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Abstract
We consider the flavor structure of the S1 leptoquark model and derive conservative constraints on

the elements of the left- and right-handed coupling matrices in a number of representative scenarios.

We focus on the cases where the muon g−2 deviation is explained by real muon couplings to either

the top-quark or to the charm-quark or to all up-type quarks. The most significant constraints

arise from charged lepton flavor violating decays of the muon and the τ lepton and from the µ–e

conversion process. Kaon decays and perturbativity provide further constraints. We find strong

constraints on almost all coupling matrix elements, implying a very hierarchical matrix structure,

where individual entries must differ by at least 4 orders of magnitude. The FlexibleSUSY program

was used with appropriate model files incorporating the parameterization of the couplings in the

up-type mass diagonal basis. The expressions for the leptonic observables were generated and

cross-checked with the help of the NPointFunctions extension of the FlexibleSUSY program.

CONTENTS

I. Introduction 3

II. Model definition 5

III. Analytical results 6

A. ∆aµ 7

B. ℓi → ℓjγ 9

C. ℓi → ℓjℓkℓ
c
k 9

D. µ→ e conversion 12

IV. Analysis strategy 13

V. Phenomenological consequences of ∆aµ 15

VI. Phenomenological consequences of two-body decays µ→ eγ, τ → eγ, and τ → µγ 19

A. Consequences of decays involving muons 19
∗ uladzimir.khasianevich@tu-dresden.de
† dominik.stoeckinger@tu-dresden.de
‡ hyejung.stoeckinger-kim@tu-dresden.de
§ johannes.wuensche@tu-dresden.de

2

mailto:uladzimir.khasianevich@tu-dresden.de
mailto:dominik.stoeckinger@tu-dresden.de
mailto:hyejung.stoeckinger-kim@tu-dresden.de
mailto:johannes.wuensche@tu-dresden.de


B. Consequences for τ → eγ 23

VII. Phenomenological consequences of three-body decays µ→ 3e and others 23

VIII. Phenomenological consequences of µ→ e conversion 27

IX. Conclusions 29

Acknowledgments 31

A. Constraints from flavor-conserving meson decays 31

1. Decay K+ → π+νν̄ 31

2. Decay D0 → µ+µ− 33

References 33

I. INTRODUCTION

Low-energy lepton precision physics provides an excellent probe of fundamental interac-

tions with the potential of discovering new physics beyond the Standard Model (SM) and

shedding light on the origin of mass and flavor. The anomalous magnetic moment of the

muon aµ is a flavor- and CP-conserving observable which corresponds to a chirality-flipping

dipole operator. There is a longstanding discrepancy between the experimental determina-

tion at the BNL and Fermilab measurements and the SM theory prediction:1

∆a2021
µ = aExp, 2021

µ − aSM
µ = (25.1± 5.9) · 10−10 . (1)

This value is based on the Fermilab Run-1 result [2], the Brookhaven result [3], and the

Standard Model White Paper [4], which itself uses results from original references [5–30].

After the White Paper [4], several lattice gauge theory results [31–34] and the CMD-3

measurement [35] of e+e− → hadrons are in tension with earlier results and tend to prefer

higher values of the hadronic vacuum polarization contributions to aµ. Taking those results

at face value would reduce ∆a2021
µ to about half its quoted value, but scrutiny of these

1 Since the release of this paper there has been an update on the experimental average of the anomalous

magnetic moment of the muon from Run-2 of the FNAL experiment ∆a2023
µ , see Ref. [1]. This paper

represents the measurement from before this latest update.
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results is ongoing, and further progress on the hadronic vacuum polarization contributions

is expected in the coming years [36]. Furthermore, more precise experimental determinations

of ∆aµ based on Run-2/3 data and later on Run-4/5/6 data from the Fermilab experiment

are in preparation. In view of this progress it remains relevant to ask which scenarios for

physics beyond the SM could explain a deviation as large as Eq. (1) without violating other

existing constraints.

A very promising way to explain the deviation ∆aµ is via scenarios beyond the SM

(BSM) with enhanced chirality flips. Such scenarios are also interesting from the point of

view of electroweak symmetry breaking as they necessarily contribute to the fermion mass

generation mechanism and to effective Higgs-boson couplings [37–40]. At the same time,

there is currently no sign of new physics in searches for charged lepton flavor violation

(CLFV), despite the potential of correlations of BSM effects on ∆aµ and CLFV observables

in many concrete models. Typically, therefore, such models can only explain the deviation

(1) in non-generic parameter regions with large hierarchies between flavor-conserving and

flavor-violating parameters. Here we study this conflict between ∆aµ and CLFV in a concrete

model, using the value of (1) as an illustration. The conclusions of the present paper would

essentially remain intact even if the deviation would reduce to a smaller value.

Leptoquark (LQ) models are among the best-motivated extensions of the SM. Using the

notation of Ref. [41], there are two possible types of spin-0 LQ quantum numbers, S1 and

R2, which allow gauge invariant couplings to both left-handed and right-handed leptons.

These, therefore, allow enhanced chirality flips and promising explanations of ∆aµ [42–55].

More generally, the S1 and R2 models are two of very few viable single-field explanations

of ∆aµ [37, 45, 56–58]. In the past years, LQ models have also frequently been proposed

as combined explanations of B-physics anomalies and ∆aµ [46–48, 59–65], and models with

several leptoquarks are also able to simultaneously explain neutrino masses [47, 61, 65].

Refs. [49, 52, 55] confirm that the single LQ explanations of ∆aµ remain viable also given

constraints on LQs from Z-boson and Higgs-boson decays.

The S1 and R2 LQ models exemplify how large, chirality-flip enhanced contributions to

∆aµ can naturally be accompanied by CLFV effects. Focusing on the S1 model, its flavor

structure is governed by two 3×3 coupling matrices, i.e. by 18 free parameters λqℓL,R coupling

left- or right-handed quarks q to leptons ℓ. ∆aµ depends on couplings of the muon to the

top- or charm-quark, while non-zero couplings of the electron and τ lepton can lead to CLFV
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contributions.

Here we focus on the impact of CLFV versus ∆aµ constraints on the flavor structure of

the S1 LQ model. We aim for deriving general constraints on the 18 flavor parameters, under

the assumption that the model explains ∆aµ. To keep the analysis concrete, we consider

several representative scenarios for the flavor structure which we call top-only, charm-only

and up-type quark universal, as specified further in Sec. IV. Our study is complementary

to Ref. [65], where ∆aµ, neutrino masses and complementary observables were fitted to a

minimal LQ model (containing S1 and further particles and general flavor coupling struc-

ture), leading to specific best-fit values for the flavor parameters of the model. It is also

complementary to Refs. [66, 67], where upper limits on flavor parameters were derived with-

out requiring an explanation of the nonzero result for ∆aµ. In our case, the S1 model alone

cannot explain neutrino masses; we aim for conservative and general limits on the flavor

parameters under the assumption that leptoquarks are responsible for ∆aµ. The limits will

be derived from correlations between ∆aµ and various lepton flavor violation processes, such

as two-body decays ℓi → ℓjγ, three-body decays ℓi → ℓjℓkℓ
c
k, and µ− e conversion in nuclei

processes, as µAu→ eAu and µAl → eAl. To manage a large number of free parameters,

we restrict ourselves to several specific cases, where the anomalous magnetic moment of

muon is explained either only by the top-quark or by charm-quark contributions or by a

combination thereof.

The paper is structured as follows. In Sec. II we introduce our notations for the S1

leptoquark model, and Sec. III with the appendix present the relevant analytical expressions

of the considered observables. Later, in Sec. IV the latest constraints on the leptoquark mass

from the LHC studies are shown and our analysis strategy is explained. In Secs. V–VIII we

show analytical results for observables under interest and derive the constraints on coupling

constants that induce them. Finally, the most important results are combined as conclusions

in Sec. IX.

II. MODEL DEFINITION

We consider the leptoquark S1 model, which extends the SM particle content by a single

spin-0 leptoquark field with the gauge representation (333,111, 1/3) under the SU(3)×SU(2)×

U(1) group. The leptoquark is an SU(2) singlet thus carrying an electric charge of QS1
=

5



1/3. The Lagrangian terms involving the S1 leptoquark which are relevant for this study

are expressed in the following way in the interaction eigenstate basis (indicated by a tilde),

L ∋ −m2
S1
|S1|2 −

(
λ̃qlL Q̃c

qiσ2L̃l S1 + λ̃qlRũ
Rc
q ẽRl S1 + h.c.

)
, (2)

containing the SU(2)-invariant product of the left-chiral quark and charged lepton doublet

fields,

Q̃c
qiσ2L̃l = ũLcq ẽ

L
l − d̃Lcq ν

L
l . (3)

This fermion-leptoquark interaction Lagrangian is the most general one for the S1 leptoquark

type which prevents fast proton decay by excluding couplings to quark-antiquark pairs.

For studying flavor physics, it is useful to rotate the fermion fields into mass eigenstates.

To perform this, the unitary matrices Uu,d,e, Vu,d,e for left- and right-handed fermion fields

are applied (schematically as ψ̃k = U∗
ikψ

mass
i ≡ U∗

ikψi).

In this way, the Standard Model Yukawa couplings and fermion mass terms are diag-

onalized. The mixing matrices can be fully absorbed in two out of the three leptoquark

interaction terms with left-/right-handed leptons and neutrinos. We choose the so-called

up-type mass diagonal basis [68, 69], where the new leptoquark coupling matrices are de-

fined as

λqlL = V †iq
u λ̃ijLV

†jl
e , λqlR = U †iq

d λ̃ijLU
†jl
e . (4)

Using these couplings the interaction Lagrangian contains interactions with charged leptons

and up-type quarks governed directly by the λL,R, while the interaction with neutrinos and

down-type quarks involves the CKM matrix VCKM,

L ∋ −ucq
(
λqlLPL + λqlRPR

)
elS1 + dcq

(
λjlLV

jq
CKMPL

)
νlS1 + h.c. (5)

As numerical values for the CKM matrix entries, we use the ones by the PDG [70].

III. ANALYTICAL RESULTS

In the present paper, we consider low-energy lepton observables as constraints on the

S1 leptoquark model. The observables are the muon magnetic moment aµ = (g − 2)µ/2,

two-body decays ℓi → ℓjγ, three-body decays of the form ℓi → ℓjℓkℓ
c
k, and µ→ e conversion

in the presence of a nucleus. Table I summarizes these observables, current experimental
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µ

γ
S1

µ

q

S1

(a) SSF

S1

qq

(b) FFS

FIG. 1: One-loop diagrams contributing to ∆aµ induced by S1 leptoquark.

limits, and expected sensitivities of the next planned experiments. The present section col-

lects analytical results for the leptoquark contributions to all these observables. Additional

observables involving meson decays are discussed in the appendix.

All one-loop results were obtained in two ways. First, by direct Feynman diagrammatic

calculation. Second, by automatic generation using FlexibleSUSY [71–73] and its extension

package NPointFunctions [74]. FlexibleSUSY is a Mathematica and C++ framework which

compiles a spectrum generator out of a given model definition input. It uses SARAH [75, 76],

for which we created a suitable model file incorporating the parameterization of the couplings

developed in Sec. II. This setup resulted in an independent cross-check of the consistency of

the results presented in the following.

A. ∆aµ

The two relevant one-loop Feynman diagrams contributing to ∆aµ, i.e. the additional

leptoquark contribution to aµ, are depicted in Figure 1. Both diagrams have a very similar

structure and involve an up-type quark next to the leptoquark; they are often referred to as

SSF (see Figure 1a) and FFS (see Figure 1b), respectively.

Their sum can be written as

∆aone-loop
µ =

m2
µ

48π2m2
S1

(
mq

mµ

λq2L λ
q2
R L1(xq) +

(
λq2L

)2
+
(
λq2R

)2
4

L2(xq)

)
,

∆aµ = δQED∆a
one-loop
µ , δQED = 1 +

e2

π2 ln
mµ

mS1

,

(6)

with the shorthand notation of the one-loop mass ratio argument xq = m2
q/m

2
S1

used here

and in the following. This result coincides with the formulas presented e.g. in Ref. [37] (see

also references therein) and includes universal leading logarithmic two-loop QED corrections
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ℓi

γ
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ℓj
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(a) Type I

S1

qq

(b) Type II

S1

q

(c) Type III

S1

q

(d) Type IV

FIG. 2: One-loop diagrams contributing to ℓi → ℓjγ induced by S1 leptoquark.

δQED [77, 78], which are also implemented in FlexibleSUSY, see Ref. [73]. The loop function

themselves are defined as (with following limits for x→ 0: FF (x) ≈ −9/2−3 lnx, FC(0) = 0,

FE(0) = 4, FB(0) = 2; see also Refs. [37, 79]):

L1(x) = 4FF (x)− FC(x) > 0 , L2(x) = 2FE(x)− FB(x) > 0 ,

FF (x) =
3(−3 + 4x− x2 − 2 lnx)

2(1− x)3
, FE(x) =

2(2 + 3x− 6x2 + x3 + 6x lnx)

(1− x)4
,

FC(x) =
3(1− x2 + 2x lnx)

(1− x)3
, FB(x) =

2(1− 6x+ 3x2 + 2x3 − 6x2 lnx)

(1− x)4
.

(7)

Note that the first two functions are positive, which allows only constructive interference of

contributions from different quark generations (as long as all couplings are positive). The

first term in Eq. (6) contains the chirally enhanced ratio mq/mµ whereas the second one

does not. The chirally enhanced term appears together with a product of two couplings to

different fermion chiralities λq2L λ
q2
R . It is well known that this enhancement is crucial for the

possibility to explain a significant leptoquark contribution to ∆aµ.

The theory prediction in Eq. (6) can be compared to the difference between the experi-

mental measurement and the corresponding Standard Model prediction, see Eq. (1).
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B. ℓi → ℓjγ

The Feynman diagrams contributing to two-body decays ℓi → ℓjγ are similar to the ones

contributing to ∆aµ. Figure 2 displays the four contributing types of one-loop diagrams;

the main difference is the replacement of the external fermions and associated leptoquark

coupling constants.

The contributions of Figure 2 can be expressed as amplitudes with off-shell photon with

outgoing momentum q = pi − pj (using the conventions of Refs. [80, 81] with the covariant

derivative Dµ = ∂µ + ieQfAµ),

iΓℓ̄jℓiγ
= iūj

[ (
q2γµ − qµ/q

) (
AL

1PL + AR
1 PR

)
+ imiσ

µνqν

(
AL

2PL + AR
2 PR

) ]
ui . (8)

The two-body decays of interest only depend on the squares of the dipole form factors AL,R
2 ;

the branching ratio has the form (see, e.g. [79, 80]):

BR(ℓi → ℓjγ) =
m5

ℓi

16πΓi

(
|AL

2 |2 + |AR
2 |2

)
(9)

with the decay width of muon and tau, Γµ = 2.996·10−19 GeV and Γτ = 2.267·10−12 GeV [82].

The structure of the dipole form factors is analogous to the situation for ∆aµ,

AL
2 = − 1

16π2

e

6m2
S1

(mq

mi

λqjR λ
qi
LL1(xq) +

1

4
λqjR λ

qi
RL2(xq)

)
< 0 . (10)

The expressions for A1 terms will be listed below in the context of three-body decays, where

they will be relevant.

The prediction for the two-body decays will be compared to the corresponding experimen-

tal upper limits listed in Table I. The existing upper limits on µ→ eγ, τ → eγ and τ → µγ

were obtained at MEG [83] BaBar [84], the next foreseeable improvements are planned at

MEG-II [85] and Belle-II [86].

C. ℓi → ℓjℓkℓ
c
k

Like for ∆aµ and for the two-body decays ℓi → ℓjγ, leptoquarks contribute to the three-

body decays ℓi → ℓjℓkℓ
c
k starting from the one-loop level. The five types of one-loop diagrams

are shown in Figure 3. Type I to IV contain a ℓi → ℓjγ subdiagram but the outgoing on-shell

photon is replaced by a virtual photon which finally decays into a lepton-antilepton pair.

9



ℓk

ℓi
S1

ℓj

q

ℓk

γ
S1

(a) Type I

S1

qq

(b) Type II

S1

q

(c) Type III

S1

q

(d) Type IV

S1

q

S1

q

(e) Type V

FIG. 3: One-loop diagrams contributing to BR(ℓi → ℓjℓkℓ
c
k) induced by S1 leptoquark.

Diagrams of type I–IV also have u-channel counterparts. In addition to the box diagram of

type V there is an analogous one where leptoquarks propagate as quarks and vice versa.

Higgs-boson penguins are negligible for the derivation of the LQ coupling limits due to SM

Yukawa magnitude. Z-boson penguins lead to the contribution similar to the A1 one of the

photon but are relatively suppressed due to the mass of the former.

Type V is a box diagram that is distinguished from all other diagrams in that it involves

four powers of leptoquark couplings instead of two.

The leptoquark contributions to the three-body decays arise via the dipole form factor

and 4-fermion (scalar, vector, and tensor) form factors SXY , VXY , TXY (with X, Y being L

or R). The vector form factor receives a contribution not only from actual 4-fermion box

diagrams of type V in Figure 3, denoted as V □
XY , but also from the photonic form factor A1

defined above in Eq. (8).

The full form of the decay width for ℓi → ℓjℓkℓ
c
k in case of j = k and j ̸= k reads, see

also Refs. [87–90]:

Γℓi→3ℓj
=

m5
i

192π3

(
e2|AL

2 |2
(
ln m

2
i

m
2
j

− 11
4

)
+ e

(
3
2
eAL

1 − 1
2
(V □

LL + V □
LR)

)
|AR

2 |

+1
4
V 2
LL + 1

8
V 2
LR + 1

16
S2
LL + [L↔ R]

)
,

(11)

Γℓi→ℓjℓkℓ
c
k
=

m5
i

192π3

(
e2|AL

2 |2
(
ln m

2
i

m
2
k

− 3
)
+ e

(
eAL

1 − 1
2
(V □

LL + V □
LR)

)
|AR

2 |

+1
8

(
V 2
LL + V 2

LR

)
+ 1

32

(
S2
LL + S2

LR

)
+ 3

2
T 2
LL + [L↔ R]

)
.

(12)
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The vectorial photon form factor A1 and its contribution to the 4-fermion form factors are

given by

AL
1 =

1

16π2

e

36m2
S1

L3(xq)λ
qj
L λ

qi
L ,

VXY = −eAX
1 + nV □

XY ,

(13)

where the minus sign is related to the form factor embedding into the 4-fermion amplitude,

and where a similar equation holds for AR
1 ; n = 1

2
for VXX in ℓi → 3ℓj, and n = 1 otherwise.

The loop function takes the form (with the following limit for x → 0: FA(0) = 0, FD(x) ≈

4(4 + 3 lnx)):
L3(x) = FA(x)− 2FD(x) > 0 ,

FA(x) =
2− 9x+ 18x2 − 11x3 + 6x3 lnx

(1− x)4
,

FD(x) =
16− 45x+ 36x2 − 7x3 + 6(2− 3x) lnx

(1− x)4
.

(14)

The pure box diagram contributions can be written as

SLL =
1

16π2

(
1
2
λq2iL λq1kL − λq1iL λq2kL

)
λq1jR λq2kR mq1

mq2
D0 ,

SLR = − 1

16π2

(
2λq2iL λq1kR |D00|+ λq1iL λq2kR mq1

mq2
D0

)
λq1jR λq2kL ,

V □
LL =

1

16π2

(
λq1iL λq2kL + λq2iL λq1kL

)
λq1jL λq2kL |D00| ,

V □
LR =

1

16π2

(
λq1iL λq2kR |D00|+ λq2iL λq1kR

1
2
mq1

mq2
D0

)
λq1jL λq2kR ,

TLL =
1

16π2λ
q1j
R λq2kR λq2iL λq1kL

1
8
mq1

mq2
D0

(15)

with expressions for SRL, SRR, V
□
RL, V

□
RR, TRR obtained by replacing L ↔ R; the zero-

momenta Passarino-Veltman coefficient functions D0 and D00 [91] can be simplified to

for q = c or t:

m4
S1
D0

∣∣
q1=q2

=
−2 + 2xq − (1 + xq) lnxq

(1− xq)
3 > 0 ,

m2
S1
D00

∣∣
q1=q2

= −
1− x2q + 2xq lnxq

4(1− xq)
3 < 0 ,

m4
S1
D0

∣∣
mc→0

=
−1 + xt − lnxt

(1− xt)
2 > 0 ,

m2
S1
D00

∣∣
mc→0

=
−1 + xt − xt lnxt

4(1− xt)
2 < 0 .

(16)

The prediction for the three-body decays will be compared to the corresponding experi-

mental upper limits listed in Table I. Most important are the limits on µ→ 3e. The existing

11
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FIG. 4: Tree-level diagram contributing to µAu→ eAu and µAl → eAl.

limits were obtained at SINDRUM [92], and the next foreseen improvement is planned at

Mu3e-I [93].

We note that the main contribution from the box factors comes from the D00-terms and

that the box form factors in (15) are positive, for positive values of the λL,R.

D. µ → e conversion

Out of all considered observables µ → e conversion in presence of a nucleus is special

since it is mediated already by a tree-level diagram with leptoquark exchange. Figure 4

shows the diagram. The resulting predicted conversion rate can be expressed as

BR(µ− e) =

(
αsλ

12
R − αvλ

12
L

)2(
λ11L

)2
+ [L↔ R]

4m4
S1
ωcapt

(17)

with the capture rate and the form-factors (muon mass and ωcapt are expressed in GeV

units):

αs =
∑
i=p,n

f i
u
mi

mu
S(i)= 1.537 (0.430 in Al) ·m5/2

µ ,

αv = 2V (p) + V (n) = 0.280 (0.049 in Al) ·m5/2
µ ,

ωcapt = 8.849 (0.464 in Al) · 10−18 .

(18)

The overlap integrals are taken from the second method in Ref. [94]. The proton and

neutron scalar couplings fp,n
u are determined from pion-nucleon σπN term for u quark (see

the Ref. [95] for the numerical values). Vector form-factors 2 and 1 (in αv) do not suffer from

theoretical uncertainty and are derived from the conservation of vector current consideration,

i.e. counting of valence quarks.

The past SINDRUM-II and the planned COMET-I (as well as COMET-II and Mu2e [96])

experiments listed in Table I use either Au or Al nuclei for µ→ e conversion. The prediction

can be applied to both cases, see the first/second numbers in Eq. (18) accordingly.

12



Observable Current phase Next phase

∆a2021µ FNAL [2]: (25.1± 5.9) · 10−10 —

µ → eγ MEG [83]: 4.2 · 10−13 MEG-II [85]: 6 · 10−14

τ → eγ BaBar [84]: 3.3 · 10−8 Belle-II [86]: 9.0 · 10−9

τ → µγ BaBar [84]: 4.4 · 10−8 Belle-II [86]: 6.9 · 10−9

µ → 3e SINDRUM [92]: 1 · 10−12 Mu3e-I [93]: 2 · 10−15

τ → 3e Belle-I [99]: 2.7 · 10−8 Belle-II [86]: 4.7 · 10−10

τ → µee Belle-I [99]: 1.8 · 10−8 Belle-II [86]: 2.9 · 10−10

τ → eµµ Belle-I [99]: 2.7 · 10−8 Belle-II [86]: 4.5 · 10−10

τ → 3µ Belle-I [99]: 2.1 · 10−8 Belle-II [86]: 3.6 · 10−10

µAu → eAu SINDRUM-II [100]: 7 · 10−13 —

µAl → eAl — COMET-I [101]: 7 · 10−15

K+ → π+νν̄ E949 [102]: 1.73 · 10−10 —

D0 → µ+µ− LHCb [103]: 7.6 · 10−9 —

TABLE I: Experimental bounds, that are considered in the present paper. The column

“Current phase” refers to current, existing bounds, and the column “Next phase” refers to

the next available expected future bound. We use 90 % confidence level (but 1σ-bound in

case of ∆aµ). Note, the anomalous magnetic moment of muon and kaon branching ratio

are the only quantities corresponding to observations and not upper limits.

IV. ANALYSIS STRATEGY

Our main interest is the impact of ∆aµ and CLFV observables on the full 3× 3 coupling

matrices λL,R, using the experimental bounds listed in Table I. To simplify the analysis,

we assume all 18 considered couplings to be positive and apply the customary perturbative

upper bound [97, 98]:

0 < λijL <
√
4π , 0 < λijR <

√
4π , (19)

on each matrix element.

Possible masses of leptoquarks are constrained by a variety of LHC analyses accumulated
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Decay/coupling β Lowest allowed mass [GeV] Reference

ue 1.0 (0.5) 1435 (1270)
√
s = 13 TeV CMS [104]

ue 1.0 (0.5) 1400 (1290)
√
s = 13 TeV ATLAS [105]

λue = 1.0 (0.8) 1.0 1755 (1355)
√
s = 8 TeV CMS [106]

cµ 1.0 (0.5) 1530 (1285)
√
s = 13 TeV CMS [107]

cµ 1.0 (0.5) 1560 (1230)
√
s = 13 TeV ATLAS [105]

λcµ = 1.0 1.0 660
√
s = 8 TeV CMS [106]

tµ 1.0 1420
√
s = 13 TeV CMS [108]

tτ 1.0 950
√
s = 13 TeV CMS [109]

tτ 1.0 (0.5) 920 (810)
√
s = 13 TeV ATLAS [110]

λtτ = 2.5 1.0 1020
√
s = 13 TeV CMS [109]

TABLE II: LHC constraints on scalar leptoquarks masses at 95% confidence level. The

first column shows the decay mode assumed in the analysis, or — for analyses considering

single leptoquark production — specifies the assumed value of the relevant coupling. In

the second column the quantity β is the leptoquark branching decay ratio into the

quark/lepton mentioned in the first column. The numbers without brackets correspond to

the strongest achievable bounds, the numbers in brackets correspond to alternative

assumptions and corresponding weaker bounds.

in Table II. In this paper, we fix the leptoquark mass in all numerical results below as

mS1
= 1.8 TeV . (20)

This value is conservative as it respects all current LHC restrictions in the third column of

Table II.

In our analysis, we focus particularly on three distinct scenarios. This helps manage the

18-dimensional parameter space and draw illuminating and fairly general conclusions. The

leptonic observables mainly correlate the coupling matrices λqℓL,R horizontally — i.e. couplings

of the same quark to different leptons. This is different from the case of e.g. B-physics and

the constraints from accommodating B-anomalies related to R(D(∗)) as done e.g. in Ref.

[60]. For this reason, our scenarios leave this horizontal direction unconstrained but impose

various vertical relationships on the coupling matrices.
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Scenario 1, top-only case: Here only couplings to the top-quark are nonzero. We are left

with the 6 parameters λ3ℓL,R, ℓ = 1, 2, 3.

Scenario 2, charm-only case: Here only couplings to the charm-quark are nonzero. We

are left with the 6 parameters λ2ℓL,R, ℓ = 1, 2, 3.

Scenario 3, columns case: Here we assume quark-universality of couplings, i.e. assume

equal couplings in each column of the coupling matrices, λ1ℓL = λ2ℓL = λ3ℓL ≡ λℓL (and the

same for λR). We are left with the 6 parameters λℓL,R, ℓ = 1, 2, 3.

In addition, we will use the µ–e conversion process to constrain the up-quark couplings

λ1ℓL,R (ℓ = 1, 2) in a way independent of assumptions on vertical relationships. In all analyses,

we will only consider real couplings. We note that similar but more restrictive scenarios were

discussed in Refs. [42, 44, 45, 50–52, 68] to study muon g− 2, and similar scenarios allowing

for CLFV processes were discussed in Refs. [43, 46–49, 53–55, 69].

V. PHENOMENOLOGICAL CONSEQUENCES OF ∆aµ

We begin our phenomenological investigations with an analysis of ∆aµ. In addition to

known results in the literature (see in particular Refs. [37, 50, 68]) we focus on the contri-

butions of all generations and derive bounds on several (combinations of) λL,R-parameters

which will be instructive and useful later.

The analytical result was presented in Eq. (6). It contains chirality-flipping terms pro-

portional to mqλ
q2
L λ

q2
R where q is one of the up-type quarks. It is well known that leptoquark

models can explain large ∆aµ only via such chirality-flipping terms which are enhanced by

the large top- or charm-quark masses.

To provide an overview we first record a criterion under which chirality-flip enhancement

is at all possible. In Eq. (6) the relative factors between the chirality-flipping and non-flipping

terms are schematically mqλ
q2
L λ

q2
R L1 : mµ|λq2L,R|

2L2 with loop functions L1,2. Inserting typical

masses of the order few TeV we obtain restrictions on the ratios between the left- and right-

handed couplings corresponding to chiral enhancement:

charm:
1

700
≲
λ22L

λ22R
≲ 700 ,

top:
1

4 · 104
≲
λ32L

λ32R
≲ 4 · 104 .

(21)
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(a) (b)

(c)

FIG. 5: Bands in parameter space allowed by ∆aµ, for mS1
= 1.8 TeV. The three plots

correspond to the three different scenarios, defined in Sec. IV. The red-shaded regions

correspond to the maximal additional limits from the K+ → π+νν̄ decay.

In Eq. (21) we have not included the up-quark, since its contributions to ∆aµ are gener-

ally small. Indeed, the K+ → π+νν̄ decay, see Figure 10, implies the restriction λ12L ≲ 1

regardless of all other relevant couplings due to cancellation in Ŷ L
12 factor, see appendix A 1.

With the upper perturbative limit applied for the other coupling λ12R ≲
√
4π, the maximum

contribution of the first quark-generation couplings contributes at most 9% of the ∆aµ mean
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value (for mS1
= 1.8 TeV). This number falls drastically for heavier leptoquark mass and/or

smaller couplings. Hence, one can to a very good extent neglect the up-quark contributions

and focus on the ones from heavier quarks.

Now we focus on the first of our scenarios and consider the top-couplings λ32L,R and their

values required to explain ∆aµ, while the charm-/up-quark couplings are set to zero.

Due to mt/mµ ∼ O(103) the full prediction for ∆aµ of Eq. (6) can be well approximated

(if the coupling ratio is in the range (21)) by the chirality-flipping term, which in turn can

be approximated as (top-only scenario)

∆aµ ≈ 3.3 · 10−7 1 + 0.64 ln(mS1
/2TeV)

(mS1
/2TeV)2

λ32L λ
32
R , (22)

which highlights the dependence on the couplings and allows to read off easily the values for

masses in the few-TeV range.

From comparing with the experimental result we get bounds on products of the two

couplings that are approximately located within hyperbolic curves in the λ32L − λ32R plane.

This is shown in the double logarithmic scale in Figure 5a, where the hyperbolic shape

becomes a straight band. The plot shows the coupling values for which the experimental

∆aµ result is explained at the 1σ (2σ) level in green (yellow). The plot is obtained from

the exact Eq. (6), hence there is an O(10%) distortion from the hyperbolic shape due to the

non-chirally enhanced terms.

Despite the small distortion, the band in Figure 5a essentially restricts the product of the

left- and right-handed top-couplings to the muon. As a simple formula, the entire 2σ band

is confined in the interval (top-only scenario)

∆aµ band: 3.1 · 10−3 < λ32L λ
32
R < 9.3 · 10−3 . (23)

If we apply the perturbativity upper limit
√
4π on each individual coupling, the prod-

uct (23) implies also lower limits on each coupling (top-only scenario):

2σ individual limit: 8.7 · 10−4 < λ32L,R . (24)

Note that the 2σ label here does not have a direct statistical meaning but refers to the 2σ

bound of Figure 5a from which the limit is derived.

As a by-product, this equation also implies a possible range of the ratio of couplings

λ32L : λ32R between around 1/4000 . . . 4000, which is a sharpened version of Eq. (21) derived

only from chirality-flip dominance.
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Now we repeat the analysis for the second scenario and consider explaining ∆aµ purely

with the charm-couplings λ22L,R, setting the top-/up-quark couplings to zero. The ratio

mc/mµ ∼ O(10) is smaller than the one for the top-quark. Nevertheless, it makes the

chirally enhanced term still dominate such that the non-chirally enhanced term can be

neglected to estimate how strongly the relevant couplings are restricted.

Applying similar simplifications as in the top case one obtains the following approximation

which highlights the dependence on the couplings and is valid in the few-TeV range (charm-

only scenario):

∆aµ ≈ 5.4× 10−9 1 + 0.14 ln(mS1
/2TeV)

(mS1
/2TeV)2

λ22L λ
22
R . (25)

Figure 5b shows the corresponding bands in the λ22L − λ22R plane explaining the measured

∆aµ at the 1σ and 2σ level. The distortion of the hyperbolic shape is stronger compared

to the top-quark case because the dominance of the chirality-flipping contributions is less

pronounced. Still, it is essentially the product of the two couplings which matters for ∆aµ,

and it is again meaningful to provide the interval of the coupling product for the entire 2σ

band (charm-only scenario):

∆aµ band: 0.18 < λ22L λ
22
R < 0.56 . (26)

As shown in Ref. [50], there is a bound from the measurement of BR(K+ → π+νν̄) which

imposes an additional restriction on the coupling λ22L .2 However, the bound significantly

depends on λ12L : for lower values we obtain the result from [50], for larger ones λ22L becomes

unrestricted. This behavior is illustrated by the upper boundary of the green area in the

Figure 10 of the appendix A 1. If one sets the coupling λ12L to zero, which implies the

maximally restrictive bound from the K+ → π+νν̄ decay, then the excluded region is shown

in Figure 5b as the pink area.

Similarly to the top-case, applying the perturbativity upper limit on each coupling to-

gether with Eq. (26) leads to lower limits on each coupling. These lower limits, and the

additional limits from the K+ → π+νν̄ decay (which applies for the specific case where λ12L

2 In addition, Drell-Yan dilepton processes pp → µ+µ− and pp → µ+µ−j provide an upper allowed value

for λ22
R as function of λ22

L and mS1
, see Ref. [50, 111–113]. This upper bound excludes part of the 2σ

bound for the charm-only scenario in Eq. (26). We do not use this upper bound here, because for us, it is

the lower bound on the couplings in Eq. (26), which impacts the analyses in the remainder of the paper.
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vanishes) can be summarized as (charm-only scenario)

2σ individual limit: 5.1 · 10−2 < λ22L,R ,

K+ → π+νν̄ limits: λ22L < 0.13, 1.5 < λ22R .
(27)

Finally, we focus on the third scenario, the columns case where the leptoquark couplings

are universal over the quark generations. In this case, ∆aµ is dominated by top-quark con-

tributions and the bounds on the universal couplings are similar to the ones in the top-only

case, however the additional limits from the K+ → π+νν̄ decay are driven by a combination

of up- and charm-quark couplings. The corresponding plot is shown in Figure 5c, and the

limits are (columns scenario)

∆aµ band: 2.4 · 10−3 < λ2Lλ
2
R < 9.2 · 10−3 ,

2σ individual limit: 6.8 · 10−4 < λ2L,R ,

K+ → π+νν̄ limits: λ2L < 4.7 · 10−2, 7.0 · 10−2 < λ2R .

(28)

VI. PHENOMENOLOGICAL CONSEQUENCES OF TWO-BODY DECAYS µ → eγ,

τ → eγ, AND τ → µγ

A. Consequences of decays involving muons

Now we consider the impact of CLFV on the leptoquark couplings, with special focus on

the condition that the current ∆aµ is explained. The first set of CLFV observables are the

decays µ→ eγ and τ → µγ. These have the common feature that, like ∆aµ, they involve the

muon and are governed by a dipole interaction which can be dominated by chirality-flipping

terms.

We begin with the analysis of the top-related couplings λ3iL and λ3iR in scenario 1 (see

Sec. IV), where the up- and charm-related couplings are assumed to vanish. Like for ∆aµ,

see Eq. (22), an instructive approximation is obtained by taking only the chirally enhanced

terms in the formula (9) for the decays ℓi → ℓjγ. In this approximation, the limits on

branching ratios from Table I translate into the following inequality (all masses are to be

given in units of GeV; top-only scenario):

|λ3iRλ3jL |2 + |λ3iLλ3jR |2 <
ΓiBR(ℓi → ℓjγ)

m3
i

0.73m4
S1

(1− 0.17 lnmS1
)2
. (29)
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For fixed i, j, this is a limit on a combination of four couplings. There are several ways to

extract more detailed information on bounds.

First we may fix the couplings λ32L,R relevant for ∆aµ such that the experimental ∆aµ is

explained, i.e. fix a point in the band of Figure 5a. In this way, two out of the four couplings

are fixed, and e.g. for µ → eγ, Eq. (29) takes the structure a|λ31L |2 + b|λ31R |2 < c, i.e. it

restricts the remaining two couplings onto an ellipse.

It turns out that the unification of all such ellipses is essentially a hyperbolic region. This

observation allows to decouple the influence of the ∆aµ-related couplings from considera-

tion. Figure 6a shows the corresponding allowed parameter regions in the plane of the two

couplings λ31L and λ31R . It is obtained from a scan over parameters (for mS1
= 1.8 TeV),

requiring that λ32L and λ32R are chosen such that the ∆aµ prediction is within a 2σ band

around the measured value quoted in Table I. The yellow (blue) regions are allowed by the

bounds of the “current phase” (“next phase”) experiments in Table I. Figure 7a is analogous

but for the decay τ → µγ and for the couplings λ33L and λ33R .

To explain the shape of the allowed regions, we at first introduce auxiliary variables that

are the ratio of left and right couplings:

kij =
λijL
λijR

, (30)

and rewrite the limit in Eq. (29) for mS1
= 1.8 TeV equivalently as (top-only scenario)

λ31L λ
31
R λ

32
L λ

32
R < 3.0 · 10−2 BR(µ→ eγ)

k31k32

k231 + k232
,

λ33L λ
33
R λ

32
L λ

32
R < 4.8 · 10 BR(τ → µγ)

k33k32

k233 + k232
.

(31)

The kij-dependent factor is maximal for equal kij ratios and together with the minimal ∆aµ-

allowed product of 32-couplings, see Eq. (23), provides the most conservative (in the case

of purely top-related couplings) bounds on the product of couplings. These bounds take

the announced hyperbolic shape, i.e. they depend only on the products of two couplings

(top-only scenario):

µ→ eγ
∣∣
∆aµ

: λ31L λ
31
R < 2.1 · 10−12 → 2.9 · 10−13 ,

τ → µγ
∣∣
∆aµ

: λ33L λ
33
R < 3.5 · 10−4 → 5.4 · 10−5 .

(32)

Here and in the following the first (second) number on the right-hand sides correspond to

the “current phase” (“next phase”) experiments and the yellow (blue) regions in Figures 6a
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and 7a. In the figures (with logarithmic scale) these hyperbolic limits are visible as the

inclined lines.

Figures 6a and 7a also show that the hyperbolic shape is cut off by individual upper

limits on each coupling (top-only scenario):

µ→ eγ
∣∣
∆aµ

: λ31L,R < 1.3 · 10−4 → 4.9 · 10−5 ,

τ → µγ
∣∣
∆aµ

: λ33L,R < 1.7 → 0.66 .
(33)

They can be understood in two ways. On the one hand, the perturbativity upper limit

together with ∆aµ implies individual lower limits on the ∆aµ-related couplings. Via Eq. (29)

this translates into the individual upper limits (33). On the other hand, Eq. (24) implies

that k32 is bounded. Hence for very large/very small k31 the k-dependent factor in Eq. (31)

decreases, again explaining the upper bounds on individual couplings in Figures 6a and 7a.

We repeat the previous discussion for the second scenario where only charm-quark cou-

plings are non-zero. The analysis and conclusions proceeds analogously to the previous case

where top-quark couplings were non-vanishing.

The four relevant charm-quark couplings for the decay ℓi → ℓjγ are λ2iL,R and λ2jL,R. The

semi-numerical approximation for the general bound on the combination of these four cou-

plings reads (all quantities with unit of mass are to be given in units of GeV; charm-only

scenario):

|λ2iRλ2jL |2 + |λ2iLλ2jR |2 <
ΓiBR(ℓi → ℓjγ)

m3
i

1.2 · 107m4
S1

(1− 2.4 lnmS1
)2
. (34)

This limit in Eq. (34) can be rewritten by using the ratios kij between left- and right-handed

couplings, see Eq. (30). For the mass mS1
= 1.8 TeV we obtain (charm-only scenario)

λ21L λ
21
R λ

22
L λ

22
R < 1.1 · 102 BR(µ→ eγ)

k21k22

k221 + k222
,

λ23L λ
23
R λ

22
L λ

22
R < 1.7 · 105 BR(τ → µγ)

k23k22

k223 + k222
.

(35)

Combining these upper limits with lower limits on couplings derived from assuming an

explanation of ∆aµ in Eq. (26) yields upper limits on products of only two couplings relevant

for each decay (charm-only scenario):

µ→ eγ
∣∣
∆aµ

: λ21L λ
21
R < 1.2 · 10−10 → 1.8 · 10−11 ,

τ → µγ
∣∣
∆aµ

: λ23L λ
23
R < 2.1 · 10−2 → 3.2 · 10−3 .

(36)
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The corresponding bounds are visualized in the plots of Figures 6b and 7b. As in the case

of the top-quark couplings, the allowed regions correspond to essentially hyperbolic shapes

as can be understood from Eq. (36).

Like in the top-coupling case, the figures also show that there are cutoffs for individual

couplings. They arise from the lower limits on ∆aµ-related couplings of Eq. (27). There

are general cutoffs related to the perturbativity limit combined with requiring a ∆aµ ex-

planation. And there are even stronger cutoffs on the left-handed couplings related to the

K+ → π+νν̄ decay which, via ∆aµ, implies a lower limit on λ22R . Numerically, the upper

limits on individual couplings related to the µ→ eγ and τ → µγ decays read (charm-only

scenario, individual limits):

µ→ eγ
∣∣
∆aµ

: λ21L,R < 1.3 · 10−4 → 5.0 · 10−5 ,

λ21L < 4.6 · 10−6 → 1.7 · 10−6 ,

τ → µγ
∣∣
∆aµ

: λ23L,R < 1.7 → 0.67 ,

λ23L < 6.0 · 10−2 → 2.3 · 10−2 ,

(37)

where the second/fourth lines correspond to the constraints from the K+ → π+νν̄ decay.

Turning to the third scenario with quark-universal couplings, the analysis proceeds similar

to the previous cases. We just provide the results, which can also be read off from Figures 6c

and 7c. The limits on the coupling products are similar to the top-only case since the top-

quark provides the dominant contribution (columns scenario):

µ→ eγ
∣∣
∆aµ

: λ1Lλ
1
R < 2.5 · 10−12 → 3.6 · 10−13 ,

τ → µγ
∣∣
∆aµ

: λ3Lλ
3
R < 4.3 · 10−4 → 6.7 · 10−5 .

(38)

Similarly, the individual limits from ∆aµ together with perturbativity are similar to the

case of the top-quark, however the additional limits from K+ → π+νν̄ decay are different

due to the combined contributions from up- and charm-quarks (columns scenario, individual

limits):3

3 The limits on couplings obtained in this section supersede the ones coming from ∆ae [64, 114] and

∆aτ [115, 116] under the assumption of ∆aµ, thus the former are not mentioned in this paper.
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µ→ eγ
∣∣
∆aµ

: λ1L,R < 1.6 · 10−4 → 6.1 · 10−5 ,

λ1L < 1.8 · 10−6 → 7.0 · 10−7 ,

τ → µγ
∣∣
∆aµ

: λ3L,R < 2.1 → 0.83 ,

λ3L < 2.4 · 10−2 → 9.5 · 10−3 .

(39)

B. Consequences for τ → eγ

Here we consider the decay τ → eγ. It is also dipole-induced and chirality-flip enhanced,

but it is not connected to ∆aµ-related couplings. The decay can be analyzed analogously to

µ→ eγ and τ → µγ, and we present only results for the two generation-specific scenarios.

For the top-only case this leads to the constraint (top-only scenario)

τ → eγ : λ31L λ
31
R λ

33
L λ

33
R< 8.0 · 10−7→ 2.2 · 10−7 . (40)

Here, a k-dependent factor similar to the ones in Eq. (31) has been maximized to obtain

the most conservative bound. We see that the bound involves the same four couplings as

the ones of Eq. (32) restricted by µ→ eγ and τ → µγ, but it is considerably weaker: if the

limits in Eq. (32) are met, the additional bound of Eq. (40) is automatically satisfied by

many orders of magnitude.

The analogous result for the case of purely charm-quark couplings reads (charm-only

scenario)

τ → eγ : λ21L λ
21
R λ

23
L λ

23
R< 2.8 · 10−3→ 7.7 · 10−4 . (41)

Again, this limit is many orders of magnitude weaker than the combination of limits derived

from µ→ eγ and τ → µγ under the assumption of an explanation of ∆aµ in Eq. (36).

VII. PHENOMENOLOGICAL CONSEQUENCES OF THREE-BODY DECAYS

µ → 3e AND OTHERS

The phenomenological discussion of three-body decays ℓi → ℓjℓkℓ
c
k, particularly of µ→ 3e,

can be kept brief. Even though these processes are influenced by a variety of vertex and box

form factors, they are strongly dominated by the dipole form factors AL,R
2 in those parts of

parameter space which gives rise to conservative bounds aimed for in the present study. For
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(a) (b)

(c)

FIG. 6: Allowed parameter regions for the µ→ eγ decay. assuming that ∆aµ is explained,

with mS1
= 1.8 TeV, and for the three different scenarios defined in Sec. IV. The meaning

of the additional limits from the K+ → π+νν̄ decay is as in Figure 5.

this purpose the three-body decays are strongly correlated to the simpler two-body decays

ℓi → ℓjγ.

The dipole dominance is illustrated in Figure 8, which shows the ratio of the two predicted

branching ratios for the two most interesting processes µ→ 3e and µ→ eγ, for a range of

λL,R. The color code of the points corresponds to the spread between the four relevant
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(a) (b)

(c)

FIG. 7: As Figure 6 but for the τ → µγ decay.

couplings λ31L,R and λ32L,R in case of scenario 1. If the spread is moderate (green/blue points),

we have an essentially fixed ratio between the branching ratios for µ→ 3e and µ→ eγ,

which is approximately
BR(µ→ 3e)

BR(µ→ eγ)
= 6.6 · 10−3 . (42)

The dipole dominance in this parameter region has two reasons.

First, the photonic form factor AL,R
1 behaves similarly to the non-chirally enhanced terms

in the dipole form factor AL,R
2 . Since we are working in a coupling regime with strong
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FIG. 8: Predicted ratios of the branching ratios for µ→ 3e and µ→ eγ, for a range of

λ31L,R, resulting from a scan over the relevant couplings, for mS1
= 1.8 TeV. The gray band

shows the value of equation (42) for dipole dominance (with a ±10% corridor), and the

color code of points corresponds to the spread between the four relevant couplings λ31L,R
and λ32L,R in case of scenario 1. This “distance” is computed by taking the four relevant

couplings, calculating their geometric mean, and then determining the maximum difference

to the mean, divided by the mean.

chirality-flip enhancements, see Eq. (21), AL,R
1 provides only a negligible correction.

Second, the box diagrams (giving rise to contributions to vector, scalar and tensor form

factors) are in principle of general interest since they depend on four powers of λL,R. However,

if the spread between the couplings is moderate this cannot lead to enhancements, resulting

in the correlation (42).

However, if a large spread is allowed (red points in Figure 8), the behavior is more

complicated and either enhancement or destructive interference is possible.

On the one hand, the derivation of conservative bounds in the style of the figures of

Sec. VI depends on the parameter points without box enhancements. Hence, given the

available experimental limits of Table I, the three-body decays do not provide additional

constraints on top of the ones obtained from two-body decays analyzed in the previous

section. This remains true even for the next phases of the experiments listed in Table I.

On the other hand, the enhanced red points show that future µ→ 3e measurements are

promising since enhanced rates are possible in this leptoquark model. Finally, the planned
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(a) (b)

FIG. 9: Limits for µAu→ eAu (SINDRUM-II) and µAl → eAl (COMET-I) for

mS1
= 1.8 TeV and different coupling patterns. For Figure 9a see equation (45), and for

Figure (9b) see Eq. 48. The red shaded area is fully excluded by the K+ → π+νν̄ decay.

Mu3e-II [93] experiment for µ→ 3e, which we otherwise do not consider in the present paper

has significant potential for discovery and for improvements of bounds even on the dipole

form factors beyond the limits presented in Sec. VI.

VIII. PHENOMENOLOGICAL CONSEQUENCES OF µ → e CONVERSION

To discuss the phenomenological impact of µ − e conversion process we rewrite the lep-

toquark contribution in a way similar to the previous observables, as a product of the four

relevant couplings and a kij-dependent factor, as

BR(µ− e) =
α2
s

4m4
S1
ωcapt

λ11L λ
11
R λ

12
L λ

12
R kα . (43)

This highlights that the four relevant couplings are λ11L,R and λ12L,R. The dimensionless kij-

dependent factor is denoted as kα; it is more involved than for previous cases and this time

also depends on the form factors αs,v,

kα =

(
k12 − αv

αs

)2
k11k12

+ k11k12

(
1

k12
− αv

αs

)2

. (44)
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Similarly to the previous observables we can obtain a limit on the product of the four

relevant couplings, now depending on the factor kα. Given the present experimental bound

from the SINDRUM-II experiment (or the expected bounds from COMET-I), this limit

reads. Note, that form factors αs,v in kα should be taken appropriately to the nucleus from

Eq. (18).

λ11L λ
11
R λ

12
L λ

12
R <

8.4 · 10−12

kAu
α

→ 5.6 · 10−14

kAl
α

. (45)

Figure 9a displays this limit for the case of the present bound from the SINDRUM-II exper-

iment. In the figure, the color code corresponds to the upper limit on the coupling product,

on the axes the two ratio variables k11 and k12 are varied. The shape of the figure can be

explained as follows.

Within the k-dependent factor there can be cancellations: if either k12 = αv/αs or k12 =

αs/αv, the prefactor of the first (or second) term in Eq. (44) vanishes. If simultaneously k11
becomes very small (or large), the entire factor kα is very small, and conversely very large

coupling products are allowed. This explains the two horizontal strips in the figure where

the limit becomes significantly weaker.

Given this complicated behavior, it is instructive to record the limit in some special cases

with different degree of possible cancellations. First, in the special point where k11 = k12 = 1,

i.e. where the left- and right-handed couplings happen to be equal, the limits become

µAu→ eAu|λL=λR
: λ11L,Rλ

12
L,R < 2.5 · 10−6 ,

µAl → eAl|λL=λR
: λ11L,Rλ

12
L,R < 1.9 · 10−7 .

(46)

Second, we consider the region where the left- and right-handed couplings may differ by up

to a factor 10, k11, k12 ∈ [0.1, 10]. In this region one of the terms within kα can vanish, and

overall kα turns out to vary in the interval kα = 0.48 . . . 96 (0.73 . . . 98 for COMET-I). A

limit on the coupling product which is valid in all of the region for mS1
= 1.8 TeV reads:

λ11L λ
11
R λ

12
L λ

12
R < 6.5 · 10−12 → 3.7 · 10−14 . (47)

The previous observables have allowed (in conjunction with ∆aµ) to obtain bounds on

individual couplings which are complementary to the bounds on coupling products. This is

more difficult in the case of µAl → eAl or µAu→ eAu. A major reason is the possibility of

cancellations due to the two terms involving αs and αv. It is, however, possible to obtain
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rather strict limits on the correlation of a subset of two couplings. This is illustrated in

Figure 9b, which shows the allowed regions in the plane of the two couplings λ12L –λ11R . The

remaining two parameters have been scanned over. (A similar plot could be shown in the

λ12R –λ11L plane.)

To explain the shape of the plot it is useful to discuss Eq. (17) (or Eq. (44)) distinguishing

two cases for the couplings: either we have λ12L > αv

αs

√
4π or we have λ12L ≤ αv

αs

√
4π. In the

first case, no matter what the value of λ12R is, the prefactor of λ11R in the branching ratio is

not zero; hence we get an upper limit on λ11R . In the second case, there is a certain value of

λ12R (within the perturbative regime) which nullifies the prefactor of λ11R ; hence that latter

coupling can be arbitrarily large. This behaviour explains the shape of the allowed regions

in the plot. The upper limit on λ11R can also be described by the formula

λ11R <
2m2

S1

√
ωcaptBR(µ− e)

αsλ
12
L −

√
4παv

if λ12L > αv

αs

√
4π , (48)

which is valid with L↔ R replacement and again explains the shape of the plot.

IX. CONCLUSIONS

In the present paper, we have analyzed the impact of combining ∆aµ with CLFV limits

on the parameter space of the S1 leptoquark model. This well-motivated model involves

two 3× 3 coupling matrices λqℓL,R whose entries are strongly constrained by the combination

of low-energy lepton observables. Here we briefly summarize and comment on the most

important results.

The summary is also displayed in Table III in a matrix form, such that the qℓ-entry of

Table III collects constraints on the entries λqℓL,R.

Generally ∆aµ from equation (1) implies upper and lower limits on the left-right products

of couplings to muons, and CLFV constraints then lead to upper limits on left-right products

of couplings to the electron and τ lepton. In addition, perturbativity and the K+ → π+νν̄

decay imply upper limits on individual couplings; these (together with limits on products)

produce also lower limits on other individual couplings.

Specifically the third row of Table III assumes the “top-only” scenario (see section IV)

where ∆aµ is explained via top-quark couplings only. In this case the (geometric average

of left- and right-handed) couplings to electrons must be more than 4 orders of magnitude
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q\ℓ e µ τ valid

u

λ
11
L λ

11
R λ

12
L λ

12
R < 6.5·10−12 → 3.7·10−14

— any sc.λ
11
L (λ

12
R −0.65)< 2.9·10−6 →

λ
12
L < 0.82

λ
11
L (λ

12
R −0.40)< 2.4·10−7

c

λ
21
L λ

21
R < 1.2·10−10 → 1.8·10−11

0.18<λ
22
L λ

22
R < 0.56 λ

23
L λ

23
R < 2.1·10−2 → 3.2·10−3

sc. 2λ
21
L,R < 1.3·10−4 → 5.0·10−5

5.1·10−2
<λ

22
L,R <

√
4π λ

23
L,R < 1.7→ 0.67

λ
21
L < 4.6·10−6 → 1.7·10−6

λ
22
L < 0.13 , 1.5<λ

22
R λ

23
L < 6.0·10−2 → 2.3·10−2

t
λ
31
L λ

31
R < 2.1·10−12 → 2.9·10−13

3.1·10−3
<λ

32
L λ

32
R < 9.3·10−3

λ
33
L λ

33
R < 3.5·10−4 → 5.4·10−5

sc. 1
λ
31
L,R < 1.3·10−4 → 4.9·10−5

8.7·10−4
<λ

22
L,R <

√
4π λ

33
L,R < 1.7→ 0.66

TABLE III: Summary of restrictions on all entries of the S1 leptoquark coupling matrices

λL,R for mS1
= 1.8 TeV. The restrictions in the second and third rows are valid under the

condition that ∆aµ of equation (1) is explained, and they apply to various scenarios of

Sec. IV as indicated in the rightmost columns. For the derivation and the range of validity

of the constraints on individual couplings we refer to the appropriate sections and text.

smaller than the corresponding couplings to muons. Also, the couplings to τ leptons must

be smaller than the couplings to muons. In the absence of cancellations within the theory

predictions, this conclusion remains unchanged even in the more general case where cou-

plings to the charm- and up-quarks are also allowed to be nonzero (but small so as to not

significantly modify the contributions to ∆aµ).

Similarly, the second row of Table III assumes the “charm-only” scenario and presents

bounds on couplings of leptons to the charm-quark. In order to accommodate the current

∆aµ value, the couplings to the muon must be O(1). In addition, the K+ → π+νν̄ decay

implies limits on the ratio of left- and right-handed couplings, valid in a wide range of

parameter space (see section V for details). These are also reflected in the asymmetries

visible in Figures 6b and 7b for the µ→ eγ and τ → µγ decays. Again, there must be a

strong hierarchy between charm-couplings to the muon and to the electron.

Finally, the first row of Table III is valid irrespective of the scenario. It is derived

from µ → e conversion constraints and from the K+ → π+νν̄ decay. As a result of these

constraints, the (geometric average of the) couplings of electrons and muons to the up-

quark must be significantly smaller than the couplings to the charm- or top-quarks if the
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∆aµ deviation is accommodated. In addition, more detailed limits on λ12L and on products

of two couplings can be given as shown in the Table III and as explained in section VIII.

The table also collects the possible improvements of limits from the next phases of CLFV

experiments collected in Table I. If no signal is found, they will significantly sharpen the

upper limits on couplings to electrons and τ leptons and will increase the need for highly

hierarchical and non-universal entries in the coupling matrices λqℓL,R. In general, the results

exemplify the implications of ∆aµ and CLFV constraints on the flavor structure of new

physics models with enhanced chirality flips. Concrete models of flavor need to be compatible

with such results. This is of particular interest in the considered case of leptoquarks, where

an obvious and unambiguous notion of minimal flavor violation is not available [117, 118].
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Appendix A: Constraints from flavor-conserving meson decays

In this appendix, we discuss the impact of two lepton flavor-conserving decays on the

leptoquark parameter space. Both decays have been used in Ref. [50] to constrain the case

of charmphilic explanations of ∆aµ. For earlier, original calculations and analyses of further

meson decays within leptoquark models see Refs. [59, 66, 119]. Here we generalize the results

of Ref. [50] to the case of general coupling structures.

1. Decay K+ → π+νν̄

From Ref. [50] one obtains the following leptoquark contribution to the branching ratio

BR(K+ → π+νν̄)LQ = k1C
K1ℓ
V LL(C

K1ℓ
V LL + k2) , (A1)
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FIG. 10: Constraints from the K+ → π+νν̄ decay in the λ12L –λ22L plane, for different values

of λ32L . The colored regions are allowed for the indicated values of λ32L .

where the following abbreviations are used

CK1ℓ
V LL =

1

2m2
S1

Ŷ L
12Ŷ

L∗
22 , Ŷ L

ql = V iq
CKMλ

il
L ,

k1 =
κ+

3C2
Fλ

10 ≈ 1.83595 · 109 GeV4 ,

k2 = 2CF

∣∣Re[λt]X(m2
t/m

2
W ) + λcX

e
NL

∣∣
≈ 2.65751 · 10−10 GeV−2

(A2)

with the numerical values of intermediate parameters as in Ref. [50]; after subtracting the

SM branching ratio (BR(K+ → π+νν̄)SM ≈ 9 · 10−11) from the experimental limit obtained

by the E949 Collaboration [102] one obtains the following 2σ bounds:

−1.27 · 10−10 < BR(K+ → π+νν̄)LQ < 3.13 · 10−10 . (A3)

The K+ → π+νν̄ decay thus constrains a combination of the three left-handed parameters

λi2L (i = 1, 2, 3). The numerical result is shown in Figure 10 in the plane of λ12L –λ22L (λ32L is

less important since it appears only multiplied with small CKM matrix elements).

The green area corresponds to the allowed region for the special case λ32L = 0. There is

a thin allowed strip which is always allowed as Ŷ L
12 vanishes due to different signs of CKM

matrix entries. This strip is cut off only by the perturbativity limit.

If λ32L is allowed to be nonzero, the allowed region in the λ12L –λ22L plane can increase. The

yellow area corresponds to the choice λ32L = 1.3. Here the allowed region has a similar shape
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as the green region but extends to larger coupling values. If λ32L is increased further, the

shape of the allowed region changes. The reason is that specific values of the up- and charm-

quark-couplings are required to cancel the large top-coupling contributions. The red region

illustrates this for the value of λ32L at the perturbativity limit. This region also illustrates

the absolute achievable upper limit

λ12L < 0.82 , (A4)

which is used in Figure 9b.

2. Decay D0 → µ+µ−

The current experimental bound is the following [103]:

BR(D0 → µ+µ−) < 7.6 · 10−9 (95% CL) . (A5)

The expression for the branching ratio has the form:

BR(D0 → µ+µ−) =
d1

m4
S1

[(
λ12L λ

22
R − λ12R λ

22
L

)2
+
(
λ12L λ

22
R + λ12R λ

22
L

+ d2(λ
12
L λ

22
L + λ12R λ

22
R )

)2]
(A6)

with the following abbreviations and numerical values from [50]:

d1 = τD
f 2
D

256π

m5
D

m2
c

≈ (17.3 GeV)4 ,

d2 =
mµmc

mD

≈ 0.0391 .

(A7)

This decay leads to relevant constraints for the down-type coupling basis considered in

Ref. [50]. For our purposes, we employ the up-type basis and several scenarios as described

in section IV. We have checked that for all our scenarios this decay does not lead to additional

bounds on parameter space beyond the bounds presented in the main text of the paper.
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