimensional choices

ψγµPLψ , or ψPRγµψ , or ψPRγµPLψ . (3.77)

In 4 dimensions these terms are all equal but in D dimensions they are different due to
the modified anticommutation relations. But even independently of γ5, one may extend
e.g. an interaction term between a vector and a scalar field as

φ†Aµ∂µφ , or φ†Āµ∂̄µφ , (3.78)

where the second possibility involves only the purely 4-dimensional part of the derivative.
Despite the non-uniqueness, clearly any field theory Lagrangian can be extended to

a D-dimensional version. This Lagrangian L(D) can then be split into a free part and a
remainder (the “interaction” part)

L(D) = L(D)
free + L(D)

int , (3.79)

where the free part must be bilinear in the fields and contain the appropriate kinetic
terms. The non-uniqueness affects mainly the “interaction” part; a constraint we will
always impose is that the kinetic terms involve strictly D-dimensional derivatives. A
reason for this constraint will be illustrated below. It essentially fixes the “free” part of
the Lagrangian, such that we may schematically write the free Lagrangian as

L(D)
free = 1

2φiD
(D)
ij φj (3.80)

with some differential operator D(D)
ij involving D-dimensional derivatives. The notation

is meant in a general sense, including the familiar expressions for complex scalar fields,
22Unfortunately, the 2-component spinor notation described in Sec. 2.2.3 is not known to be extendable

toD dimensions since it is explicitely tied to the representation theory of the 4-dimensional Lorentz group.
2-component spinor Lagrangians need to be rewritten in terms of 4-component spinors before an extension
to D dimensions and an application of DReg becomes possible.

23In particular, even in such cases it remains true that 4-dimensional Lorentz invariance is manifestly
preserved.
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spinor fields or vector fields. Standard free field theory quantization then leads to the
D-dimensional propagators

P(D)
jk = 〈0|Tφjφk|0〉 (3.81)

which are the Green functions of the differential operators, i.e. which satisfy the inverse
relation

D̃(D)
ij P̃

(D)
jk = iδik (3.82)

in momentum space in D dimensions.
Let us exemplify these relations and highlight the related subtleties. E.g. for spinor

fields we take the straightforward D-dimensional free Lagrangian ψ̄(iγµ∂µ − m)ψ ≡
ψ̄D(D)ψ, leading to the momentum-space propagator

P̃(D) = 〈0|Tψψ̄|0〉F.T. = i

/p−m
=
i(/p+m)
p2 −m2 (3.83)

where F.T. denotes Fourier transformation of the respective expression (x-arguments are
suppressed); the argument of the Fourier transformation is the momentum p; all appear-
ing momenta are D-dimensional and the +iε prescription in the propagator denominator
is suppressed. Such propagator Feynman rules lead to loop integrals such as the ones of
Sec. 3.2.4 and denominator structures as in the example (3.29). The propagator (3.83)
is indeed the inverse of the momentum-space differential operator of the Lagrangian,

D̃(D) = (/p−m). (3.84)

Taking instead the purely 4-dimensional derivative ∂̄µ in the free Lagrangian would lead
to

〈0|Tψψ̄|0〉F.T = i

/̄p−m
=
i(/̄p+m)
p̄2 −m2 , (3.85)

which involves only the purely 4-dimensional momentum in the denominator. The prob-
lem of this choice is that loop integrals would not be regularized, hence such a choice is not
permitted. Similarly, one may propose a recipe where Dirac propagators are regularized
as

〈0|Tψψ̄|0〉F.T →
i(/̄p+m)
p2 −m2 , (3.86)

which involves the purely 4-dimensional momentum in the numerator and the D-
dimensional momentum in the denominator. Such a recipe cannot arise from a D-
dimensional Lagrangian; it will not be used and statements such as the regularized
quantum action principle would not necessarily be valid.

As illustrated by this example, the general D-dimensional relationships for the free
Lagrangian and the propagators (3.80,3.81,3.82) can always be realized, they will always
be assumed, and they are nontrivial.

Once the free Lagrangian is chosen in agreement with the mentioned constraint, and
the interaction Lagrangian is fixed, D-dimensional regularized Feynman diagrams can
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be defined via the standard Gell-Mann-Low formula, suitably written in D dimensions.
One way to write it is to take the original formula (2.67) and replace the integrations
by D-dimensional ones. In this case the parameters and fields must have appropriately
modified dimensionalities, see e.g. [77] for a presentation that makes extensive use of this
possibility. A second way is to write

Z(J,K) =
〈0|T exp

(
iµD−4 ∫ dDx(L(D)

int + Jiφi +KiOi)
)
|0〉

〈0|T exp
(
iµD−4 ∫ dDxL(D)

int

)
|0〉

, (3.87)

where the regularization scale µ is introduced such that the regularized Lagrangian has
mass-dimension 4. Either way, if the Gell-Mann-Low formula is evaluated via Wick con-
tractions and Fourier transformed, the correct DReg expressions for regularized Feynman
diagram amplitudes are obtained. The variant (3.87) also generates a factor µ4−D ac-
companying each loop integration, as indicated by Eq. (3.6).

As mentioned in the beginning, this relation between the Lagrangian and regularized
Feynman diagrams has important consequences, some of which we will discuss in sub-
sequent sections. Here we remark that the present discussion allows the possibility that
the Lagrangian contains 1/(D − 4) poles in coefficients; in particular the discussion is
unaffected if the interaction Lagrangian L(D)

int is defined to include counterterms that are
defined order by order to cancel divergences or to restore symmetries.

3.5 Variants: Dimensional Reduction and cdr, hv, and fdh Schemes

DReg as defined so far still leaves room for different options, and there are other variants
of dimensional schemes which share the idea of D-dimensional integrals. Here we give a
brief overview of several schemes used in the literature. The overview essentially follows
the review [5], and we refer to this review for more details and original references.

We remark that the following distinction between the schemes does not have much
influence on the discussion of chiral fermions and the treatment of γ5 in DReg. The
remarks of Sec. 3.3.3 apply to all the following schemes, and different alternative treat-
ments of γ5 have been employed in the literature. In the following discussion we focus
on aspects independent of γ5.

All the following schemes treat integrals always in D dimensions. They differ in their
treatment of vector fields. In order to consistently define the different schemes it has
turned out useful [78, 79] to introduce the following spaces extending the original 4-
dimensional space 4S. In Sec. 3.2.1 we already introduced the quasi-D-dimensional space
QDS, on which objects such as formally D-dimensional momenta pµ and momentum
integrations are defined. The explicit construction showed that this space necessarily is
infinite dimensional and contains the original space 4S. Now we introduce an even bigger
space QDsS (later, Ds = 4 will be taken, so this is often called a “quasi-4-dimensional”
space). It contains QDS and is formally Ds-dimensional. The relationships are thus

4S ⊂ QDS ⊂ QDsS (3.88)

regardless of the values of D and Ds.
Before describing the scheme definitions we note that vector fields can appear in

different roles in Feynman diagrams:
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• There are vector fields appearing in propagators in loop diagrams or as propagators
or external fields in phase space regions which lead to infrared, soft or collinear
singularities. We call such vector fields singular vector fields. They may be treated
in either 4S, QDS, or QDsS.

• All other vector fields appear outside of 1PI diagrams and outside singular phase
space regions. We call them regular, and they may be treated differently from
singular vector fields.

To motivate the concrete scheme choices we further list two simple observations.

• Gauge invariance relies on the gauge covariant derivative Dµ, which combines the
ordinary derivative (which is always D-dimensional) and vector fields. In order not
to directly break gauge invariance on the regularized level, there should be at least
a fully D-dimensional covariant derivative. Hence the singular vector fields should
be treated at least as D-dimensional.

• Supersymmetry relies on an equal number of fermionic and bosonic degrees of
freedom. The number of spinor degrees of freedom is essentially fixed via Tr1 = 4.
Hence in order not to directly break supersymmetry, singular vector fields should
be treated as 4-dimensional.

It appears difficult to reconcile the requirements of gauge invariance and supersymmetry,
and the different schemes are motivated by focusing on different aspects.

Now we list the four schemes and refer to Tab. 1 for a summary.

• Dimensional regularization has two subvariants, called hv and cdr (’t
Hooft/Veltman and Conventional Dimensional Regularization). Both variants
treat singular vector fields as D-dimensional, i.e. in QDS. This is in line with
D-dimensional gauge invariance24 but leads to a direct breaking of supersymmetry.
The hv scheme treats regular vector fields without regularization, i.e. in 4S, and
the cdr scheme treats all vector fields in QDS. The space QDsS is not used.

• The other class of choices is dimensional reduction, originally introduced in the
context of supersymmetry [80]. It also has two subvariants, called fdh and dred
(Four-dimensional helicity scheme and Dimensional Reduction). Singular vector
fields are treated as Ds-dimensional, and in practical calculations Ds is eventually
set to Ds = 4. Hence singular vector fields are essentially treated as quasi-4-
dimensional, but the quasi-4-dimensional space contains the D-dimensional sub-
space, such that both gauge invariance and supersymmetry are not immediately
broken. fdh is analogous to hv and treats regular vector fields as strictly 4-
dimensional, and dred treats all vector fields in QDsS.

24We stress again that here our definitions of the four schemes only refer to the treatment of vector
fields. In principle, in either scheme one would also have different options of treating γ5, of which
the non-anticommuting one is the most rigorous. The agreement with gauge invariance is meant on a
superficial level. The existence of a D-dimensional covariant derivative by itself does not prove the all-
order preservation of gauge invariance, and clearly gauge invariance of chiral gauge theories can be broken
in dimensional schemes. For an example rigorous statement on the preservation of gauge invariance see
later Sec. 4.3.
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cdr hv fdh dred
singular vector field g[D]

µν g[D]
µν g[Ds]

µν g[Ds]
µν

regular vector field g[D]
µν g[4]

µν g[4]
µν g[Ds]

µν

Table 1: Treatment of singular and regular vector fields in the four different schemes.
The table indicates which metric tensor is to be used in propagator numerators and
polarization sums. This table is adapted from Refs. [79, 5].

Technically the schemes are expressed and summarized by Tab. 1 by specifying which
metric tensor is to be used in propagator numerators or in polarization sums for squared
matrix elements. In the table and in the remainder of this subsection we use a more
explicit notation for metric tensors on the different spaces and use the symbols g[dim]

µν

where dim denotes the respective space, i.e. dim = 4, D,Ds or dim = D−4, Ds−D. Our
previous notation is rewritten as

ḡµν ≡ gµν[4] , ĝµν ≡ gµν[D−4] , gµν ≡ gµν[D] . (3.89)

The scheme differences for singular vector fields (which are sufficient for 1PI Green
functions) can be well explained by comparing the gauge covariant derivatives. In the
cdr and hv schemes, a generic covariant derivative is purely D-dimensional,

D[D]
µ = ∂[D]

µ + igA[D]
µ , (3.90)

and the regularized vector field A[D]
µ plays the role of a D-dimensional gauge field. In

contrast, a covariant derivative in the dred and fdh schemes can be split as

D[Ds]
µ = ∂[D]

µ + igA[D]
µ + igeA[Ds−D]

µ . (3.91)

From a D-dimensional spacetime point of view, only the part A[D]
µ acts as a D-

dimensional gauge and vector field. In contrast, the field components A[Ds−D]
µ are

extra fields which behave like scalar fields in D dimensions; they are often referred to as
“ε-scalars”. The behavior under renormalization reflects this difference, and in general
the two coupling constants ge, g renormalize differently.

In practical calculations it is often not required to write the covariant derivative
as explicitly as in Eq. (3.91). Often it is sufficient to set Ds = 4 and ge = g such
that the vector field in the covariant derivative in dred and fdh behaves essentially 4-
dimensionally. If this is possible it constitutes an advantage of these schemes. Specifically
in supersymmetric theories the symmetry leads to g = ge. In general, however, the split
(3.91) is in principle always possible and sometimes required. In the literature, the split
was often useful to understand scheme behaviours, to resolve inconsistencies and to derive
scheme translation rules (for references to examples see Ref. [5]).

We now give a brief overview of the theoretical status of the dred and fdh schemes.
For a more practical description with example calculations in all schemes we refer to
Ref. [5]. dred was introduced with the goal to preserve supersymmetry on the regu-
larized level [80, 81]. Over time, however, several inconsistencies were reported in the
literature. Ref. [82] found a mathematical inconsistency in the simultaneous applica-
tion of 4-dimensional and D-dimensional algebra. The inconsistency is very similar to
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Eqs. (3.74,3.76). It turned out that the inconsistency is due to the assumption that the
D-dimensional space is a proper subspace of the original 4-dimensional space. If one dis-
tinguishes between the original 4-dimensional space and the quasi-4-dimensional space
QDsS and uses the relationships (3.88), the inconsistency is resolved [78].

An important result is the all-order equivalence between all the schemes [83, 84] (the
proof was given for Green functions without infrared divergences and hence does not
distinguish cdr/hv or dred/fdh). For this proof, the split (3.91) and the independent
renormalization of couplings such as ge and g is essential. In this way, another incon-
sistency reported in Ref. [85] was resolved. In that reference, couplings such as ge and
g were always assumed to be identical and it was shown that unitarity of the S-matrix
can be violated at higher orders. This necessity of the split (3.91) and its role for renor-
malization, finiteness and unitarity has also been stressed and exemplified by explicit
calculations in Refs. [86, 87]. In summary, dred is established as a fully consistent and
applicable regularization for UV divergences.

The scheme properties for infrared divergences have also been investigated, in partic-
ular focusing on the computation of real and virtual higher-order corrections to physical
processes. In the context of such calculations the different treatments of regular vector
fields becomes important. The schemes hv and, in particular, fdh are motivated by
the potential to carry out much of the algebra in strictly 4 dimensions, allowing e.g.
powerful spinor and helicity methods. It was shown that the cdr, hv, and fdh schemes
are equivalent at the next-to-leading (NLO) level, and elegant scheme transition rules
were derived [88, 89, 90]. In a parallel development, several references observed an ap-
parent inconsistency in dred with infrared factorization [91, 92, 93].25 The resolution
of this inconsistency [95, 79] is again based on the observation that the split (3.91) and
a separate treatment of D-dimensional gauge fields and ε-scalars is in general necessary.
Further higher-order extensions of these analyses were presented in Refs. [96, 97, 98].

Finally we comment on the question of supersymmetry preservation. In dimensional
regularization (regardless whether cdr or hv) the number of bosonic and fermionic
degrees of freedom on the regularized level is different. This immediately leads to a
violation of supersymmetry relations already at the one-loop level. Dimensional regular-
ization may still be used, but specific finite supersymmetry-restoring counterterms have
to be added to the Lagrangian. Such counterterms were evaluated and documented in
Refs. [99, 100, 101].

For dimensional reduction (dred or fdh), many studies have confirmed the compat-
ibility with SUSY and the absence of non-SUSY counterterms. Overviews of results can
be found e.g. in Refs. [83, 84, 78, 102]. Refs. [78, 103] made clear that in the consistent
versions of dred/fdh, supersymmetry will eventually be broken. The reason is that
the regularized Lagrangian is formulated not in the actual 4-dimensional space but in
QDsS, where Fierz identities do not hold. The quantum action principle in dred [78]
then implies a supersymmetry breaking on the level of Green functions; the reasoning
applied in Ref. [78] is essentially the same as the strategy described in the present review
for restoring gauge invariance in chiral gauge theories. Because of this general statement,

25As discussed in Ref. [79], these important results were somewhat obscured by the fact that different
authors used different names for equivalent schemes, and sometimes the same names for different schemes:
The schemes called DR (dimensional reduction) in Refs. [88, 89, 90] are actually equivalent to the fdh
scheme [94]; but Refs. [91, 92, 93] used the term dimensional reduction in the same sense as we define
dred here.
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supersymmetry of dred must be investigated on a case-by-case basis, and it has turned
out that for a large set of relevant multi-loop calculations, supersymmetry is preserved
[102, 86, 104, 105].
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4 Quantum Action Principle in DReg
If Green functions of a quantum field theory are defined via the path integral (2.68) or
the Gell-Mann-Low formula (2.67), the properties of Green functions clearly reflect the
properties of the underlying Lagrangian. Example properties are the Ward or Slavnov-
Taylor identities already discussed in Secs. 2.5, 2.6 which reflect symmetry properties of
the Lagrangian.

This section is devoted to a related but more general relationship — the so-called
quantum action principle, specifically the regularized quantum action principle in DReg.
This is a very useful relationship, allowing e.g. rigorous derivations of Slavnov-Taylor
identities or their breakings. The quantum action principle might appear obvious or
straightforward, and sometimes its validity is taken for granted. However, actually its
validity and also its precise meaning depends on the chosen regularization and renor-
malization procedure. For DReg, it was proven in [4] both on the regularized and
on the renormalized level; the proof was extended to the consistent version of dimen-
sional reduction in Ref. [78]. We remark that there is also a regularization-independent
quantum action principle, established in the context of BPHZ-renormalization in Refs.
[106, 107, 108, 109, 110, 111]. We will discuss it and its relation to the regularized
quantum action principle of DReg later in Sec. 6.2.

Here in this section we will begin with a formal derivation to motivate the statement,
to highlight its simplicity and to fix its interpretation (Sec. 4.1). Then we will present a
full proof of the regularized quantum action principle in DReg (Sec. 4.2). Finally Sec. 4.3
will illustrate how to use this regularized quantum action principle to establish symmetry
properties.

4.1 Formal Derivation of the Quantum Action Principle

The quantum action principle is a simple relation between the properties of the La-
grangian and the full Green functions. Here we will present a formal derivation using
the path integral (allowing general dimension D)

Z(J,K) =
∫
Dφ ei

∫
dDx(L+Jiφi) , (4.1)

where possible composite operator terms coupled to sources K have been absorbed into
the Lagrangian L. Similarly to Sec. 2.5 we consider a variable transformation

φ→ φ+ δφ , (4.2)

however here we do not assume that the action is invariant, but instead we allow a change
of the Lagrangian

L → L+ δL . (4.3)

By assuming the path integral measure to be invariant under the transformation, steps
analogous to the ones of Sec. 2.5 lead to

0 =
∫
Dφ

(∫
dDx i(δL+ Jiδφi)

)
ei
∫
dDx(L+Jiφi). (4.4)

This is the most important basic version of the quantum action principle.
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In an even simpler way one may derive the following relations for derivatives with
respect to an external field K(x) or to a parameter λ appearing in the Lagrangian:

δZ(J,K)
δK(x) =

∫
Dφ

(
δ

δK(x)

∫
dDx iL

)
ei
∫
dDx(L+Jiφi) , (4.5a)

∂Z(J,K)
∂λ

=
∫
Dφ

(
∂

∂λ

∫
dDx iL

)
ei
∫
dDx(L+Jiφi) . (4.5b)

These are further variants of the quantum action principle.
Similar to Sec. 2.5 it is instructive to rewrite the quantum action principle in various

ways. First, identities for explicit Green functions can be obtained by taking suitable
derivatives of the above identities with respect to sources J . In summary, the three
variants of the quantum action principle then read as follows:

• Variation of quantum fields: δ =
∫
dDxδφi(x) δ

δφi(x) .

i δ〈Tφ1 . . . φn〉 = 〈Tφ1 . . . φn∆〉 , (4.6)

where ∆ =
∫
dDx δL and the left-hand side is an abbreviation of Green functions

involving δφi as in Eq. (2.89).26

• Variation of an external (non-propagating) field K(x):

− i δ

δK(x)〈Tφ1 . . . φn〉 = 〈Tφ1 . . . φn∆〉 , (4.7)

with ∆ = δ
δK(x)

∫
dDxL.

• Variation of a parameter λ:

− i ∂
∂λ
〈Tφ1 . . . φn〉 = 〈Tφ1 . . . φn∆〉 , (4.8)

with ∆ = ∂
∂λ

∫
dDxL.

An important further way to rewrite the quantum action principle is in terms of the
generating functional Γ. By suitable Legendre transformation and expressing δφ in Eq.
(4.4) by derivatives with respect to sources K we obtain, in particular, the form

S(Γ) = ∆ · Γ , (4.9)

where S(Γ) is a Slavnov-Taylor operator as in Eq. (2.93) or (2.62) and where ∆ =
S
(∫

dDxL
)
. Interestingly, this identity relates the Slavnov-Taylor identity for full Green

functions on the LHS with the Slavnov-Taylor identity for the action appearing in the
path integral on the RHS.

26Generally, in the present section we use a compact notation and suppress field arguments in a self-
explanatory way such that e.g. φk ≡ φk(xk) and

∫
dDxJiφi ≡

∫
dDxJi(x)φi(x), etc.
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4.2 Proof of the quantum action principle in DReg

The derivation presented above is only heuristic because the path integral measure Dφ
was assumed to be invariant under the variable transformation. This is precisely the
point where the regularization and renormalization enters. Hence, the quantum action
principle has to be established separately for each regularization. Here we consider what
is called the regularized quantum action principle in DReg and present its proof. The
proof was first given in Ref. [4]; here we follow the presentation of Ref. [78], where the
proof was extended to dimensional reduction.

Put simply, on the regularized level in DReg, all identities presented above are liter-
ally valid, provided all equations are interpreted as identities between Feynman diagrams
regularized in DReg in D dimensions. A possible interpretation of this validity is that
DReg provides a concrete perturbative definition of the path integral in which the mea-
sure is invariant under all field transformations of the form (4.2).

For the proof, we focus on the most basic and most complicated case, Eq. (4.4)
equivalently rewritten for explicit Green functions in Eq. (4.6). All other identities can
be treated similarly. To precisely formulate the statement we rewrite Eq. (4.6) as an
identity of Feynman diagrams regularized in DReg. As stressed in Sec. 3.4 the Feynman
diagrams regularized in DReg can be obtained from the Gell-Mann-Low formula in D
dimensions. We call the regularized Lagrangian simply L, omitting the superscript (D),
and split it again as

L = Lfree + Lint , (4.10)

where Lfree determines the propagators in Feynman diagrams and Lint may contain terms
coupling composite operators to sources K, and it may contain counterterms involving
coefficients with 1/(D − 4) poles. Then Eq. (4.6) is rewritten as

n∑
k=1

i 〈Tφ1 . . . (δφk) . . . φn exp
(
i
∫
dDxLint

)
〉 = 〈Tφ1 . . . φn∆ exp

(
i
∫
dDxLint

)
〉 (4.11)

with

∆ =
∫
dDx(δLfree + δLint) , (4.12)

where both sides of equation (4.11) are to be evaluated via Wick contractions in dimen-
sional regularization. This is the statement which needs to be proven.

Let us write down the three parts of Eq. (4.11) at some specific order with N powers
of Lint. Each term on the left-hand side becomes

i

N !

〈
Tφ1 . . . (δφk) . . . φn (i

∫
dDx1Lint) . . . (i

∫
dDxNLint)︸ ︷︷ ︸

N factors

〉
(4.13)

and the term involving δLint on the right-hand side becomes

1
(N − 1)!

〈
Tφ1 . . . φn(

∫
dDxδLint) (i

∫
dDx1Lint) . . . (i

∫
dDxN−1Lint)︸ ︷︷ ︸

N − 1 factors

〉
(4.14)
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For the term involving δLfree the discussion of Sec. 3.4 is crucial. The free Lagrangian in
DReg contains fully D-dimensional derivative operators and can be schematically written
as Lfree = 1

2φiD
(D)
ij φj , such that δLfree = δφiD(D)

ij φj . Hence the corresponding term in
Eq. (4.11) becomes

1
N !

〈
Tφ1 . . . φk . . . φn(

∫
dDxδφiD(D)

ij φj)(i
∫
dDx1Lint) . . . (i

∫
dDxNLint)︸ ︷︷ ︸

N factors

〉
. (4.15)

Each term must be evaluated using Wick contractions. It will be sufficient to consider all
possible kinds of Wick contractions for the special field operator φj in δLfree as indicated
in Eq. (4.15). This field operator can be Wick contracted either with δφi at the same
spacetime point (contraction (a)), or with an external field operator φk (contraction (b)),
or with a field operator inside one of the Lint factors (contraction (c)).

For each contraction we can use the crucial property (3.82), which means that the
Feynman diagram propagators are the inverse of the kinetic operators appearing in the
regularized Lagrangian,

D(D)
ij P

(D)
jk = iδik . (4.16)

This relation establishes the relationship between the Lagrangian and Feynman rules
and is the core reason why the quantum action principle holds. Using this relation,
contraction (a) produces a single loop integral over D(D)

ij times the propagator P(D)
jl from

φj to some field φl within the composite operator δφi. The loop integrand is therefore
simply a constant δil, hence scaleless and therefore zero.

Contraction (b) with the external field φk produces the combination D(D)
ij P

(D)
jk = iδik.

In this way the
∫
dDx integral is effectively cancelled and the external field operator φk

is replaced by iδφk. Hence the contractions of type (b) in Eq. (4.15) yield exactly the
same as Eq. (4.13), and we have proven the first required cancellation.

Finally, a contraction of type (c) between φj and some field φl within one of the
Lint factors results in the product D(D)

ij P
(D)
jl

δLint
δφl

. Using the inverse relation for the
propagators again, we find that all contractions of type (c) in Eq. (4.15) lead to

i2N

N !

〈
Tφ1 . . . φn(

∫
dDxδφl

δLint
δφl

) (i
∫
dDxLint) . . . (i

∫
dDxLint)︸ ︷︷ ︸

N − 1 factors

〉
. (4.17)

This is precisely the negative of Eq. (4.14). In total, we have therefore shown the equality
(4.13)=(4.14)+(4.15), and we have established the quantum action principle (4.11).

In the same way it is possible to prove all other identities presented in Sec. 4.1. The
essential point in the proof is the possibility to express Feynman diagrams in DReg via the
Gell-Mann-Low formula together with the relationship between regularized propagators
and the regularized free Lagrangian. Ref. [4] gave the proof using the α-representation
of all diagrams explained in Sec. 3.2.4, where the relationship for the propagators is less
obvious. Ref. [78] extended the proof to the consistent version of dimensional reduction.

4.3 Examples of Applications of the Quantum Action Principle

The quantum action principle is a very powerful tool to study symmetry properties of
Green functions. Here we provide two example applications which illustrate this. The
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examples are very important in their own right, but they also provide a blueprint for the
analysis of chiral gauge theories discussed later.

The first example is gauge invariance in non-chiral gauge theories such as QED or
QCD. The gauge invariant Lagrangian of QCD with one quark flavour is given by

Linv = −1
4F

aµνF aµν + ψ̄i /Dψ , (4.18a)

Dµ = ∂µ + igT aAaµ , (4.18b)

where the generators T a correspond to the triplet representation of SU(3) and the field
strength tensor is defined as in Eq. (2.9). The full Lagrangian including gauge fixing and
ghost terms and source terms for BRST transformations is given by

Lcl =Linv +Ba(∂µAaµ) + ξ

2(Ba)2 − c̄a∂µ(Dµc)a

+ ρaµsAaµ + ζasca + Yψsψ + Yψsψ , (4.19)

where the BRST transformations are given as in Sec. 2.3.
All ingredients of the QCD Lagrangian can be interpreted asD-dimensional quantities

without any changes in the algebraic relations. The D-dimensional version of Linv is still
fully gauge invariant, and the full BRST invariant classical Lagrangian Lcl is BRST
invariant in D dimensions. Likewise, the Slavnov-Taylor identity (2.62) is satisfied in D
dimensions.

We therefore have

S
(∫

dDxLcl
)

= 0 , (4.20)

for the D-dimensional regularized theory. Now we can use the quantum action prin-
ciple in the form of Eq. (4.9), where now the breaking term ∆ = 0. Accordingly, the
symmetry of the D-dimensional classical action implies that the regularized Green func-
tions represented by the generating functional ΓDReg satisfy the Slavnov-Taylor identity
S(ΓDReg) = 0 at all orders.

This is the precise form of the statement that DReg preserves gauge invariance of
QCD manifestly. The analogous statement is also true for QED or other non-chiral
gauge theories. One can go one step further and discuss the renormalized level. If
counterterms are generated from the classical Lagrangian by the standard procedure of
field and parameter renormalization, the bare Lagrangian Lbare = Lcl +Lct still satisfies
the Slavnov-Taylor identity, S(

∫
dDxLbare) = 0. For this reason even the renormalized,

finite functional ΓDRen in the notation of Sec. 3.1 which is obtained from Lbare satisfies the
Slavnov-Taylor identity without the need for special symmetry-restoring counterterms.
The manifest preservation of gauge/BRST invariance at all steps of the construction of
QCD dramatically simplifies practical calculations as well as all-order proofs.

As our second example we briefly sketch the situation of supersymmetry in regular-
ization by dimensional reduction. As explained in Sec. 3.5, the dimensional reduction
scheme treats vector fields in quasi 4 dimensions and should therefore be better com-
patible with supersymmetry. Without going into the details, supersymmetry can also
be expressed in terms of a Slavnov-Taylor identity. If a supersymmetric Lagrangian is
defined in dimensional reduction as LDRed

SUSY and this scheme is defined mathematically
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consistently, it does not remain supersymmetric. Instead, applying the corresponding
Slavnov-Taylor operator yields S(

∫
dDxLDRed

SUSY) = ∆ 6= 0. The value of ∆ for a general
supersymmetric gauge theory was provided in Ref. [78]. The reason for the non-vanishing
value of ∆ is that the quasi-4-dimensional space does not permit using Fierz identities.
The non-vanishing value of ∆ implies that ultimately supersymmetry is not preserved
by dimensional reduction at all orders.

Nevertheless, dimensional reduction preserves supersymmetry to a very large extent,
and the quantum action principle provides a succinct method to check the validity of
supersymmetry in concrete cases: The evaluation of concrete Green functions with an
insertion of the breaking, ∆ · Γ, directly determines the potential breaking of the super-
symmetric Slavnov-Taylor identity in a concrete sector. This method was used e.g. to
verify that supersymmetry indeed is conserved in a variety of important cases, including
phenomenologically important 2-loop and 3-loop contributions to the Higgs boson mass
prediction in the Minimal Supersymmetric Standard Model [102, 105].
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5 Renormalization in the Context of DReg
In this section we review basic renormalization theory in the context of perturbative
relativistic quantum field theories, from the point of view of applications of dimensional
regularization. Renormalization has both technical and physical aspects. On the most
technical level, renormalization is a procedure to remove ultraviolet divergences and
generate finite Green functions, S-matrix elements and other quantities of interest. It
effectively provides a definition of each term in the Gell-Mann-Low formula (2.67) and
may be viewed as a definition of the path integral measure (2.68). The removal of ul-
traviolet divergences is not arbitrary but subject to important physical constraints such
as unitarity and causality. In more physical terms, renormalization can be viewed as a
reparametrization. This is reflected by the “main theorem of renormalization”27 which
states that all allowed renormalization procedures differ by nothing but reparametriza-
tions. It is also reflected by the customary practical procedure of first regularizing the
theory, then introducing counterterms which depend on the regularization and cancel
the divergences. These counterterms can be viewed as arising from reparametrizations,
or renormalizations, of Lagrangian parameters and fields.

The need for renormalization and the possibility of renormalization to generate a
finite theory also reflect further deep physical properties of quantum field theories. The
existence of ultraviolet divergences and the resulting need for subtractions and a renor-
malization procedure result in the possibility of so-called anomalies. These are breakings
of symmetries which are valid in the classical theory but broken on the quantum level
via the regularization and renormalization procedure. Fundamentally anomalies arise
if the unitarity and causality constraints on renormalization are incompatible with the
symmetry in question.

The possibility to successfully carry out the renormalization programme and its rela-
tion to reparametrizations reflects the physical phenomenon of decoupling. Physics at a
certain distance and energy scale is insensitive to physics at much smaller distance and
higher energy scales, leading to the important concepts of effective field theories and the
renormalization group. Ultra-short distance details influence long-distance physics only
via their effect on long-distance parameters. Since any regularization effectively changes
the short-distance behavior of the theory in a cutoff-dependent (but unphysical) way, it
is not too surprising that the cutoff-dependencies, including divergences, can be com-
pensated by reparametrizations such that a finite and regularization-independent limit
exists.

In the present section, we provide a brief review of the general theorems governing the
previous statements; this discussion has a strong focus on the so-called BPHZ approach
to renormalization, and an outcome is that the customary regularization/renormalization
procedure is correct. Then we review the main theorem stating that dimensional regu-
larization may be employed as one such consistent regularization/renormalization frame-
work.

27This name was coined in Ref. [112], where also a very general proof is given which essentially relies
on the physical causality constraint.
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5.1 General Renormalization Theory and Constraints from Unitarity
and Causality

Here we review basic properties of renormalization as a means to eliminate ultraviolet
(UV) divergences and to generate finite relativistic quantum field theories. The discussion
is organized along four questions: What are required properties of any renormalization
procedure? Which procedures satisfy these properties? What are possible differences
between different allowed renormalization procedures? And how does the usual procedure
of regularization and counterterms fit into the fundamental analysis of renormalization?

As we will discuss, all these questions have rigorous and positive answers, first ob-
tained by Bogoliubov/Parasiuk [113], Hepp [65], with important additional developments
by Speer [68, 22, 114] and Zimmermann [115] and Epstein/Glaser [116]. We refer to
lectures by Hepp [117] (contained in Ref [118]) for very detailed and pedagogical expla-
nations and to Ref. [119] for an overview.

We begin by explaining the fundamental requirements on any renormalization pro-
cedure. A minimal requirement would be that perturbative S-matrix elements become
UV finite; a very strong requirement would be the nonperturbative construction of well-
defined products of interacting field operators. Following the analysis of the mentioned
references we choose an intermediate approach. In this approach a renormalization is a
procedure which constructs all possible time-ordered products of free field operators, or
equivalently a renormalization is a mapping that maps any Feynman diagram to a well-
defined and UV finite expression. In detail, the requirement can be efficiently formulated
by writing an interaction Lagrangian

Lint(x) =
∑
i

Wi(x)gWi(x) , (5.1)

where Wi(x) are all local field monomials of interest (including all monomials appearing
in the actual Lagrangian of interest, but also possible further composite operators of
interest, similarly to the discussion of composite operators in sections 2.3 and 2.4), and
where gWi(x) are number-valued test functions (acting like the sources Ki in Sec. 2.3
and 2.4 or in Eq. (2.58) or like localized coupling constants). This Lagrangian generates
a perturbative scattering operator S(g), where the argument g denotes the functional
dependence on all the gWi ,

S(g) = 1 +
∞∑
n=1

in

n!

∫ ∑
i1...in

Ti1...in(x1, . . . , xn)gWi1
(x1) . . . gWin

(xn)d4x1 . . . d
4xn , (5.2)

where formally the appearing T -products would be given by

Ti1...in(x1, . . . , xn) = T (Wi1(x1) . . .Win(xn)) . (5.3)

However, the expressions in Eq. (5.3) are in general ill-defined if n > 1 and several of the
xi coincide. Hence a renormalization is a construction of the T -products and thus of Eq.
(5.2) which satisfies the following properties, adapted from Refs. [116, 112]:

Initial conditions:

S(0) = 1 , (5.4a)
Ti(x) = Wi(x) . (5.4b)
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Unitarity:

S(g)†S(g) = S(g)S(g)† = 1 (5.5)

for all hermitian WigWi . Here S(g)† must be written in terms of anti-T -products
T̄ii...in which also must be constructed.

Translational invariance:

U(1, a)S(g)U(1, a)† = S(ga) , (5.6)

where U(1, a) is the representation of translations on the respective free Fock space
and ga(x) = g(x− a).

Causality:

S(g + h) = S(g)S(h) if supp(g) & supp(h) , (5.7)

where supp(g) & supp(h) means that all points in the support of h are outside the
support of g and its future lightcone, such that the points in supp(h) cannot be
causally influenced by the points in supp(g).

Via the expansion (5.2) these requirements translate into constraints on the T -products
and T̄ -products. For instance, the causality requirement is particularly powerful [112]
and translates into the relation

Ti1...in(x1, . . . , xn) =Tij1 ...ijm (xj1 , . . . , xjm)Tijm+1 ...ijn
(xjm+1 , . . . , xjn)

if {xj1 , . . . , xjm} & {xjm+1 , . . . , xjn}
and {j1, . . . , jn} = {1, . . . , n} (5.8)

for T -products.
A construction fulfilling all these constraints thus amounts to a construction of all

T -products of possible field monomials Wi and thus of all terms appearing in the Gell-
Mann-Low formula (2.67) and ultimately of Feynman diagrams and Green functions,
including Green functions of composite operators. Similar sets of requirements can also
be found in the Bogoliubov/Shirkov textbook [120] and, for Feynman diagrams, in Hepp’s
lectures [117].

Let us briefly comment on the central role of unitarity and causality. Both require-
ments allow expressing T -products with a certain number of operator factors in terms of
T -products (or T̄ -products) with fewer factors, such as in Eq. (5.8). Hence higher-order
T -products and thus the entire renormalization procedure are not arbitrary but largely
fixed. The only ambiguity arises when all arguments are equal, xi1 = . . . = xin , in which
case causality and unitarity do not imply a relation to lower-order T -products.

This clarifies that renormalization is not unique and there can be different renormal-
ization schemes with different choices to fix these ambiguities. However it also gives an
indication that the ambiguities affect only local terms, such that different schemes differ
only by reparametrizations of local terms in the Lagrangian (5.1). Further it is in line
with the fact that UV divergences are local in position space and can be cancelled (in
the presence of a regularization) by adding local counterterms to the Lagrangian.
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The local nature of the ambiguities and possible scheme differences can be formulated
as a rigorous theorem: The statement is that any two constructions satisfying all require-
ments listed above differ only in a finite reparametrization (often called finite renormal-
ization in the original literature); conversely, if an allowed renormalization is changed by
a finite reparametrization, another allowed renormalization is obtained. In our formu-
lation, two different renormalizations may be expressed as ST (g) and ST ′(G), where T
and T ′ denote the two different constructions of T -products, and g and G represent two
different sets of the prefactors gWi in the Lagrangian (5.1). A finite reparametrization
may be written as [112]

GWi(x) = gWi(x) +
∞∑
n=1

GWi,n(g,Dg)(x) , (5.9)

which is a reparametrization of couplings expressed in terms of GWi,n, which are local
functions of all gWj (x) and their derivatives. The index n denotes the order in perturba-
tion theory. On this level, the statement is that if both ST (g) and ST ′(G), are allowed
renormalizations, then they can be related as

ST (g) = ST ′(G) (5.10)

with a suitable finite reparametrization of the form (5.9), and conversely if ST ′(G) is
allowed, then any finite reparametrization of the form (5.9) effectively defines another
allowed renormalization via requiring (5.10). Ref. [112] gave a very general proof based
directly on the causality requirement of renormalizations, and Ref. [117] gave a proof on
the level of Feynman diagrams.

Since reparametrizations do not change the physical content of a theory, this also
shows that any two allowed renormalizations are equivalent, i.e. describe the same
physics.

Now we turn to the question about which renormalization procedures exist and how
they are related to the counterterm approach often used in practical computations, giving
a brief survey of approaches and results. Historically, the BPH theorem constitutes the
first rigorous proof that all the above properties can be established [65, 113]. These
references used a recursive, so-called R-operation and an intermediate regularization.
Though successful, Hepp [117] assessed the approach as “hideously” complicated and
noted that a cleaner approach is provided by analytic regularization [62, 68]. Working
on the level of Feynman diagrams, the idea of analytic regularization is to replace the
propagator denominator of any internal line with index k as

1
`2k −m2

k + iε
→ 1

(`2k −m2
k + iε)λk (5.11)

with complex parameters λk. Similar to DReg, there is a domain for λk where all integrals
are well defined, and analytic continuation leads to poles at the physical value λk = 1. It
is then possible to define the renormalized expressions via Laurent expansion in (λk − 1)
and keeping only the zeroth-order term.

In this approach the finiteness of the construction as well as the validity of all required
properties including causality and unitarity are comparatively easy to prove [117]. The
equivalence to the counterterm method was at first only established indirectly by using
the equivalence to BPH, but later also directly [68]. A drawback of analytic regularization
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is that the relation to the Lagrangian is obscured. In contrast to e.g. DReg (see Sec. 3.4)
the regularization cannot be expressed in terms of a regularized Lagrangian.

Though technically more complicated, the BPH approach and the BPH theorem are
very instructive, most importantly since they establish the connection with the custom-
ary procedure of regularization and counterterms. In this approach, first every Feynman
diagram is regularized, e.g. using the Pauli-Villars prescription. Then, the renormaliza-
tion procedure is carried out via the so-called recursive R-operation. For any 1PI graph
G, a subrenormalized amplitude is defined by

RG = G+
∑

H1...Hs

G/H1∪...∪Hs · C(H1) . . . C(Hs) , (5.12)

where the sum runs over all possible sets of disjoint 1PI subgraphs Hi of G (exclud-
ing G itself). The object in the sum denotes the amplitude for the graph where all
the disjoint subgraphs H1 . . . Hs are shrunk to points and replaced by the counterterms
C(H1) . . . C(Hs). The fully renormalized result and the counterterms are defined as

RG = RG + C(G) , (5.13a)
C(G) = −TRG , (5.13b)

where T denotes the operation to extract the divergent part. In the BPH approach,
T is defined via a Taylor expansion in external momenta of a graph and therefore by
construction a polynomial in momentum space.

The BPH theorem [65, 113] states that the renormalized graphs RG are finite (in
the sense of distributions in momentum space) and that all required properties are valid.
The difficult part of the proof is the proof of finiteness. The big advantage of the R-
operation is its relationship to the usual counterterm approach. Indeed it is easy to see
that the formula (5.12) combinatorically corresponds to the prescription to add to G
all possible counterterm Feynman diagrams with all possible insertions of counterterm
vertices; furthermore the counterterms are local in position space and therefore can
be obtained from a local counterterm Lagrangian. For a detailed discussion of the R-
operation and a full proof of its relationship to counterterm diagrams and counterterm
Lagrangians we also refer to the monography [63], chap. 5.7.

Since both the BPH procedure and analytic regularization constitute allowed renor-
malizations they must be physically equivalent in the sense defined above, i.e. they differ
only by reparametrizations/finite renormalization. This equivalence has also been di-
rectly established in Refs. [117, 68], where it was also shown that the required finite
renormalization only involves counterterms whose power-counting degree is bounded by
the superficial degree of divergence of the original Feynman diagrams.28

A further instructive and important renormalization procedure was developed by
Zimmermann [115], leading to the notion of BPHZ renormalization. Its main virtue is
that it completely eliminates the need for any regularization but directly constructs finite
momentum-space loop integrals. Its technical tool is the famous forest formula, which is
a direct solution of the recursive R-operation. It allows constructing loop integrals via
repeated applications of Taylor subtractions on the integrand level. A technical obstacle
is that care must be taken to avoid ambiguities from different loop momentum routings

28Such a renormalization is called “minimal” in Ref. [117], but we stress that this is a different notion
of minimality than, e.g. in the so-called minimal subtraction prescription within DReg.
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in case the same subdiagram is inserted into different higher-order diagrams. While the
proof of the finiteness of the construction is highly nontrivial, the proof of equivalence to
the BPH approach is rather straightforward if an intermediate regularization is employed.

Already Ref. [65] on the BPH theorem and Refs. [62, 68, 117] on analytic regulariza-
tion made essential use of the α-parametrization (see Sec. 3.2.4) in their proofs. The idea
of using the α-parametrization was combined with the forest formula in Refs. [66, 114, 67]
to strongly simplify the finiteness proof. These references applied subtractions via Taylor
expansions with respect to the α’s such that directly finite α integrals were obtained.

5.2 Theorem on Divergences and Renormalization in DReg

5.2.1 Statement of the Theorem

Here we discuss the central theorem of dimensional regularization, most rigorously estab-
lished as Theorem 1 in the paper by Breitenlohner/Maison, Ref. [4]. In essence it implies
the following: renormalization of relativistic quantum field theories can be performed
using DReg as an intermediate regularization, the renormalized answer is correct and
equivalent to the results from other consistent schemes discussed in the previous subsec-
tion, and the required subtractions can be implemented as counterterm Lagrangians.

In more detail it can be formulated as follows. Let G be a 1PI Feynman graph
(in Ref. [4] a theory without massless particles is required, Refs. [23, 24] consider the
case with massless particles). The corresponding regularized Feynman integral TG is
defined as discussed in Sec. 3, making use of the consistently constructed formally D-
dimensional covariants and D-dimensional integrals. Ref. [4] specifically employs the
α-parametrization introduced in Sec. 3.2.4.

Then it is possible to apply a subtraction algorithm to the graph that defines first a
subrenormalized Feynman integral T G and finally a fully renormalized Feynman integral
RG. Assuming 4-dimensional quantum field theory and writing D = 4−2ε, these objects
have the following properties:

• The regularized but not yet renormalized amplitude TG is a meromorphic function
of D or equivalently of ε.

• The subrenormalized amplitude T G may have singularities in ε which are poles of
the form

1
ε
P

(1)
G + . . .+ 1

εLG
P

(LG)
G , (5.14)

where LG is the number of closed loops in the graph G. The coefficients P (k)
G are

polynomials in the external momenta and the masses appearing inG (corresponding
to local terms in position space). The degree of all these polynomials is bounded by
the superficial power-counting degree of the graph ωG = 4LG−2IG+rG with IG the
number of internal lines in G and rG the power-counting degree of the numerator.

• RG is finite, i.e. it is an analytic function of ε in a region around ε = 0.

The theorem provides several crucial additional details:

• The subtraction is organized according to a forest formula which is equivalent
to Bogoliubov’s recursive R-operation (we also refer to the monograph [63] for a
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detailed explanation). For this reason the subtraction algorithm is equivalent to
adding counterterm Feynman diagrams.

• The subtractions corresponding to subgraphs H of G, called CH , are given by T H
with analogous properties to T G as explained above.

• The subtractions corresponding to a subgraph H are independent of the surround-
ing graph G — they really only depend on H itself (and of course its subgraphs).

• The renormalized results for all graphs RG are equivalent to the results obtained
in the BPHZ framework (before Ref. [4], this point had been established also in
Ref. [22]). This means they differ from BPHZ results at most by finite, local
counterterms at each order, in line with the general theorem discussed around Eqs.
(5.9,5.10).

The previous rather technical details have very important consequences for practical
calculations and physical interpretations:

• The combinations of all subtractions of all graphs can be written as a counterterm
Lagrangian which is local and contains only terms of dimensionalities limited by
the power-counting of the original graphs.

• The renormalized amplitudes constructed in DReg provide a finite quantum field
theory which is consistent with unitarity and causality in the sense analyzed by
Refs. [65, 113, 115, 116, 120].

We provide even further details:
• Initially, all propagators in the integrals are defined via the +iε prescription in

momentum space (which corresponds to time-ordering in position space) with ε > 0.
As long as ε > 0, the dependence of RG on external momenta and masses is
infinitely differentiable, i.e. of the C∞ type. After the limit ε→ 0 has been taken,
the dependencies take the character of tempered distributions. In this regard, DReg
behaves identically to e.g. BPHZ [65].

• The setup of the subtractions requires that all 1/ε poles are subtracted, even if
the coefficients happen to be evanescent in the sense defined in Sec. 3.4. In the
coefficients P (k)

G in Eq. (5.14) a 4-dimensional limit is not permitted during the
subtraction procedure. For the counterterm Lagrangian this implies that evanes-
cent operators (operators that have no 4-dimensional counterpart since they would
vanish either in view of Fierz identities or γ5 identities or because of contractions
with ĝµν) must be included in case they are needed to cancel 1/ε poles.

5.2.2 Overview of the Proof

The full proof of the theorem explained above requires many ingredients which need
to be analyzed in detail. Most of them are largely independent of the regularization
scheme but related to Feynman graph theory, relationships between graphs and subgraphs
and structural properties of the α-parametrization. Several key ideas for the proof are
common to proofs for BPHZ renormalization. The specific aspects of DReg enter in very
localized form.

Here we first list the most important ingredients of the proof:
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• The α-parametrized integral can be decomposed into sectors.

• A particularly elegant forest formula holds for each sector of the α-parametrization.

• In each sector, clever variable substitutions can be made which lead to an explicit
general formula for the integral.

• There is a general relationship between the integrand for a certain graph and the
integrands for corresponding subgraphs and reduced graphs.

• There are a few simple observations for typical integrals and functions encapsulating
the 1/ε poles.

The following subsections will illustrate each of these ingredients with the help of suitable
examples, and will motivate the general statements, which can all be found in Ref. [4].
A further subsection will sketch the essential steps of the proof by induction.

5.2.3 Ingredient 1: Sectors of the α integration

In Eq. (3.36) we already considered a simple one-loop integral transformed into
Schwinger-, or α-parametrization. For each internal line of the diagram there is one
αl parameter, and all αl are integrated in the range from 0 to ∞. It was easy to com-
pute one integral explicitly, and the second integral could be computed as well. For the
general proof of renormalization we neither want nor need an explicit computation of all
loop integrals. We rather need to transform all integrals into a uniform structure from
which we are able to read off the required properties. It turns out that decomposing the
α integrations into sectors is extremely helpful in this regard.

The strategy of similar sector decompositions of the α integrations has been employed
also in the important proof of the BPH theorem in Ref. [65] and in simplified proofs of
the BPHZ theorem in Refs. [66, 67] and is the basis of modern numerical evaluations of
multiloop integrals [121, 122]. For the integral (3.36) the sector decomposition is very
simple: ∫ ∞

0
dα1dα2 =

∫
sector 1

dα1dα2 +
∫
sector 2

dα1dα2 , (5.15a)

where the two sectors are defined as

sector 1 = {α1 ≤ α2} , (5.15b)
sector 2 = {α2 ≤ α1} . (5.15c)

Let us describe the sector decomposition used for the proof in Ref. [4] with the following
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6-loop example diagram,
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(5.16)

with line labels and vertex labels as indicated. One particular sector is constructed by the
following algorithm. First we choose one particular 1-loop subdiagram. As an example
we choose the diagram consisting of the lines 14, 15 and call it H1. Next we choose either
a second, disjoint 1-loop subdiagram, or a 2-loop subdiagram which contains H1. Let us
choose the diagram consisting of lines 3, 4 and call it H2. Next we choose a subdiagram
H3 such that H3 either contains H1 and/or H2 or is disjoint and such that overall the
union of H1,2,3 contain three loops. We might choose H3 as the 2-loop diagram with lines
2, 3, 4, 5, 6, 7. We continue this way until we reach the 6-loop diagram H6 ≡ G itself. An
example choice of subgraphs C = {H1, H2, . . . ,H5, H6} is illustrated in the diagram of
Fig. 1. In this way we can generally construct what is called a maximal forest. In general,
the definition of a forest is a set of 1PI subgraphs of G which are non-overlapping, i.e.
either disjoint or nested. A maximal forest is thus a maximal set of 1PI subgraphs which
are non-overlapping. The above construction illustrates how one can construct all such
maximal forests, and it illustrates that each maximal forest contains as many elements
as there are loops in G.

The example also illustrates that each subgraph Hi in a maximal forest contains at
least one line that is specific to it, i.e. that is not contained in any smaller subgraphs of
the maximal forest. We may define a mapping, called “labelling” in Ref. [4], of the form

Hi 7→ σ(Hi) = one of the lines specific to subgraph Hi. (5.17)

In the example, we can choose

σ(H1) = 14 σ(H2) = 3 σ(H3) = 7 (5.18a)
σ(H4) = 11 σ(H5) = 8 σ(H6) = 16. (5.18b)
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Figure 1: The same diagram as in Eq. (5.16), with additional indications of subdiagrams
Hi (i = 1 . . . 6) which define a example maximal forest.
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The labelled lines are illustrated in blue colour in the diagram of Fig. 2. For any such
choice of a maximal forest together with a labelling for specific lines, (C, σ), we define an
integration sector for the αl variables in the following way: in each subgraph Hi, the α
for the specific labelled line is the largest, i.e.

αl ≤ ασ(Hi) ∀ l ∈ Hi . (5.19)

For the example the integration sector defined by (C, σ) is

α15 ≤ α14 α4 ≤ α3 α2,3,5,6 ≤ α7 (5.20a)
α10,12 ≤ α11 α7,11,9 ≤ α8 α1,14,8,13,17 ≤ α16 . (5.20b)

Note that this does not imply a fixed ordering of all the αl.
It is elementary to prove a variety of useful properties of maximal forests and la-

bellings. In particular, this way of defining sectors leads to a partitioning of the entire α
integration region of any Feynman graph loop integral,∫ ∞

0
dα1 . . . dαI =

∑
(C,σ)

∫
(C,σ)

dα1 . . . dαI . (5.21)

Using the notation TG for the regularized amplitude of the graph G, we can therefore
write

TG =
∑
(C,σ)
TG,(C,σ) , (5.22)

with an obvious meaning and where the sum extends over all maximal forests of G and all
possible labellings (C, σ). This construction of sectors is the essential content of Lemma
3 in Ref. [4].
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Figure 2: The same diagram as in Fig. 1, with additional indications of the labelled
lines σ(Hi) for each subgraph, according to Eq. (5.18).
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5.2.4 Ingredient 2: Forest formula after decomposition into sectors

In the all-order investigation of renormalization, the graphical language of Feynman
diagrams with counterterms has to be formalized in terms of subtractions of divergent
integrals. In the historical development of the rigorous BPHZ renormalization, this
formalization was first performed via Bogoliubov’s recursive definition of the so-called R-
operation. This recursive definition was later rewritten into Zimmermann’s forest formula
[115]. The sector decomposition described above permits a very elegant and powerful
alternative version of the forest formula, which simplifies the proof. Such simplified
forest formulas were also discussed and applied in the context of BPHZ e.g. in Refs.
[66, 114, 123].

To explain these relations we begin with the recursive R-operation, defined in Eqs.
(5.12,5.13). We recall the main equation, the definition of a subrenormalized amplitude,

RG = G+
∑

H1...Hs

G/H1∪...∪Hs · C(H1) . . . C(Hs) , (5.23)

where the counterterms are defined as C(H) = −TRH .
This R-operation is recursive because the definition of the subrenormalized amplitude

depends on lower-order counterterms which in turn are defined via lower-order subrenor-
malized amplitudes. One may work out the recursion and obtain a direct, non-recursive
formula. To illustrate this, consider the case where the full graph G has one 2-loop
subgraph γ2, which in turn has a 1-loop subgraph γ1. Then one term in RG is given by

RG = . . .+G/γ2 · C(γ2)
= . . .+G/γ2 · [−TR(γ2)]
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= . . .+G/γ2 · [−T (γ2 + γ2/γ1 · C(γ1) + . . .)]
= . . .+G/γ2 · [−Tγ2 + T (γ2/γ1 · Tγ1) + . . .] . (5.24)

Hence, working out the recursion leads to subtraction operators T acting on unrenormal-
ized (potentially multiloop) graphs like γ2 and to iterated subtractions. If we introduce
a new notation Tγ · G ≡ G/γ · Tγ for the operation “replace γ within G by Tγ”, where
products are defined as e.g. Tγ2 · Tγ1 · G = G/γ2 · T (Tγ1 · γ2), then we can rewrite the
above terms as

. . .+G− Tγ2 ·G+ Tγ2 · Tγ1 ·G . (5.25)

We note that both the subgraph {γ2} as well as the chain of subgraphs {γ1, γ2} constitute
forests in the sense defined above.

In general, if γ1 and γ2 are subgraphs and elements of a forest of G, we define

γ2 ) γ1: Tγ2 · Tγ1 ·G = G/γ2 · T (Tγ1 · γ2) (5.26a)
γ1, γ2 disjoint: Tγ2 · Tγ1 ·G = G/γ1∪γ2(Tγ1)(Tγ2) (5.26b)

while the product Tγ2 · Tγ1 is undefined for the case when γ2 is subgraph of γ1. Working
out the recursion formula in general leads to the following forest formula [115]

R(G) =
∑

F=forest
of G

∏
γi∈F

(−Tγi) ·G , (5.27)

where the forests may contain the full graph G and where also the empty set is an allowed
forest F = ∅. The formula for R(G) is similar but the forests may not contain the
full graph G. The Tγi-operators are by definition always ordered as in Eqs. (5.25,5.26)
according to nesting. Simply put: operators with bigger subgraphs act on the left,
operators with subgraphs contained in the bigger subgraphs on the right. The forest
formula can be easily proven by noting that every forest that does not contain G itself
has certain disjoint maximal elements M1 . . .Ms and can be partitioned into forests of
theM1 . . .Ms. Based on this, the equivalence to the recursive formula can be established
by induction over the number of loops.

Now we turn to the announced elegant simplification of the forest formula due to the
sector decomposition. We need to know one additional statement about sectors relevant
for combinations like

Tγ ·G = G/γ · T (γ) =
∑

(C1,σ1)
for G/γ

∑
(C2,σ2)
for γ

(G/γ)(C1,σ1) · T (γ(C2,σ2)) . (5.28)

The statement is that there is a one-to-one correspondence between such combinations
for sectors (C1, σ1), (C2, σ2) for the graphs G/γ and γ and sectors (C, σ) for the full graph
with the constraint that γ ∈ C. Then we can split the forest formula into sectors as
follows,

R(G) =
∑

F=forest
of G

∑
(C,σ) for G which
contain all γ ∈ F

∏
γi∈F

(−Tγi |subsector ) ·G|subsector , (5.29)
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where it is used that every sector (C, σ) with the given constraint generates appropriate
subsectors for all subtraction operators Tγi and the remaining reduced graph, and that
all possible subsectors are generated in this way. Abbreviating slightly we can then
rearrange as

R(G) =
∑
F

∑
C⊇F

∏
γi∈F

(−Tγi) ·G

=
∑
C

∑
F⊆C

∏
γi∈F

(−Tγi) ·G

=
∑
C

∏
γi∈C

(1− Tγi) ·G . (5.30)

The last step has used that the sum over all possible forests F which are contained in
C effectively generates the power set of C, i.e. the set of all possible subsets of C. This
simply leads to the last line, which contains only a summation over all maximal forests
C and the factors (1− Tγi). In this way the forest formula becomes

R(G) =
∑
(C,σ)
R(G)(C,σ) , (5.31a)

R(G)(C,σ) =
∏
γi∈C

(1− Tγi) ·G|(C,σ) . (5.31b)

The ordering of the (1− Tγi)-operators is as in the original forest formula, according to
the nesting of subgraphs.

This represents an important improvement. The operators (1−Tγi) have the effect of
replacing an object by the one without the subdivergences from the subgraph γi (in the
appropriate sector). Intuitively, every such operator improves the finiteness. On a more
technical level, consider what any specific Tγ for a multiloop subgraph γ acts onto. In
the original forest formula, there are terms such as Tγ ·G which lead to G/γ · T (γ). The
T (γ) is the divergence of the unrenormalized multiloop graph γ, which is typically a very
complicated expression, non-polynomial in momentum space, or non-local in position
space. In contrast, in the forest formula modified for sectors, any such multiloop Tγ only
acts onto expressions where all subdivergences corresponding to subgraphs of γ have
already been subtracted:

Tγ
∏

γi∈C,γi(γ
(1− Tγi) ·G(C,σ) = T

 ∏
γi∈C,γi(γ

(1− Tγi) · γ

 ·G(C,σ) (5.32)

Hence here the left-most T actually acts on the fully subrenormalized expression R(γ)
in the appropriate subsector, which can be hoped to have simpler, polynomial/local
divergences. These properties of the forest formula help in setting up an inductive proof
of renormalization.

5.2.5 Ingredient 3: Sector Variables and Formula for the Integral

Introducing sectors into the α integrations required for Feynman graph integrals has
further important advantages. Besides yielding the simpler forest formula, the sectors
allow rewriting the actual integrals such that the power counting and the structure of
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divergences are isolated in a quite transparent way. Here we illustrate this in a very
simple case; then we provide the general result and give comments.

Let us focus on the integral (3.36), (4π)−D/2i1−D/2
∫∞

0 dα1dα2U−D/2eiW and consider
the sector α1 ≤ α2. In this sector we introduce sector-specific variables: the largest α in
the sector is replaced by a new variable t2, the other α is rewritten as t2β in terms of a
scaling variable β which runs from 0 to 1. In total we carry out the following substitution
of variables and the integration measure in the sector

α2 = t2 , (5.33a)
α1 = t2β , (5.33b)∫

0≤α1≤α2
dα1dα2 = 2

∫ ∞
0

dtt(2I−1)
∫ 1

0
dβ , (5.33c)

where I = 2 is the number of internal lines. The integral (3.36) depends on two functions,
the Symanzik polynomial U and the exponent W given in Eq. (3.39). After the variable
substitution the Symanzik polynomial takes the value

U = M = t2(1 + β) , (5.34)

and we observe that we can factor out the variable t2. This is no accident. As already
mentioned in Sec. 3.2.4, the behaviour of U if some α’s vanish reflects the ultraviolet
behaviour of the original Feynman integral. If all α’s simultaneously vanish ∝ t2, U
generally behaves as t2L, where L is the number of loops in the graph. We can exhibit
this behaviour by defining a new function d̃

U = t2d̃ , d̃ = 1 + β ≥ 1 . (5.35)

The indicated inequality provides a very important lower bound on the function d̃.
A second observation is that we can essentially eliminate the t-variable from the

exponent W by rescaling the physical variables p, u1,2 and m as

p̃ = t p , (5.36a)
m̃ = tm , (5.36b)

ũ1,2 = t−1 u1,2 . (5.36c)

The rescaled variables are dimensionless. In terms of these variables we can write the
exponent as

W =
p̃2β − βũ2 · p̃+ ũ1 · p̃− 1

4(ũ1 + ũ2)2

(1 + β) + (it2ε− m̃2)(1 + β) , (5.37)

where indeed t does not appear explicitly, except in the product t2ε.
Using all these ingredients we can rewrite the α integral (3.36) in the considered

sector as

(−i)2(4π)−D/2i1−D/22
∫ ∞

0
dtt−D+2I−1

∫ 1

0
dβd̃−D/2eiW , (5.38)

where we record the following observations:
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• The power-like behaviour of
∫
dtt−D+2I−1 corresponds to the superficial ultraviolet

power counting of the original loop integral (3.36) which behaves like
∫
dDkk−2I .

• The remaining integrand d̃−D/2eiW has essentially no explicit dependence on t at
all; it only depends on t via the rescaled variables (5.36) and via t2ε.

• If ε > 0 in the +iε prescription, eiW decreases exponentially for large t, and the
full dependence of the integrand on the rescaled variables (5.36) and on β is of
C∞-type. The result of the β integration is still C∞ in the rescaled variables.

Figure 3: Illustration of sectors and sector variables t and β in Eqs. (5.39,5.40). The
example is the 6-loop diagram and its subdiagrams already used in Eq. (5.16) and Figs.
1, 2. Here we choose six different colours for the reduced subdiagrams H̄i (i = 1 . . . 6)
into which the diagram can be partitioned.
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We need a second example to shape our understanding of the general case. Let us
consider again the 6-loop diagram of Sec. 5.2.3 and fix the same sector (C, σ) discussed
there, see Eq. (5.20). Which variable substitutions analogous to Eqs. (5.33,5.36) should
we now choose? The sector is defined by a maximal forest with six subgraphs, each
subgraph contains one specific labelled line, and for each subgraph there is an inequality
stating that the labelled α is the largest. The idea, generalizing the 1-loop case, is to
introduce one ti-variable for each subgraph Hi and to define the labelled α’s in terms of
these ti-variables. The t6 ≡ tG-variable corresponding to the full graph runs from 0 to
∞, and all the other ti run from 0 to 1. Then all inequalities for the labelled α’s are
implemented by the following scheme:

subgraph: labelled α substitution: rewrite
H1 α14 = t21t

2
6 t21ξ

2
1 (5.39a)
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H2 α3 = t22t
2
3t

2
5t

2
6 t22ξ

2
2 (5.39b)

H3 α7 = t23t
2
5t

2
6 t23ξ

2
3 (5.39c)

H4 α11 = t24t
2
5t

2
6 t24ξ

2
4 (5.39d)

H5 α8 = t25t
2
6 t25ξ

2
5 (5.39e)

H6 α16 = t26 t26ξ
2
6 (5.39f)

where also abbreviation variables ξi were introduced; they are products of all the “other
ti”, as appropriate. In the next step we introduce βk-variables for all the remaining, non-
labelled, α’s, where the βk all run from 0 to 1. We remark that t6 ≡ tG is dimensionful,
while all other ti and β variables are dimensionless. In addition we introduce two further
useful notations, illustrated in the graph in Fig. 3. First, for each subgraph in C we
define a reduced subgraph H̄i = Hi/M(Hi), whereM(Hi) is the set of maximal elements
in C which are properly contained in Hi. The lines in H̄i are the lines specific to Hi,
i.e. the lines contained in Hi but in no smaller subgraph in C. Clearly, the full graph is
partitioned into H̄i, i.e. every line is in one unique H̄i. Second, we denote by q

Hi
a set

of independent external momenta of H̄i, where we in principle allow nonzero incoming
momenta into all vertices of the graph (the graph is drawn as if it has only two external
momenta, but the renormalization procedure becomes more systematic if every graph
is generalized to allow arbitrary incoming momenta into all vertices). This leads to the
following scheme:

red. subgraph: α’s indep. ext. momenta
H̄1 = H1 {α15, α14} = {β15, 1} × t21ξ2

1 p8 (5.40a)
H̄2 = H2 {α4, α3} = {β4, 1} × t22ξ2

2 p3 (5.40b)
H̄3 = H3/H2 {α2,5,6, α7} = {β2,5,6, 1} × t23ξ2

3 p2, p5, p11 (5.40c)
H̄4 = H4 {α10,12, α11} = {β10,12, 1} × t24ξ2

4 p6, p7 (5.40d)
H̄5 = H5/H3∪H4 {α9, α8} = {β9, 1} × t25ξ2

5 p6 + p7 + p12 (5.40e)
H̄6 = H6/H5∪H1 {α1,13,17, α16} = {β1,13,17, 1} × t26ξ2

6 p1, p8 + p9, p10 (5.40f)

The reduced subgraphs H̃i are formed solely by the lines proper to them, and lines shared
amongst the Hi are shrunk to a point. The subgraphs H1, H2, H4 are identical to the
reduced ones and hence take the obvious form as depicted in Fig. 3. In the case of
H3, H5, H6, the reduced subgraphs are obtained by shrinking different subgraphs to a
point. Let us illustrate this by specifying the form of these reduced subgraphs as follows:

H̃3 H̃5 H̃6

.
(1)

.
(2)

.
(1)

.
(4)

.
(1)

p2

2

5

p5

6

p11

11

p2 + p3 + p4

+ p5 + p11

8

p6 + p7 + p12

9

p1 1

7∑
i=2

pi + p11 + p12

13 16

p8 + p9

p10

17

(5.41)
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The crossed dots of order (n) denote the counterterm insertion due to shrinking the re-
spective n-loop subgraph to a point. Since we assume that to each vertex Vi there is asso-
ciated an entering momentum pi, shrinking a subgraph comprised of vertices Vi1 , . . . , Vik ,
leads to a combination of incoming momenta pi1 + · · ·+ pik for that counterterm vertex,
as indicated in the graphs. In choosing independent momenta, we can make use of mo-
mentum conservation. For a reduced subgraph with n vertices, it is sufficient to specify
n − 1 incident momenta to the vertices. They uniquely characterize the momenta of a
given reduced subgraph. What is more, all momenta of the graph can be reconstructed
by linear combinations of these independent external momenta. A specific choice is given
in Eq. (5.40). Clearly, in this way all inequalities of the sector (5.20) are implemented
and the combination of all the selected independent incoming momenta of the H̄i span
all independent incoming momenta of the full graph and can be used as independent
variables in the result. The variable substitution leads to the following replacement of
the integration measure, analogous to Eq. (5.33),∫

(C,σ)
dα1 . . . dα17 = 2L

∫
t6=0...∞
t1...5=0...1

6∏
i=1

dtit
(2IHi−1)
i

∫ 1

0

∏
k

dβk , (5.42)

where IHi is the number of internal lines in Hi.
This example provides us with sufficient information to construct the general result

for the integral representation of a general 1PI graph G in a specific sector (C, σ). As in
the example, the sector defines a chain of subgraphs Hi (as many as there are loops; one
of them is equal to the full graph G). The sector also defines a particular replacement of
all α’s in terms of ti and βk; for each subgraph Hi it is also useful to define the variable ξi
for the product of all the “other ti”. All lines of G are partitioned into lines of the reduced
graphs H̄i, and for each H̄i one can choose a set of independent incoming momenta q

Hi
,

which in total span all incoming momenta of the full graph. Since each line carries one
mass variable and one u-variable, we can also partition these variables into sets of masses
mHi and sets of u’s, uHi , corresponding to the respective H̄i.

With these variables we can rescale physical quantities, generalizing Eq. (5.36), as

q̃
Hi

= tiξiqHi
, (5.43a)

m̃Hi = tiξimHi , (5.43b)
ũHi = (tiξi)−1uHi . (5.43c)

We allow the integral to contain a numerator expressed as a derivative with respect to
u-variables as in Eqs. (3.37,3.38a), but we assume that the derivative operator Z in the
numerator is a product of ZHi , where each ZHi only depends on variables specific to H̄i.
This is always the case in actual Feynman diagrams. For simplicity we follow Ref. [4]
and assume that all ZHi are homogeneous polynomials in the variables ∂/∂uHi and mHi

of some degree rH̄i . Then we can write

Z̃Hi = (tiξi)rH̄iZHi (5.44)

where Z̃Hi is the same homogeneous polynomial expressed with ∂/∂ũHi and m̃Hi . Writing
D = 4 − 2ε we can finally define a power-counting degree of each reduced subgraph H̄i

and the complete (sub)graphs Hi as

ωH̄i = 4LH̄i − 2IH̄i + rH̄i , (5.45a)
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ωHi =
∑

H′⊆Hi
H′∈C

ωH̄′ . (5.45b)

This clearly corresponds to the superficial power-counting degree of the original momen-
tum integral.

With these building blocks we can formulate the general result for the integral spec-
ified in Eqs. (3.37,3.38a). Decomposing the integral in sectors as in Eq. (5.22),

TG =
∑
(C,σ)
TG,(C,σ) , (5.46)

and setting again D = 4− 2ε, the result for each sector can be written as

TG,(C,σ) = cLD2L
∫

tL=0...∞
t1...L−1=0...1

L∏
i=1

dti
ti

(tiξi)−ωH̄i+2ε
Z̃Hi

×
∫ 1

0

∏
k

dβkd̃
−D/2
G eiWG

∣∣∣∣∣
u=0

. (5.47)

The properties of the appearing objects are:

• All variables ti, ξi, βk and the rescaled physical variables q̃
Hi
, m̃Hi , ũHi , and the

power-counting degrees ωH̄i are defined above.

• The explicit powers of ti correspond to the original superficial power-counting de-
grees of the momentum integrals over the subdiagrams Hi. For each ti integral, a
factor (tiξi)2ε was split off which may be viewed as the essence of the D-dimensional
integration measure.

• The remaining integrand d̃
−D/2
G eiWG has no explicit dependence on tL at all. It

depends on tL only via the rescaled physical variables. The other ti with i =
1 . . . L− 1 typically appear explicitly, however.

• The function d̃G is a rescaled Symanzik polynomial which satisfies d̃G ≥ 1 in the
integration region.

• For ε > 0 in the +iε prescription, the function eiWG is exponentially decreasing for
large tL.

• The product d̃−D/2G eiWG , therefore, is analytic in ε and C∞ in ti, βk and the rescaled
physical variables q̃

Hi
, m̃Hi , ũHi .

This statement is the starting point for the inductive proof of renormalization in DReg
given in Ref. [4], and it is a direct consequence of Lemma 4 of that reference.

5.2.6 Ingredient 4: Integrand Relation between Graphs and Subgraphs

An important step in the proof is the application of subtraction operators TH to a graph
G. In order to analyze this operation, relationships between the original graph G, the
reduced graph G/H and the subgraph H are needed. These relationships are again
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essentially independent of D-dimensional treatments. They rely on detailed analysis of
the graphs themselves, and the relationships between graphs and the α-parametrizations.

The required theory involves incidence matrices and graph theoretical representations
of the Symanzik polynomial U , or d̃G, and the exponent WG. Although the theory is
very elegant and not too difficult we do not develop it here. Hence we only list several
important statements without proof. For the proofs we refer to Ref. [4] and references
therein. Further discussions were given e.g. in Refs. [69, 51, 124]

Consider the Symanzik polynomial UG for a graph G, and let H be a subgraph of G.
U is a homogeneous polynomial in all α’s of degree L. Consider the case where all α’s
corresponding to the subgraph H are rescaled by a factor ρ, while all other α’s remain
fixed. Then, for small ρ we have

UG(α’s in H rescaled by ρ) = UG/H︸ ︷︷ ︸
ρ-independent

UH︸︷︷︸
∝ρLH

+O(ρLH+1) , (5.48)

i.e. at the lowest non-vanishing order the Symanzik polynomial factorizes into the two
individual Symanzik polynomials for the reduced graph and the subgraph. If G and H
are part of an integration sector as defined above, then variables tG, tH (and possibly
further ti) and βk exist and rescaled Symanzik polynomials d̃ can be defined for each of
these graphs. In this case, d̃G for the full graph cannot depend on tG but it can depend
on tH , while d̃G/H and d̃H can neither depend on tG nor on tH . Their relationship is the
factorization

d̃G|tH=0 = d̃G/H d̃H . (5.49)

A similar relationship can be established for the exponentWG appearing in the general
result of the integral (5.47). Defining WH and WG/H using the same variable transfor-
mations for the sector (C, σ), suitably adapted to the subgraph and reduced graph, the
relationship is

WG|tH=0 = WG/H +WH |tH=0 , (5.50)

if all these quantities are expressed in terms of rescaled variables q̃, ũ, m̃. This property
can be established in an elementary way once the exponents are constructed via incidence
matrices.

For the same conditions, a further, more intricate property can also be established
and is important. It is the following property involving derivatives,

d

dtH
d̃
−D/2
G eiWG

∣∣∣∣∣
tH=0

= ξHUH

[
d

dtH
d̃
−D/2
H eiWH

]
tH=0

· d̃−D/2G/H
eiWG/H . (5.51)

Here UH [X] denotes an insertion operator which effectively inserts its argument X as
a vertex into a bigger graph. To achieve this insertion, the external momenta of the
argument X must become internal momenta of the bigger graph, in this case of G/H .
Technically, UH acts by shifting in its argument the momentum variables q̃

H
by terms

involving derivatives with respect to u-variables for the bigger graph G/H .
This is a statement of pivotal importance for the full proof of the theorem stated in

Sec. 5.2.1 since it allows relating divergences of a full graph to divergences of counter-
term graphs and thus allows making manifest the cancellation of subdivergences. It is
essentially the content of Lemma 5 of Ref. [4].
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5.2.7 Ingredient 5: Simple Integrals and Non-Analytic Functions of D − 4

Now we discuss several simple integrals and special functions that arise in DReg due
to the D-dimensionality of spacetime. They encapsulate how the regularization acts,
how divergences arise as 1/(D − 4) poles and how divergences cancel by adding suitable
counterterms. We set again D = 4− 2ε.

First we discuss a simple type of integral, defined as

f(z) =
∫ ∞

0
dttz−1g(t) , (5.52)

where z is a complex variable and g(t) is a C∞ function which either decreases exponen-
tially for t → ∞ or which involves the step function θ(1 − t) cutting off the integral at
t = 1. This simple integral appears in the general result (5.47) but also in the 1-loop ex-
ample (5.38). In all these cases the t-integration involves one factor which is of the form
tn−1+2ε, where n is an integer. This corresponds to the above form for z = n+ 2ε. This
factor is non-analytic in t around t = 0. The remaining t-dependences in Eqs. (5.47,5.38)
are complicated but are C∞ functions in t which indeed fulfil the requirements on g(t)
listed above. In case of the tL integration, the remaining integrand exponentially de-
creases, in case of all other ti integrations, the integration stops at ti = 1.

The above function f(z) is a generalization of the Γ-function, where g(t) = e−t. The
Γ-function is known to have simple poles at z = 0, z = −1, z = −2, . . . . It is easy to see
that the same is true for the more general f(z). Clearly, when for Re(z) > 0 the integral
defining f(z) converges and defines an analytic function. To study negative Re(t) we can
add to and subtract from g(t) a Taylor polynomial ∑ g(k)(0)tk/k!, where g(k) denotes
the k-th derivative. Integrating this polynomial from 0 to 1 we obtain

f(z) =
∫ ∞

0
dttz−1

[
g(t)− θ(1− t)

n∑
k=0

g(k)(0)
k! tk

]
+

n∑
k=0

g(k)(0)
k!

1
z + k

. (5.53)

For any non-negative integer n and for Re(z) > 0 the value and convergence properties
of the integral are not changed. However, the square bracket behaves like tn+1 for small
t, hence the integral now converges even for negative z, as long as Re(z) > −n−1. Hence
this formula represents an analytic continuation of f(z) onto the entire complex z plane.
It makes also manifest that this analytically continued f(z) has single poles at z = −0,
z = −1, z = −2, . . . .

We can rewrite the result in the form of an integration rule for the typical t-integrals
appearing in DReg by replacing z = −n+ 2ε with integer non-negative n and ε ≈ 0. We
then have the rule∫ ∞

0
dtt−n−1+2εg(t) = 1

n!

(
d

dt

)n
g(t)

∣∣∣∣∣
t=0

1
2ε + regular expression , (5.54)

where the form of the regular expression can be read off from Eq. (5.53). The t-integrals
in the general formula (5.47) are to be analytically continued in this way. Hence this
rule immediately shows that any t-integration can only lead to single 1/ε-poles and not
to more complicated divergences as ε→ 0.

Next, we consider two special simple classes of non-analytic functions of t. They are
defined as the two kinds of sets (for integer K,L)

K < L : JLK =
{
f(t, ε) = c1t

2ε + . . .+ cLt
2Lε

εK
= finite for ε→ 0

}
, (5.55a)
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K ≤ L : J̃LK =
{
f(t, ε) = c0 + c1t

2ε + . . .+ cLt
2Lε

εK
= finite for ε→ 0

}
. (5.55b)

In the definitions of the sets, the lower index K refers to the ε-power in the denominator,
and the upper index L can be thought of as the loop number at which the functions
become of interest. The coefficients ci are arbitrary except for the constraint that the
defined functions are finite for ε→ 0.

Let us illustrate how such functions can appear by considering a 2-loop diagram
G with a 1-loop subdiagram H. We imagine a calculation not only of the diagrams
themselves but of the entire renormalization procedure, taking into account suitable
counterterm diagrams cancelling subdivergences. In the imagined calculations we use
the general formula (5.47). If the 1-loop diagram H is computed in isolation, it involves
one t1-integral whose essential non-analytic part is simply

t2ε1 ∈ J1
0 , (5.56)

which is an element of the set J1
0 and which may be attributed to the D-dimensional

measure. The result of the t1-integration via the rule (5.54) then leads particularly to a
1/(2ε) pole, and a counterterm for diagram H can be defined that cancels this divergence.
In the 2-loop calculation of G the 1-loop diagram H appears as a subdiagram with
corresponding t1 integration. Here the t1 variable is accompanied by ξ1, which is here
simply ξ1 = t2. After the t1 integration, the non-analytic factor ξ2ε

1 remains and combines
with the 1/(2ε) pole. In the corresponding counterterm diagram, where the subdiagram
H is replaced by the counterterm cancelling its 1/(2ε) pole there is no t1 integration and
no appearance of the variable ξ1. Therefore, after the t1 integration and after combining
with the counterterm diagram cancelling the subdivergence, a combined function

t2ε2 − 1
2ε ∈ J̃1

1 (5.57)

appears. The finiteness of functions in the set J̃1
1 reflects the successful cancellation of the

subdivergence. Proceeding with the computation of the 2-loop diagram G, this function
is combined with the measure factor, such that the interesting non-analytic part of the
t2-integrand is

t2ε2
t2ε2 − 1

2ε ∈ J2
1 . (5.58)

This example illustrates the general idea: Functions in JLK are the functions that ac-
tually appear as the non-analytic factors in the tL integrations at the L-loop level during
the renormalization procedure. After carrying out a tL integral and after combining with
the suitable counterterm contribution, a function in the set J̃LK+1 appears. At the next
loop level the integrand needs to be prepared by suitable rearrangements and combined
with the measure factor t2εL+1 to produce a function of the set JL+1

K+1, and so on.
For this reason it is helpful to study the properties of functions in these sets on their

own, before tackling the actual loop integrations. Some particularly useful properties
are:

(i) any function f ∈ JLK has the limit f(t, 0) = const× (ln t)K .
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(ii) for a function f ∈ JLK , the integral
∫ t
1
dt′

t′ f(t′, ε) produces an element of the next set
J̃LK+1.

(iii) the converse is also true, i.e. every element of J̃LK+1 can be written in terms of such
an integral.

(iv) a function f ∈ JLK where the first argument is a product can be factorized as
f(ξt, ε) = ∑

j f1j(ξ, ε)f2j(t, ε) where all functions on the right-hand side are ele-
ments of fnj ∈ JLKnj where K1j + K2j = K. This property is obviously important
to prepare higher-loop integrands such that t integrals act on isolated functions
depending only on t, not on ξ.

(v) there is a simple product rule fL1
K1
fL2
K2
∈ JL1+L2

K1+K2
for functions fLiKi ∈ J

Li
Ki
. This prop-

erty is also important on the multiloop level in case a multiloop diagram contains
two disjoint divergent subdiagrams.

The properties can all be proved using elementary integration tricks and l’Hopital’s rule
for limits. Such properties of these functions are the content of Lemma 2 of Ref. [4].

5.2.8 Sketch of Proof by Induction

All explained ingredients are important in the full proof of the central Theorem 1 in Ref.
[4] and stated in Sec. 5.2.1. Here we give a sketch of this proof. The proof applies the
α parametrization of integrals decomposed into sectors as in Eq. (5.22). The renormal-
ization procedure is then expressed in terms of the forest formula (5.31). This formula
provides the basis for an inductive proof, where a graph G and a sector are fixed and
then all factors (1 − THi) in the forest formula are successively applied in the correct
ordering. The base case of the induction is provided by the general formula (5.47). The
induction step needs to carry out the actual integration over one t variable and some
β variables corresponding to the next (1 − THi) factor. The step uses the properties of
the special functions of ε defined in Sec. 5.2.7, and the relationships between the graph,
subgraph and reduced graph described in Sec. 5.2.6.

Obtaining the precise form of the induction hypothesis is highly nontrivial, but it can
be motivated using all the developed insight. It can be formulated as follows. Consider
a 1PI graph G and a sector (C, σ). All following quantities are specific to this sector
but for brevity we will omit all indices denoting this dependence. The graph has LG
loops and the sector contains LG subgraphs H1, . . . ,HLG . Without loss of generality
we assume the labelling such that the subgraphs are already ordered according to their
allowed appearance in the forest formula (5.31), such that if Hj ⊇ Hi then also j ≥ i
(the ordering is not unique). Then after evaluating L ≤ LG factors in the forest formula
we obtain the expression (suppressing the dependence on the sector (C, σ))

RX(G) ≡ (1− THL) · . . . · (1− TH2) · (1− TH1) ·G . (5.59)

This represents a partially renormalized graph where L loops and L subgraphs have
already been treated in previous induction steps. Sec. 5.2.4 gave arguments that this
expression should have simple divergence properties when acted upon by further THi
operators. Despite this, the partially renormalized expression on its own clearly can
have very complicated analytical structure and can still have non-polynomial divergences
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which the proof needs to deal with. The label X denotes the set of all subgraphs which
have already been treated, and we also define X0 as the subset of X which contains only
maximal subgraphs, i.e.

X = {H1, . . . ,HL} , X0 = {M1, . . . ,MS , HL} , (5.60)

where it is used that HL itself is necessarily a maximal subgraph in X and where names
have been given to all other elements of X0.

The induction hypothesis states that after evaluating all ti and βk integrals corre-
sponding to lines in the already treated graphs in X, we obtain

RX(G) = sum of terms like∫
≥L+1

∏
M∈X0

ξ−ωMM f̃M (ξM , ε)gG,X

∣∣∣∣∣
ũ=0

, (5.61)

where the integration factors for the remaining integrals are abbreviated as∫
≥L+1

= cLG−LD

∫ LG∏
i=L+1

dti
ti

(tiξi)−ωH̄i+2ε
∫ ∏

k∈G/X0

dβkZ̃Hi . (5.62)

Here the integration boundaries of the ti and βk integrals are as in Eq. (5.47), and the
notation k ∈ G/X0 corresponds to all indices k corresponding to any line outside the
already treated graphs in the set X. In the product over the maximal subgraphs M
(which includes the case M = HL), each M is equal to one particular Hj(M) and for
simplicity we identify the indices ξM ≡ ξj(M).

We provide the following comments on the induction hypothesis:
• The “sum of terms like” refers to the expression in the integrand which really is of

the form ∑
a

∏
M f̃M,agG,X,a. Since the proof can be carried out for each such term

we drop the index a and this summation.

• The integration variables ti and βk and the ũk variable for the already treated
graphs do not exist anymore since they have been integrated over/set to zero.
Hence the only appearing ti, βk and ũk are the ones for i = L+ 1, . . . , LG and for
k ∈ G/X0 .

• The sets of physical variables q̃
Hi
, m̃Hi and the remaining ũHi (for Hi /∈ X) are

rescaled only by the remaining ti’s. I.e. Eq. (5.43) applies in a modified form where
on the right-hand side ti = 1∀i ≤ L and where the ũHi for i ≤ L do not exist.

• The particularly nontrivial and interesting part of the statement is the integrand
in Eq. (5.61). It displays the analytic structure of the partially renormalized graph
and the result of all the evaluated ti and βk integrals. The result is a product of
functions f̃M , which are non-analytic in the remaining ti, and the function gG,X .

• Each function f̃M is an element of a set J̃LK with K ≤ L. These functions are thus
non-analytic in the remaining ti but have a finite limit for ε → 0, reflecting the
successful subtraction of subdivergences. The functional form of each f̃M is further
specific to the chain of subgraphs XM = {H ′ ⊆ M,H ′ ∈ C}, and does not depend
on any details of graphs or parts of graphs outside M . Only the argument ξM has
a dependence on ti variables corresponding to bigger graphs.
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• The function gG,X carries the complicated dependence on all physical variables
and all other ti and βk variables. gG,X is C∞ in all these remaining integration
variables and all the physical variables q̃

Hi
, m̃Hi and ũHi rescaled as defined above.

It is analytic in ε, again reflecting the cancellation of subdivergences, and it has
no explicit dependence on tLG corresponding to the full graph G (except for the
product t2LGε, similar to Eq. (5.37)). Its functional form is specific to the full graph
G and the treated graphs Hi ∈ X.

The induction base case is the one where L = 0 and no subgraph has been treated yet.
In this case the sets X and X0 are empty and RX(G) simply refers to the unrenormalized
result TG. The form of the unrenormalized result is given in Eq. (5.47) and it directly
confirms the induction hypothesis (5.61) with gG,∅ = 2LG d̃−D/2eiWG .

For a sketch of the induction step we assume L ≥ 1 and assume the partial renor-
malization was carried out up to loop number L − 1 and that the induction hypothesis
holds at loop number L− 1. It is then useful to introduce a notation for the previously
treated subgraphs and previously treated maximal subgraphs. We write

X ′ = {H1, . . . ,HL−1} X ′0 = {m1, . . . ,ms} ∪ {M1, . . . ,MS} , (5.63)

and we keep the definitions of Eq. (5.60) such that X = X ′ ∪ {HL} and such that the
subgraphs mi are the maximal subgraphs of HL. The remaining subgraphs are HL as
well as Hi with i ≥ L + 1, the lines and βk are the ones with k ∈ G/X′0 or equivalently
the ones with k ∈ G/X0 or with k ∈ H̄L. The induction hypothesis for loop number L−1
can therefore be cast into the form

RX′(G) = sum of terms like∫
≥L+1

∏
M∈X0\{HL}

ξ−ωMM f̃M (ξM , ε)

× cD
∫
dtL
tL

(tLξL)−ωH̄L+2ε
Z̃HL

∫ ∏
k∈H̄L

dβk

×
∏
mi

ξ
−ωmi
mi f̃mi(ξmi , ε)gG,X′

∣∣∣∣∣
ũ=0

. (5.64)

In this way of writing the role of the graph HL which is to be treated next is exhibited,
while the factors in the first line contain the same integration factors and almost the
same f̃M factors as Eq. (5.61). The physical variables appearing here inside the Z̃Hi
and gG,X′ are rescaled with all ti for i ≤ L, and all comments made for the induction
hypothesis apply with suitable modifications.

In the induction step we need to assume the validity of Eq. (5.64) and carry out
the next step, construct RX(G) and prove that it takes the form (5.61) with all listed
properties. The construction involves the evaluation of all integrals in the last two lines
of Eq. (5.64). It also involves the application of the next subtraction operator (1−THL),
which also only affects the last two lines of Eq. (5.64) in particular because the integration
factors

∫
L+1 stay unchanged if the subgraph HL is replaced by its counterterm.

We begin with several immediate simplifications of the factors in the last two lines of
Eq. (5.64). First we observe that all the ξmi in the last line are all equal to each other,
and they are equal to ξmi = tLξL. The reason is that the ξmi are the products of tj for
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all subgraphs in C which contain mi and that the mi are maximal subgraphs of HL. One
consequence is that the ωH̄L- and ωmi-dependent terms combine simply to (tLξL)ωHL . A
less trivial consequence is that all non-analytic functions and the measure factor for tL
can be combined as

fHL(tLξL, ε) = (tLξL)2ε∏
mi

f̃mi(tLξL, ε) , (5.65)

which is an element of the set JLK for some K < L thanks to the properties of the
functions discussed in Sec. 5.2.7. Second, after the βk integrations and after applying
the derivative operator Z̃HL and setting ũHL = 0, we obtain

ḡG,X′ = Z̃HL

∫ ∏
k∈H̄L

dβkgG,X′

∣∣∣∣∣
ũHL=0

. (5.66)

This function is still C∞ in the remaining variables and analytic in ε. Hence the last two
lines of Eq. (5.64) can be written as

cD

∫
dtL
tL

(tLξL)−ωHLfHL(tLξL, ε)ḡG,X′ . (5.67)

The more difficult part of the induction step is the evaluation of the tL integral and
the application of the (1−THL) subtraction operator. Two cases need to be distinguished.
The first case is when the next step is the final step of renormalization, i.e. when L = LG
and HL = G. The second case is when L < LG and HL is still a proper subgraph of the
full graph G.

To sketch the first case with L = LG and HL = G we note that in this case the
second line of Eq. (5.64) is just the factor 1 since there are no remaining integrations
and there are no other maximal subgraphs M . Likewise, the remaining ξL = 1, and from
the induction hypothesis we know that the variable tL = tLG does not appear explicitly
in ḡG,X′ — this variable only enters via rescaled physical variables q̃Hi and m̃Hi i.e. via
products of tL and physical momenta and masses. Plugging in the general form of the
function fHL yields a sum of terms like

∑
n

cnt
2nε
L

εK
ḡG,X′ , (5.68)

which need to be integrated over tL with the measure
∫
dtLt

−ωHL−1
L . This integral is

performed via the general rule (5.54). This rule leads to a regular expression and a
singular term. The regular expression can be shown to be analytic in ε and C∞ in all
other variables. The singular term contains poles in ε and takes the form∑

n

cn
2nεK+1

1
ωHL !

[(
d

dtL

)ωHL
ḡG,X′

]
tL=0

. (5.69)

This singular term can be shown to have all desirable properties. The poles in ε are at
most of degree 1/εLG . The coefficients are polynomials in the physical variables, masses
and momenta, of degree ωHL .29 It is therefore possible to define the subtraction operator

29Here, and in Ref. [4], the factor of the dimensional regularization scale µ2ε is omitted from the
definition of renormalized amplitudes. If this factor is included it is also possible to prove that the
divergent polynomial is independent of µ.
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(1 − TG) for this sector such that it subtracts this polynomial divergence; the resulting
finite remainder satisfies all properties listed after the induction hypothesis (5.61). It is
further possible to define the full divergent part of the full diagram, TRG, as the sum of
all these singular terms arising in this way in all sectors. This object has all properties
required for a possible contribution to a counterterm Lagrangian: in position space it is
local, it has the correct power-counting degree, and its value depends only on the graph
G and not on its embedding into bigger graphs.

Finally we also sketch the remaining induction step for the case L < LG and HL 6= G.
Here, evaluating the tL integral and applying the subtraction operator (1− THL) to Eq.
(5.67) leads to three terms: the regular expression from the tL integration, the singular
expression from the tL integration and the counterterm contribution from THL , where
THL is defined via the full renormalization of the graph HL in isolation. All terms need to
be rearranged by using properties of the f functions discussed in Sec. 5.2.7, in particular
of the factorization property of these functions. Furthermore, the singular expression
of the tL integration has to be rearranged by using properties such as (5.51) for the
relationships between graphs, subgraphs and reduced graphs. In these ways it is possible
to show that the combination of all terms acquires the form of the induction hypothesis
(5.61) and that all announced properties are fulfilled.

In this way all properties announced in Sec. 5.2.1 are established, except for the
equivalence to BPHZ. Illustrating this point requires comparing the structure of appear-
ing integrals in the DReg and the BPHZ approaches. For this we refer to the original
literature [22, 4].
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6 Renormalization and Symmetry
In the preceding section we have seen how the renormalization programme allows to
subtract the divergences from Feynman diagrams. Importantly, the subtraction terms are
polynomials in momenta constrained by power counting, and the subtraction is equivalent
to adding certain counterterms to the Lagrangian. By choosing a certain renormalization
scheme, the remaining ambiguities of finite counterterms can be fixed and the Lagrangian
supplemented by those counterterms defines a finite 4-dimensional theory.

In this section we consider the problem of renormalization in the presence of symme-
tries, specifically gauge invariance. On the one hand, symmetries put additional restric-
tions on certain quantities which allows for simplifications. On the other hand, we also
have to ask about the compatibility of symmetries and regularization and whether they
can be restored if intermediately broken. Since regularization may in general spoil the
classical symmetry, we shall require its validity as part of the definition of our theory.
The symmetry of interest for us is gauge invariance promoted to BRST invariance as
described in Sec. 2.3. On the level of Green functions, this symmetry is implemented by
the Slavnov-Taylor identity as described in Sec. 2.5. In a more compact notation (cf. Eq.
(2.92)), it can be written as

S(Γren) =
∫

d4x
δΓren
δφ(x)

δΓren
δKφ(x)

!= 0. (6.1)

Here we assumed for simplicity that all symmetry transformations, i.e. both linear and
non-linear, are coupled to sources Kφ. The Slavnov-Taylor identity is the pivotal tool
in the proof of renormalizability of quantized Yang-Mills gauge theories, including the
proof that the quantum theory actually is physically sensible.

The first proofs of the renormalizability of non-Abelian gauge theories were given by
’t Hooft, Lee and Zinn-Justin in Refs. [125, 126, 127, 128, 129, 130], all employing various
versions of Slavnov-Taylor identities. These proofs establish not only the finiteness and
validity of the Slavnov-Taylor identity but also the interpretation of the quantum the-
ory with a unitary and gauge-fixing independent S-matrix defined on a Hilbert space of
quantum states with positive norm. Later, the proofs were generalized by Becchi, Rouet,
Stora and Tyutin (BRST) to the case where nothing is known about symmetry properties
of the employed regularization scheme, establishing the approach of algebraic renormal-
ization [41, 42, 43, 44], see also the reviews by Piguet/Rouet and Piguet/Sorella [119, 47].
A particularly satisfactory formulation is achieved with the Kugo/Ojima formalism [45]
where the existence of a nilpotent operator QB is derived from the Slavnov-Taylor iden-
tity. QB generates BRST transformations on the level of asymptotic states and its role
on the level of quantum states is similar to the role of the BRST operator s on the
classical level, see Eqs. (2.46–2.49). It may be used to define the physical Hilbert space
as the quotient space

Hphys = (kerQB)/(imQB) . (6.2)
Hence two states are equivalent if they differ by a total QB-variation. A single state is
called physical if QB |ψ〉 = 0, provided it is not some total variation, i.e. |ψ〉 6= QB |χ〉
for some |χ〉, in which case it would be equivalent to the zero vector. The fields act
Lorentz covariantly on the whole space including unphysical states and because of the
Slavnov-Taylor identity, QB commutes with the S-matrix. Hence the physical S-matrix
defined on the physical Hilbert space maps physical states to physical states, it is Lorentz
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invariant, unitary and causal. All these properties can be shown in a very elegant way
[45]. We thus see that if we make sure that the Slavnov-Taylor identity is obeyed after
renormalization, we are guaranteed a consistent quantum field theory.

Hence the logic now is the following. In section 2 we defined gauge theories which
classically satisfy the BRST symmetry. Then we established dimensional regularization
as a framework for treating such theories perturbatively in loop orders. Now we are
in a position to define our renormalized theory with the fundamental Slavnov-Taylor
identity intact and study the possible obstructions posed by regularization. To this
end we shall first discuss the counterterm structure for manifestly preserved symmetries
during renormalization in Sec. 6.1. Then in Sec. 6.2 we give a brief overview of the field
of algebraic renormalization which is the appropriate setting in which to discuss breaking
and restoration of symmetries. Finally we discuss how the general analysis of algebraic
renormalization can be specialized to the case of dimensional regularization in Sec. 6.3.

6.1 Counterterms in Symmetry-Preserving Regularization

We first recall the simple case where a symmetry is manifestly preserved at all steps
of the calculation. This is the standard case often encountered in textbook discussions
and practical calculations using DReg in QED and QCD, for reasons described already
in Sec. 4.3. There one frequently uses so called renormalization transformations of the
generic form

g → g + δg (6.3a)

φi →
√
Zij φj , (6.3b)

for coupling constants g and quantum fields φi with associated parameter and field renor-
malization constants δg and δZij = Zij − δij . The renormalization constants are to be
understood as power series in loop orders or equivalently in the renormalized parameters.

This procedure is applied onto the classical action S0 and thereby defines a bare
action Sbare, cf. (3.1), itself giving rise to the counterterm action

Sct = Sbare − S0. (6.4)

The divergent parts of these generated counterterms cancel UV divergences of loop dia-
grams, and the finite parts of the counterterms can be used to fulfil certain renormaliza-
tion conditions as mentioned in Sec. 3.1.

In terms of the Slavnov-Taylor identities, the standard case is expressed by the state-
ment

S(Γreg) = 0, (6.5)

which, as explained in Sec. 4.3, means that the regularized Green functions already
satisfy the Slavnov-Taylor identity. If applicable, similar equations should hold for other
identities such as the ones discussed in Sec. 2.6 (e.g. ghost equation). This is indeed the
case in QED and QCD in DReg at all orders. The basis of this statement was explained
in Sec. 4. The manifest symmetry at the regularized level (6.5) has two implications
for the structure of renormalization. First, the possible divergences are restricted by
Eq. (6.5) which, in turn, also restricts the structure of counterterms needed to cancel
divergences. Second, possible finite counterterms are also restricted by Eq. (6.5), together
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with the ultimate requirement (6.1) for the renormalized theory. Both implications can
be simultaneously evaluated as follows. Assuming that the theory has been renormalized
up to order O(~n−1), we are interested in the O(~n)-order counterterms Lnct and the
O(~n) divergences of the regularized theory. The renormalized theory at order O(~n)
can be written as

Γ(n)
ren = Γ(n)

reg,fin + Γnreg,div + Snct. (6.6)
For further analysis it is customary to introduce the linearized Slavnov-Taylor operator
sΓ, defined by expanding the Slavnov-Taylor operator S(Γ) for both linearly and non-
linearly transforming fields φ and Φ, respectively,

S(Γ) =
∫

d4x
δΓ

δKi(x)
δΓ

δΦi(x) +
∫

d4x sφi(x) δΓ
δφi(x) , (6.7)

as follows,
S(Γ + ζF) = S(Γ) + ζsΓF +O(ζ2), (6.8)

for some functional F . Its concrete form is given by

sΓ =
∫

dx
(

δΓ
δKi(x)

δ

δΦi(x) + δΓ
δΦi(x)

δ

δKi(x) + sφi(x) δ

δφi(x)

)
. (6.9)

Of special interest is the case of the classical action Γcl, for which we define

b ≡ sΓcl , (6.10)

as the linearized Slavnov-Taylor operator based on the classical action. In agreement with
the nilpotency of the BRST operator (2.49), the algebraic structure of the Slavnov-Taylor
operator leads to two nilpotency relations

sΓS(Γ) = 0, (6.11)
sΓsΓ = 0 if S(Γ) = 0. (6.12)

Substituting the decomposition of Eq. (6.6) into Eqs. (6.5) and (6.1), we first get

bΓnreg,div = 0. (6.13)

This establishes the restriction on the possible divergences. Second, we obtain

b Snct = 0, (6.14)

both for the divergent and the finite parts. The most general solution of this equation
in terms of admissible counterterm actions yields the counterterm structure which is
sufficient to cancel the divergences and required to establish the symmetry. The corre-
sponding calculations were carried out in the original references on the renormalization
of Yang-Mills theories cited at the beginning of this section; textbook discussions can be
found e.g. in the textbooks by Zinn-Justin, Weinberg and Böhm/Denner/Joos [50, 32, 34].

For most theories of interest including the SM, the outcome is the familiar state-
ment cited in the beginning (cf. Eq. (6.3)) that all counterterms can be obtained by
renormalization transformation of the classical action. A second related outcome is then
that any two consistent regularization/renormalization prescriptions which both fulfil the
symmetry requirement (6.1) can only differ by a reparametrization of the form (6.3).30

30This is a stronger statement than the one of Eq. (5.9) because a smaller number of parameters is
affected.
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6.2 Broken Symmetries and Algebraic Renormalization

Now we turn to the case of interest for e.g. chiral gauge theories in which the symmetry
is not manifestly preserved by the regularization. This case is characterized by

S(Γreg) 6= 0, (6.15)

in contrast to Eq. (6.5). Clearly, the required structure of the counterterms is more
complicated. Now, the divergences and required divergent counterterms may be non-
symmetric and not fulfil Eq. (6.13). In this case one has to determine them by explicit
calculation of the divergences of Green functions instead of reading off their structure
from a renormalization transformation such as (6.3). In this way the theory can be
rendered finite despite the broken symmetry (6.15).

Even on the finite level, the symmetry breaking (6.15) might still persist. Finite
counterterms then have to be determined such that the fully renormalized theory fulfils
the basic requirement (6.1). In some cases it can actually be impossible to find such
counterterms; the symmetry is then said to be broken by an anomaly. Since we consider
the Slavnov-Taylor identity as part of the definition of the theory, an anomalous breaking
of the Slavnov-Taylor identity means that the theory is inconsistent and not renormal-
izable. In cases without an anomaly it is indeed possible to recover the symmetry by
appropriately chosen finite counterterms.

Even though the precise form of the symmetry breaking depends on the regularization,
it is possible to study the general case of (6.15) in a regularization-independent way. This
study is the content of algebraic renormalization, pioneered by BRST [41, 42, 43, 44], see
also the reviews [47, 119]. The main insight of the procedure is that the possible breakings
are restricted in two ways. On the one hand, they are restricted by the Slavnov-Taylor
identity itself, similar to the possible divergent structures in Eq. (6.13). On the other
hand, they are restricted by a regularization-independent version of the quantum action
principle.

Those two restrictions taken together provide a regularization-independent analysis
of the renormalization of gauge theories. In the following we shall first sketch the quan-
tum action principle in the BPHZ framework of renormalization, where it was originally
established and subsequently used for algebraic analysis, as well as exhibit a connection
to the regularized quantum action principle of DReg. The central point is then to re-
view how the aforementioned restrictions can be used to restore the broken symmetry
by suitable counterterms provided there are no anomalies.

6.2.1 The Quantum Action Principle in BPHZ

As discussed in Sec. 5.1, the BPHZ approach to renormalization constituted one of the
first full discussions of all-order renormalization, rigorously establishing the possibility to
obtain finite Green functions and S-matrix elements in agreement with basic postulates
such as causality and unitarity. In this framework Lowenstein and Lam derived various
theorems now summarized as the quantum action principle [107, 106, 109, 108, 110].
The theorems are similar to the regularized quantum action principle in DReg discussed
in Sec. 4. The difference is that the theorems discussed here are valid in strictly 4
dimensions, for the fully renormalized theory.
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Further, this form of the quantum action principle is generally valid not only in the
BPHZ framework but in all regularization/renormalization frameworks that are equiva-
lent; hence it also applies to results obtained using DReg, if the LIMD→4 defined in Eq.
(3.5) has been taken. The algebraic method is based on this general formulation and its
results hold for all such equivalent frameworks. In BPHZ, finite expressions and the Gell-
Mann-Low formula are defined by an iterative operation on momentum space integrals
whereby Taylor series contributions up to some UV-subtraction degree are subtracted
from the integrands giving finite integrals by power counting. Further, normal products,
i.e. products of fields and their derivatives at the same space-time point, may be defined
as finite parts of certain Wick-ordered insertions into the Green function. One can derive
so called Zimmermann-identities which linearly relate over-subtracted normal products,
i.e. of higher UV-degree than the canonical operator dimension, to minimally subtracted
ones. These prove a powerful tool in e.g. deriving field equations and studying anomalies.

A first version of the quantum action principle can be used to express the relation of
some infinitesimal variation of Green functions, or equivalently generating functionals,
with the insertion of a normal product. Ref. [107] considers differential vertex operations
(DVO) which are insertions of integrated normal ordered local field polynomials into the
Gell-Mann-Low formula corresponding to the respective Green function

∆ ·Gi1,...,in(x1, . . . , xn) = 〈0|T
∫

dy N [P (y)]φi1(x1) . . . φin(xn)|0〉. (6.16)

Then one can connect the variation of the Green function w.r.t. some parameter with
those DVO’s, i.e. taking some infinitesimal variation as Lint → Lint + ∑

k εkPk(x), it
follows

∂Gε

∂εk

∣∣∣∣
ε=0

= i∆ ·G. (6.17)

This result is valid for BPHZ renormalized disconnected, connected and 1PI Green func-
tions, and therefore also for the corresponding generating functionals.

It can be used to derive the renormalized QAP for a generic parameter of the theory
λ,

∂Γ
∂λ

= i∆λ ·G, (6.18)

where ∆λ =
∫

dxN [∂L∂λ ].
There are several further versions of the quantum action principle with regards to

variations of parameters or (external) fields. In particular Refs. [109, 108, 110] established
a version of the action principle w.r.t variations of dynamical fields (see e.g. Ref. [108],
Eq. (5.4)). The left-hand side being equal to zero due to conservation of some current, the
resulting relation corresponds to Eq. (2.89) for the more general case of a non-invariant
Lagrangian δL 6= 0 under some symmetry transformation. It is rigorously established in
terms of the generating functional for general Green functions renormalized in the BPHZ
framework, and it can be connected to the generating functional of 1PI Green functions
via Legendre transformation.

Thus the finite BPHZ framework is a setting in which formally derived identities
among generating functionals such as the ones described in Secs. 4.1 or 2.5 can be given
a sensible all-order meaning.

In addition, in any regularization/renormalization procedure in agreement with the
basic postulates there is a way to cancel divergences and to obtain finite Green functions.
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These may differ from the ones obtained in BPHZ (or any other regularization), but in
view of the theorems discussed in Sec. 5.1 the differences can only amount to local
counterterms at each order.

In the following we summarize important statements of the quantum action principle
valid for any such finite Green functions defined via any consistent regularization and
subtraction of divergences. The statements can be cast in a variety of forms, similarly to
Sec. 4.1. Here we provide the formulation for the effective action Γ, as reviewed in Ref.
[47]. First, equations of motion for the generating functionals can be written as

δΓ
δφi(x) −∆i(x) · Γ = 0 . (6.19)

For variations with respect to parameters we have

∂Γ
∂λ

=
∫

dx∆(x) · Γ . (6.20)

As discussed in Secs. 2.5 and 2.4, in the case of nonlinear symmetry transformations it is
useful to couple the composite operators to some external field, say ρa(x). Then one can
arrive at the following version of the quantum action principle relevant for such nonlinear
symmetry transformations,

δΓ
δρa(x)

δΓ
δφi(x) = ∆ai(x) · Γ . (6.21)

In all previous equations (6.19–6.21), the quantities ∆ denote insertions of local com-
posite field operators, whose dimensions are bounded by power counting and whose
tree-level value is fixed in terms of the classical expression Γcl. For example, in case of
Eq. (6.19), ∆i is a local composite field operator whose dimension is bounded by (D−di),
where di denotes the power-counting dimension of the corresponding field φi, and

∆i = δΓcl
δφi

+O(~) . (6.22)

6.2.2 Comparing Quantum Action Principles in BPHZ and DReg

The quantum action principles discussed in the previous subsection for BPHZ and in Sec.
4 for DReg are similar but different. Here we briefly comment on their relationship. The
BPHZ version is valid for any regularization/renormalization procedure, including DReg.
However, it is valid for the finite theory, in DReg for the theory after taking LIMD→ 4
as defined in Eq. (3.5). The definition of this limit includes setting evanescent quantities
(such as the (D − 4)-dimensional metric ĝµν) to zero. The insertions ∆ appearing e.g.
in Eqs. (6.21) are always finite, 4-dimensional normal product insertions into the finite
Green functions.

In contrast, in the DReg case, the counterpart equation (4.6) is valid for general
D 6= 4, including evanescent quantities. In addition, if the identity corresponds to
a symmetry such as the Slavnov-Taylor identity which is valid at tree level and in 4
dimensions, then the insertion ∆ appearing in Eq. (4.6) is purely evanescent.

It may not be immediately obvious how this can be reconciled with the purely 4-
dimensional case of BPHZ. This is however important as we shall be making use of
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general considerations following from the algebraic framework while working in DReg.
In fact, both versions of the quantum action principle are valid and useful. The BPHZ
version is useful to establish general existence proofs which we can rely on also within
DReg, but the DReg version is useful for explicit computations since there the explicit
form of the insertion ∆ is known.

The key is provided by the Bonneau identities established in Refs. [73, 74]. These
identities precisely state that the insertion of an evanescent operator in DReg as in Eq.
(4.6) may in the LIMD→4 be rewritten as an insertion of a finite, 4-dimensional operator
as in Eq. (6.21). In this way, the BPHZ quantum action principle can also be rederived
from the one in DReg.

On the technical level, the Bonneau relationship also provides the coefficients in the
expansion of evanescent operator insertions in terms of 4-dimensional, finite insertions.
They are given by the residue of simple 1/(D− 4) pole of the insertion of the evanescent
operator into Green functions. The proof is essentially achieved by taking dimensionally
renormalized amplitudesRG associated to a graph G and comparing the vertex insertions
ĝµν [Oµν · RG] on the one hand with vertex insertions with [ĝµνOµν ] · RG on the other
hand.

At the one-loop level, the Bonneau identities are not surprising since evanescent
quantities can only contribute in the LIMD→4 if they hit 1/(D − 4) poles, which at
the one-loop level have local coefficients which may be interpreted as a 4-dimensional
local operator. However, their validity lies in their all-order nature. We mention here
that Bonneau identities can also be used to obtain information on renormalization group
equations in the presence of symmetry breakings of the regularization, see e.g. Refs.
[131, 25, 28].

6.2.3 Algebraic Renormalization and Symmetry Restoration

With the quantum action principle at our disposal we can now describe the logic of
algebraic renormalization of gauge theories. The starting point are possible breakings
of the Slavnov-Taylor identity (or similar identities) as given by Eq. (6.15) due to the
regularization. The quantum action principle provides a useful tool in restricting the
structure of the breaking and in determining whether the symmetry can be restored,
i.e. whether there are anomalies. For that we proceed inductively order by order in
perturbation theory. The goal is to determine the required finite, symmetry-restoring
counterterms Snct step by step for each n.

At lowest order, at the classical level n = 0, the Slavnov-Taylor identity is valid by
construction. This forms the basis of the inductive procedure. Let us then suppose the
theory is renormalized completely, hence it is finite and the Slavnov-Taylor identity is
fulfilled at some order n−1. In addition, at the next order n, the divergences are already
cancelled by appropriate singular counterterms. Hence we have

S(Γ(n),fin
subren) = O(~n), (6.23)

where we have introduced the notation

Γ(n),fin
subren = Γ(n)

subren + Snsct, (6.24)

which denotes the effective action finite at order n after subrenormalization and adding
the necessary divergent n-loop counterterms. This quantity corresponds to the set of
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finite Green functions for which the validity of the quantum action principle in BPHZ
has been proven, and it can be defined in any other regularization scheme equivalent to
BPHZ.

The task is then to study the possible breakings on the RHS of Eq. (6.23) as well as
the possible structure of counterterms. As mentioned before the breaking is restricted in
two ways. First, we may employ the quantum action principle to find,

S(Γ(n),fin
subren) = ~n∆ · Γ(n),fin

subren = ~n∆ +O(~n+1). (6.25)

The important point is that ∆ is a local polynomial in fields and derivatives, also re-
stricted by power counting. This property was announced in Sec. 2.5, where the Slavnov-
Taylor identity was formally derived from the path integral.

Second, applying the linearized BRST operator sΓcl ≡ b to Eq. (6.25) using Eq.
(6.11) and extracting the O(~n) terms, we arrive at a consistency condition (also called
the Wess-Zumino consistency condition),

b∆ = 0. (6.26)

Hence the possible breaking ∆ is restricted very similarly (cf. Eq. (6.13)) to the possible
divergences Γdiv in Sec. 6.1. Both Γdiv in Eq. (6.13) and ∆ in Eq. (6.26) are local
polynomials restricted by power counting which are annihilated by b, but Γdiv is of ghost
number 0 whereas ∆ has ghost number 1. Now one can make a distinction. If ∆ is a
b-exact term, i.e. if there exists another local polynomial ∆′ with

∆ = b∆′ , (6.27)

it is called a trivial element of the cohomology of the BRST operator. In this case we
can supplement the original action with a new n-loop order counterterm

Snfct = Snfct,non-inv + Snfct,inv = −∆′ + Snfct,inv, (6.28)

where the last term reflects the freedom to add to the action any finite, symmetric
counterterm, obeying b Snfct,inv = 0. Hence, we end up with

S(Γ(n),fin
subren + ~nSnfct) = S(Γ(n),fin

subren) + b ~nSnfct +O(~n+1) = O(~n+1), (6.29)

where the last step follows from the induction hypothesis. Compatibility with ghost and
gauge fixing equation is shown in Ref. [47].

Hence, under the condition (6.27), we can find a counterterm action Snfct,non-inv which
defines finite, non-invariant counterterms that repair the symmetry. Furthermore, it is
possible to add any number of finite, invariant counterterms to the action as they satisfy
b Sfct,inv = 0 and hence do not disturb the STI. These invariant counterterms behave
like the finite counterterms discussed in Sec. 6.1 and can be used to satisfy certain
renormalization conditions.

One task of the algebraic renormalization programme is therefore to determine the
most general solution of the equation b∆ = 0. If all possible solutions are b-exact, then
this constitutes a proof that the Slavnov-Taylor identity can be established at all orders
in the renormalized theory.

However, if we cannot write the breaking ∆ as a b-exact term, the symmetry cannot
be repaired. This is an anomaly. In case of the Slavnov-Taylor identity such an anomaly is
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disastrous since it destroys the interpretation of the theory as a sensible quantum theory,
see the discussion at the beginning of the present section. Anomalies are thus non-trivial
elements of the cohomology of the b-operator, i.e. expressions which are annihilated by b
but are not b-exact.

The previous remarks constitute crucial insights of the BRST formalism [41, 42, 43,
44]. The analysis of whether a gauge theory is renormalizable, i.e. whether the Slavnov-
Taylor identity can be restored at each order, can be made on a purely classical level, by
finding all possible solutions of Eq. (6.26) and checking whether they are all b-exact.

The actual computation can be found in the original references and in the reviews
[119, 47]. It can be sketched as follows. From the Wess-Zumino consistency condition
(6.26) and the nilpotency of the BRST operator, one can derive a set of equations, the
so called descent equations. Solving these gives a general expression of the possible
anomalies of a theory. In the present case of interest for a generic Yang-Mills theory
it can be shown that the consistency condition simplifies to s∆(G, c) = 0, see e.g. [47],
with dependence on the gauge and the ghost field only. Writing ∆ as an integrated
local product and solving the descent equations, it leads to the famous Adler-Bell-Jackiw
gauge anomaly first discovered in Refs. [6, 7, 8],31

∆ = L× εµνρσTr
∫

d4x ca∂
µ

(
−gdabcA ∂νGρbG

σ
c + g2DabcdA

12 GνbG
ρ
cG

σ
d

)
, (6.30)

where L is a coefficient that can be determined from explicit calculations and which
depends on the theory inputs. The group symbols are given by,

dabcA = Tr
(
T aadj

{
T badj, T

c
adj
})
, (6.31)

and
DabcdA = dnabA fncd + dnacA fndb + dnadA fnbc, (6.32)

where T aadj denotes adjoint generators under which ghosts and gauge fields transform, cf.
Eq. (2.2). Expression (6.30) must vanish by itself, i.e. cannot be absorbed by countert-
erms, for the theory to be consistent. In the case of a single left-handed fermion it can
be shown by a one-loop calculation that the anomaly is proportional to

1
2 d

abc
A Tr(T a{T b, T c}), (6.33)

which means that its cancellation depends on an appropriate choice of the matter content
of the theory. The famous Adler-Bardeen theorem guarantees that if the gauge anomaly
vanishes at one-loop order, it also vanishes at all orders, cf. [47]. The expression in Eq.
(6.33) cannot vanish by itself, but in such a theory with a family of left-handed fermions,
their charges may add up to zero as is the case in the SM. For some gauge groups such
as SU(2), the above expression vanishes identically due to the vanishing of some group
symbols. Hence there can be no anomaly.

In summary we have sketched how algebraic renormalization allows identifying the
general structure of the breaking of the Slavnov-Taylor identity. It constitutes a setting
in which the restoration of the symmetry can be proven to all orders for trivial elements

31Note the different relative sign of the first term of Eq. (6.30) compared to [47] which comes from a
different sign convention in the covariant derivative, see Eq. (2.6).
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of the BRST cohomology such as spurious breakings introduced by the BMHV algebra.
In the case of non-spurious breakings, e.g. the gauge anomaly, one can derive explicit
conditions for its cancellation which a sensible theory must satisfy. Further, nonrenor-
malization theorems, as in the case of the Adler-Bardeen theorem, can be shown and
allow evaluating the gauge anomaly in a simple way. The main technical tool which
serves to establish these findings is the general quantum action principle valid in many
equivalent subtraction schemes. A key advantage of the algebraic proof is that there is
no need for an invariant regularization which for e.g. chiral gauge theories does not exist.

6.2.4 Outlook and Further Remarks on Anomalies and Algebraic Renormal-
ization

At this point we interject a brief outlook on anomalies and further applications of the
techniques of algebraic renormalization. Next to the perturbative chiral gauge anomalies
discussed above and discovered in Refs. [6, 7, 8] there exist global chiral anomalies [132]
and pertubative mixed gauge-gravitational anomalies [133, 134, 135]. A chiral gauge
model can be renormalized only if all these chiral anomalies cancel, which may be achieved
by a proper choice of fermion representations of for the chiral model, for example see
Ref. [11] and references therein. Eq. (6.30) is necessary but not sufficient if gravity and
nonperturbative effects are taken into account.

Important theories such as the Standard Model of particle physics, are renormalizable.
In particular, the electroweak SM was completely treated in algebraic renormalization
in Ref. [57], establishing the SM as a fully all-order consistent, renormalizable theory.
Ref. [56] gave a similar proof using the background field gauge (see footnote 3), and Ref.
[59] gave a similar proof for the supersymmetric SM. These papers complement earlier
extensive discussions of the renormalization of the electroweak SM by e.g. Refs. [136, 60],
see also Ref. [137].

The validity of the Slavnov-Taylor identity and the techniques of algebraic renormal-
ization can also be used to establish further interesting physics properties of quantum
gauge theories such as the renormalized electroweak SM. E.g. charge universality can
be established based on both gauge choices [136, 48], see also Ref. [137] for further dis-
cussions. As another example, the renormalization of Higgs vacuum expectation values
in spontaneously broken gauge theories can be controlled via a suitable Slavnov-Taylor
identity [138, 139].

6.3 Algebraic Symmetry Restoration in the Context of DReg

So far in this section we have studied the role of symmetries in the process of renormaliza-
tion. If the symmetry is respected by the regularization, it implies a great simplification
for the UV counterterms. If it is not, algebraic renormalization constitutes a general
setup which allows identifying symmetry violations and restoring the symmetry. Here
we specialize the general procedure to the case of DReg. We use the BMHV scheme with
non-anticommuting γ5 in which gauge invariance may be broken.

6.3.1 Formulation of Symmetry and Symmetry Breaking in DReg

The ultimate symmetry requirement is the Slavnov-Taylor identity expressing BRST
invariance of the full renormalized theory, Eq. (6.1). In the context of DReg this require-
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ment can be formulated as
LIM
D→ 4

(SD(ΓDRen)) = 0. (6.34)

As defined in Sec. 3.1, ΓDRen denotes the renormalized effective action, still in D dimen-
sions but including all counterterms cancelling 1/ε divergences and restoring symmetries.
The limit refers to the operation of letting ε→ 0 as well as putting evanescent quantites
such as ĝµν to zero.

In order to discuss the inductive procedure, we consider some order n and suppose
the theory has been renormalized and all counterterms have been constructed up to the
previous order n− 1. This provides us with

Γ(n)
subren , (6.35)

again using the notation of Sec. 3.1. At this point we know from Sec. 5 that the diver-
gences at the n-th order can be cancelled by adding a local counterterm action Snsct. It
may or may not be true that the divergences follow the simple pattern described in Sec.
6.1. In general we can always write

Snsct = Snsct,inv + Snsct,non-inv , (6.36)

where the first term corresponds to symmetric counterterms as described in Sec. 6.1 and
the second term corresponds to whatever other divergent counterterms are required.

After subtracting these divergences the theory is finite at the order n and the Slavnov-
Taylor identity may be written as

SD(Γ(n)
subren + Snsct) = ~n∆D +O(~n+1) , (6.37)

where ∆D is a possible finite breaking term, still evaluated in D dimensions. The sub-
renormalized and finite effective action introduced for the algebraic analysis in Eq. (6.24)
is now given by LIMD→ 4(Γ(n)

subren + Snsct), and the counterpart of Eq. (6.25) is given by
the 4-dimensional limit

LIM
D→ 4

∆D = ∆from Eq. (6.25) . (6.38)

This finite quantity ∆ is the one constrained by algebraic renormalization and discussed
after Eq. (6.25). That is, it is a local breaking term which satisfies the Wess-Zumino
consistency conditions and which can be cancelled by adding suitable counterterms (we
assume that there is no genuine anomaly).

The practical question is then how to obtain first the breaking term ∆ and then the
symmetry-restoring counterterms. There are two strategies for this. The first, obvious
option is to evaluate all Green functions appearing on the LHS of Eq. (6.37) including
their finite parts, plug them into the Slavnov-Taylor identity and determine the poten-
tially non-vanishing breaking. This straightforward procedure is convenient in that it
operates on ordinary Green functions. Its drawback is that most finite parts of Green
functions — in particular parts that are non-polynomial in the momenta — will be in
agreement with the symmetry and hence drop out of Eq. (6.37), such that the calculation
can become unnecessarily complicated. Nevertheless this direct approach has been used
in the literature, e.g. in Refs. [140, 141, 142, 143, 144] on applications on chiral gauge
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theories and supersymmetric gauge theories. In the subsequent section 7.4.1 we will also
illustrate this approach with a concrete example.

A second, alternative approach is provided by using the regularized quantum action
principle in DReg, described in Sec. 4. This theorem guarantees that we can rewrite the
LHS of Eq. (6.34) as

SD(ΓDRen) = (∆̂ + ∆ct) · ΓDRen. (6.39)

The possible breaking of the Slavnov-Taylor identity is thus rewritten as an operator
insertion of the composite operator ∆̂ + ∆ct, which is defined as

∆̂ = SD(S0) , (6.40a)
∆̂ + ∆ct = SD(S0 + Sct) , (6.40b)

In this approach, the breaking ∆ may be computed in terms of the RHS of (6.39).
The advantage lies in significantly restricting possible non-vanishing contributions. In
particular, ∆̂ is evanescent; hence it can contribute in the LIMD→4 only in combination
with 1/ε singularities of Feynman diagrams.

The RHS of (6.39) can be expanded in loop orders as

∆̂ +
∞∑
i=1

~i
(

∆̂ · ΓiDRen +
i−1∑
k=1

∆k
ct · Γi−kDRen + ∆i

ct

)
. (6.41)

Plugging the previous definitions into Eq. (6.34), we arrive at an equation expressing the
symmetry requirement exactly at the order n,

LIM
D→ 4

(
∆̂ · ΓnDRen +

n−1∑
k=1

∆k
ct · Γn−kDRen + ∆n

ct

)
= 0, (6.42)

for all n ≥ 1. The individual terms in this equation have divergent and finite parts,
but by construction the entire expression is finite; hence the cancellation of divergences
may be used as a consistency check of practical calculations. For the determination of
symmetry-restoring counterterms, Eq. (6.42) should be viewed as follows. At the order
n and after subrenormalization and adding divergent n-loop counterterms, everything
in Eq. (6.42) is already known except the finite counterterms of order n. They enter
via ∆n

ct, which in turn depends on the to-be-determined counterterms. The following
subsubsection will make the dependence explicit. Hence Eq. (6.42) can be regarded as
the optimized defining relation for the symmetry-restoring counterterms in DReg.

We close with the remark that Eq. (6.42) does not fully determine all finite coun-
terterms. It only determines the required form of counterterms in order to restore the
symmetry. However, Eq. (6.42) is blind to several types of counterterms: finite and
symmetric counterterms (which often correspond to a renormalization transformation as
described in Sec. 6.1) drop out; such counterterms can therefore still be adjusted at will
e.g. to satisfy the renormalization conditions corresponding to an on-shell or a different
desirable renormalization scheme. In addition, evanescent and finite counterterms also
drop out and may be added to optimize the counterterm action.
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6.3.2 Practical Restoration of the Symmetry

Here we illustrate the blueprint for the practical restoration of the symmetry, if Eq. (6.42)
is used as a basis.

We begin at the one-loop level and start from the regularized but unrenormalized
effective action Γ(1).32 At the one-loop level the regularized action plus counterterms as
well as the symmetry breaking induced by the counterterms at one-loop order are given
by

Γ(1)
DRen = Γ(1) + S1

sct + S1
fct , (6.43a)

∆1
ct = SD(S0 + Sct)1 = bDS

1
sct + bDS

1
fct , (6.43b)

where the last part of the last equation is a specific rearrangement possible at the one-
loop level, and where the linearized Slavnov-Taylor operator bD is defined in analogy to
b in Eq. (6.10). The general equations establishing the cancellation of divergences and
symmetry restoration, (6.42), become

S1
sct + Γ1

div = 0 , (6.44a)(
∆̂ · Γ1 + ∆1

ct
)
div = 0 , (6.44b)

LIM
D→ 4

(
∆̂ · Γ1 + ∆1

ct
)
fin = 0 . (6.44c)

Compared to the general Eq. (6.42), terms that vanish at one-loop order were dropped.
The quantities that need to be explicitly computed here are the one-loop divergences
Γ1
div and the one-loop diagrams with one insertion of the evanescent operator ∆̂, ∆̂ · Γ1.

The first of these equations then determines the divergent one-loop counterterms S1
sct,

and the second equation provides a consistency check of the divergences. In view of
Eq. (6.43b), the last line contains bDS1

fct and thus determines the symmetry-restoring
one-loop counterterms.

Next we consider the two-loop order. At the two-loop level, the corresponding equa-
tions for the effective action and the symmetry breaking of counterterms are

Γ(2)
DRen = Γ(2)

subren + S2
sct + S2

fct , (6.45a)
∆2

ct = SD(S0 + Sct)2 = SD(S0 + S1
ct)2 + bDS

2
sct + bDS

2
fct , (6.45b)

where the upper index 2 corresponds to extracting the two-loop terms. The last equation
exhibits the appearance of the genuine two-loop counterterms in a way specific to the
two-loop level. The equations corresponding to finiteness and symmetry restoration read

S2
sct + Γ2

subren,div = 0 , (6.46a)(
∆̂ · Γ2

subren + ∆1
ct · Γ1 + ∆2

ct
)
div = 0 , (6.46b)

LIM
D→ 4

(
∆̂ · Γ2

subren + ∆1
ct · Γ1 + ∆2

ct
)
fin = 0 . (6.46c)

32We slightly simplify the notation and use Γ(1) in the following equations of this subsubsection to
denote the unrenormalized effective action up to one-loop order. According to the general notational
scheme defined in Sec. 3.1, this could also be called Γ(1)

subren.
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Here we have to calculate first the two-loop divergences to obtain the two-loop divergent
counterterms. Then we have to calculate diagrams with insertions of ∆̂ up to the two-
loop level (and including one-loop subrenormalization), as well as one-loop diagrams
with insertions of bD-transformed one-loop counterterms. The second equation must
automatically hold and provides a check. The third equation then determines the genuine
finite two-loop symmetry-restoring counterterms bDS2

fct, which appear via Eq. (6.45b) in
∆2

ct.
In summary the recipe is as follows,

• UV-renormalize the theory, previously renormalized up to order n − 1, at order n
to obtain the singular counterterms,

• calculate genuine n-loop Green functions with one-time insertion of ∆̂ for their
divergent and finite part,

• calculate the k-loop order insertion into (n − k)-loop order graphs and determine
their divergent and finite contributions,

• check that the divergences thus obtained sum up to zero,

• collect the finite contributions and choose monomials X such that bDX cancels
them. This is always possible as discussed in the previous subsections.

6.3.3 The Counterterm Lagrangian in the BMHV Scheme

The output of the regularization/renormalization programme is the renormalized effective
action and the required counterterm action consisting of singular and finite counterterms.
In the context of the BMHV scheme the previous subsections show that the counterterm
action can in general contain five different kinds of terms,

Sct = Ssct,inv + Ssct,non-inv + Sfct,inv + Sfct,restore + Sfct,evan. (6.47)

This equation is a more detailed version of the generic decomposition explained in Sec.
3.1 into singular and finite counterterms. For both the singular and the finite countert-
erms we may isolate a symmetry-invariant piece, which has the pattern of symmetric
counterterms discussed in Sec. 6.1 and typically corresponds to counterterms generated
by a renormalization transformation as

S0
ren. transf. (6.3)−→ S0 + Ssct,inv + Sfct,inv. (6.48)

In general, the conditions of Sec. 6.1 are not met and symmetry-violating counterterms
are required. Accordingly, the next type of counterterms

Ssct,non-inv

corresponds to additional singular counterterms needed to cancel additional 1/ε poles of
loop diagrams that cannot be cancelled by symmetry-invariant counterterms. They may
be evanescent and, starting from 2-loop order, also 4-dimensional (non-evanescent). They
cannot be obtained by renormalization transformations. We note that the subtraction
of evanescent 1/ε poles is a necessity for the consistency of higher orders (see also Ref.
[5] for a review discussing this point).
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Next,
Sfct,restore

corresponds to finite counterterms needed to restore the Slavnov-Taylor identity and thus
the underlying gauge invariance. They are the central objects of the present discussion
and the outcome of the practical recipe of Sec. 6.3.2. Determining these counterterms is
one of the key tasks in the usage of the BMHV scheme. Once those counterterms are
found, the theory can be considered to be renormalized.

As mentioned before, the symmetry-restoring counterterms are not unique. Clearly,
they may be modified by shifting around any symmetry-invariant counterterm between
Sfct,inv and Sfct,non-inv, since invariant terms would drop out of Eqs. (6.42,6.44c,6.46c).
The overall sum of Sfct,inv + Sfct,non-inv can only be fixed by imposing a renormalization
scheme (such as e.g. the on-shell scheme), and the split into Sfct,inv and Sfct,non-inv can only
be fixed by picking a convention. To illustrate this point, let us assume the counterterm
Lagrangian must contain a non-gauge invariant term zAµ�Aµ where z is a coefficient
and Aµ a gauge field. Two different options for the counterterm Lagrangians would then
be

Lfct,non-inv = zAµ�Aµ, Lfct,inv = δZ(Aµ�Aµ + (∂A)2), (6.49a)
Lfct,non-inv = −z(∂A)2, Lfct,inv = (δZ + z)(Aµ�Aµ + (∂A)2). (6.49b)

The invariant counterterm here corresponds to an invariant counterterm generated by
a field renormalization from the usual gauge invariant kinetic term FµνFµν . According
to the assumption, both options restore the symmetry, and they lead to the identical
renormalized theory. The field renormalization constant δZ can be used to adopt a
desired renormalization condition.

Finally,
Sfct,evan

corresponds to additional counterterms that are both finite and evanescent. Adding or
changing such counterterms can change e.g. a purely 4-dimensional counterterm Aµψ̄γ̄µψ
to a fully D-dimensional counterterm Aµψ̄γµψ. These counterterms vanish in the 4-
dimensional limit, but they can affect calculations at higher orders. They also drop
out of Eqs. (6.42,6.44c,6.46c). Hence one viable option is that the symmetry-restoring
counterterms Sfct,restore are always defined by using strictly 4-dimensional quantities only.
However, this is not the only option; in concrete cases elevating 4-dimensional terms to
fully D-dimensional ones may simplify expressions appearing at higher orders. At any
rate, each such choice generates a different, valid, renormalized theory. From a practical
point of view it is desirable to make a computationally simple choice.
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7 Practical Treatment of Chiral Gauge Theories in the
BMHV Scheme of DReg

In recent years, the treatment of chiral gauge theories with the non-anticommuting γ5
BMHV scheme has received increasing interest. Applications in the SM at the multiloop
level and in effective field theories with additional operators involving chiral fermions have
become more important, see e.g. the discussions in Refs. [145, 137, 146, 147]. Accordingly
the usefulness of regularization/renormalization schemes for which ultimate consistency is
fully established is becoming more appreciated. After the pioneering one-loop discussion
of gauge theories with chiral fermions in Refs. [131, 148], Ref. [25] extended the analysis
to general chiral gauge theories including scalar fields and Yukawa couplings to chiral
fermions. Ref. [26] pioneered the application of the BMHV scheme to chiral gauge theories
at the two-loop level with a first, abelian example. Ref. [27] extended the one-loop
analysis to the case of the background field gauge fixing and to the full gauge–fermion
sector of the electroweak SM.

In this section, we give concrete illustrations of how to treat chiral gauge theories in
the BMHV scheme with non-anticommuting γ5. The discussion is based on our results
in Refs. [26, 25]. The following subsection 7.1 provides an extended overview of the
procedure and a guide for the present section.

7.1 Overview and Guide to the Present Section

In Sec. 2, we discussed the basic defining gauge invariance of gauge theories and refor-
mulated it in terms of BRST symmetry and Slavnov-Taylor and Ward identities. In
Sec. 6 we explained how these symmetry identities are elevated to defining properties
of the renormalized theory at higher orders. For the gauge theories we study here, it
is known that these defining symmetry identities can be fulfilled in any consistent reg-
ularization/renormalization procedure, by appropriately defining counterterms. In Sec.
3 we explained the definition of dimensional regularization and the BMHV scheme for
γ5, which in general breaks gauge invariance in the presence of chiral fermions. In Sec. 5
we explained the proof that dimensional regularization constitutes one of the consistent
regularization/renormalization procedures.

As a result it is in principle established that the dimensional regularization including
BMHV scheme for γ5 may be used for chiral gauge theories. Further, Sec. 6.3 also
provided a blueprint how to determine the required counterterm structure in concrete
calculations. In this section, we carry out such concrete calculations and illustrate all
required steps in detail.

In the Abelian chiral gauge theory defined below, we expect the validity of simple
QED-like Ward identities; the simplest one corresponds to the transversality of the pho-
ton self-energy. It turns out that in the BMHV scheme, the actual one-loop self-energy
violates this transversality (see Eq. (7.35)). The violation affects both the divergent
and the finite part in the BMHV scheme of dimensional regularization. The breaking,
however, is a polynomial in the momentum; hence it can be cancelled by adding a local
counterterm to the Lagrangian — in line with the general existence statement mentioned
above. After adding this counterterm the required transversality is fulfilled. The concrete
required form of the counterterm can be found in Eqs. (7.39,7.41).

A question is then what is the most efficient way to determine such symmetry break-
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ings in general. Answers were given in Sec. 6.3.1 and can be illustrated as follows. One
way in principle is to explicitly evaluate all Green functions and test the validity of all
Ward and Slavnov-Taylor identities between all Green functions. The explicit compu-
tation of the non-transverse terms in Eq. (7.35) provides an example. Given that there
are in principle infinitely many identities between Green functions and given that the
computation of Green functions involves also complicated non-local terms that cannot
contribute to the symmetry violation, this strategy is not the most efficient.

Sec. 6.3.1 also explained a shortcut that is based on the regularized quantum action
principle of dimensional regularization discussed in Sec. 4. Staying with the example of
the photon self-energy, the terms violating the transversality in Eq. (7.35) and then in
Eq. (7.37) may be equivalently obtained by computing one special Feynman diagram,
shown in Eqs. (7.44,7.45). This diagram involves an insertion of the operator ∆̂ which
reflects the breaking of chiral gauge invariance in D dimensions, and the quantum action
principle guarantees that the evaluation of this diagram reproduces directly the break-
ing of the transversality of the photon self-energy. The simplification is threefold: First
and foremost, since ∆̂ is evanescent, only the ultraviolet divergent part of the diagram
can contribute — hence the evaluation is simpler (the degree of simplification dramat-
ically increases for more complicated Green functions and at higher orders). Second,
in the general case there are much fewer diagrams with insertions of ∆̂ than ordinary
diagrams. Third, since only divergent parts contribute it is clear that the symmetry
breaking/restoration procedure requires only the computation of power-counting diver-
gent diagrams with insertions of ∆̂.

This more efficient but less obvious strategy based on the quantum action principle
was applied to chiral gauge theories at the one-loop level in Refs. [25, 131, 148, 27] with
and without scalar sector and to an Abelian chiral gauge theory at the two-loop level in
Ref. [26]. It was also applied to the case of supersymmetric gauge theories in the context
of dimensional reduction at the two- and three-loop level in Refs. [102, 105].

In the largest part of the present section we focus on the simpler case of an Abelian
chiral gauge theory. We begin in Sec. 7.2 by defining the considered model and collecting
all relevant symmetry identities. Then we discuss the subtleties in the continuation to D
dimensions and determine the insertion operator ∆̂. Sec. 7.3 provides a more technical
overview of the procedure to determine the symmetry-restoring counterterms than the
previous remarks. In Sec. 7.4 we then discuss the explicit computations in the abelian
model in detail. We begin with the case of the photon self-energy mentioned above and
illustrate both strategies to determine the symmetry-restoring counterterms, then we
progress to other Green functions and to the two-loop level. Thereafter Sec. 7.5 discusses
the case of non-Abelian Yang-Mills theories and presents explicit calculations and results
at the one-loop level.

7.2 Definition of an Abelian Chiral Gauge Theory

Here we define a concrete Abelian chiral gauge theory which will be used in explicit
calculations. It is first defined in 4 dimensions along with its symmetry requirements in
Sec. 7.2.1; then the definition is extended to D dimensions within the framework of the
BMHV γ5 scheme and resulting BRST symmetry breaking is exhibited in Sec. 7.2.2.
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7.2.1 Chiral Electrodynamics in 4 dimensions

Following Sec. 2.6, the 4-dimensional classical Lagrangian for quantum electrodynamics
(QED) is given by

LQED = iψi /Dijψj −
1
4F

µνFµν −
1
2ξ (∂µAµ)2 − c̄∂2c+ ρµsAµ + R̄isψi +Risψi, (7.1)

with U(1) ghost and external BRST sources included.33 The only generator in this theory
is the real and diagonal charge Qij = Qiδij , so that the covariant derivative reads

Dµ
ij = ∂µδij + ieAµQij . (7.2)

We now define a similar, but chiral Abelian gauge theory. We separate the fermionic
content into left-handed and right-handed chirality parts,

ψR/L = PR/Lψ, PR/L = 1± γ5
2 , (7.3)

and allow only purely right-handed fermions to appear as dynamical fields.34 The 4-
dimensional and purely right-handed classical Lagrangian of the model then reads

LχQED = iψRi /DijψRj−
1
4F

µνFµν−
1
2ξ (∂µAµ)2− c̄∂2c+ρµsAµ+R̄isψRi+RisψRi, (7.4)

where the interaction, coupling only to the right-handed fermions, is defined by the
covariant derivative as

Dµ
ij = ∂µδij + ieAµYRij . (7.5)

Emphasizing the similarity with the U(1)Y sector of the Standard Model we call the
generator YRij = YRiδij the hypercharge. It can be seen that the left-handed fermions
ψL are now decoupled from the theory. In order to avoid triangle anomalies we need to
impose the following additional anomaly cancellation condition to the hypercharge,

Tr(Y3
R) = 0 . (7.6)

Following Sec. 2, the non-vanishing BRST transformations for this model are

sAµ = ∂µc , (7.7a)
sψi = sψRi = −i e cYRijψRj , (7.7b)
sψi = sψRi = −i e ψRjcYRji (7.7c)

sc = B ≡ −1
ξ
∂A, (7.7d)

where s is the nilpotent generator of the BRST transformations, which acts as a fermionic
differential operator. This 4-dimensional tree-level action

S
(4D)
0 =

∫
d4xLχQED (7.8)

33In contrast to Sec. 2.6, we already integrated out the Nakanishi-Lautrup field B(x), i.e. we used
B = −(∂µAµ)/ξ already in the Lagrangian.

34This is a choice made to simplify the discussion. E.g. the U(1)Y sector of the SM contains both left-
handed and right-handed fermions with different gauge quantum numbers. It could be treated similarly.
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satisfies the following Slavnov-Taylor identity

S(S(4D)
0 ) = 0 , (7.9)

where the Slavnov-Taylor operator, with the field content we consider, was already given
in Eq. (2.106). At this point, we emphasize two additional functional identities that hold
in 4 dimensions and that were derived and discussed in Sec. 2.6. The first is the ghost
equation, (

δ

δc̄
+ ∂µ

δ

δρµ

)
S

(4D)
0 = 0 . (7.10)

The second is the functional form of the abelian Ward identity35(
∂µ

δ

δAµ(x) + ieYjR
∑
Ψ

(−1)nΨΨ(x) δ

δΨ(x)

)
S

(4D)
0 = −�B(x) , (7.11)

suitably adapted to the present theory χQED and its field content. The summation
extends over the charged fermions and their sources, Ψ ∈ {ψRj , ψRj , Rj , R̄j} and nΨ ∈
{0, 1, 0, 1}.

Functional relations such as the ghost equation and the local Ward identity are part
of the definition of our theory in 4 dimensions. Once we perform the regularization
and renormalization procedure, the requirement that those identities still hold imposes
important restrictions as we will soon see in the explicit loop calculations. But first we
extend the model to D dimensions and examine the consequences of this extension.

7.2.2 Definition of Chiral Electrodynamics in DReg

We can immediately see that the extension of χQED to D dimensions is not unique due
to the right-handed chiral current ψRiγµψRj . The extension to D dimensions of this
term has three inequivalent choices, each of them equally correct:

ψiγ
µPRψj , ψiPLγ

µψj , ψiPLγ
µPRψj . (7.12)

They are different because PLγµ 6= γµPR in D dimensions. Each of these choices leads to
a valid D-dimensional extension of the model that is renormalizable using dimensional
regularization and the BMHV scheme and is expected to produce the same final results
in physical 4 dimensions after the renormalization procedure is performed. However,
the intermediate calculations and the D-dimensional results will differ, depending on the
choice for this interaction term. The third option, which is equal to

ψPLγ
µPRψ = ψPLγ

µPRψ = ψRγ
µψR , (7.13)

is the most symmetric one and leads to the simplest intermediate expressions. Notice that
this choice is actually the most straightforward one since it preserves the information that
right-handed fermions were present on the left and on the right sides of the interaction
term before the extension, see also the review [15].

35Here we keep the Nakanishi-Lautrup field B(x) explicitly. However, one could integrate it out here
as well using B = −(∂µAµ)/ξ.
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The second, more serious problem, is that as it stands the pure fermionic kinetic term
iψRi/∂ψRi = iψiPL/∂PRψi projects only the purely 4-dimensional derivative, leading to a
purely 4-dimensional propagator

iPR /pPL
p̄2 , (7.14)

and to unregularized loop diagrams. As discussed in Sec. 3.4, the only valid choice for
the propagator in the D-dimensional theory in the context of dimensional regularization
is

i /p

p2 , (7.15)

so we are thus led to consider the full Dirac fermion ψ with both a left and right-handed
component, and use instead the fully D dimensional covariant kinetic term iψi/∂ψi. It
can be re-expressed in terms of projectors as follows:

iψi/∂ψi = iψi/∂ψi + iψi /̂∂ψi

= i(ψiPL/∂PRψi + ψiPR /∂PLψi) + i(ψiPL/∂PLψi + ψiPR /∂PRψi)
(7.16)

Notice that the fictitious, sterile left-chiral field ψL is introduced, which appears only
within the kinetic term and nowhere else, it does not interact so it does not couple in
particular to the gauge bosons of the theory, and we enforce it to be invariant under
gauge transformations.

Unfortunately, the choice of the D-dimensional propagator, crucial for loop regular-
ization, that led to the introduction to the left-handed component in the kinetic term,
breaks the gauge invariance of the fermionic part of the Lagrangian, which is evident if
we separate it in this way:

Lfermions = Lfermions,inv + Lfermions,evan , (7.17a)
Lfermions,inv = iψi/∂ψi − eYRijψRi /AψRj , (7.17b)

Lfermions,evan = iψi /̂∂ψi , (7.17c)

where the first term contains purely 4-dimensional derivatives and gauge fields and pre-
serves the gauge and BRST invariance, since the fictitious left-chiral field ψL is a gauge
singlet. The invariant term can also be written as a sum of purely left-chiral and purely
right-chiral terms involving the 4-dimensional covariant derivative as

Lfermions,inv = iψLi/∂ψLi + iψRi/∂ψRi − eYRijψRi /AψRj (7.18a)

= iψLi/∂ψLi + iψRi /DψRi , (7.18b)

where the gauge invariance is obvious. The second term in Eq. (7.17a) is purely evanes-
cent, i.e. it vanishes in 4-dimensional limit. If we rewrite the evanescent term as

Lfermions,evan = iψLi /̂∂ψRi + iψRi /̂∂ψLi , (7.19)

it can be easily seen that it mixes left- and right-chiral fields with different gauge trans-
formation properties. This causes the breaking of gauge and BRST invariance — the
central difficulty of the BMHV scheme.36

36We remark that the problem is not specific to the case where the left-handed fermion is sterile. As
Eq. (7.19) shows the problem generally exists if the left-handed and right-handed fermions have different
gauge quantum numbers. Refs. [131, 27] consider this case and end up with essentially the same breaking
of BRST invariance in D dimensions and the same further consequences.
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We can summarize this symmetry property and the symmetry breaking as

sDLfermions,inv = 0 , (7.20a)
sDLfermions,evan 6= 0 , (7.20b)

where sD is the obvious extension of the BRST operator (7.7) to D dimensions.
Since the extension of BRST transformation of fields in D dimensions is straightfor-

ward, our D dimensional action is then

S0 =
∫
dDx

(
iψi/∂ψi + eYRijψRi /AψRj −

1
4F

µνFµν −
1
2ξ (∂µAµ)2

− c̄∂2c+ ρµ(∂µc) + i e R̄icYRijψRj + i e ψRicYRijRj
)

≡
∑
i

Si
ψψ

+
∑
i

Si
ψRAψR

+ SAA + Sg-fix + Sc̄c + Sρc + SR̄cψR + SRcψR ,

(7.21)

where also useful abbreviations for the individual terms were introduced. Similar to the
fermion Lagrangian, the full D-dimensional action may be written as the sum of two
parts, an “invariant” and an “evanescent” part,

S0 = S0,inv + S0,evan , (7.22a)

S0,evan =
∫
dDx iψi /̂∂ψi . (7.22b)

The second part S0,evan consists solely of one single, evanescent fermion kinetic term, the
remnant of the D-dimensional propagator.

Now we quantify the symmetry breaking caused by the BMHV scheme, the non-
anticommuting γ5 and the resulting evanescent term in the action. Acting with the
D-dimensional BRST operator on the D-dimensional tree-level action Eq. (7.21) gives:

sDS0 = sDS0,inv + sDS0,evan = 0 + sD

∫
dDx iψi /̂∂ψi ≡ ∆̂, (7.23)

where the non-vanishing integrated breaking term ∆̂ is given by

∆̂ = −
∫
dDxeYRij c

{
ψi

(←
/̂∂PR +

→
/̂∂PL

)
ψj

}
≡
∫
dDx ∆̂(x). (7.24)

Acting with the D-dimensional Slavnov-Taylor operator SD on the tree-level action, we
obtain

SD(S0) = sDS0,inv + sDS0,evan = 0 + ∆̂ , (7.25)

hence the Slavnov-Taylor identity inD dimensions is violated by the same BRST breaking
term at tree-level.37

As mentioned in the overview Sec. 7.1, this breaking term will be a crucial tool in
practical calculations. This breaking will be used as a composite operator insertion in

37 The simpler linear equations (2.100) to (2.103) specific for Abelian theories are manifestly valid also
in D dimensions. We will not discuss them further, but they have the consequence that higher-order
corrections, including counterterm actions, cannot depend on the ghost/antighost and source fields. For
this reason, the linearized Slavnov-Taylor operator here reduces to BRST transformations, bD = sD.
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Feynman diagrams. It generates an interaction vertex whose Feynman rule (with all
momenta incoming and derived from the combination i∆̂) is:

̂∆ c

p2
ψjβ

p1

ψ
i
α

= −e2 YRij
(
( /̂p1 + /̂p2) + ( /̂p1 − /̂p2)γ5

)
αβ

= −eYRij
(
/̂p1PR + /̂p2PL

)
αβ

.
(7.26)

As discussed in the context of Eq. (2.80), in this way the functional derivatives of i∆̂ · Γ
correspond to 1PI Feynman diagrams with one insertion of the Feynman rule (7.26). An
analogous Feynman rule is derived for charge-conjugated fermions.

It is important to notice that this breaking ∆̂ is evanescent, i.e. it vanishes in the
4-dimensional limit. This results from the evanescent original term (7.22b) and has
the consequence that insertions of ∆̂ can only contribute in power-counting divergent
Feynman diagrams.

7.3 Symmetry Restoration Requirements

Before beginning the explicit calculations we recall and collect the required symmetry
identities and the strategy for symmetry restoration in a more technical way than in the
overview Sec. 7.1. We begin by collecting the required symmetry identities.

Symmetry identities expressing gauge/BRST invariance are considered part of the
definition of the theory. Hence they are required to be fulfilled at all orders, see Secs. 2.6
and 6.2 for detailed discussions.

The symmetry requirements are defined for the renormalized and finite 4-dimensional
effective action of the form

Γren = S
(4D)
0 +O(~), (7.27)

where we again highlight that the effective action coincides with the classical action up to
higher-order corrections, and that loop corrections are of higher order in ~, see Eq. (2.76)
and Sec. 3. The first symmetry requirement is BRST (and underlying gauge) invariance,
which is expressed as the Slavnov-Taylor identity

S(Γren) = 0, (7.28)

for the renormalized theory. Notice that in χQED the fields c, c̄ and ρµ do not have
higher order corrections, so relations

δΓren
δc(x) = δS

(4D)
0

δc(x) ,
δΓren
δc̄(x) = δS

(4D)
0

δc̄(x) ,
δΓren
δρµ(x) = δS

(4D)
0

δρµ(x) . (7.29)

hold trivially, since the respective derivatives of the tree-level action are linear in the
dynamical fields as described in Sec. 2.6. The fact that the ghost does not have higher
loop corrections will play a part in reducing the number of diagrams appearing in higher
orders, compared to an analogous Yang-Mills theory. The local Ward identity(

∂µ
δ

δAµ(x) + ieYjR
∑
Ψ

(−1)nΨΨ(x) δ

δΨ(x)

)
Γren = −�B(x) , (7.30)
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is an automatic consequence of the Slavnov-Taylor identity as we have shown in Sec. 2.6.
We record here the application of the Ward identity to the photon self-energy as an

example that will later be illustrated in explicit computations. If we rewrite the Ward
identity in the momentum-space representation and take a variation with the respect to
photon field, we obtain the requirement

ipν
δ2Γ̃ren

δAµ(p)δAν(−p) = 0 , (7.31)

which corresponds to the transversality of the photon self-energy.
All previous symmetry identities must hold after regularization and renormalization

at each loop order. If the symmetries are broken in the intermediate regularization
procedure, as is the case when we use the BMHV scheme, they must be restored order
by order in perturbation theory, by adding suitable counterterms.

The symmetry identities are covered by the general analysis of algebraic renormal-
ization discussed in Sec. 6.2.3, and the theory has no gauge anomaly, see Eq. (7.6). This
guarantees that the procedure of symmetry restoration works at all orders.

Now we recapitulate the practical strategies for the concrete determination of
symmetry-restoring counterterms, following the detailed outline given in Sec. 6.3. The
application will be discussed in the subsequent subsections, where we treat not only
the chiral model χQED but also compare it with the familiar case of ordinary QED to
highlight the features of the BMHV treatment of γ5.

The first obvious difference is that ordinary QED is a vector-like gauge theory, and
DReg preserves all relevant symmetry identities manifestly at each step: the counterpart
to the tree-level breaking ∆̂ in Eq. (7.24) vanishes as already discussed in Sec. 4.3.
Hence generating counterterms by a renormalization transformation is sufficient, see the
discussion in Sec. 6.1 and Eq. (6.3).

For the case of χQED, the existence of a tree-level symmetry breaking, ∆̂ 6= 0, ne-
cessitates symmetry-restoring counterterms. Hence, generating counterterms by a renor-
malization transformation is not sufficient, and the general structure is the one discussed
in Sec. 6.3.3, i.e. the combination

Ssct,inv + Ssct,non-inv + Sfct,inv + Sfct,restore + Sfct,evan . (7.32)

Sec. 6.3 presented two basic strategies to carry out the required computations of the
crucial symmetry-restoring counterterms Sfct,restore. The first is based on the explicit
computation of ordinary Green functions and explicitly checking symmetry identities.
Its essential equation is Eq. (6.37), which requires computing

SD(Γ(n)
subren + Snsct)

at each new order n. If this expression is non-zero, finite counterterms have to be found
and added to the action such that the symmetry breaking is canceled.

The second strategy is based on using the regularized quantum action principle and
represented by Eq. (6.42),

LIM
D→ 4

(
∆̂ · ΓnDRen +

n−1∑
k=1

∆k
ct · Γn−kDRen + ∆n

ct

)
= 0.
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The computation of full Green functions and evaluating Slavnov-Taylor identities is re-
placed by the computation of Green functions with insertions of breaking operators such
as ∆̂. This equation is specialized to Eqs. (6.44) and (6.46) at the one- and two-loop
level.

In the following subsections we will illustrate Feynman diagrammatic computations
for both strategies. The more efficient second strategy is illustrated also at the two-loop
level. We will then see how the desired symmetry-restoring counterterms are determined.

7.4 Explicit Calculations and Results in the Abelian Chiral Gauge The-
ory

In this section explicit calculations in the Abelian chiral gauge theory defined above in
Sec. 7.2 are performed in the BMHV scheme of DReg and all necessary counterterms are
provided up to the two-loop level. In particular, the evaluation of the photon self-energy
at the one-loop (sections 7.4.1 and 7.4.2) and the two-loop level (Sec. 7.4.3) is highlighted
and the results are compared to ordinary QED. As announced in Sec. 7.1, there are two
different ways of determining symmetry-restoring counterterms. While the method in
Sec. 7.4.1 amounts to the explicit evaluation of the full photon self-energy, i.e. a full
Green function, including its finite part, Sec. 7.4.2 employs the direct method based on
the regularized quantum action principle where the symmetry breaking is determined
via special Feynman diagrams with an insertion of the ∆̂-operator, which reflects the
breaking of chiral gauge invariance. Sec. 7.4.2 then concludes by providing the full one-
loop counterterm action for chiral QED in the BMHV scheme. Similarly, in Sec. 7.4.3 the
two-loop counterterms for the photon self-energy are obtained using the latter method
based on the regularized quantum action principle but are verified by comparing with the
explicit result for the full photon self-energy including its finite part. Concluding, Sec.
7.4.4 provides the full two-loop renormalization of chiral QED in the BMHV scheme.

7.4.1 One-Loop Photon Self-Energy and Symmetry-Restoring counterterms

To better understand the features of the BMHV scheme, we now focus on explicit loop
calculations. We take the photon self-energy and compare its results in ordinary QED
and chiral QED. The photon self-energy is subject to the simplest Ward identity (7.31)
— it must be transverse, to guarantee the correct physical interpretation of the theory
describing a massless spin 1 particle with two transverse polarizations.

The photon self-energy is denoted as

iΓ̃νµAA(p) =
Aµ Aνp

.

We use the notation explained in Sec. 2.4, corresponding to the 1-particle irreducible
diagrams with external fields and momentum as indicated.38

38However, in this subsection we use a slightly simpler notation than in Sec. 3.1 for unrenormal-
ized/subrenormalized expressions. We drop the subscript subren and simply write Γ1 for the unrenormal-
ized one-loop effective action and Γ2 for the subrenormalized two-loop effective action. Accordingly, the
following equations correspond to the unrenormalized one-loop photon self-energy.
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We begin by recalling the well-known one-loop result of ordinary QED with massless
fermions as defined in Eq. (7.1),

iΓ̃νµAA(p)|1div,QED = ie2

16π2ε

4Tr(Q2)
3 (pµpν − p2gµν) , (7.33a)

iΓ̃νµAA(p)|1fin,QED = ie2

16π2
2Tr(Q2)

3

[(10
3 − 2 ln

(
−p2

))
(pµpν − p2gµν)

]
. (7.33b)

Here and in all following results we set D = 4 − 2ε and suppress the dimensional reg-
ularization scale µ̄2 = µ2 4πe−γE in dimensionful logarithms. We see that the result is
transverse and satisfies the Ward identity (7.31) both in its divergent and finite parts.
Adding the counterterm action

S1
sct,QED = −~ e

2

16π2ε

4Tr(Q2)
3 SAA + . . . , (7.34)

where the dots denote terms unrelated to the photon self-energy, cancels the divergences
and preserves the validity of the Ward identity. The factor ~ was explicitly restored
to highlight that the counterterm action is of one-loop order. As is well known, this
counterterm action can be generated via a photon field renormalization transformation.

In comparison, the result for the one-loop photon self-energy diagram in χQED with
massless fermions as defined in Eq. (7.4) reads

iΓ̃νµAA(p)|1div,χQED = ie2

16π2ε

2Tr(Y2
R)

3

[
(pµpν − p2gµν)− 1

2 p̂
2gµν

]
, (7.35a)

iΓ̃νµAA(p)|1fin,χQED = ie2

16π2
Tr(Y2

R)
3

[(10
3 − 2 ln

(
−p2

))
(pµpν − p2gµν)

−
(
p2 + p̂2

(8
3 − ln

(
−p2

)))
gµν

]
. (7.35b)

From this illustrative example, we can extract several interesting comments. First, and
most obviously, transversality is violated by the last terms in Eqs. (7.35). This will be
our main focus. But also the transverse part shows two differences compared to ordinary
QED. Since the interaction vertex in χQED differs from the one given in standard QED
by

VQED → −ieγµQij , VχQED → −ieγ̄µPRYR,ij , (7.36)

it projects the fermion loop content, so the transverse part becomes purely 4-dimensional,
explaining the appearance of the covariants gµν and pµ in Eqs. (7.35). Further, due to
this projection only half the number of fermionic degrees of freedom appear in the loop
for the chiral case, resulting in the relative factor of 2 with respect to ordinary QED.

Let us now focus on the breaking of transversality in the photon self-energy. The
divergent breaking term in Eq. (7.35a) is proportional to p̂2, i.e. it is evanescent. In
contrast, the finite breaking term in Eq. (7.35b) contains finite expressions that do not
vanish in the 4-dimensional limit. The finite breaking also contains evanescent terms
that vanish in the LIMD→4; these will be ignored in the following.
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We can exhibit the breaking explicitly by plugging the photon self-energy into the
Ward identity (7.31); we obtain

ipνΓ̃νµAA(p)|1div+fin,χQED = ie2

16π2
Tr(Y2

R)
3

[
− 1
ε
p̂2pµ − p2pµ

]
6= 0 . (7.37)

Here we have ignored the finite, evanescent term, as announced. In line with the deriva-
tion of the Ward identity from the Slavnov-Taylor identity via derivatives with respect to
a ghost field, see Eq. (2.107), the result is equivalent to the violation of the Slavnov-Taylor
identity

[S(Γ)]1Aµc = ie2

16π2
Tr(Y2

R)
3

[
− 1
ε
p̂2pµ − p2pµ

]
, (7.38)

where the left hand side denotes functional derivatives in momentum space, similarly to
the notation of ΓAA.

A decisive feature of the breaking terms is their locality — the breaking terms in all
the previous equations are polynomials of the momentum in momentum space, and this
translates into local expressions on the level of the (effective) action. This locality is in
line with the general statement discussed in Sec. 6.2.3 which forms the basis of algebraic
renormalization. This means that a local counterterm can be defined that cancels the
symmetry breaking.

In view of the explicit results, the required counterterms for the sector of the photon
self-energy can be read off as follows. We first discuss the divergent counterterms. The
divergent counterterms can be split into an invariant and a non-invariant part as in Eq.
(7.32) as Ssct = Ssct,inv + Ssct,non-inv such that the one-loop parts relevant for the photon
self-energy in χQED read

S1
sct,inv,χQED = −~ e

2

16π2ε

2Tr(Y2
R)

3 SAA + . . . , (7.39a)

S1
sct,non-inv,χQED = −~ e

2

16π2ε

Tr(Y2
R)

3

∫
dDx

1
2Āµ∂̂

2Āµ + . . . , (7.39b)

where the dots denote terms unrelated to the photon self-energy. As in the case of ordi-
nary QED, the divergences are canceled, and the invariant counterterm can be generated
via a photon field renormalization transformation. In contrast to ordinary QED, how-
ever, the non-invariant term is required, and it cannot be obtained from a renormalization
transformation but must be read off by hand.

Obviously, adding these counterterms does not only cancel the divergences of the pho-
ton self-energy but it also cancels the divergences in the breaking of the Ward/Slavnov-
Taylor identities (7.37,7.38). Specifically adding the counterterms to the action modifies
the Slavnov-Taylor identity S(Γ) to S(Γ + S1

sct,χQED) = S(Γ) + sDS
1
sct,χQED + . . ., where

the dots denote higher-order terms and where

sDS
1
sct,χQED = ∆1

ct
∣∣
div = − ~

16π2ε

e2Tr(Y2
R)

3

∫
dDx (∂µc) (∂̂2Āµ) . (7.40)

In momentum-space, with incoming Aµ momentum p, this is precisely the negative of
the divergent term in Eq. (7.38). This is an automatic consequence of the finiteness.
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Now we discuss the required finite counterterms to the photon self-energy. The
explicit result (7.35b) shows that the transversality is restored by the following finite
counterterm:

S1
fct,χQED = ~

16π2

∫
d4x
−e2Tr(Y2

R)
6 Āµ∂

2
Āµ + . . . (7.41)

In momentum space this counterterm cancels the non-transverse p2-term of (7.35b) (we
recall that the remaining non-transverse finite terms are evanescent and vanish in the
LIMD→4). On the level of the Slavnov-Taylor identity, adding the finite counterterm
modifies the Slavnov-Taylor identity S(Γ) by the term

sDS
1
fct,χQED = − ~

16π2

∫
dDx

e2Tr(Y2
R)

3 (∂µc)(∂
2
Āµ) . (7.42)

In momentum space, this is the negative of the finite term in Eq. (7.38).
In total, after adding all counterterms (7.39,7.41) to the photon self-energy and taking

the LIMD→4, the renormalized one-loop photon self-energy is

iΓ̃νµAA(p)|1ren, χQED = ie2

16π2
Tr(Y2

R)
3

[(10
3 − 2 ln

(
−p2

))
(pµpν − p2gµν)

]
. (7.43)

It is finite, defined in 4 dimensions, and it is properly transverse. One may still add
further, finite, symmetric counterterms. These can be derived from usual field and pa-
rameter renormalization but are not our focus here.

7.4.2 One-Loop Photon Self-Energy — Direct Computation of Symme-
try Breaking

In the previous subsection we determined the required counterterms (7.39,7.41) by car-
rying out an explicit computation of a Green function, including its finite part, and by
explicitly evaluating the breaking of the relevant symmetry identity. We now show how
the determination of the counterterms can be performed in a simpler way. We still il-
lustrate it for the one-loop photon self-energy, but the advantage of that simplification
will become more and more prominent for higher orders and more complicated Green
functions.

Instead of evaluating the full photon self-energy including its finite part (7.35), the
following is sufficient: First we need the divergent part of the photon self-energy, i.e. only
(7.35a). This of course determines the divergent counterterms (7.39) unambiguously.

Second, we need the violation of the symmetry, expressed in terms of Eq. (7.38). This
violation can be obtained in a more direct way, by using the regularized quantum action
principle discussed in Sec. 4. This tells us that the violation S(Γ) 6= 0 is directly given
by diagrams with insertions of the composite operator ∆̂, corresponding to the tree-level
violation of the Slavnov-Taylor identity in D dimensions. For the photon self-energy, the
violation (7.38) can be obtained directly by computing the Green function [∆̂ · Γ̃µAc], i.e.
the 1-particle irreducible Green function with an insertion of ∆̂ and external Aµ and c
fields.
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At one-loop order there is only one diagram.

i[∆̂ · Γ̃µAc]
(1) =

̂∆ c

p1Aµ

(7.44)

The result of this single diagram is

i[∆̂ · Γ̃µAc]
1
div = e2

16π2ε

Tr(Y2
R)

3 p̂1
2p1

µ , (7.45a)

i [∆̂ · Γ̃µAc]
1
fin = e2

16π2
Tr(Y2

R)
3 p2

1p
µ
1 . (7.45b)

We see that the result of this diagram indeed agrees with the right-hand side of Eq.
(7.38), as it is guaranteed by the regularized quantum action principle.

The important point is the technical simplification: the computation of this diagram
is technically easier than the computation of the finite part of the photon self-energy since
only power-counting divergent parts of the loop integrals are relevant. We reiterate that
the technical advantage is much more dramatic at higher orders and for more complicated
Green functions.

It is instructive to rewrite the result in coordinate space,

[∆̂ · Γ](1)
div = e2

16π2ε

Tr(Y2
R)

3

∫
dDx(∂µc)(∂̂2Āµ) + . . . , (7.46a)

[∆̂ · Γ](1)
fin = e2

16π2
Tr(Y2

R)
3

∫
dDx (∂µc)(∂

2
Āµ) + . . . . (7.46b)

The dots denote terms unrelated to the photon self-energy.
The divergent part provides no independent information but a check. As discussed

after Eq. (7.40), the expression sDS1
sct,χQED must automatically cancel the divergent part

of the symmetry breaking. Using our new result, this means that sDS1
sct,χQED+[∆̂·Γ](1)

div =
0 must automatically hold. Clearly, this is true, and the check is passed.

The important new information is in the finite part of the ∆̂-insertion diagram Eqs.
(7.45,7.46). Its result is equal to the finite part of the violation of the Slavnov-Taylor
identity (7.38), thus eliminating the need to explicitly evaluate the Slavnov-Taylor iden-
tity.

The finite, symmetry-restoring counterterm may now be obtained from solving the
equation

sDS
1
fct,χQED = −[∆̂ · Γ](1)

fin . (7.47)

For the sector of the photon self-energy, the result is the one given in Eq. (7.41). In
summary: There, the result was obtained from inspecting the finite part of the photon
self-energy; here, the result can be obtained from evaluating Eq. (7.45) and then solving
the defining condition (7.47).
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To conclude the section we summarize the full one-loop results for the counterterm
structure of χQED. First, all divergences of all one-loop diagrams need to be evaluated,
generalizing Eq. (7.35a). The negative of these results define unambiguously the one-loop
divergent counterterms, generalizing Eq. (7.39). The result reads

S1
sct,χQED = −~ e

2

16π2ε

2Tr(Y2
R)

3 SAA + ξ
∑
j

(YjR)2
(
Sj
ψψR

+ Sj
ψRAψR

)

+Tr(Y2
R)

3

∫
dDx

1
2Āµ∂̂

2Āµ
)
.

(7.48)

Most terms are similar to their counterparts in ordinary QED and can be obtained
by a renormalization transformation of fields and parameters as in Eq. (6.3), where
it is noteworthy that only the physical, right-handed fermion is renormalized, while the
sterile left-handed fermion is not. However, this renormalization transformation does not
generate the last term involving the ∂̂2 operator, and it generates the full D-dimensional
photon kinetic term SAA instead of its 4-dimensional version SAA. Hence the ∂̂2-term
and the difference SAA − SAA correspond to symmetry-breaking singular counterterms.
These counterterms become particularly important in the context of two-loop calculations
where they are necessary for the proper subrenormalization.

Second, all one-loop symmetry breakings need to be determined, generalizing either
Eq. (7.38) or Eq. (7.46). We use the method based on the regularized quantum action
principle. In this case, the full symmetry breaking is given by the complete set of all
one-loop diagrams with a ∆̂ insertion. Since only power-counting divergent diagrams can
provide non-vanishing contributions, there are only precisely four contributing diagrams:
with external fields cA, cAA, cAAA, or cψ̄ψ. One of them vanishes due to the anomaly
cancellation condition (7.6). The full result of the symmetry breaking is

∆̂ · Γ1 = 1
16π2

∫
dDx

[
e2Tr(Y2

R)
3

(1
ε

(∂µc) (∂̂2Āµ) + (∂µc)(∂
2
Āµ)

)
(7.49)

+ e4Tr(Y4
R)

3 c ∂µ(ĀµĀ2)

− (ξ + 5)e3

6
∑
j

(YjR)3 c ∂
µ(ψjγµPRψj)

]
.

And using the defining condition (7.47) for the finite, symmetry-restoring counterterms,
we obtain

S1
fct = ~

16π2

∫
d4x

{
−e2Tr(Y2

R)
6 Āµ∂

2
Āµ + e4Tr(Y4

R)
12 ĀµĀ

µĀνĀ
ν

+ 5 + ξ

6 e2∑
j

(YjR)2iψjγ
µ∂µPRψj

}
.

(7.50)

This is the complete result for the symmetry-restoring counterterms of the χQED model
at the one-loop level. Each of the terms has a clear and simple interpretation. The
first finite counterterm restores the transversality of the photon self-energy as discussed
before. The second term restores a similar transversality identity for the photon 4-point
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function. And the last term restores the QED-like Ward identity relating the fermion
self-energy with the fermion–photon three-point function.

These three counterterms must be inserted in higher-order calculations. They give
additional contributions to loop diagrams compared to the renormalization in vector-like
theories or to a naive γ5 treatment where gauge invariance is manifestly preserved.

7.4.3 Two-Loop Photon Self-Energy and Corresponding Breaking Diagram

Now we illustrate the determination of two-loop counterterms in χQED using the BMHV
scheme. We immediately follow the more direct strategy explained in Sec. 7.4.2 based
on diagrams with ∆̂-insertions.

At the 2-loop level, diagrams contributing to the subrenormalized photon self-energy
are on the one hand genuine 2-loop diagrams and on the other hand 1-loop diagrams
with counterterm insertions. Both the singular counterterms (7.48) as well as finite
symmetry-restoring counterterms (7.50) must be used. The result for the divergent part
of the subrenormalized two-loop photon self-energy is given by39

iΓ̃νµAA(p)|2div,χQED = ie4

256π4
Tr(Y4

R)
3

[2
ε

(pµpν − p2gµν) +
( 17

24ε −
1

2ε2
)
p̂2gµν

]
, (7.51a)

which can be compared to the result in ordinary QED

iΓ̃νµAA(p)|2div,QED = ie4

256π4ε
2Tr(Q4)(pµpν − p2gµν) . (7.51b)

Notice again that the transverse part for QED is fully D-dimensional but projected to 4
dimensions in the chiral case, and in the chiral case an evanescent term is present, again
spoiling gauge and BRST invariance. Unlike at the 1-loop level, the global factor in front
of the chiral transversal part is not half of the QED case, since the additional diagram
with finite 1-loop counterterm insertion spoils this relationship.

From this singular part of the two-loop diagrams we reconstruct an equivalent result
in coordinate space,

Γ2,AA
div = e4

256π4
Tr(Y4

R)
3

[1
ε
Aµ(∂2

gµν − ∂µ∂ν)Aν +Aµ∂̂
2A

µ
( 1

4ε2 −
17
48ε

)]
, (7.52)

which results in the required singular countertem of the form

S2
sct = −

(
~ e2

16π2

)2
Tr(Y4

R)
3

[2
ε
SAA +

( 1
4ε2 −

17
48ε

)∫
dDxAµ∂̂

2A
µ
]

+ . . . , (7.53)

which cancels the divergences. Clearly, this counterterm also breaks BRST symmetry at
the 2-loop level by

∆2
sct = sDS

2
sct =−~

2e4

256π4
Tr(Y4

R)
6

( 1
ε2
− 17

12ε

)∫
dDx(∂µc)(∂̂2A

µ) + . . . . (7.54)

39We still use the simplified notation described in footnote 38 where Γ2 denotes the subrenormalized
two-loop effective action.
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̂∆ c
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+ loop on the other
fermion propagator.

̂∆ c

p1Aµ

+ fermion counterterm on
the other fermion

propagator.

̂∆ c

p1Aµ

F

+ fermion finite
counterterm on the other

fermion propagator.

Figure 4: List of Feynman diagrams for the ghost–photon breaking contribution given
in Eq. (7.55).

Now we use the regularized quantum action principle and determine the symmetry
breaking at the two-loop level in the photon self-energy sector. Hence we need to evaluate
the Green function

(
[∆̂ + ∆1

ct] · Γ̃
)2

Aµc
at the two-loop level.

Compared to the one-loop level, there are several new features. There are four types
of two-loop level diagrams, see Fig. 4. The diagrams in the first column of the figure
are genuine two-loop diagrams with one insertion of the tree-level breaking ∆̂. The
diagrams in the second column are one-loop diagrams with one insertion of a one-loop
singular counterterm, denoted as a circled cross. The third column contains a one-loop
diagram with an insertion of a one-loop symmetry-restoring counterterm obtained from
the fermion self-energy operator, denoted by a boxed F , and a one-loop diagram with an
insertion of the one-loop breaking ∆1

ct.
The total two-loop breaking in this sector, i.e. the result of the diagrams in Fig. 4 is

i
(
[∆̂ + ∆1

ct] · Γ̃
)2

Aµc
= 1

256π4
e4Tr(Y4

R)
6

[( 1
ε2
− 17

12ε

)
p̂2

1p
µ
1 −

11
4 p

2
1p
µ
1 +O(̂.)

]
. (7.55)

The result contains 1/ε2 poles and 1/ε poles with local, evanescent coefficients and a
finite, non-evanescent term.

Like at the one-loop level, we first use the result to check the cancellation of the UV
divergences as prescribed by Eq. (6.46).40 As expected, this cancellation with sDS

2
sct

40In the Abelian case considered here, Eq. (6.46) can be simplified. For reasons mentioned in footnote
37, bD = sD and we simply have ∆2

ct = sDS
2
ct.
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given in Eq. (7.54) indeed occurs as

∆2
sct = sDS

2
sct = −

(
[∆̂ + ∆1

ct] · Γ
)2

div
. (7.56)

The remaining finite part can then be evaluated in strictly 4 dimensions,

∆2
fct = − LIM

D→4

{(
[∆̂ + ∆(1)

ct ] · Γ
)(2)

+ sDS
(2)
sct

}
= e4

256π4Tr(Y
4
R) s

(11
48

∫
d4xĀµ∂

2
Āµ
)

+ . . . .

(7.57)

The defining relation for the finite, symmetry-restoring counterterm is then

LIM
D→4

sDS
2
fct = −∆2

fct . (7.58)

From this we reconstruct the corresponding finite counterterm as

S2
fct =

( ~
16π2

)2 ∫
d4x e4Tr(Y4

R)11
48Āµ∂

2
Āµ + . . . . (7.59)

As before we only display terms related to the photon self-energy. Adding this counter-
term restores the photon self-energy transversality at the 2-loop level.

At this point the determination of the two-loop counterterms of this sector is com-
plete, and the counterterms of other sectors can be determined analogously. The required
computations were the ones of the divergent part of the photon self-energy and of the
finite part of the diagrams of Fig. 4.

Nevertheless we now confirm the result by comparing with the explicit result for the
finite part of the photon self-energy. The finite part of the photon self-energy at the
two-loop level (including one-loop counterterms but excluding two-loop counterterms) is
given by

iΓ̃µνAA(p)
∣∣∣2
fin

= ie4

256π4
Tr(Y4

R)
3[(673

23 − 6 log
(
−p2

)
− 24ζ(3)

)
(pµpν − p2gµν) + 11

8 p
µpν

]
.

(7.60)

Similar to the one-loop result (7.35), the non-local log
(
−p2) and transcendental ζ(3)

parts are by themselves transversal and so do not break gauge invariance. The last term
breaks the transversality, but this breaking term is local.

Plugging the result into the Ward or Slavnov-Taylor identity we obtain

i pν Γ̃µνA(−p)A(p)

∣∣∣2
fin

= ie4

256π4
Tr(Y4

R)
6

11
4 p

2pµ (7.61a)

= −
(
[∆̂ + ∆1

ct] · Γ̃
)2

fin, Aµ(−p)c(p)
. (7.61b)

The first of these equations is obtained by direct computation using the finite parts in Eq.
(7.60). The second equation is then observed by comparison with Eq. (7.55). Hence we
confirm that the violation of the symmetry is restored by our finite counterterm evaluated
from breaking diagrams.
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7.4.4 Full Two-Loop Renormalization of Chiral QED

In the previous sections we performed the full one-loop renormalization with singular and
finite, symmetry-restoring counterterms (7.48) and (7.50), respectively, and studied the
photon self-energy and the corresponding breaking at the two-loop level, cf. Sec. 7.4.3.
In this section we present the full two-loop renormalization of chiral QED based on our
results in Ref. [26].

A list of all divergent 1PI two-loop Green functions together with the individual
results is to be found in chapter 7 of Ref. [26]. From the singular part of these Green
functions we obtain the singular counterterm action at the two-loop level

S2
sct =−

(
~e2

16π2

)2 Tr(Y4
R)

3

[2
ε
SAA +

( 1
4ε2 −

17
48ε

)∫
dDx Āµ∂̂

2Āµ
]

+
(

~e2

16π2

)2∑
j

(YjR)2
[( 1

2ε2 + 17
12ε

)
(YjR)2 − 1

9εTr(Y
2
R)
] (
Sj
ψψR

+ Sj
ψRAψR

)

−
(

~e2

16π2

)2∑
j

(YjR)2

3ε

(5
2(YjR)2 − 2

3Tr(Y
2
R)
)
Sj
ψψR

(7.62)

which cancel the divergences. Comparing (7.62) with its one-loop counterpart in Eq.
(7.48), we see that its structure is the same up to the term in the last line, which breaks
BRST invariance by a non-evanescent amount and is thus a new feature emerging at the
two-loop level.

This two-loop counterterm action (7.62) generates the BRST breaking

∆2
sct = sDS

2
sct

= − ~2e4

256π4
Tr(Y4

R)
6

( 1
ε2
− 17

12ε

)∫
dDx (∂µc)(∂̂2Āµ) (7.63)

− ~2e5

256π4
1
3ε
∑
j

(YjR)3
(5

2(YjR)2 − 2
3Tr(Y

2
R)
)∫

dDx c ∂µ
(
ψγ̄µPRψ

)
.

Compared to the previous section 7.4.3 we this time provided the full two-loop result
explicitly and see that, in contrast to the one-loop case (7.40), this BRST breaking
contains a non-evanescent contribution given by the last line of (7.63).

Following the restoration procedure described in Sections 6.3 or 7.3 and analogous to
the ghost–gauge boson contribution (7.55) in the previous Section 7.4.3, we additionally
need to calculate ([∆̂ + ∆1

ct] · Γ̃)2 for the ghost–fermion–fermion, the ghost–double gauge
boson, and the ghost–triple gauge boson contributions (i.e. with external fields cψψ̄,
cAA, cAAA, respectively). It turns out that the ghost–double gauge boson contribution
vanishes and the ghost–triple gauge boson contribution does not contain UV divergences,
but only finite terms. In total the result is([

∆̂ + ∆1
ct
]
· Γ
)2

= e4

256π4

∫
dDx{

− Tr(Y4
R)

6

[( 1
ε2
− 17

12ε

)
c ∂µ∂̂

2Āµ − 11
4 c ∂µ∂

2
Āµ
]

+ e
∑
j

(YjR)3

3

[1
ε

(5
2(YjR)2 − 2

3Tr(Y
2
R)
)

(7.64)
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+ 127
12 (YjR)2 − 1

9Tr(Y
2
R)
]
c ∂µ

(
ψj γ̄

µPRψj
)

+ 3e2Tr(Y6
R)

2 c ∂µ
(
ĀµĀνĀ

ν)}+O(̂.)

for the full two-loop breaking of the Slavnov-Taylor identity of two-loop subrenormal-
ized 1PI Green functions. Comparing this with the corresponding one-loop contribution
(7.49), we see that the structure of the terms is the same.

For the symmetry restoration at the two-loop level, we first note that ∆2
sct in Eq.

(7.63) completely cancels the UV divergent terms in Eq. (7.64). In addition to that,
we need to determine the finite, symmetry-restoring counterterms at the two-loop as
indicated in Eq. (7.57). Thus, our choice for the full finite counterterm action, which
restores the Slavnov-Taylor identity at the two-loop level, is

S2
fct =

( ~
16π2

)2 ∫
dDx e4

{
Tr(Y4

R)11
48Āµ∂

2
Āµ + 3e2Tr(Y6

R)
8 ĀµĀ

µĀνĀ
ν

−
∑
j

(YjR)2
(127

36 (YjR)2 − 1
27Tr(Y

2
R)
)(

ψji /̄∂PRψj
)}
. (7.65)

Similar to its one-loop counterpart in Eq. (7.50), S2
fct consists of three kinds of terms, or in

other words, the same three field monomials are involved. These three terms correspond
to the restoration of the Ward identity relations for the photon self-energy, the photon
4-point function and the fermion self-energy/photon-fermion-fermion interaction. Ref.
[26] also gave a discussion of the explicit results for these three Ward identity relations,
similar to the discussion at the end of Sec. 7.4.3. In all cases, the breaking terms of the
Ward identity are explicitly exhibited and the cancellation with the symmetry-restoring
counterterms (7.65) is made manifest.

7.5 Non-Abelian Chiral Yang-Mills Theory and Comparison with the
Abelian Chiral Theory at the One-Loop Level

In this section we review the application of the BMHV scheme to non-abelian chiral
gauge theories and present the differences to the abelian chiral QED discussed above. In
particular, we study a massless chiral Yang-Mills theory at the one-loop level based on
Refs. [25, 131]. Note that in our publication [25] the considered theory also contained
real scalar fields. Here, similar to Ref. [131], scalar fields are omitted in order to focus
on the key-points of the BMHV scheme in the framework of chiral gauge theories and
the differences compared to the abelian case discussed above.

As discussed in section 2.1, the group generators of Yang-Mills theories satisfy the
non-trivial commutation relations (2.1); in particular, they are not simultaneously di-
agonalizable. These algebraic structures of the non-Abelian gauge group of Yang-Mills
theories lead to new effects, such as more interactions terms and non-linear BRST trans-
formations of the gauge fields and the ghosts, compared to the Abelian case, cf. Sec. 2.6.
Especially, gauge boson self-interactions, interactions of the Faddeev-Popov ghosts with
the rest of the theory and the renormalization of the BRST transformations distinguish
non-Abelian Yang-Mills theories from the Abelian case above.

The outline of this section is analogous to the Abelian case discussed above. First, we
briefly introduce the Lagrangian of the theory and the BRST transformations using the
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notations from section 2. Second, we discuss the analytical continuation of the theory to
D dimensions in DReg treating γ5 with the BMHV scheme and comment on the BRST
breaking induced by this scheme. Finally, we present the results for the singular and
the symmetry restoring counterterms at the one-loop level, cf. [25, 131], necessary to
consistently renormalize the theory, and discuss the differences to the Abelian theory.

7.5.1 Definition of the Non-Abelian Chiral Yang–Mills Theory

Following the conventions of Sec. 2.3, the Lagrangian in 4 dimensions can be written as

LχYM = Linv + Lfix,gh + Lext . (7.66)

The physical part of the Yang-Mills Lagrangian reads

Linv = −1
4G

a
µνG

a,µν + i ψRi /DijψRj , (7.67)

with covariant derivative Dµ
ij = ∂µδij + igGa,µ T aRij and field strength tensor Gaµν =

∂µG
a
ν−∂νGaµ−gfabcGbµGcν , leading to three- and four-point gauge boson self-interactions.

The gauge-fixing and ghost Lagrangian, already presented in Eq. (2.55), is

Lfix,gh = s

[
c̄a
(

(∂µGaµ) + ξ

2B
a
)]

= Ba(∂µGaµ) + ξ

2B
aBa − c̄a∂µDab

µ c
b, (7.68)

with Dab
µ = ∂µδ

ab + gfabcGcµ, implying ghost-antighost-gauge boson interactions which
is a consequence of the nonlinear gauge transformations of the gauge fields Gaµ as shown
below in (7.70). The Lagrangian of the external sources, as introduced in Sec. 2.3, is

Lext = ρa,µsGaµ + ζasca + R̄isψRi +RisψRi . (7.69)

The BRST transformations are given by

sGaµ(x) = Dab
µ c

b(x) = ∂µc
a(x) + gfabccb(x)Gcµ(x) , (7.70a)

sψi(x) = sψRi(x) = −igT aRijca(x)ψRj(x) , (7.70b)
sψi(x) = sψRi(x) = −igψRj(x)ca(x)T aRji , (7.70c)

sca(x) = 1
2gf

abccb(x)cc(x) , (7.70d)

sc̄a(x) = Ba(x) , (7.70e)
sBa(x) = 0 . (7.70f)

In contrast to the Abelian case, the BRST transformations of the gauge boson Gaµ and
the Faddeev-Popov ghost ca are non-linear, which means that non-trivial quantum cor-
rections are expected.

Hence, the tree-level action of the considered chiral Yang-Mills theory in 4 dimensions
is given by

S
(4D)
0 =

∫
d4xLχYM (7.71)

and satisfies the tree-level Slavnov-Taylor identity

0 = S
(
S

(4D)
0

)
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=
∫
d4x

(
δS

(4D)
0

δρaµ(x)
δS

(4D)
0

δGaµ(x) + δS
(4D)
0

δζa(x)
δS

(4D)
0

δca(x) (7.72)

+ δS
(4D)
0

δR̄i(x)
δS

(4D)
0

δψRi(x) + δS
(4D)
0

δRi(x)
δS

(4D)
0

δψRi(x)
+Ba(x)δS

(4D)
0

δc̄a(x)

)
,

which just manifests the BRST invariance of S(4D)
0 .

The different group invariants, which will be employed in the following results below,
follow the notations of [25] and are provided by

C2(R)1 = T aRT
a
R , S2(R) δab = Tr

(
T aRT

b
R

)
, (7.73)

with an irreducible representation R of the gauge group for the right-handed fermions
with corresponding Hermitian group generators T aR. The adjoint representation of the
gauge group is denoted by G and its Casimir index is C2(G).

7.5.2 Chiral Yang–Mills Theory in DReg

To regularize the theory we employ dimensional regularization, treating γ5 with the
BMHV scheme. Analogous to the Abelian case above, there are two problems regarding
the continuation of the chiral Yang-Mills theory (7.71) to D dimensions, as already
discussed in Sec. 7.2.2 for the Abelian case and extensively discussed in [25] for chiral
Yang-Mills theories.

First, there is an ambiguity in extending the fermion-gauge interaction term in Eq.
(7.67), which involves the right-handed chiral current ψRiγµψRj , toD dimensions. Again,
there are three inequivalent choices for the D-dimensional version of this chiral current,
cf. Eq. (7.12), which are all equally correct. Analogous to the Abelian case above, we
resolve this problem by choosing the most symmetric version cf. Eq. (7.13).

Second, the purely fermionic kinetic term iψRi/∂ψRi projects only the purely 4-
dimensional derivative, leading to a purely 4-dimensional propagator and thus to un-
regularized loop diagrams, as explained above in Sec. 7.2.2. Hence, we again introduce
a gauge-singlet left-chiral field ψL with trivial BRST transformations

sψLi(x) = 0, sψLi(x) = 0, (7.74)

which appears solely in the fermionic kinetic term and nowhere else and which is
thus completely decoupled from the rest of the theory. Using it we obtain a fully D-
dimensional covariant kinetic term iψi/∂ψi.

Finally, we can again separate the D-dimensional fermionic Lagrangian into an in-
variant and an evanescent part, analogous to Eqs. (7.17a) to (7.20b). Hence, we may
write the D-dimensional action as

S0 = S0,inv + S0,evan

= (SGG + SGGG + SGGGG) +
∑
i

(
Si
ψψ

+ Si
ψRGψR

)
+ Sg-fix (7.75)

+ (Sc̄c + Sc̄Gc) + (Sρc + SρGc + Sζcc + SR̄cψR + SRcψR) ,

having it separated into an “invariant” and an “evanescent” part in the first line, cf. Eq.
(7.22) in Sec. 7.2.2, and having used the notation of [26, 25] and of Eq. (7.21) to present
the D-dimensional action as a sum of its integrated field monomials in the last two lines.
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Similar to the Abelian case in Sec. 7.2.2, we quantify the symmetry breaking caused by
the BMHV scheme, the non-anticommuting γ5 and the evanescent term S0,evan by acting
with the D-dimensional BRST operator sD on the D-dimensional tree-level action S0.
Thus, for the BRST breaking we obtain

sDS0 = sDS0,inv + sDS0,evan = 0 + sD

∫
dDx iψi /̂∂ψi ≡ ∆̂ , (7.76)

which leads to a breaking of the Slavnov-Taylor identity of the form

SD
(
S0
)

= ∆̂ , (7.77)

with the non-vanishing integrated breaking

∆̂ = −
∫
dDxg T aRij c

a

{
ψi

(←
/̂∂PR +

→
/̂∂PL

)
ψj

}
≡
∫
dDx ∆̂(x). (7.78)

As in the Abelian case, this breaking term will be a crucial tool in practical calculations
and will be used as a composite operator insertion in Feynman diagrams. It generates
an interaction vertex whose Feynman rule (with all momenta incoming) is:

̂∆ ca

p2
ψjβ

p1

ψ
i
α

= −g2 T
a
Rij

(
( /̂p1 + /̂p2) + ( /̂p1 − /̂p2)γ5

)
αβ

= −g T aRij
(
/̂p1PR + /̂p2PL

)
αβ

.
(7.79)

For charge-conjugated fermions an analogous Feynman rule can be derived.

7.5.3 One-Loop Singular Counterterm and Symmetry-Restoring Counter-
term Action in Chiral Yang–Mills Theory

In this subsection, we present the results of the one-loop renormalization of the above
introduced chiral Yang-Mills theory based on the results of [25], but also already discussed
in [131].41

The basic renormalization procedure is the same as in the Abelian theory discussed
above. The difference is that there are more interaction terms; in particular, the gauge
bosons interact with themselves and with the Faddeev-Popov ghosts. The fact that the
ghosts now participate in interactions, and thus may propagate as internal particles in
loop diagrams, leads to a non-trivial renormalization of the field monomials including
external sources. Besides this, the renormalization procedure is also more demanding
than in an Abelian theory, due to the larger number of loop diagrams and the more
complicated algebraic structures of the non-Abelian gauge group.

After computing all UV divergent one-loop 1PI Feynman diagrams, which can be
found in section 5 of [25] with detailed individual results, the singular one-loop counter-
term action is given by

S
(1)
sct = ~g2

16π2ε

{
− 2S2(R)

3
(
SGG + SGGG + SGGGG

)
− ξC2(R)

(
SψψR + SψGψR

)
41Note the different sign convention w.r.t. the covariant derivative Dµ

ij in this review compared to [25].
This influences some signs, such as the relative sign in Eq. (7.83) and relative sign in the bracket of the
last term of Eq. (7.84).
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+ 13− 3ξ
6 C2(G)SGG + 17− 9ξ

12 C2(G)SGGG + 2− 3ξ
3 C2(G)SGGGG

− 3 + ξ

4 C2(G)SψGψR + 3− ξ
4 C2(G)

(
Sc̄c + Sρc

)
(7.80)

− ξC2(G)
2

(
Sc̄Gc + SρGc + Sζcc + SR̄cψR + SRcψR

)}
− ~g2

16π2ε

S2(R)
3

∫
d4x

1
2Ḡ

a,µ∂̂2Ḡaµ,

such that it cancels all UV-divergences. The structure has similarities with the Abelian
counterpart, Eq. (7.48). Again, most terms can be obtained by a renormalization trans-
formation of the kind (6.3), and only the right-handed fermions renormalize. But again
also non-symmetric singular counterterms appear.

Comparing Eqs. (7.80) and (7.48) in detail, we can see many additional contributions.
Only the SGG, SψψR and SψGψR terms in the first line of the RHS of (7.80) as well as
the explicit evanescent operator in last line of (7.80) have Abelian counterparts. All
other terms in (7.80) do not appear in the Abelian theory, and are thus new effects of
the non-Abelian Yang-Mills theory due to additional interaction terms, as mentioned
above. In particular, we can see new contributions to the field monomials including the
Faddeev-Popov ghosts and the external sources in the last term of the third line and the
penultimate line of (7.80), as announced at the beginning of this subsection.

Similar to the Abelian result (7.48), we have just one explicit evanescent operator
in the last line of (7.80) in the considered Yang-Mills theory, generating the Feynman
rule −ip̂2gµνδ

ab. This is specific to our choice for the fermion-gauge interaction term,
corresponding to the most symmetric version of Eq. (7.13). We would have obtained
many more evanescent operators, if we used another D-dimensional choice instead.

Following the algebraic renormalization procedure described in section 6, as well as
in section 6 of [25] specifically for the considered case, we need to check that

0 = LIM
D→ 4

([
∆̂ · Γ(1)](1)

div + bDS
(1)
sct +

[
∆̂ · Γ(1)](1)

fin + bDS
(1)
fct,restore

)
. (7.81)

In other words, we need to check that the bD-variation of the singular counterterms
(7.80) cancels the divergent part of the symmetry breaking [∆̂ · Γ(1)](1)

div and we need to
determine finite symmetry-restoring counterterms S(1)

fct,restore whose bD-variation cancel
the finite part of the symmetry breaking [∆̂ · Γ(1)](1)

fin .
The bD-variation of the singular counterterms (7.80), calculated in [25], is provided

by

bDS
(1)
sct = −~

16π2ε

{
g2 ξC2(G)

2 ∆̂ + g2S2(R)
3 bD

∫
dDx

1
2Ḡ

a,µ∂̂2Ḡaµ

}
, (7.82)

where, in the last term, bD acts like the BRST transformation, leading to

bD

∫
dDx

1
2Ḡ

a,µ∂̂2Ḡaµ =
∫
dDx

(
sDḠ

a,µ)∂̂2Ḡaµ

=
∫
dDx

(
∂
µ
ca − gfabcḠb,µcc

)
∂̂2Ḡaµ . (7.83)
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Indeed, (7.82) is a pure 1/ε singular term and perfectly cancels the non-vanishing con-
tribution
[
∆̂ · Γ

](1)
div = 1

16π2ε

{
g2 ξC2(G)

2 ∆̂ + g2S2(R)
3

∫
dDx

(
∂
µ
ca − gfabcḠb,µcc

)
∂̂2Ḡaµ

}
, (7.84)

as explicitly shown in [25].
Now, the finite symmetry-restoring counterterms S(1)

fct,restore need to be determined
following (7.81) in order to cancel the remaining finite part of the symmetry breaking,
which was explicitly performed in section 6 of [25] with the result

S
(1)
fct, restore = ~

16π2

{
g2S2(R)

6

(
5SGG −

∫
d4xGa,µ∂2Gaµ

)
+ g2 (TR)abcd

3

∫
d4x

g2

4 G
a
µG

b,µGcνG
d,ν + g2

(
1 + ξ − 1

6

)
C2(R)Sψψ

+ g2S2(R)
6 SGGG − g2 ξC2(G)

4
(
SR̄cψR + SRcψR

)}
, (7.85)

where (TR)a1···an ≡ Tr[T a1
R · · ·T

an
R ]. Comparing (7.85) with the Abelian result (7.50), we

can again see that only the first two lines of (7.85) have Abelian counterparts, whereas
the terms in the last line of (7.85) do not appear in an Abelian theory. The new terms
in the last line of (7.85) are due to triple gauge boson contributions and contributions
including external sources. The latter implies that again Green functions with external
sources have to been evaluated, this time with a ∆̂-vertex insertion, which stands in
contrast to the Abelian case.

These finite counterterms (7.85) are necessary and sufficient to restore the BRST
symmetry at the one-loop level in the BMHV scheme, if the (non-spurious) anomalies
cancel, which are given by [25]

− g2

16π2

(
− S2(R)

3 dabcR

∫
d4x gεµνρσca

(
∂ρG

b
µ

)(
∂σG

c
ν

)
+ D

abcd
R

3× 3!

∫
d4x g2caεµνρσ∂σ

(
GbµG

c
νG

d
ρ

))
, (7.86)

with fully symmetric dabcR ≡ Tr[T aR{T bR, T cR}] and fully antisymmetric DabcdR ≡
(−i)3!Tr[T aRT

[b
RT

c
RT

d]
R ] for the R-representation. This result of course agrees with the gen-

eral result (6.30) obtained by the analysis of algebraic renormalization, and it provides
an explicit result for the coefficient L appearing there. To ensure the renormalizability
of the theory the fermionic content and their associated group representations have to
be chosen such that these anomalies cancel, i.e. such that the expression (6.33) vanishes,
which equivalently means that dabcR vanishes. This then also implies the vanishing of
DabcdR , see Eq. (6.32). It becomes apparent that also the possible anomalies are more
complex than in the Abelian model.

These finite counterterms (7.85), purely 4-dimensional and non-evanescent, are not
gauge-invariant. They modify all self-energies, as well as some specific interactions: the
gauge-boson self-interactions and the interactions between gauge-bosons and fermions.

Concluding, we see that the resulting counterterm action, not only for the Abelian
case at the one- and two-loop level, but also for non-Abelian Yang-Mills theories, may
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be written in a relatively compact way. Thus, treating γ5 rigorously in the BMHV
scheme does not lead to extraordinarily lengthy or complicated results, but in fact to
counterterms which can easily be implemented in computer algebra systems.
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