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Abstract

FlexibleSUSY is a framework for the automated computation of physical quantities (ob-
servables) in models beyond the Standard Model (BSM). This paper describes an extension of
FlexibleSUSY which allows to define and add new observables that can be enabled and com-
puted in applicable user-defined BSM models. The extension has already been used to include
Charged Lepton Flavor Violation (CLFV) observables, but further observables can now be added
straightforwardly. The paper is split into two parts. The first part is non-technical and describes
from the user’s perspective how to enable the calculation of predefined observables, in particular
CLFV observables. The second part of the paper explains how to define new observables such that
their automatic computation in any applicable BSM model becomes possible. A key ingredient is
the new NPointFunctions extension which allows to use tree-level and loop calculations in the
model-independent setup of observables. Three examples of increasing complexity are fully worked
out. This illustrates the features and provides code snippets that may be used as a starting point
for implementation of further observables.
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Nature of problem: Determining observables for an arbitrary extension of the Standard Model supported by

FlexibleSUSY, input by the user.

Solution method: Generation of the code from automated algebraic manipulations. Automatic filling and

compiling of predefined template files.

Additional comments including restrictions and unusual features: Vertices with a direct product of Lorentz

and color structures are supported. Settings of the advanced NPointFunctions mode rely on explicit spec-

ification of topologies.
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1. Introduction

Exploring the parameter space of Beyond the Standard Model (BSM) theories, researchers
frequently employ software packages to automate both intricate calculations and parameter scans.
Nevertheless, these software tools are often restricted to a limited range of models, closely related
to the Standard Model (SM), the Minimal Supersymmetric Standard Model (MSSM), the Two-
Higgs-Doublet Model (2HDM), and their extensions involving higher-dimensional operators. This
is only a slice of all intriguing possibilities that include a broad set of models.

To address this limitation, FlexibleSUSY [1, 2] was created to be used for a broad class of
supersymmetric (SUSY) or non-SUSY models, providing a tool for the comprehensive investigation
of diverse theoretical scenarios.1 It is a software application primarily implemented in the Wolfram
Language [7] and C++ based on SARAH [3, 8–10] and components from SoftSUSY [11, 12], designed
to produce an efficient and accurate C++ spectrum generator (a program searching for a consistent
set of model parameters and calculating the pole mass spectrum and a set of observables) for
physical models specified by the user.

The produced C++ program applies user-defined boundary conditions at up to three distinct
energy scales within the model, incorporating Renormalization Group Equation (RGE) evolution
between these scales. It further generates a collection of mixing matrices, pole masses, and aux-
iliary quantities. Recent versions of FlexibleSUSY have introduced the computation of several
important observables that are suitable for phenomenological investigations and comparisons with
experimental data. In particular, we highlight the extensions FlexibleAMU and FlexibleCPV in-
troduced in Ref. [2] (they are responsible for the calculations of the anomalous magnetic moment
and Electric Dipole Moment (EDM) of leptons), an update for FlexibleMW on precise calculation
of the W -boson pole mass from Ref. [13], and FlexibleDecay [14] (a tool to calculate decays of
scalars in a broad class of BSM models).

A key point of these observables is that they are integrated in FlexibleSUSY such that they
are ready to be computed for any desired BSM scenario FlexibleSUSY is applied to. In order to
achieve this, the mentioned extensions store information about the observables in suitable Wolfram

1A software with similar capabilities is SARAH/SPheno/FlavorKit [3–6].

3



Language and C++ meta code which is then automatically converted into actual C++ code specifi-
cally for each BSM scenario.

So far, new observables were added by individually modifying the internals of FlexibleSUSY,
hence users could not add new observables in such a model-independent way. In the present paper,
we explain a new FlexibleSUSY 2.8 design structure which solves this problem. It allows to
integrate new observables on the meta code level, and it provides powerful options to define and
finetune the computation of new observables without having to touch internals of FlexibleSUSY.

A number of new observables has already been integrated by using this new structure (they
correspond to various Charged Lepton Flavor Violation (CLFV) processes), and in the future,
further additional observables may be integrated either by FlexibleSUSY developers or by users
of FlexibleSUSY.

To streamline and modularize the integration of new observables into FlexibleSUSY, an ex-
tension named NPointFunctions [15] was developed. This extension serves to automate the
calculation of amplitudes and other quantities that rely on them for any high-energy model sup-
ported by FlexibleSUSY. In essence, NPointFunctions incorporates a well-defined approach of
widely used packages FeynArts [16], FormCalc [17], and ColorMath [18] into FlexibleSUSY (up
to technical implementation details to be mentioned later in appropriate sections).

The article is separated into two parts depending on the readers’ interests:

1. Section 2 describes how to install and use FlexibleSUSY to calculate any of the available
observables. This section is of interest for all users of FlexibleSUSY who may want to switch
on the computation of observables. Reading it does not require knowledge of the internal
structure of FlexibleSUSY. To get physical insights about the new CLFV observables, one
is invited to read Appendix A.

2. Section 3 presents details on how to implement new observables. It provides a general outline
and background information relevant for all observables, and it covers three specific examples
of increasing complexity. It thus illustrates the range of possibilities and equips users with
code snippets which can be used as a basis for further developments. Interesting features
improving the functionality of FlexibleSUSY are mentioned separately in Appendix B.

2. Available observables and how to calculate them with FlexibleSUSY

Observables that are currently available in FlexibleSUSY are shown in Table 1. This section
shows the reader how to calculate them with FlexibleSUSY.

2.1. Installation

There are no changes to the previous FlexibleSUSY version of Refs. [2, 14] with respect to
mandatory installation steps. All missing dependencies will be highlighted by FlexibleSUSY

during the execution of the configure script (their list and hints about the installation can
be found at developer’s repository, see the program summary). To use observables that rely on
NPointFunctions module (in particular, CLFV ones), FeynArts and FormCalc must be installed.

2.2. Output defined observable with FlexibleSUSY

To switch on the calculation of a desired, predefined observable Oi (for example, bsgamma or
LToLConversion from Table 1) for a physical model Ma (like SM or MSSM), one needs to modify

4
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Observable FlexibleSUSY

name
Loop level Hints and comments

∆aℓ AMM,
AMMUncertainty

Anomalous magnetic moment of a
lepton [2]

dℓ EDM Electric dipole moment of a lep-
ton [2]

ℓi → ℓjγ BrLToLGamma 1 See Appendix A.1

ℓi → ℓjℓkℓc
k BrLTo3L 0–1 See Table 2 and Appendix A.2

µ–e conversion LToLConversion 0–1 See Table 3 and Appendix A.3

b → sγ bsgamma 1 —

— FlexibleDecay known SM (0–4),
LO (0–1) for BSM

Decays of scalars [14]

Table 1: All observables currently supported by FlexibleSUSY.

Usage

FlexibleSUSYObservable`BrLTo3L[lep_, iI_ -> {iJ_, iK_, iK_}, contr_, loopN_]

Abbreviation Values Hints

lep symbol Leptons ℓ in ℓi → ℓjℓkℓc
k in SARAH model (Fe in SM or MRSSM)

iI, iJ, iK integer Generations i, j, k in ℓi → ℓjℓkℓc
k, starting from 1

contr Vectors,
Scalars,
Boxes

Contributions (a synonym or a subset is allowed), see
FlexibleSUSY.m, NPointFunctions.m in the directory
meta/Observables/BrLTo3L/

loopN 0–1 Loop level, FormCalc limitation

Table 2: Options for BrLTo3L, see meta/Observables/BrLTo3L/Observables.m.

either model_files/Ma/FlexibleSUSY.m or models/Ma/FlexibleSUSY.m. These files define the
C++ spectrum generator output in the SUSY Les Houches Accord (SLHA) [19, 20] or the Flavour
Les Houches Accord (FLHA) [21] formats.

The first file mentioned above is used by the script createmodel (see Sections 3.7.1–3.7.3) to
create both the directory models/Ma/ and the second file, while the latter is executed by commands
configure and make that create C++ spectrum generator itself. This means, that to always include
the desired observables after the directory models/Ma/ is purged or cleaned, one modifies the first
file.

The required modification of the file FlexibleSUSY.m is in the list ExtraSLHAOutputBlocks.
Each observable that should be computed and appear in the spectrum generator output needs a
corresponding entry which specifies the details of the observable and how it should appear in the
output. For example, µ–e conversion is switched on in the Minimal R-Symmetric Supersymmetric
Standard Model [22] (MRSSM) (for its particular FlexibleSUSY configuration called MRSSM2) as
follows:

5



Usage

FlexibleSUSYObservable`LToLConversion[lep_, iI_ -> iO_, nucl_, contr_, loopN_]

Abbreviation Values Hints

lep symbol Leptons in SARAH model (Fe in SM or MRSSM)

iI, iO integer Muon and electron generations, starting from 1

nucl Al or Au Nucleus, see l_to_l_conversion.cpp.in in the directory
templates/observables/

contr Vectors,
Scalars,
Boxes

Contributions (a synonym or list of a subset is allowed),
see FlexibleSUSY.m, NPointFunctions.m in the directory
meta/Observables/LToLConversion/

loopN 0–1 Loop level, FormCalc limitation

Table 3: Options for LToLConversion, see meta/Observables/LToLConversion/Observables.m.

Listing 1: Adding µ–e conversion observable (example for models/MRSSM2/FlexibleSUSY.m).

ExtraSLHAOutputBlocks = {

{

FlexibleSUSYLowEnergy,

{

{41, FlexibleSUSYObservable`LToLConversion[Fe, 2 -> 1, Al, All, 1]},

...

}

},

...

};

The numerical value of µ–e conversion after the execution of the spectrum generator will be stored
in SLHA format under the user-chosen number 41 in the block FlexibleSUSYLowEnergy (see
meta/WriteOut.m). More details for arguments of LToLConversion are provided in Table 3.

To numerically calculate all added observables (apart from FlexibleDecay), the observable
calculation must be enabled in the SLHA input file for C++ spectrum generator:2

Listing 2: In models/Ma/LesHouches.in.Ma . All added observables are enabled.

Block FlexibleSUSY

...

15 1 # calculate all observables

2.3. Output Wilson coefficients with FlexibleSUSY

One can also output Wilson coefficients used in derivation of LToLConversion or BrLTo3L.
To do that, one places the corresponding observable into the FWCOEF (IMFWCOEF) block to output
their real (imaginary) part, for example:

2Here, the number 15 corresponds to the FlexibleSUSY conventions for the SLHA block Block FlexibleSUSY,
introduced in Appendix B of Ref. [2]. Calculation of observables using FlexibleDecay is controlled by a separate
flag as explained in Ref. [14].
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In meta/

Observables.m

WriteOut.m

FlexibleSUSY.m

NPointFunctions.m

FSMathLink.m

In meta/Observables/Oi/

Observables.m

WriteOut.m

FlexibleSUSY.m

[NPointFunctions.m]

[FSMathLink.m]

In templates/observables/

@Oi_filename@.hpp.in

@Oi_filename@.cpp.in

In models/Ma/observables/

Ma_@Oi_filename@.hpp

Ma_@Oi_filename@.cpp

In models/Ma/

run_Ma.x

New files, corresponding to an observable Oi
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Figure 1: The place and role of new files, required by new observables. The files in square brackets are optional as
described in the text. The name of C++ files contains @Oi_filename@, replaced by the rule GetObservableFileName,
see Listing 5.

Listing 3: Showing Wilson coefficients (example for models/MRSSM2/FlexibleSUSY.m).

ExtraSLHAOutputBlocks = {

{

FWCOEF,

{

{1, FlexibleSUSYObservable`LToLConversion[Fe, 2 -> 1, Al, All, 1]},

...

}

},

...

};

The coefficients are defined in files meta/Observables/Oi/WriteOut.m.

3. File structure of new observables Oi

Two new FlexibleSUSY features are described in this paper: a way to add new observables
to FlexibleSUSY (implying new auxiliary files), and a way to generate C++ code to numerically
calculate amplitudes that are required by these observables (NPointFunctions extension). This
section addresses both extensions and explains how to implement new observables with the help
of toy examples and code snippets of already implemented observables.

To create a spectrum generator, FlexibleSUSY usually first runs Wolfram Language code
(located in meta/) to obtain model-specific expressions for mass matrices, self-energies, ampli-
tudes, etc. The obtained expressions are converted to C++ form and are filled into C++ template
files (located in templates/) to generate model-specific C++ code (located in model/Ma/). Fig-
ure 1 shows the files relevant for the calculation of observables. The top left block shows Wolfram
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Language files in meta/ that contain general routines and observables implemented in previous ver-
sions of FlexibleSUSY. The top right block shows the corresponding observable-specific Wolfram

Language files (located in meta/Observables/Oi/) and the necessary C++ template files (located
in templates/observables/). The bottom block shows the generated relevant C++ files that are
eventually compiled and combined with other C++ files to the final spectrum generator executable
(models/Ma/run_Ma.x).

In the following, by creating a new observable we mean the generation of a specific C++ function
that calculates the observable within the final spectrum generator. That is, one needs to create
several C++ code blocks in appropriate places of the generated C++ spectrum generator, as the
following template-listing with observable- and model-specific blocks shows:3

Listing 4: C++ template code to calculate an observable for a specific model Ma.

// 1. Function definition in Ma_@Oi_filename@.cpp:

namespace Ma_@Oi_namespace@ {

@Oi_output_type@ @Oi_calculate(...)@ {

// Complicated function body generated during the meta phase and specific for Oi and Ma
}

}

// 2. Internal calculation of the observable:

observables.@Oi_name@ = Ma_@Oi_namespace@::@Oi_calculate(...)@;

// 3. Writing the observable in Les Houches format to an output stream:

block << FORMAT_*(observables.@Oi_name@, ...);

In the C++ source code snippet above, @Oi_name@ is replaced by the name of the observable and
@Oi_output_type@ is its C++ type. The @Oi_calculate(...)@ pattern will be replaced by the
name of function that performs the calculation, which is defined in the Ma_@Oi_namespace@ names-
pace. The body of the function will depend on the observable and the model under consideration.

In the following subsections it is described how the expressions are determined that replace
the different patterns in the above C++ template code snippet. The files where these expressions
are determined are the Wolfram Language files located in the directory meta/Observables/Oi/,
which will be described in the following subsections. In general, to define a new observable one
creates five new files filled with the content described in the following steps:

1. In Section 3.1 we show how to define the C++ name of the observable, the observable’s C++

type, etc. (done in the file meta/Observables/Oi/Observables.m).

2. In Section 3.2 we show how to connect the calculation of the observable to the spectrum
generator output (done in the file meta/Observables/Oi/WriteOut.m).

3. In Sections 3.3–3.4 we describe how to fill the body of the function that calculates the
numeric value of the observable for a given parameter point (done in the meta-phase file

3These C++ expressions might seem to be trivial at this point and the natural question arises whether it is really
necessary to make use of the file structure described in Sections 3.1–3.4. One needs to keep in mind, that the
mentioned expressions depend both on the physical model Ma and the observable Oi settings, which change the
parts generated during the meta phase. These modifications can, in general, be very complex, and FlexibleSUSY

meta-phase routines help to apply them.
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meta/Observables/Oi/FlexibleSUSY.m in Section 3.3 and two C++ template files in Sec-
tion 3.4).

4. As a last step, we show how to modify the model-specific FlexibleSUSY model file named
models/Ma/FlexibleSUSY.m to register the observable to the model under consideration.

Each subsection will begin with general explanations and definitions. Then three recurring
examples will be used for illustration. The first example illustrates the definition of an observable
with minimal complexity — the output of a single numerical constant, where the numerical constant
is not hard-coded but can be specified separately for each model FlexibleSUSY is applied to. The
second example outputs the value of fermion masses, where the decision of which fermions to
select can be specified separately for each model. The third example outputs the value of one-loop
self-energies and thus illustrates how to use loop calculations in the definition of observables.

3.1. Content of the file Oi/Observables.m

General case

The creation of a new observable Oi starts with the file meta/Observables/Oi/Observables.m.
This file is supposed to define the C++ tokens such as the observable name (@Oi_name@) or the ob-
servable’s C++ type (@Oi_output_type@), etc. The file contains only one call to the function
DefineObservables, which defines all C++ tokens. The general structure of this function call is
shown in the following Wolfram Language source code snippet:

Listing 5: General content of meta/Observables/Oi/Observables.m.

Observables`DefineObservable[

FlexibleSUSYObservable`Oi[parA_, parB_, ...], (* Wolfram Language symbol for observable *)

GetObservableType -> {1}, (* @Oi_output_type@ *)

GetObservablePrototype -> "calc_parA(int parB, ...)", (* @Oi_calculate(...)@ prototype *)

(* Optional: to override defaults, use commands below *)

GetObservableName -> "name_with_parAparB...", (* @Oi_name@ *)

CalculateObservable -> "calc_parA(parB+1, ...)", (* @Oi_calculate(...)@ call *)

GetObservableNamespace -> "observable_namespace", (* @Oi_namespace@ *)

GetObservableFileName -> "observable_file", (* @Oi_filename@ *)

GetObservableDescription -> "observable: parA, parB" (* description *)

];

The first argument of the function DefineObservables defines the Wolfram Language symbol of
the observable Oi, which is used in the file models/Ma/FlexibleSUSY.m to register the observable
to the model-specific FlexibleSUSY model file, see Tables 2–3 for examples. The optional param-
eters (like parA_) can be freely chosen and may be used to specify anything that might be changed
from one model Ma to another (like the SARAH name of a particle multiplet, relevant contributions,
etc.), or may be specific for the observable itself (like a particle generation index, the loop level,
etc.). The parameters may be wrapped by other Wolfram Language functions (like Rule) to im-
prove readability. Note that by convention, the names of all FlexibleSUSY observables belong to
FlexibleSUSYObservable` context.

All further arguments of the function DefineObservables define how C++ tokens (for exam-
ple, @Oi_output_type@) for the observable Oi should be replaced in code from Listing 4. Note
that the names of the parameters defined for the observable (like parA, parB, etc.) are replaced

9



in the strings by their values given in the model-specific FlexibleSUSY model file (the only ex-
ception: arguments in the prototype). For example, if one writes in the FlexibleSUSY model file
FlexibleSUSYObservable`Oi[Fe, 3], then the strings parA and parB are replaced by Fe and
3, respectively, in all strings on the r.h.s. in the function DefineObservable, so that for example
the execution of the function GetObservableName produces "name_with_Fe3".4

The meaning of two other mandatory arguments of the function DefineObservables is the
following:

GetObservableType defines the C++ type of the observable and replaces @Oi_output_type@. In
general, it can be any (real or complex) scalar, array or matrix C++ type. The syntax
{1} in Listing 5 defines a complex-valued array of length 1 (corresponds to the C++ type
Eigen::Array<std::complex<double>,1,1>). See also BrLToLGamma/Observables.m for
another example. Note that array, vector or matrix types are convenient for storing Wilson
coefficients, debugging information, etc. As described later, the connection between the
observable type and the FlexibleSUSY Les Houches output is specified in the file named
meta/Observables/Oi/WriteOut.m.

GetObservablePrototype defines the C++ prototype for the function that calculates the observ-
able (@Oi_calculate(...)@). Note that the function name is modified with the values of
the parameters of the first argument of the function DefineObservable (parA is replaced
with value of parA_ in Listing 5), while the function arguments are kept intact (parB is
kept).5

Let us now illustrate how to create new observables in FlexibleSUSY starting from the usage of
the function DefineObservable in Observables.m file. The examples are of increasing complexity
and they will be continued in the next subsections.

3.1.1. Example 1: output a given number

Let us create an observable, called ExampleConstantObservable, that outputs a numerical
constant specified by the user in the FlexibleSUSY.m file, so that the value of the numerical
constant is not hard-coded in the body of the observable C++ code but rather configured with
the Wolfram Language files. This example will demonstrate the basic usage of the function that
calculates an observable and allows us to familiarize ourselves with the workflow, as no physical
calculation is required. First, one creates the meta/Observables/ExampleConstantObservable/
directory. Afterwards one creates the file Observables.m inside this directory with the following
content:

4More advanced ways to name the C++ code parts are supported: 1. One may use expression like "$(parA+1)",
which evaluates the content inside the parenthesis after substitution of observable pattern values (parA_). 2. The
description of observable in the SLHA output can be generated from its name automatically by replacing underscores
with spaces. This can be redefined by GetObservableDescription. 3. Both names for C++ templates and C++ names-
pace can be automatically generated from the Wolfram Language name of the observable by inserting an underscore
before capital letters (or before numbers in front of them) and lowering the letter case. If the generated replacement
for @Oi_namespace@ (@Oi_filename@) leads to undesired side effects, then one may use GetObservableNamespace

(GetObservableFileName) to override the default behavior. 4. GetObservableName uniquely defines the C++ name
of the observable, which replaces @Oi_name@. This name is used to store the numerical value of the observable
internally and is generated automatically but can be overridden.

5The following two additional function arguments may be added: auto model and auto qedqcd. The first one
allows to access all numeric quantities of the model (model parameters, masses, etc.). The second one provides access
to known low-energy input observables.
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Listing 6: Content of ExampleConstantObservable/Observables.m.

1 Observables`DefineObservable[

2 FlexibleSUSYObservable`ExampleConstantObservable[num_],

3 GetObservableType -> {1},

4 GetObservablePrototype -> "calculate_example_constant_observable(double num)"

5 ];

As in the general case discussed above, the function call of DefineObservables defines the
Wolfram Language symbol of the observable to be ExampleConstantObservable, and it specifies
that the observable depends on one parameter num_; the meaning of the parameter will be the value
of the numerical constant to be output. Accordingly, as C++ return type for the function that calcu-
lates the observable we use an array of size one in GetObservableType. GetObservablePrototype
defines the prototype of the function that performs the calculation and we use double num as func-
tion argument.

3.1.2. Example 2: show fermion masses

Let us turn to a little more involved example to illustrate the usage of model-specific quantities
in the calculation of an observable and the possibility of filling the C++ template files with model-
specific content. As an example, we define an “observable” which can output several masses whose
values are determined in FlexibleSUSY. Specifically we choose to allow the output the Modified
Minimal Subtraction Scheme (MS)/Dimensional Reduction Scheme (DR) mass of a user-selected
fermion at a given renormalization scale and/or the pole mass of a SM lepton. Again, similar to
the example above, the fermion field and its generation number will be specified by the user in the
FlexibleSUSY.m file, so that these values are not hard-coded in the body of the observable C++

code but are configured with the Wolfram Language files.
To set up the observable, we create the directory meta/Observables/ExampleFermionMass/

and the file Observables.m within it, with the following content:

Listing 7: Content of ExampleFermionMass/Observables.m.

1 Observables`DefineObservable[

2 FlexibleSUSYObservable`ExampleFermionMass[fermion_[gen_]],

3 GetObservableType -> {2},

4 GetObservablePrototype -> "ex_fermion_mass(int gen, auto model, auto qedqcd)",

5 GetObservableDescription -> "fermion[gen] (lepton[gen] if in Block ExampleLeptonMass) mass"

6 ];

Again, the function call of DefineObservables first defines the Wolfram Language symbol of
the observable to be ExampleFermionMass, and it specifies that the observable depends on two
arguments, merged into one Wolfram Language function. We assume that the concrete name of the
fermion to output will be defined in the FlexibleSUSY model file models/Ma/FlexibleSUSY.m,
and we assume that it has the form fermion[gen], where fermion is the name of the fermion
multiplet and gen is its index in the multiplet. Therefore, the observable ExampleFermionMass

has the form of a function with the fermion_[gen_] pattern as argument, which matches the
multiplet name with fermion_ and the index in the multiplet with gen_.6 We would like to return

6Note that in the generated C++ code the multiplet index is decreased by one in order to match the C++ index
convention. I.e. if one writes Fe[1] in the Wolfram Language model file FlexibleSUSY.m and refers in the generated
C++ code to the argument of Fe, then its value will be 0, not 1.
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two numerical values, corresponding to the MS/DR mass of the fermion fermion[gen] at a given
renormalization scale and the pole mass of a SM lepton of generation gen. Hence we define the
observable type to be an array of length 2 in GetObservableType. The prototype of the function
that calculates the observable is defined in GetObservablePrototype. The function takes the
index of the fermion in the multiplet as first argument. The remaining two arguments model and
qedqcd allow the access to the model parameters, masses, mixing matrices, etc. In the name
of the function prototype ex_fermion_mass, the string fermion is replaced by the value of the
variable fermion, which may be Fe, Fd, etc. depending on the user-selected model Ma. As we
plan to calculate different masses depending on the SLHA output block (see Section 3.2.2), let us
implement the description of the observable as specified with GetObservableDescription above
to have an explicit indication of the generated numerical values. There, the strings fermion and
gen are replaced by the user-specified values of fermion and gen, respectively.

3.1.3. Example 3: lepton self-energy with NPointFunctions

As a third example, let us implement an observable to calculate the self-energy of a user-
specified lepton at the one-loop level. This example will illustrate how to use the NPointFunctions
extension in both simple and advanced ways, as well as how to output quantities in the FLHA
format. As in the previous examples, we start by defining the observable and a suitable C++

function prototype that allow us to select the lepton (from a multiplet) whose self-energy shall be
calculated and the contributions that should be taken into account:

Listing 8: Content of ExampleLeptonSE/Observables.m.

Observables`DefineObservable[

FlexibleSUSYObservable`ExampleLeptonSE[field_[gen_], contr_],

GetObservableType -> {2},

GetObservablePrototype -> "ex_lepton_se_contr(int gen, auto model)"

];

We call the observable ExampleLeptonSE, which takes the multiplet name (field_) and the index
of the particle in the multiplet (gen_) as first argument, as in the previous example. Furthermore,
we’d like to be able to select a subset of the full one-loop contribution. To achieve this, we provide
a second parameter (contr_) which we will use later to only calculate a certain part of the full
one-loop self-energy. In general, a fermion self-energy can be split into different covariants involving
left-handed or right-handed projection operators PL,R and possibly the covariant /p, where pµ is
the external fermion momentum. Let us in this example for simplicity output only the coefficients
of the two covariants /pPL and /pPR, so we choose an array of length 2. The C++ function needs the
index of the particle in the multiplet (gen) and the model object (model) as arguments.

3.2. Content of the file Oi/WriteOut.m

General case

After the definition of the observable name, type, etc. in the file Oi/Observables.m, one
can now connect the numerical value(s) of the observable to the Les Houches output of the C++

spectrum generator in the file meta/Observables/Oi/WriteOut.m. Currently, there are two au-
tomated ways to output the results of calculations in FlexibleSUSY: via the SLHA (exists since
FlexibleSUSY 1.0) and the FLHA (the usage is explained in this article) formats. Both are de-
fined in the meta/WriteOut.m file, which provides functions to write numbers, arrays or matrices
to specified output blocks.
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In the simplest case the value of an observable Oi[parA, parB, ...] is a single complex
number (see Examples 1–2 below or the ℓi → ℓjγ decay; their Les Houches output is shown in
Sections 3.7.1–3.7.2). If we want to write its real part to the FlexibleSUSYLowEnergy SLHA out-
put block, we define a function called WriteObservable in meta/Observables/Oi/WriteOut.m

as follows:

Listing 9: Content of meta/Observables/Oi/WriteOut.m.

WriteOut`WriteObservable[

"FlexibleSUSYLowEnergy",

obs:FlexibleSUSYObservable`Oi[parA_, parB_, ...]

] := "Re(observables." <> Observables`GetObservableName[obs] <> "(0))";

The first argument to the WriteObservable function is a string with the SLHA output block name
(here: "FlexibleSUSYLowEnergy"), which reflects the SLHA block name in the FlexibleSUSY

model file models/Ma/FlexibleSUSY.m. Since the observable type is a complex-valued array of
length 1 in this example, we have to output the 0-th element of the array (in C++ index convention).
We obtain the real part of the array element by applying the Re function.

As another example we consider the output of the real parts of several Wilson coefficients (see
also Example 3 below and its Les Houches output in Section 3.7.3). This requires a more involved
definition of the function WriteObservable:

Listing 10: Content of meta/Observables/Oi/WriteOut.m to output the real parts of several Wilson coefficients.

WriteOut`WriteObservable[

"FWCOEF", (* Or "IMFWCOEF" with Re below replaced with Im *)

obs:FlexibleSUSYObservable`Oi[parA_, parB_, ...]

] :=

StringReplace[

{

"fermions1, operator1, Oalpha1, Oalphas1, contributions1, num_value, \"comment1\"",

"fermions2, operator2, Oalpha2, Oalphas2, contributions2, num_value, \"comment2\"",

...

},

{

"num_value" -> "Re(observables." <> Observables`GetObservableName[obs] <> ")",

...

}

];

We define the function WriteObservable to write the real parts of the Wilson coefficients to the
FWCOEF Les Houches output block.7 The return value of WriteObservable is a list of strings, with
each string consisting of a comma-separated tuple of a fermion name (fermions1), an operator
name (operator1), etc., which should be replaced by appropriate values. See Ref. [21] for a
description of the FLHA format. The numbering convention for the FLHA format in FlexibleSUSY

is the following: Wilson coefficients must occupy the positions from the end of the C++ output
array. In the definition of the function WriteObservable the substring "num_value" is replaced

7If the imaginary parts of the Wilson coefficients shall be written to the output, one should use "IMFWCOEF" as
block name and replace Re with Im.
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by the real parts of the Wilson coefficients (accessed via GetObservableName) via the function
StringReplace. Note that there is no need to explicitly specify the numbering of the Wilson
coefficients in the replacement rule for "num_value", as it is done automatically.

3.2.1. Example 1: output a given number

We continue our minimal Example 1 from Section 3.1.1, where the observable is defined to
just be a user-defined numeric constant specified in the FlexibleSUSY model file. The second
step is to connect the numeric value of the observable to the SLHA (or FLHA) format, which is
the output of the spectrum generator. This is done by the following definition placed in the file
meta/Observables/ExampleConstantObservable/WriteOut.m:

Listing 11: Content of ExampleConstantObservable/WriteOut.m.

WriteOut`WriteObservable[

"FlexibleSUSYLowEnergy",

obs:FlexibleSUSYObservable`ExampleConstantObservable[_]

] := "Re(observables." <> Observables`GetObservableName[obs] <> "(0))";

As the first argument of the function WriteObservable shows, the numeric value of the observable
is written to the SLHA output block FlexibleSUSYLowEnergy, which matches a corresponding
definition in the model file models/Ma/FlexibleSUSY.m. The function returns a string (which
must be valid C++ syntax), where we take the real part of the first entry from the array of length 1,
where the observable is stored (with the zero-based index convention in C++). Since for the output
no information about the observable is needed, one uses the _ pattern in the specification of
ExampleConstantObservable. The code listing above leads to the usage of the C++ parser for
the SLHA format named FORMAT_ELEMENT, see Listing 4.

3.2.2. Example 2: show fermion masses

Now we turn back to Example 2 from above and connect our observable (two given fermion
masses) to the output of the spectrum generator. Similarly to Example 1, one creates the file
meta/Observables/ExampleFermionMass/WriteOut.m and places the definitions of the function
WriteObservable there. In this example we would like to output two different masses at the same
time. To store them internally, we have defined the observable type to be an array of length 2, see
the specification of GetObservableType in line 3 of Listing 7. To write the two fermion masses
to the output, one could do the following:

Listing 12: Content of ExampleFermionMass/WriteOut.m.

WriteOut`WriteObservable[

"FlexibleSUSYLowEnergy",

obs:FlexibleSUSYObservable`ExampleFermionMass[_]

] := "Re(observables." <> Observables`GetObservableName[obs] <> "(0))";

WriteOut`WriteObservable[

"ExampleLeptonMass",

obs:FlexibleSUSYObservable`ExampleFermionMass[_]

] := "Re(observables." <> Observables`GetObservableName[obs] <> "(1))";

Here, we define two distinct behaviours of our observable with two different Les Houches output
blocks (which must be reflected by appropriately named lists in models/Ma/FlexibleSUSY.m):
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"FlexibleSUSYLowEnergy" and "ExampleLeptonMass". In both cases, definitions lead to the
C++ parser named FORMAT_ELEMENT, see Listing 4. The fermion mass in the first entry of our two-
component observable array is written to the block FlexibleSUSYLowEnergy, while the second
entry is written to the block ExampleLeptonMass. Note that the name of this second block is not
a part of the official SLHA standard, but is a non-standard addition we use for this example.

3.2.3. Example 3: lepton self-energy with NPointFunctions

In Example 3, we aim to output the two components of a lepton self-energy. We can use the
automatic FLHA output format to achieve this:

Listing 13: Content of ExampleLeptonSE/WriteOut.m.

WriteOut`WriteObservable[

"FWCOEF",

obs:FlexibleSUSYObservable`ExampleLeptonSE[_[gen_], _]

] :=

StringReplace[

{

"leptons, 31, 0, 0, 2, num_value, \"left\"", (* P_L *)

"leptons, 32, 0, 0, 2, num_value, \"right\"" (* P_R *)

},

{

"num_value" -> "Re(observables." <> Observables`GetObservableName[obs] <> ")",

"leptons" -> Switch[gen, 0, "1111", 1, "1313", 2, "1515"]

}

];

In the definition of WriteObservable we provided a pattern for the index of the lepton in the
lepton multiplet (gen_) explicitly in the first argument of the observable name ExampleLeptonSE,
because the concrete value of this index must be known to select the appropriate self-energy for
the output.

3.3. Content of the file Oi/FlexibleSUSY.m, simple settings for NPointFunctions

General case

In the previous sections it was described how to define a new observable (done in the file
Observables.m) and how to write the numeric value of the observable to the Les Houches output of
the spectrum generator (defined in the file WriteOut.m). In this section we describe how to generate
the content of the C++ function, that calculates the numeric value of the observable. This C++

function is defined in the C++ template files located in templates/observables/, which contains
placeholders that are replaced by expressions to calculate the observable. The rules that specify
how to replace the placeholders by appropriate expressions are defined in the observable-specific
file meta/Observables/Oi/FlexibleSUSY.m. This file contains at least the function WriteClass,
which performs the following tasks:

1. Fill the C++ templates from templates/observables/ with appropriate C++ code.

2. Move the filled C++ templates into models/Ma/observables/.

The following source code listing shows an example for the function WriteClass that does
some basic replacements that we will explain in the following:
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Listing 14: General content of meta/Observables/Oi/FlexibleSUSY.m.

1 FlexibleSUSY`WriteClass[obs:FlexibleSUSYObservable`Oi, allObs_, files_] :=

2 Module[

3 {

4 observables = DeleteDuplicates[Cases[Observables`GetRequestedObservables[allObs], _obs]],

5 prototypes = {}, definitions = {},

6 npfHeaders = "", npfDefinitions = {}, cxxVertices = {}

7 },

8

9 If[observables =!= {},

10 Utils`PrintHeadline["Creating " <> SymbolName[obs] <> " class ..."];

11

12 prototypes = TextFormatting`ReplaceCXXTokens[

13 "@type@ @prototype@;",

14 {

15 "@type@" -> CConversion`CreateCType[Observables`GetObservableType[#]],

16 "@prototype@" -> Observables`GetObservablePrototype[#]

17 }

18 ] &/@ observables;

19

20 (* Task 1: filling definitions *)

21 ];

22

23 (* Task 2: filling templates and moving them into models/Ma/observables/ *)

24 WriteOut`ReplaceInFiles[

25 files,

26 {

27 "@npf_headers@" -> npfHeaders,

28 "@npf_definitions@" -> StringRiffle[DeleteDuplicates[npfDefinitions], "\n\n"],

29 "@calculate_prototypes@" -> StringRiffle[DeleteDuplicates[prototypes], "\n\n"],

30 "@calculate_definitions@" -> StringRiffle[DeleteDuplicates[definitions], "\n\n"],

31 "@include_guard@" -> SymbolName[obs],

32 "@namespace@" -> Observables`GetObservableNamespace[obs],

33 "@filename@" -> Observables`GetObservableFileName[obs],

34 Sequence @@ FlexibleSUSY`Private`GeneralReplacementRules[]

35 }

36 ];

37

38 (* Task 3: returning something to the outside world *)

39 {

40 "for_outside_usage1" -> ...,

41 "for_outside_usage2" -> ...,

42 ...

43 }

44 ];

The function WriteClass has three parameters: the explicit name of the observable (obs), the
list of all observables that are requested — by the variable ExtraSLHAOutputBlocks from the
file models/Ma/FlexibleSUSY.m — to be calculated (allObs_), and a list of the C++ template
file names, where the replacements should be performed, and the corresponding output file names
(files_).

The body of the function WriteClass consists of three parts:

1. The first part is the If statement, where all C++ expressions are created (Task 1 as indicated
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in the listing above). In general, we are interested in defining one observable Oi unified by
similar calculations, e.g. we define one observable Oi for the set of processes ℓi → ℓjℓkℓc

k

instead of multiple observables µ → 3e, τ → 3µ, etc. Then, we enable specific realizations
of Oi in ExtraSLHAOutputBlocks, see also explicit examples in Listing 31 and 35. So, we
start with selecting unique realizations of chosen Oi from all allObs and storing them into
observables. Then, inside If statement we make changes to the C++ code generation based
on the possible realization-specific features (e.g. the process τ → 3µ might require additional
contributions, compared to µ → 3e). Changes in C++ prototypes stored in the variable
prototypes are handled automatically due to the function WriteObservable, see Listing 5,
while the C++ definitions in the variable definitions usually require manual coding, see
Listings 16–18. In the above example source code listing prototypes strings are created by
replacing the "@type@" and "@prototype@" tokens by the observable’s C++ type and the
prototype of the function that calculates the numeric value of the observable, respectively.

2. In the second part (Task 2 indicated in the listing) the C++ tokens ("@npf_headers@",
"@npf_definitions@", etc.) are replaced in the C++ template files (files) that are passed
to the function with the help of the ReplaceInFiles function.

3. The third part (Task 3) is to specify the function’s returned expression. In the example
above the function returns a list of replacement rules, whose use is described below.

Note that in Task 2 the tokens in the C++ template files can be replaced by strings that
can in principle be arbitrarily large. However, we recommend to put as much generic
information as possible into the C++ template files and replace the tokens in the tem-
plate files only by model-specific information. For the latter we recommend to use the full
power of FlexibleSUSY’s helper routines and functions located in meta/TextFormatting.m,
meta/CConversion.m and meta/Utils.m. We refer the reader also to Section 3.5, where we
describe the NPointFunctions extension and how one can use it to generate C++ code for
amplitudes.

The expression returned by the WriteClass function (Task 3) should be a list of replacement
rules, which gets stored internally in the variable ObservablesExtraOutput["Oi"]. The replace-
ment rules stored in the returned list can be accessed and re-used later, if needed. For example,
one can access expression stored in the rule defined in line 40 from Listing 14 as follows:

Listing 15: Accessing an expression returned by the WriteClass function.

expr = Cases[ObservablesExtraOutput["Oi"], ("for_outside_usage1" -> res_) :> res];

Besides the possible manual re-use of the returned expressions, FlexibleSUSY automatically per-
forms the following two tasks with the returned list of replacement rules:

1. If there exists a replacement rule of the form "C++ vertices" -> list1, then the expres-
sion list1 must be a list of vertices that are required to calculate the observable. Each
vertex is represented by a list of SARAH fields, e.g. {bar[Chi], Chi, VP} in the MRSSM
(represents the χ̄0

aχ0
bγ vertex with two neutralinos and a photon). For each required ver-

tex FlexibleSUSY creates a corresponding C++ function for its numerical evaluation when
calculating the numeric value of the observable.
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Usage

NPointFunction[..., Optioni -> Valuej]

Option Values Hints

Regularize MSbar, DRbar Corresponds to FormCalc`Dimension: D, 4; can be
overriden by regularization setting

ZeroExternalMomenta True, False,
OperatorsOnly,
ExceptLoops

External momenta and mass treatment

OnShellFlag True, False Usage of on-shell external particles

UseCache True, False Cache usage

Observable None or Oi[] Mode of NPointFunctions: simple or advanced,
that enables Oi/NPointFunctions.m

KeepProcesses For Observable -> None, see allowed values in
the function GetExcludeTopologies in the file
meta/NPointFunctions/Topologies.m

LoopLevel 0 or 1 Loop level, FormCalc limitation

Table 4: Mandatory options for the function NPointFunction, see the function CheckOptionValues in
meta/NPointFunctions.m file for allowed values, and meta/Observables/Oi/FlexibleSUSY.m files for examples.

2. If there exists a replacement rule of the form "C++ replacements" -> list2, then the
expression list2 must be a list of replacement rules that should be applied to all C++ template
files, see Appendix B.3 for an example.

Enabling optional NPointFunctions extension, simple settings

If the observable relies on tree-level or one-loop level Feynman diagrams then there is an auto-
mated way to generate them in FlexibleSUSY with the help of the NPointFunctions extension
already announced in Ref. [15]. NPointFunctions is typically used from within the WriteClass

function. Internally, the extension calls FeynArts [16], FormCalc [17], and ColorMath [18] to
generate analytic expressions and converts them into C++ form for their numeric evaluation in
FlexibleSUSY. It thus allows access to Feynman diagrammatic computations in the definition of
observables.

NPointFunctions can be used in two modes which we will refer to as simple and advanced
modes. The modes differ by the accessible settings. Both types of settings serve to modify the calls
of the FeynArts and FormCalc routines: In the simple mode only the settings listed in Table 4
are accessible, which allow topology-indepedent modifications. The advanced mode allows many
more settings, enabling in particular to select specific option values for selected topologies. In
the present section, we focus on the simple settings from Table 4. These simple settings are also
illustrated with the help of Example 3 in Section 3.3.3. Later, the advanced settings are explained
in detail in Section 3.5 and exemplified in an extra Section 3.5.7.

ZeroExternalMomenta can currently be True, False, OperatorsOnly, and ExceptLoops. This
option also specifies the way external masses should be treated for specific topologies, fermions
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bispinors, and in loop integrals. If set to True, all external momenta are set to zero every-
where, while if set to ExceptLoops, the scalar products in loop integrals are kept. This
allows one to correctly implement the expressions for self-energy-like diagrams relevant for
CLFV processes in particular.

UseCache stores the FeynArts and NPointFunctions output for future usage, if enabled. This
speeds up the code generation if model/Ma/ is purged or parts of the meta code are modified.

KeepProcesses specifies the mode of NPointFunctions. There are two modes to calculate an
amplitude: using simple settings only (Observable -> None) and with the help of advanced
ones defined in meta/Observables/Oi/NPointFunctions.m files (Observable -> Oi[]),
see Section 3.5.8

3.3.1. Example 1: output a given number

Each observable undergoes various calculational steps before being evaluated into an actual
numerical result. In general, the definitions of the calculational steps are distributed between the
Wolfram Language file meta/Observables/Oi/FlexibleSUSY.m and the C++ template files dis-
cussed. Specifically, the WriteClass function in the FlexibleSUSY.m file is supposed to generate
model-specific expressions to be placed into C++ template files from Section 3.4.1. As stated be-
fore, in general it is recommended to put as much information as possible into the C++ template
files and keep the WriteClass function minimal. In case of Example 1, however, the example is
so simple that we would like WriteClass to generate the complete C++ code for all calculations
(just output a number in this case), thus the C++ template files will not contain much code. This
code generation is done with the definition of Task 1 and Task 3 in the WriteClass function (by
replacing line 20 and line 38 in Listing 14) as follows:

Listing 16: Content of ExampleConstantObservable/FlexibleSUSY.m.

1 (* Task 1: generate function definition by replacing tokens by concrete C++ code *)

2 definitions = TextFormatting`ReplaceCXXTokens["

3 @type@ @prototype@ {

4 @type@ res {num};

5 return res;

6 }",

7 {

8 "@type@" -> CConversion`CreateCType[Observables`GetObservableType[#]],

9 "@prototype@" -> Observables`GetObservablePrototype[#]

10 }

11 ] &/@ observables;

12

13 ...

14

15 (* Task 3: return an empty list *)

16 {}

8The simple mode with the simple settings discussed here was developed mainly to allow users a simple starting
point. It is also used in unit testing of FlexibleSUSY. Currently, FlexibleSUSY performs unit tests of self-energy
expressions in the SM/MSSM and Z-boson penguins in the MRSSM. It is also used in Example 3 to demonstrate
the basic usage of the NPointFunctions package and can serve to write the first iterations of the code that relies
on NPointFunctions. Typically, the code for actual physics observables such as the ones discussed in Section 2 will
use the advanced settings of NPointFunctions.
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In the above source code listing the variable definitions is defined to contain the entire definition
of the function that calculates the observable (including function body). It is generated by replacing
the @type@ token by the concrete C++ type Eigen::Array<std::complex<double>,1,1> and the
function name @prototype@ (including its argument double num) as specified by the definitions
of Section 3.1.1 in a generic string. In the body of the function, we initialize a local variable res

of type @type@ and set its value to the value of num. The value of res is then returned to further
fill the SLHA block entries. The final function definition in the definitions variable will be used
later in Section 3.4.1 together with the C++ template files to construct the complete C++ code to
output the numerical value of the observable.

The WriteClass function finally returns an empty list (Task 3), because we do not need any
of the defined expressions anywhere else in this example.

Note that the function definition generated in Task 1 is later put into the C++ template files in
templates/observables/ an is thus closely connected to their content, as shown in Section 3.4.1.

3.3.2. Example 2: show fermion masses

Now we return to Example 2 where we output fermion masses. In this example we follow the
general recommendation to put as much C++ code as possible into the C++ template files and as
little as possible into FlexibleSUSY.m. Thus, in this example we fill the following code into the
WriteClass function in the FlexibleSUSY.m file of Listing 14:

Listing 17: Content of ExampleFermionMass/FlexibleSUSY.m.

(* Task 1: generate function definition by replacing tokens by concrete C++ code *)

definitions = TextFormatting`ReplaceCXXTokens["

@type@ @prototype@ {

return forge<@type@, fields::@fermion@>(gen, model, qedqcd);

}",

{

"@fermion@" -> SymbolName[Head[First[#]]],

"@type@" -> CConversion`CreateCType[Observables`GetObservableType[#]],

"@prototype@" -> Observables`GetObservablePrototype[#]

}

] &/@ observables;

...

(* Task 3: return an empty list *)

{}

Again, the variable definitions contains the definition for each C++ function for the observable
calculation of the function that calculates the numerical value of the observable. This function has
the name and type that were specified via GetObservablePrototype and GetObservableType,
respectively. In this example the function body contains only a single line, which contains a call
of the template function forge. By this call we delegate the computation of the observable to
the forge function, which is defined entirely at the C++ level in Section 3.4.2. The same strategy
is applied in several of the predefined observables discussed in Section 2 such as ℓi → ℓjℓkℓc

k or
µ–e conversion. The template parameter fields::@fermion@ of the forge function above is an
internal C++ type that represents the fermion whose mass shall be output (in the MRSSM, for
example, the token @fermion@ is replaced by Fe).
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Again, we do not want to use any expressions defined in the WriteClass function anywhere
else, so we return an empty list from the function (Task 3).

3.3.3. Example 3: lepton self-energy with NPointFunctions (Observable -> None)

This example illustrates the use of the NPointFunctions extension of FlexibleSUSY. We will
use the NPointFunctions extension in the simplified mode, where we do not make use of the
advanced settings in NPointFunctions.m and just specify the option Observable -> None. The
following code snippet shows the content of the WriteClass function:

Listing 18: Content of ExampleLeptonSE/FlexibleSUSY.m with the option Observable -> None.

1 (* Task 1: generate function definition by replacing tokens by concrete C++ code *)

2

3 (* Task 1a: delete duplicates and ignore fermion generation index *)

4 observables = DeleteDuplicates[observables /. f_[_Integer] :> f[_]];

5

6 (* Task 1b: run NPointFunction *)

7 Module[{field, contr, npf, basis, name},

8 field = Head[First[#]];

9 contr = Last[#];

10 npf = NPointFunctions`NPointFunction[

11 {field}, (* Incoming particles *)

12 {field}, (* Outgoing particles *)

13 NPointFunctions`UseCache -> False,

14 NPointFunctions`OnShellFlag -> True,

15 NPointFunctions`ZeroExternalMomenta -> True,

16 NPointFunctions`LoopLevel -> 1,

17 NPointFunctions`Regularize -> FlexibleSUSY`FSRenormalizationScheme,

18 NPointFunctions`Observable -> None,

19 NPointFunctions`KeepProcesses -> {Irreducible}

20 ];

21

22 basis =

23 {

24 "left_wilson" -> NPointFunctions`DiracChain[SARAH`DiracSpinor[field[{SARAH`gt2}], 0,

→֒ 0], 7, SARAH`DiracSpinor[field[{SARAH`gt1}], 0, 0]],

25 "right_wilson" -> NPointFunctions`DiracChain[SARAH`DiracSpinor[field[{SARAH`gt2}], 0,

→֒ 0], 6, SARAH`DiracSpinor[field[{SARAH`gt1}], 0, 0]]

26 };

27

28 npf = WilsonCoeffs`InterfaceToMatching[npf, basis];

29 name = "se_irr";

30

31 AppendTo[cxxVertices, NPointFunctions`VerticesForNPointFunction[npf]];

32 AppendTo[npfDefinitions, NPointFunctions`CreateCXXFunctions[npf, name, Identity, basis

→֒ ][[2]]];

33 AppendTo[definitions,

34 TextFormatting`ReplaceCXXTokens["

35 @type@ @prototype@ {

36 const auto npf = npointfunctions::@name@(model, {gen, gen}, {});

37 return {npf[0], npf[1]};

38 }",

39 {

40 "@type@" -> CConversion`CreateCType[Observables`GetObservableType[#]],

41 "@prototype@" -> Observables`GetObservablePrototype[#],
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42 "@name@" -> name

43 }

44 ]

45 ];

46 ] &/@ observables;

47

48 (* Task 1c: obtain list of C++ header files *)

49 npfHeaders = NPointFunctions`CreateCXXHeaders[];

50

51 ...

52

53 (* Task 3: returning something to the outside world *)

54 {"C++ vertices" -> Flatten[cxxVertices, 1]}

First of all, as NPointFunctions returns the same code for different generations of external parti-
cles, we remove potential duplicates by replacing integer generation with the _ pattern for simplicity
(it could have been any symbol or number), see Task 1a.

Afterwards, we run NPointFunctions (Task 1b) to generate the relevant C++ code, and all
required C++ vertices. For this we create a local function (defined as a Module), which we map to
all observables in the observables list. Note, however, that in more involved calculations it may
be better to define a non-local, separate function to process all observables, instead of a local
one via a Module, as done here. The local function to obtain the C++ code to numerically evaluate
the observable(s) stores its results in the following local variables:

field represents the lepton particle that we specify in the definition of the observable (like Fe for
example in the SM or MRSSM).

contr contains an expression that allows one to select certain contributions from the self-energy
that should be output. In this example we do not make use of this selection feature. See
Section 3.5.7 for an advanced example.

npf contains the main result of NPointFunctions: an object with generic amplitudes and, some-
times, replacement rules. See Table 4 for a list of all possible options. In this example,
we calculate the Fe -> Fe amplitude, from which we will extract the self-energy (note
that the outgoing particle is typed as Fe and not bar[Fe]). We do not store the re-
sults in the cache. OnShellFlag is used internally by the option FormCalc`OnShell for
the function FormCalc`CalcFeynAmp. ZeroExternalMomenta is passed to the function
FormCalc`OffShell. The loop level is specified explicitly to be 1. The renormalization
scheme is decided to be set by FlexibleSUSY.

We chose a simple operation mode of the NPointFunctions extension by setting Observable

-> None. This implies, that no optional file Oi/NPointFunctions.m with advanced settings
is used, see Section 3.5 for more details and the usage example in Section 3.5.7. The option
KeepProcesses allows selecting certain topologies, provided by the list of default values
within the function GetExcludeTopologies in meta/NPointFunctions/Topologies.m.
To extend this list, we refer to the usage of FeynArts`$ExcludeTopologies.

name contains the C++ name of NPointFunctions-generated function that calculates the numerical
value of the observable.
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basis is a list of replacement rules to extract certain sub-expressions of the amplitude and store
them in local C++ variables. The rhs. of each replacement rule defines the expression, whose
prefactor should be extracted. The lhs. defines the name of the C++ variable in which this
prefactor shall be stored. Note that patterns are currently not supported to select the sub-
expression. The replacement rules stored in the basis variable should be passed to the
InterfaceToMatching function, which performs the extraction of the prefactors.9

cxxVertices contains the list of all vertices that are required to numerically calculate the ob-
servable. They have to be returned from the WriteClass function (see Task 3), because
FlexibleSUSY stores the C++ code for the vertices in other files.

npfDefinitions contains strings with all generated amplitude-related C++ functions required for
the numerical evaluation of the amplitude. The function CreateCXXFunctions converts the
NPointFunctions object into C++ code. The user provides the name of the C++ function and
specifies which color structures are expected (Identity or SARAH`Delta).

definitions contains the C++ function that calculates the numerical value of the observable with
the help of C++ code created by the NPointFunctions extension. The function body consists
of a call to the generated irr_se function (the function name is stored in the name variable),
to which the model parameters (model object) and the indices of the incoming and outgoing
particles (both are gen here) are passed. The last argument contains the set of momenta of
the external particles. In the current implementation external momenta are assumed to be
zero and so the last function argument should be an empty initializer list {}.

Since basis contains two replacement rules that define prefactors of certain Lorentz struc-
tures, irr_se will return a two-valued array. The generated function eventually returns the
two components of this array.

In Section 3.5.7 the example described here is extended to use advanced NPointFunctions options.

3.4. Content of the C++ template files

General case

The function WriteClass defined in the file meta/FlexibleSUSY.m in the previous section
fills C++ templates with model-specific information, and places the resulting files into the directory
models/Ma/. The content of the C++ template files is discussed in this section.

For each observable one has to create two C++ template files in the templates/observables

directory: a .hpp.in and .cpp.in file. These files may contain the tokens that are replaced by
the WriteClass function. The following two source code listings show generic examples of these
template files:

9Sometimes the question arises how to know the exact form of the expressions in basis? As a practical recom-
mendation, one can place the Print[npf]; statement right before the definition of basis and then iteratively run
FlexibleSUSY several times to figure out the exact form of the basis elements. In general, they have to explicitly
represent the structures, no patterns are supported here at this moment.
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Listing 19: General content of C++ header template templates/observables/@Oi_filename@.hpp.in.

#ifndef @ModelName@_@include_guard@_H

#define @ModelName@_@include_guard@_H

#include "lowe.h"

// Auxiliary #include directives could come here

namespace flexiblesusy::@namespace@ {

// Auxiliary observable-specific expressions could come here

// declaration of the function that calculates the observable

@calculate_prototypes@

} // namespace flexiblesusy::@namespace@

#endif

Listing 20: General content of C++ definitions template templates/observables/@Oi_filename@.cpp.in.

#include "@ModelName@_mass_eigenstates.hpp"

#include "cxx_qft/@ModelName@_qft.hpp"

#include "@ModelName@_@filename@.hpp"

@npf_headers@

// Auxiliary #include directives could come here

namespace flexiblesusy {

namespace @ModelName@_cxx_diagrams::npointfunctions {

@npf_definitions@

} // namespace @ModelName@_cxx_diagrams::npointfunctions

using namespace @ModelName@_cxx_diagrams;

namespace @namespace@ {

// Auxiliary observable-specific expressions could come here

// Definition of the function that calculates the observable

@calculate_definitions@

} // namespace @namespace@

} // namespace flexiblesusy

Both template files contain C++ tokens (e.g. @calculate_definitions@) to be replaced by
the WriteClass function, defined in FlexibleSUSY.m during FlexibleSUSY’s meta phase. For
example, @npf_headers@ will be replaced with the content of npfHeaders and similar for other
tokens, see lines 27–34 of Listing 14. If no replacement rule for a token is found, the token is
replaced by an empty strings.

The numerical calculation of the observable might require more C++ auxiliary functions or
classes. To use extra functions/classes one could add appropriate preprocessor #include directives.

Note again, that there is some freedom to move code between the Oi/FlexibleSUSY.m and
@Oi_filename@.cpp.in files. However, as stated before, we recommend to move as much C++
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code as possible into the dedicated directory templates/observables/, as C++ source code is
often more robust compared to Wolfram Language scripts due to static type checking.

3.4.1. Example 1: output a given number

To output a single number we create two C++ template files in templates/observables/, as
stated above. They will be filled by the WriteClass function defined in FlexibleSUSY.m created
in Section 3.3.1. The content of the header template file example_constant_observable.hpp.in
is the same as in general Listing 19. In principle, we can fill the C++ definitions template file with
the default content provided in Listing 20. Nevertheless, as we do not use the NPointFunctions

module for the observable calculation (realized with lines 3–6 in Listing 16), we can simplify the
file as follows:

Listing 21: Content of C++ definitions template example_constant_observable.cpp.in.

#include "@ModelName@_@filename@.hpp"

namespace flexiblesusy::@namespace@ {

@calculate_definitions@

} // namespace flexiblesusy::@namespace@

In this file, the template C++ token @calculate_definitions@ will be replaced with the content
of the variable definitions defined in the file Oi/FlexibleSUSY.m described in Section 3.3.1. In
this way, during the meta phase of FlexibleSUSY the complete C++ code will be generated for
the function calculate_example_constant_observable (defined in Listing 6) which outputs
the number num. We do not need to provide any additional observable-specific code, as every-
thing is already provided by the WriteClass function in Oi/FlexibleSUSY.m during the Wolfram
Language meta phase.

3.4.2. Example 2: show fermion masses

As stated above, we need to provide two C++ template files in templates/observables/. They
will be filled during the FlexibleSUSY meta phase and embedded into the rest of the C++ spectrum
generator. In this example the content of the template header file example_fermion_mass.hpp.in
is the same as in the general Listing 19. The template file example_fermion_mass.cpp.in, how-
ever, contains two changes compared to the generic example from Listing 20. First of all, all
commands related to NPointFunctions can be omitted, since we do not use Feynman diagram-
matic calculations in this example (like in Example 1). Apart from this, our goal with this example
is to demonstrate how one can move as many calculations as possible to the C++ template file, while
keeping the flexibility to insert model-specific information. As discussed in Section 3.3.2, we pre-
pared for this by having a minimal function body defined on the Wolfram Language level in the file
ExampleFermionMass/FlexibleSUSY.m, where the function body only calls another C++ function
named forge. This function shall now be defined. The following source code listing shows the
content of the C++ template file that contains this definition:10

10Instead of the switch statement one can also use qedqcd.displayLeptonPoleMass(idx);.
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Listing 22: Content of C++ definitions template example_fermion_mass.cpp.in.

#include "@ModelName@_mass_eigenstates.hpp"

#include "cxx_qft/@ModelName@_qft.hpp"

#include "@ModelName@_@filename@.hpp"

#include "error.hpp"

namespace flexiblesusy {

using namespace @ModelName@_cxx_diagrams;

namespace @namespace@ {

template <typename RTYPE, typename FIELD>

auto forge(int idx, const @ModelName@_mass_eigenstates& model, const softsusy::QedQcd& qedqcd)

{

context_base context {model};

auto context_mass = context.mass<FIELD>({idx});

std::complex<double> lepton_mass;

switch (idx) {

case 0: lepton_mass = qedqcd.displayPoleMel();

break;

case 1: lepton_mass = qedqcd.displayPoleMmuon();

break;

case 2: lepton_mass = qedqcd.displayPoleMtau();

break;

default: throw OutOfBoundsError("fermion index out of bounds");

}

RTYPE res {context_mass, lepton_mass};

return res;

}

@calculate_definitions@

} // namespace @namespace@

} // namespace flexiblesusy

In the code listing above, the template C++ token @calculate_definitions@ will be replaced by
the content of the variable definitions, defined in the ExampleFermionMass/FlexibleSUSY.m

file in Section 3.3.2, which calls the forge function. The forge function defined above illustrates
how to access two different types of particle masses. First, the running MS/DR mass of the
fermion specified by FIELD and idx (which can correspond to, e.g. Fe[2] or Fd[3] at the Wolfram
Language level in the selected BSM model) is obtained by calling the mass function template.
Afterwards, the pole mass of the SM lepton of generation idx is obtained from the qedqcd object.
The forge function finally returns an array of length 2 containing these two masses.

3.4.3. Example 3: lepton self-energy with NPointFunctions

As in the examples above, we have to create two C++ template files that are responsible for the
numerical calculation of the observable. This example uses NPointFunctions to generate analyt-
ical expressions for the self energies, but it is otherwise a structurally simple example. Hence, like
in Example 1 (but unlike Example 2) we do not delegate computations to a forge function; rather,
the main definition of the observable is done by the function WriteClass in FlexibleSUSY.m cre-
ated in Section 3.3.3. For this reason we use the C++ template files given in Listing 19–20 without
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Option Usage Purpose and hints

topologies See Table 6 Select topologies based on adjacency matrices

diagrams See Table 7 Exclude contribution based on generic fields

amplitudes See Table 7 Remove contribution based on class insertions

chains See Table 8 Specify operators to neglect

order See Section 3.5.5 Select fermion order

sum See Section 3.5.6 Define particle generations to skip on the C++ level

regularization See Section 3.5.6 Change scheme for a specified topologies

momenta See Section 3.5.6 Eliminate given external momenta for a given topology

mass See Section 3.5.6 Treat masses in an selected way

Table 5: Purpose of all available advanced settings and their usage.

any changes in this example. Note that these general template files are generally appropriate for
observables that use the NPointFunctions extension, hence we can keep the present subsection
very short.

We recall that in this example we use NPointFunctions in the simple mode specified by the
option Observable -> None; the example will be continued in Section 3.7.3, which shows how to
enable and use the computation of the self-energy in a concrete spectrum generator. An alternative
version of the example is provided in Section 3.5.7, where the example is modified to illustrate the
use of the advanced settings of NPointFunctions.

3.5. Content of the optional file Oi/NPointFunctions.m, advanced settings

The NPointFunctions extension allows to generate Feynman diagrammatic calculations to
obtain analytical expressions for observables in any specific model Ma when the FlexibleSUSY meta
phase is executed. The simple usage of NPointFunctions was demonstrated in Section 3.3.3, but
frequently it is necessary to fine-tune calculations done with NPointFunctions. Such a fine-tuning
is possible via advanced settings of NPointFunctions explained in this section. It may involve
the selection of subsets of Feynman diagrams, remove contributions, selecting the regularization
scheme, or specifying the fermion order in e.g. four-fermion amplitudes. Parts of the fine-tuning
may be accessible to users of the observable (such as the arguments Vector, Scalars, etc. of
observables in Tables 2–3), other parts may be found only in the definition of the advanced settings.

In the following we begin by explaining how to enable the advanced settings and giving an
overview, then we will explain all advanced settings and finally provide an example.

3.5.1. Enabling advanced settings, overview

We begin by explaining how to enable and access the advanced settings when setting up the
definition of an observable. The NPointFunctions extension is called from the observable-specific
file Oi/FlexibleSUSY.m discussed in Section 3.3. Listing 18 combined with Listing 14 provides
an example for using NPointFunctions in its simple mode without advanced settings. To use the
advanced mode, this file must be modified as follows:
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Listing 23: Modifications in Oi/FlexibleSUSY.m for the option Observable -> Oi[].

1 (* Instead of lines 18 and 19 in Listing 18 *)

2 NPointFunctions`Observable -> obs[],

3 NPointFunctions`KeepProcesses -> If[Head[contr] === List, contr, {contr}]

Here the line Observable -> Oi[] enables the advanced settings (note that the variable obs was
defined in the first line in Listing 14). This option requires the existence of the corresponding file
meta/Observables/Oi/NPointFunctions.m which should contain the detailed advanced settings
described further below.

The second line defines the option KeepProcesses via the variable contr (instead of the
hard-coded value Irreducible in Listing 18) and opens up an important way to access advanced
settings. To explain the meaning of this line we briefly recall the overall structure of setting up an
observable. From the user’s perspective, an observable ultimately is called as described in Section 2,
and observables may have options contr, see e.g. Tables 2–3, with possible values being a keyword
or a list of keywords such as Vectors, Scalars, Boxes, etc. Using these options influences how
the observable is evaluated. The definition of such keywords and how they influence the observable
is part of the advanced settings of NPointFunctions.

Using such a contr option has to be prepared in the file Oi/Observables.m as exemplified
in Section 3.1.3 by specifying the appropriate argument in the definition of the observable. Via
line 9 of Listing 18 and line 3 of Listing 23 the variable contr propagates into the option of
KeepProcesses. The construction in the code makes sure that the option is always a list.

The advanced settings are listed in Table 5 and explained in detail in the following Sec-
tions 3.5.2–3.5.6. As an overview, NPointFunctions relies on FeynArts and FormCalc to pro-
duce Wolfram Language expressions for model-specific class-level amplitudes, and the advanced
settings fine-tune the calls to FeynArts and FormCalc routines, so familiarity with these tools is re-
quired to some extent.11 Among the advanced settings, topologies, diagrams and amplitudes

can be used to define the keywords which can be set by users as values of contr as explained
above; these keywords then influence the execution of the functions FeynArts`CreateTopologies,
FeynArts`InsertFields, and FormCalc`CalcFeynAmp. The further advanced settings influence
the calls to FeynArts and FormCalc and manipulate their output in ways which are fixed for the
observable and can be influenced only by directly modifying the file Oi/NPointFunctions.m.

3.5.2. topologies

The observable calculation by the NPointFunctions extension starts from the generation of
topologies. It is possible to select particular topologies in the calculation by using the option
KeepProcesses in line 3 of Listing 23 as explained above. The possible values of contr are (lists
of) keywords: Vectors, Scalars, TreeLevelSChannel, etc.

In this section we focus on how to define such keywords, generally now called Contributioni,
and to associate them with topologies of Feynman diagrams. Table 6 shows the required com-
mand in the file Oi/NPointFunctions.m. It connects each keyword Contributioni with certain

11Nevertheless, due to C++ template capabilities, we use these packages in a non-standard way. For example, the
particle content of the model, vertices, and masses are stored as C++ structures. This allows the C++ compiler to
substitute all particle classes and sum over generation indices. Thus, the amplitudes are modified before the usage
of FormCalc to avoid particle-level computations. In addition, all color factors for amplitudes are computed with
ColorMath.
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Usage

topologies[LoopNumber] = {

Contributioni -> TopologyNamej,

...

};

Abbreviation Values Hints

LoopNumber 0 or 1 FormCalc limitation

Contributioni ∀ Symbol

Symbols for CLFV observables: contr in Tables 2–3

Synonyms: in Oi/FlexibleSUSY.m

Connection to topologies: in Oi/NPointFunctions.m

TopologyNamej ∀ Symbol Definitions in meta/NPointFunctions/Topologies.m

Table 6: Syntax and options values for topologies.
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(b) Adjacency matrix
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0}

(c) NPointFunctions

Figure 2: The connection between FeynArts topology, adjacency matrix, and NPointFunctions name treeS.

topology names. The latter uniquely define topologies by connections to adjacency matrices, as
shown in Figure 2. This explicit naming of topologies is useful, as they can also be used to modify
diagrams and amplitudes, as described in the following subsections.

The name of a topology can be any Wolfram Language symbol that has to be connected
with the actual adjacency matrix. All relevant topology names can be defined in a separate file
meta/NPointFunctions/Topologies.m, as follows:

Listing 24: Example for definitions of topologies (in meta/NPointFunctions/Topologies.m).

AllTopologies[{2, 2}] = {

treeS -> {1,0,1,0,0,1,0,1,0,1,0},

treeT -> {1,0,0,1,1,0,0,1,0,1,0},

treeAll -> {treeS, treeT}

};

Above, the {2, 2} argument represents the number of incoming and outgoing particles. The
definitions are stored in a list of key–value pairs of two kinds:

1. A connection between the user-given name of topology, e.g. treeS, and NPointFunctions

internal representation of this specific topology. It is obtained in a few steps, as follows
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Usage

diagrams[LoopNumber, WhenToApply] = { (* Or amplitudes[...] *)

Contributioni -> {

TopologyNamej -> {Descriptiona, Commandb},

...

},

...

};

Abbreviation Values Hints

LoopNumber 0 or 1 As in Table 6

WhenToApply Present or Absent Apply Commandb for TopologyNamej if Contributioni
is present (absent) in KeepProcesses, see Table 4

Contributioni ∀ Symbol As in Table 6

TopologyNamej ∀ Symbol As in Table 6

Descriptiona ∀ String Printed in the terminal during meta phase

Commandb Special syntax See the text description

Table 7: Syntax and options for diagrams and amplitudes.

from Figure 2. One draws the FeynArts topology with explicit vertex numbers, creates
an adjacency matrix, and eliminates all entries with redundant information: the zero top-
left submatrix representing propagators between external particles, and entries below the
diagonal as the adjacency matrix is symmetric. The rest is combined line by line into a
one-dimensional list that is stored in meta/NPointFunctions/Topologies.m. These steps
are done by the function AdjaceTopology defined there.

2. A connection between a set of simple topologies and their group name, like treeAll. This
is useful to shorten the application of other settings.

If the topology names are defined like this, an example content of the file Oi/NPointFunctions.m
might define the keyword TreeLevelSChannel and associate it to the topology treeS as follows:

Listing 25: Example content of Oi/NPointFunctions.m.

topologies[0] = {

TreeLevelSChannel -> treeS

};

3.5.3. diagrams (generic level modifications)

The keywords Contributioni can also be associated with generic-level field patterns (in
FeynArts nomenclature) to remove certain generic-level fields in the Feynman diagrams. Ta-
ble 7 shows the required command in the file Oi/NPointFunctions.m to define the associations
with field patterns. The logic is the same as for topologies, but the main new ingredient is the
Commandb option. It defines the kind of generic fields that should be removed, and it should be a
pure function which returns True or False and which takes several arguments while traversing the
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tree of FeynArts insertions: FeynArts`TopologyList, the current topology, and the current class
level insertion. Apart from standard Wolfram Language expressions, the following ingredients may
be used to specify Commandb:12

• Fields appearing in tree-parts of diagrams are specified by TreeFields.

• Fields appearing in loops are specified by LoopFields.

• Any generic field of scalar type FeynArts`S, fermion type FeynArts`F or vector boson type
FeynArts`V.

• A specific field, derived from external particles. For example, one can remove from the
diagram fields that correspond to the external particles numbered 1 or 3 with the usage of
the argument FieldPattern[#, 1|3] in the function FreeQ below.

Altogether, an example is given by the setting:

diagrams[1, Present] = {

Vectors -> {penguinT -> {"no 1,3 particles", FreeQ[LoopFields[##], FieldPattern[#, 1|3]]&}}

};

Then, the function call NPointFunction[..., KeepProcesses -> {Vectors}] deletes the dia-
grams with the topology penguinT when the external particles 1, 3 do appear inside the loop. A
second example, demonstrating the Absent mode of WhenToApply, is given by:

1 diagrams[1, Absent] = {

2 Vectors -> {penguinT -> {"no tree vectors", FreeQ[TreeFields[##], FeynArts`V]&}},

3 Scalars -> {penguinT -> {"no tree scalars", FreeQ[TreeFields[##], FeynArts`S]&}}

4 };

In this way, if KeepProcesses -> {Vectors} is specified (thus Scalars is not specified), the
third line of the listing applies and eliminates diagrams of penguinT topology which contain scalar
particles in their tree-level parts.

3.5.4. amplitudes (class level modifications)

Often, modifications on the level of topologies and generic-level amplitudes allowed by the
topologies and diagrams settings, together with other options of Table 4, provide sufficient fine-
tuning. Sometimes, however, removing amplitudes on the classes-level is required. This is possible
via specifying the amplitudes[LoopNumber, WhenToApply] setting. The syntax is identical to
the one of diagrams and given in Table 7. As an example, amplitudes with massless particles
can require special treatment, and the following setting allows to remove them from the generated
expressions (assuming they will be handled properly elsewhere):

amplitudes[1, Present] = {

Vectors ->

{penguinT -> {"no tree photons", FreeQ[{##}, InternalMass[FeynArts`V, 5] -> 0]&}}

};

12The syntax of Commandb follows from the internal structure of the diagram used by the NPointFunctions exten-
sion, and for more details we refer to the file meta/NPointFunctions/Settings.m shipped with FlexibleSUSY.

31



Usage

chains[LoopNumber] = {

Momentai -> {Rulej, ...},

...

};

Abbreviation Values Hints

LoopNumber 0 or 1 As in Table 6

Momentai ∀ Symbol from ZeroExternalMomenta See Table 4

Rulej Special syntax See DiracChains.m

Table 8: Syntax and options for chains. Files in column “Hints” are located in meta/NPointFunctions/.

3.5.5. order, chains (Dirac algebra modifications)

NPointFunctions can be used to extract Wilson coefficients. For observables with external
fermions, there might exist a need to change or fine-tune fermion chains to achieve the desired
operator structure. This is done by the settings order and chains, where both the desired fermion
order of external fermions as well as chains to be dropped are specified.

The syntax for order can be understood as follows. Imagine that we would like to obtain Wilson
coefficients corresponding to the process µ− → e−e−e+, or more conveniently for the crossed 2 → 2
process µ−e− → e−e− instead, where the outgoing positron is replaced by an incoming electron.
That means we need to obtain coefficients of expressions ū(e−)Γiu(µ−) ū(e−)Γju(e−), where Γ
represent structures involving Dirac matrices and momenta. For example, in the source code for
the observable BrLTo3L, the NPointFunctions extension is accordingly called as

NPointFunction[{lep, lep}, {lep, lep}, ...]

where the variable lep will correspond to leptons during the meta phase execution for con-
crete models. Interpreting the incoming particles as muon and electron, we specify the required
fermionic structure by the following line in the file NPointFunctions.m (the field numbers are as
in FeynArts`InsertFields):

order[] = {3, 1, 4, 2};

Once the fermionic order is fixed by order, and amplitudes are calculated, one obtains mul-
tiple chains consisting of Dirac matrix products. Often certain Dirac chains may be simplified
or neglected, thanks to the desired level of precision or the choice of basis of Wilson coefficients.
Dropping specific types of Dirac chains can be implemented by using the chains setting described
in Table 8. An example code which serves to neglect expressions proportional to the mass of the
electron from the example above is given by:

chains[1] = {

ExceptLoops -> {1[k[4|2], ___] -> 0, 2[k[3|1], ___] -> 0}

};

In general, the Rulej appearing on the right-hand side of this example (or the general case in
Table 8) must be of the form
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ChainNumber[Entry1, Entry2, ...] -> 0

The syntax can be described as follows (the source code which interprets these expressions is in
the file meta/NPointFunctions/DiracChains.m, and further details can be found there):

ChainNumber is an integer which defines a chain number, e.g. for the fermion order {3,1,4,2}

the chain numbered 1 consists of particles {3,1} and chain numbered 2 is {4,2}.

Entry1 corresponds to a pattern for a Dirac chain which may be a non-commuting product of
projection operators PL,R, γµ matrices with open indices or γµ matrices contracted with ex-
ternal momenta. We mimic FormCalc notation inside the Dirac chains so that the integer 6
represents PR, 7 is PL, a negative number leads to the antisymmetrized chain, k[i] means
γµk[i]µ with k[i]µ being external momenta of ith particle. Further, the short form l[i] is
converted to Lor[i] and represents a Lorentz index connecting two Dirac chains. Accord-
ingly, Entry1 can take the following values: 6, -6, 7, -7, k[i1], l[i1] (k and l may have
several integer arguments simultaneously such as k[i1|i2|...], l[i1|i2|...]). In the case
of k[i1|i2|...] and l[i1|i2|...], all projection operators are prepended automatically
so that 2[k[3|4]] becomes 2[6|-6|7|-7, k[3|4]]; finally ij correspond to the integer
numbers of external particles.

Entry2 and further entries are similar but may take only the following values: k[...], l[...],
_, __, ___.

3.5.6. Other modifications

Here we briefly describe and exemplify a set of settings which are typically of minor importance.
In some cases, one should not sum over all generations for some generic field in the amplitude.

For example, in CLFV observables, there often appear penguin contributions with external self-
energy-like corrections. In such diagrams, the fermion in the tree-level propagator should differ
from the external fermion. This behavior can be defined via the setting sum:

sum[1] = {

inSelfT -> {"skip initial lepton", {6, Field[#, 1]&}}

};

This changes the expressions at the loop level LoopNumber = 1 in the following way. For the
topology identified as inSelfT one modifies the summation over generic fields in the propagator
under FeynArts number 6, so that the sum over the field being equal the first external particle is
omitted on C++ level.

The setting momenta can be used to eliminate certain external momenta by using momentum
conservation for a given topology, for instance

momenta[1] = {

penguinT -> 2

};

This modifies the options for the function FormCalc`CalcFeynAmp so that for LoopNumber = 1

and topology penguinT the momenta of the second external particle is replaced by the momenta
conservation expression.

The setting mass allows to neglect masses, and improve the readability of the code, if desired:
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mass[1] = {

inSelfT -> {"explicit final lepton mass", InternalMass[FeynArts`F, 6] :> ExternalMass[3]},

inSelfT -> {"keep initial lepton mass untouched", Hold :> ExternalMass[1]}

};

The first example appends an additional replacement rule that allows the use of the explicit ex-
pression for the mass of the particle in the generic propagator. The second one prevents some
simplification which would otherwise lead to incorrect amplitude expressions, see the explicit im-
plementation for more details.

Finally, regularization overrides the option FormCalc`Dimension for given topologies:

regularization[1] = {

boxS -> D,

boxU -> D

};

This option might be useful to obtain the desired Wilson coefficients faster or more optimally:
e.g. sometimes the option chains might be skipped, as the default FormCalc setting has already
produced the required expressions.

3.5.7. Example 3: lepton self-energy with NPointFunctions (Observable -> Oi[])

Let us exemplify how one enables the usage of the advanced settings for NPointFunctions,
by modifying Example 3 which calculates fermion self energies. We continue from Section 3.3.3
and Section 3.4.3, where the self-energy calculation was defined by using only the simple mode of
NPointFunctions. In order to use the advanced settings, at first we need to apply the following
modifications in the file FlexibleSUSY.m:

Listing 26: Modifications in ExampleLeptonSE/FlexibleSUSY.m for the option Observable -> Oi[].

NPointFunctions`Observable -> obs[],

NPointFunctions`KeepProcesses -> If[Head[contr] === List, contr, {contr}]

...

name = "se_" <> CConversion`ToValidCSymbolString[contr];

Here the first lines are as explained in Section 3.5.1 and enable the advanced settings, including
the variable contr which allows users later to select different Feynman diagrams for the evaluation
of the self energies via keywords corresponding to different Contributioni. In the last line of the
listing, the name of the function is changed to reflect different possible values of the variable contr.

The goal in this example is to allow users to compute “self energies” by including either only
one-particle irreducible diagrams, or only diagrams with a tadpole part, or both. Hence we intend
to use the advanced settings to define three keywords and associate them with the appropriate
topologies via the topologies setting described in Table 6.

In the following we describe a typical workflow how one might interactively obtain the rele-
vant information to create the advanced settings file meta/Observables/Oi/NPointFunctions.m
which achieves this. We begin with the definition of topologies we want to enable/disable for the
calculation.

As the self-energy process is 1 → 1, we start by looking for already defined topologies inside
meta/NPointFunctions/Topologies.m in the form AllTopologies[{1, 1}]. Currently, this
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Figure 3: Topologies, relevant for one-loop 1 → 1 processes, their FeynArts, mathematical and NPointFunctions

representations, as in Figure 2.

definition is missing, so its specification becomes our first task. We can open a Mathematica

notebook and evaluate the following code to figure out, which one-loop 1 → 1 topologies exist in
general and which ones are of interest to us:

Listing 27: Execute in a Mathematica notebook.

<<FeynArts`

(topologies = CreateTopologies[1, 1 -> 1]) // Paint

The printed output is similar to the content of the first column in Figure 3. In this example,
we are not interested in the first topology, while others represent what would like to include. We
need to convert the FeynArts representation of the topology to the NPointFunctions one, this
can be done as shown in Figure 3 or by execution of the code:13

Listing 28: Execute in a Mathematica notebook.

AdjaceTopology[topologies[[2]]]

AdjaceTopology[topologies[[3]]]

Let us name the obtained topologies as in Figure 3 and add their definition to the observable-
independent file meta/NPointFunctions/Topologies.m as:

Listing 29: In meta/NPointFunctions/Topologies.m.

AllTopologies[{1, 1}] = {

tadpole -> {1,0,1,0,0,1,1},

sunset -> {1,0,0,1,0,2,0},

fermi -> {tadpole, sunset}

};

where the last line creates the synonym for both topologies combined.
Now we can finally define the content of the advanced settings file for this observable:

13The general definition of the function AdjaceTopology exists in meta/NPointFunctions/Topologies.m; one
has to replace the specification of the pattern in the definition by topology_ and explicitly define external = 2;

as this reflects the number of external vertices.
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Listing 30: Content of the file ExampleLeptonSE/NPointFunctions.m.

topologies[1] = {

Tadpoles -> tadpole,

Sunsets -> sunset,

Fermi -> fermi

};

This achieves the goal. Now the observable ExampleLeptonSE has an option contr, like all the
examples in Section 2. This option may be set to the values Tadpoles, Sunsets, or Fermi. If some
model-specific configuration file models/Ma/FlexibleSUSY.m contains the option Tadpoles, then
only the tadpole topology will be included, and similarly for Sunsets. Once we specify Fermi

(or {Tadpoles, Sunsets}), then both topologies will be used to compute the (generalized) self-
energy. In this setup, Sunsets has the same effect as the Irreducible setting from the simplified
example.

3.6. Content of the optional file Oi/FSMathLink.m

The spectrum generators created by FlexibleSUSY can be called from within a Wolfram

Language notebook or kernel. The necessary definitions to output the numerical values of the gen-
erated observables at the Wolfram Language level are done in the general file meta/FSMathLink.m.
For a specific observable Oi one can create an optional file meta/Observables/Oi/FSMathLink.m
to specify the desired interface via the function PutObservable. We refer the reader to existing
example files shipped with FlexibleSUSY for more details.

3.7. New observables and how to calculate them with FlexibleSUSY

General case

To activate the C++ code generation for a desired observable with FlexibleSUSY, one carries
out the same steps as for predefined observables in Section 2 (though now it is clear where all
definitions come from). For a user-selected model Ma one modifies models/Ma/FlexibleSUSY.m

by changing ExtraSLHAOutputBlocks. The pattern of observable Oi is defined inside the file called
meta/Observables/Oi/Observables.m while the Les Houches blocks where this observable can
be placed — inside meta/Observables/Oi/WriteOut.m. Finally, by execution of make one obtains
the desired C++ spectrum generator.

3.7.1. Example 1: output a given number

In summary, to add the new observable corresponding to Example 1 to FlexibleSUSY, one
needs to create several files:

1. Oi/Observables.m with the Wolfram Language interface, the C++ return type, and the C++
prototype of the function that will be used to calculate the observable, see Section 3.1.1.

2. Oi/WriteOut.m with the connection of observable’s return values and the C++ spectrum
generator output in Les Houches format, see Section 3.2.1.

3. Oi/FlexibleSUSY.m which will fill the C++ template files with the model-specific information,
see Section 3.3.1.

4. Two C++ template files that will contain the C++ code calculating the observable, see Sec-
tion 3.4.1.
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After all this is done, the observable can be used in the same way as the predefined observables
discussed in Section 2, and we need to proceed as described in that section.

We first need to choose a desired physical model to perform the calculations (to continue this ex-
ample we choose the SM), create it via ./createmodel --name=SM, then configure FlexibleSUSY
to make the C++ spectrum generator for this model via ./configure --with-models=SM.

Then, two model-specific settings files have to be modified to enable the computation of the
observable ExampleConstantObservable. To be specific, we modify the file with the meta-level
model settings models/SM/FlexibleSUSY.m to contain

Listing 31: In models/SM/FlexibleSUSY.m.

ExtraSLHAOutputBlocks = {

{

FlexibleSUSYLowEnergy,

{

{1, FlexibleSUSYObservable`ExampleConstantObservable[3]},

{2, FlexibleSUSYObservable`ExampleConstantObservable[4]}

}

}

};

In this way we specify that the observable is called twice, with two different arguments (the
arguments simply correspond to the numeric constants which should be printed in the output),
and that the output will be part of the Block FlexibleSUSYLowEnergy with numbers 1 and 2,
respectively. Finally, the calculation of all observables is enabled in the runtime model-specific
SLHA input file:

Listing 32: In models/SM/LesHouches.in.SM.

Block FlexibleSUSY

...

15 1 # calculate all observables

The execution of make command runs the meta phase and compiles the final C++ spectrum gener-
ator. FlexibleSUSY provides shell scripts which merge these steps, as follows:

Listing 33: Execute in terminal from the FlexibleSUSY directory.

./createmodel --name=SM

./configure --with-models=SM

./examples/new-observable/make-observable SM-example-1

make

./models/SM/run_SM.x --slha-input-file=models/SM/LesHouches.in.SM

to produce the following lines among the SLHA output:

Block FlexibleSUSYLowEnergy Q= 1.73340000E+02

1 3.00000000E+00 # exampleconstantobservable 3

2 4.00000000E+00 # exampleconstantobservable 4

Here we see the appearance of the block numbers and the values of the numeric constants in
agreement with the definitions given above.
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3.7.2. Example 2: show fermion masses

In order to add the observable of Example 2 to FlexibleSUSY and obtain a SM spectrum
generator including the output of this observable one needs to go through analogous steps. Again,
FlexibleSUSY is shipped with a script which merges all steps:

Listing 34: Execute in terminal from the FlexibleSUSY directory.

./createmodel --name=SM

./configure --with-models=SM

./examples/new-observable/make-observable SM-example-2

make

./models/SM/run_SM.x --slha-input-file=models/SM/LesHouches.in.SM

After executing these steps successfully, the SLHA output will contain the results corresponding
to four instances of the observable ExampleLeptonMass (where the fermion index 1 here means
2nd generation due to the C++ numbering convention):

Block FlexibleSUSYLowEnergy Q= 1.73340000E+02

1 1.04187667E-01 # Fe[1] (lepton[1] if in Block ExampleLeptonMass) mass

2 5.71258815E-02 # Fd[1] (lepton[1] if in Block ExampleLeptonMass) mass

Block ExampleLeptonMass Q= 1.73340000E+02

1 1.05658357E-01 # Fe[1] (lepton[1] if in Block ExampleLeptonMass) mass

2 1.05658357E-01 # Fd[1] (lepton[1] if in Block ExampleLeptonMass) mass

The script generates all the files discussed in the previous Sections 3.1.2, 3.2.2, 3.3.2, and 3.4.2.
Then it modifies the model-specific file models/SM/FlexibleSUSY.m as:

Listing 35: In models/SM/FlexibleSUSY.m.

ExtraSLHAOutputBlocks = {

{

FlexibleSUSYLowEnergy,

{

{1, FlexibleSUSYObservable`ExampleFermionMass[Fe[2]]},

{2, FlexibleSUSYObservable`ExampleFermionMass[Fd[2]]}

}

},

{

ExampleLeptonMass,

{

{1, FlexibleSUSYObservable`ExampleFermionMass[Fe[2]]},

{2, FlexibleSUSYObservable`ExampleFermionMass[Fd[2]]}

}

}

};

and assumes that the calculation of observables in the SLHA input file should be already enabled:

Listing 36: In models/SM/LesHouches.in.SM.

Block FlexibleSUSY

...

15 1 # calculate all observables
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Here the file models/SM/FlexibleSUSY.m defines the four instances of the observable: they
are distinguished by their argument (either Fe[2] or Fd[2]) and by the Les Houches block (either
FlexibleSUSYLowEnergy or ExampleLeptonMass). We recall that in the definition of the observ-
able the running MS/DR mass of the fermion in the BSM model described by the argument and
the SM lepton pole mass of the specified generation (in this case generation 2) are returned, see
Section 3.4.2. We also recall that the output depends on the Les Houches block, see Section 3.2.2.
This explains the output given above, where the FlexibleSUSYLowEnergy block shows the MS/DR
masses of the muon and the strange quark in the BSM model, while the ExampleLeptonMass block
shows twice the muon pole mass from the qedqcd object.

3.7.3. Example 3: lepton self-energy with NPointFunctions

Technically, there are two versions of this example which differ by Oi/FlexibleSUSY.m: using
the simple mode of NPointFunctions in Section 3.3.3 or using the advanced mode in Section 3.5.7.
To add the advanced version of the observable of Example 3 to FlexibleSUSY and obtain a
SM spectrum generator, one needs to go through steps analogous to previous examples. Again,
FlexibleSUSY provides a script which combines all steps:

Listing 37: Execute in terminal from the FlexibleSUSY directory.

./createmodel --name=SM

./configure --with-models=SM

./examples/new-observable/make-observable SM-example-3

make

./models/SM/run_SM.x --slha-input-file=models/SM/LesHouches.in.SM

to successfully see among the SLHA output:

Block FWCOEF Q= 1.73340000E+02

1111 31 00 2 -3.18762513E-05 # left

1111 32 00 2 -3.18762513E-05 # right

Again, the script generates all files related to the definition of the observable. Then it modifies the
model-specific file models/SM/FlexibleSUSY.m as

Listing 38: In models/SM/FlexibleSUSY.m.

ExtraSLHAOutputBlocks = {

{

FWCOEF,

{

{1, FlexibleSUSYObservable`ExampleLeptonSE[Fe[1], {Sunsets}]}

}

}

};

Note that the option Sunsets is used. It was defined via the advanced settings of NPointFunctions
in Section 3.5.7. It is further assumed that the calculation of observables is enabled in the SLHA
input file:

Listing 39: In models/SM/LesHouches.in.SM.

Block FlexibleSUSY

...

15 1 # calculate all observables
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4. Conclusions

In this paper, we describe two novel essential features of FlexibleSUSY: a streamlined approach
for incorporating new observables to FlexibleSUSY, and a simplified way to generate C++ code for
Feynman diagrams essential for the computation of these observables and other physical quantities.
To enhance the accessibility of this article we have divided the content into two distinct parts.

The first part is concise, requires no detailed knowledge of the code and is directed to readers
interested in the computation of predefined FlexibleSUSY observables. The currently predefined
observables include CLFV observables such as ℓi → ℓjγ, µ–e conversion and ℓi → ℓjℓkℓc

k, whose
physics definitions are summarized in the appendix. Any user of FlexibleSUSY can now enable
the computation of these observables for any desired model by just adding the appropriate flag in
the model files.

The second part deals with the procedure of implementing new observables. It is more ex-
tensive and technical and is of interest to those seeking insights into the internal structure of
the NPointFunctions code used for the creation of new observables. In essence, the implemen-
tation of a new observable requires five files (three Wolfram Language and two C++ template
files) which essentially define in a model-independent way how the observable is computed, how
it is called and how its output is organized. The second part also illustrates the utilization of the
NPointFunctions extension to streamline the generation of C++ code for Feynman diagrams. This
is achieved with the help of FlexibleSUSY-specialized wrappers designed for FeynArts, FormCalc,
and ColorMath packages.

Three fully worked out examples are provided. They correspond to a minimal “observable”
which simply outputs a single number, an observable which outputs a set of particle masses,
and an observable which outputs the values of one-loop self energy diagrams. The code snippets
can be used as efficient starting points for future implementations of further observables. In the
appendix additional features and details are discussed which may be useful to accommodate special
properties of new observables. They correspond to actual use-cases motivated by implementing
e.g. the b → sµµ or h → gg decays.

The FlexibleSUSY extensions presented here have been thoroughly cross-checked and used
for concrete phenomenological applications in non-SUSY and in SUSY models. Ref. [23] uses and
validates CLFV observables in a leptoquark model, where some observables arise at the one-loop
level and some observables arise at tree-level. Refs. [24, 25] provide validations of loop-induced
CLFV observables in a model of neutrino masses where several neutrino masses are themselves
loop-induced. Finally, extensive validations have been carried out in the context of a non-trivial
SUSY realization by comparing with results of Ref. [26] on CLFV phenomenology in the MRSSM.
These applications demonstrate the reliability and versatility of the code for observables defined
via Feynman diagrammatic calculations across a broad spectrum of models for wide variety of
observables. In the future, it is planned to add further observables to the default distribution
of FlexibleSUSY. In addition, users may add observables individually. Finally, we introduce
the possibility to request the implementation of desired observables via github issues, see the
developer’s repository.

Acknowledgements

We thank the other FlexibleSUSY authors for helpful discussions. In particular, U.Kh. thanks
Jobst Ziebell [27] and Kien Dang Tran [28] for the creation of an initial version of NPointFunctions.

40

https://github.com/FlexibleSUSY/FlexibleSUSY/issues


ℓi

F
ℓj

S

F
γ

(a) FFS

F

S S

(b) SSF

F

S

(c) SED out

S

F

(d) SED in

Figure A.4: Generic one-loop scalar-fermion Feynman diagrams contributing to ℓi → ℓjγ. Arrows show particle
propagation. Diagrams of Fermion-Fermion-Scalar (FFS) and Scalar-Scalar-Fermion (SSF) types contribute to AX

2 ,
while all four are responsible for AX

1 .

We acknowledge support by the German Research Foundation (DFG) under grants STO 876/4
and STO 876/7. W.K. was supported by the National Science Centre (Poland) grant 2022/47/D/
ST2/03087.

Appendix A. Available observables: physical details

In this section we discuss physics details of calculations for CLFV observables implemented
in FlexibleSUSY. Phenomenological applications connected to this section were presented in
Refs. [23–26]. In all expressions of this section, the masses are treated in the following way:
in the amplitudes we use MS/DR values, everywhere else pole masses.

Appendix A.1. Two-body CLFV decays (ℓi → ℓjγ)

The partial decay width is given by:

Γℓi→ℓjγ =
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where the minus sign corresponds to the outgoing photon momentum. The form-factors AX
2 are

defined as (the contributions for both scalar and fermion insertions are shown in Figure A.4):
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It is convenient to uniquely separate contributions proportional to fγ and sγ (fγ = gL
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(A.4)

In both Eqs. (A.3)–(A.4) the argument of the loop functions is x = m2
F /m2

S and the summation over
repeated fields of model Ma is assumed. Also, the expressions for the right-handed amplitudes AR

1,2

can be obtained from a substitution [L ↔ R] in the generic couplings. All gX
[abc] terms correspond

to interaction vertices with removed imaginary prefactor. Finally, Fy(x) are loop functions, see the
aforementioned file and Refs. [29, 30].
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Appendix A.2. Three-body CLFV decays (ℓi → ℓjℓkℓc
k)

The partial decay width expressed in terms of Wilson coefficients has the form:
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where X̄ means complementary chirality, i.e. L̄ stands for R (see the width_same C++ template in
templates/observables/br_l_to_3l.cpp.in). In case of different final particles the expression
becomes:
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see the width_diff C++ template in templates/observables/br_l_to_3l.cpp.in.
The Wilson coefficients are defined via the Effective Field Theory (EFT) Lagrangian:
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 , Dµ = ∂µ + ieQf Aµ. (A.7)

where the following set of operators is relevant for the considered CLFV processes, see Refs. [31–33]:

OD
X = mµ[ℓ̄jσµνPXℓi]Fµν , OS,k
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(A.8)

with the definitions of left-right chiral projectors PL/R = (1∓γ5)/2; the square brackets emphasize

different fermion chains with corresponding particles; OT ,k
LR , OT ,k

RL are zero. The basis in Eq. (A.8)

is a redundant one: scalar OS,k
LR , OS,k

RL and tensor OT ,k
LL , OT ,k

RR operators should be ignored because
corresponding Wilson coefficients can be chosen to be zero.

Let us explain the amplitude matching procedure between EFT and full Ma-model Lagrangians
specifically for the µ → 3e process to simplify the notation and highlight the most essential de-
tails. One needs to keep the same external fermion order for both theories. It is enough to use
the approximation of zero external momenta, and a convenient way to extract amplitudes is to
consider the process µ−

1 e−
2 → e−

3 e−
4 . Using the two Lagrangians LEFT and LMa we get the following

amplitudes (up to δ-function and usual normalization factors; summation over repeated capital
indices is assumed):

〈e−
4 e−

3 |T exp

(

i

∫

L d4x

)

|e−
2 µ−

1 〉 =

{

−iCI,e
XY ([ū3ΓI

Xu1][ū4ΓI
Y u2] − [3 ↔ 4]) for L=LEFT,

iF I,e
XY [ū3ΓI

Xu1][ū4ΓI
Y u2] for L=LMa .

(A.9)

The first line contains the definition of the Wilson coefficients. Note that there is no [3 ↔ 4] for
F I,e

XY as we associate them with the results of FormCalc and the application of the setting order

from Section 3.5.5; the derivation for coefficients is explained further, right below the matching.
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Figure A.5: Calculation of four-lepton coefficients F in the full model Ma. For self-energy and triangle topologies
only t-channel is drawn. Decay µ → 3e is considered so that u-channel for self-energy and penguin topologies should
be added. All box channels are calculated directly. For convenience, NPointFunctions topology names are shown.

We can match F I,e
XY onto low-energy coefficients CI,e

XY by applying Fierz identities onto crossed
[3 ↔ 4] terms of Eq. (A.9):

−F S,e
XX =

1

2
CS,e

XX − 6CT ,e
XX , −F S,e

XX̄
= CS,e

XX̄
− 2CV ,e

XX̄
,

−F V ,e
XX = 2CV ,e

XX , −F V ,e
XX̄

= CV ,e
XX̄

−
1

2
CS,e

XX̄
,

−F T ,e
XX =

3

2
CT ,e

XX −
1

8
CS,e

XX .

(A.10)

To solve these equations one may set:

CS,e

XX̄
= 0, CT ,e

XX = 0, (A.11)

then F S
XX/F T

XX = −4 and F S

XX̄
/F V

XX̄
= −2 should be fulfilled, which was checked numerically.

Now let us explain, how the F I,e
XY are calculated in the full model Ma via NPointFunctions.

As it is shown in Figure A.5, the F I,e
XY coefficients take into account self-energy, penguin, and box

diagrams. If we consider non-box contributions (e.g. for the MRSSM [26] for convenience), then
they can be categorized by the particle which is connected to the bottom chain of electrons to be
the photon, Z- and Higgs-boson. The photon contributes via dipole coefficients, and becomes a
part of four-lepton vector operators as well, while the Z-boson contributes to the latter only, as
follows from comparison with Ref. [26]:14

iF V ,e
XY

∣

∣

t-channel for γ
= −ieQeAX

1 , iF V ,e
XY

∣

∣

t-channel for Z
= −i

g2
Z

m2
Z

AX
Z ZY

e , (A.12)

where the rhs. incorporates an additional minus sign from embedding of AX
1 coefficients into four-

fermion amplitude.15 Scalar and pseudoscalar Higgs bosons contribute purely to scalar coefficients,
and they are implemented and computed in all models. Specifically for the MRSSM, they are much
smaller than other diagrams,

F S,e
XY

∣

∣

t-channel for hi,Ai
≈ 0. (A.13)

Now, as one sees from Figure A.5, the expressions for crossed diagrams are required in addition
to the mentioned t-channel self-energies and penguins. They can be calculated with the help of

14This reference provides the calculation of the CLFV processes in the context of the MRSSM, which represents a
powerful way to validate the code in a BSM model for which no other public codes exist, in contrast to the MSSM.

15We use the left equation explicitly in the calculation of ℓi → ℓjℓkℓc
k with FlexibleSUSY. Instead of the right

equation we use NPointFunctions directly and cross-checked it with unit test implemented in FlexibleSUSY.
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the same Fierz identities which were used for matching in Eq. (A.10) because this channel differs
only by the bispinor order. One can take any equality from Eq. (A.10) and remove the matching
minus from the lhs. and replace the CI,e

XY in the rhs. by t-channel contributions of F I,e
XY , e.g. the

first equality shown in Eq. (A.10) transforms to the following one (see fierz C++ template in
templates/observables/br_l_to_3l.cpp.in):

F S,e
XX

∣

∣

t- and u-channel
=

1

2
F S,e

XX

∣

∣

t-channel
− 6F T ,e

XX

∣

∣

t-channel
. (A.14)

Box diagrams contribute to all types of four-lepton coefficients. Also, there is no sense to distin-
guish between different channels, because we neglect external momenta so that all boxes directly
contribute to the complete F I,e

XY coefficients. The final contribution for Ma being the MRSSM can
be written as

F I,e
XY = F I,e

XY

∣

∣

t- and u-channel for γ,Z
+ F I,e

XY

∣

∣

boxes
. (A.15)

The numerical output of the code generated in this way for the MRSSM has been successfully
validated against Ref. [26].

Appendix A.3. Coherent conversion in nuclei (µ–e conversion)

The conversion rate of the process is given by Refs. [26, 34–37]:

ωµ−e = 4m5
µ

∑

X=L,R

∣

∣

∣

∣

∣

∣

1

4
DCD

X −
∑

N=n,p

(

S(N)gS,N
X + V (N)gV ,N

X̄

)

∣

∣

∣

∣

∣

∣

2

(A.16)

with dimensionless integrals D, S(N), V (N) defined in Ref. [34]; the minus sign reflects the different
definitions of photon field, coming from a comparison of covariant derivatives (this observable is
implemented in templates/observables/l_to_l_conversion.cpp.in).

We use EFT Lagrangian (with covariant derivative Dµ = ∂µ + ieQf Aµ):

LEFT = LQED + LQCD +
∑

X,Y





∑

I=D,G

CI
XOI

X +
∑

I=S,V ,T

∑

f

CI,f
XY OI,f

XY + h.c.



 (A.17)

where the following set of operators is relevant, see Ref. [32]:16

OD
X = mµ[ēσµνPXµ]Fµν , OG

X = αsmµGF [ēPXµ]Ga
µνGaµν ,

OS,f
XY = [ēPXµ][f̄PY f ], OV ,f

XY = [ēγµPXµ][f̄ γµPY f ],

OT ,f
XX = [ēσµνPXµ][f̄σµνPXf ]

(A.18)

with minor changes:

CS,q
X =

1

2
(CS,q

XL + CS,q
XR), OS,q

X = [ēPXµ][q̄q],

CV ,q
X =

1

2
(CV ,q

XL + CV ,q
XR), OV ,q

X = [ēγµPXµ][q̄γµq],

CT ,q
X = CT ,q

XX , OT ,q
X = [ēσµνPXµ][q̄σµνq].

(A.19)

44



−iC =
e3

q4q2

+ + + +

ot
he

r
box

es

inSelfT outSelfT triangleT boxS

Figure A.6: Amplitude matching LEFT ↔ LMa for quark coefficients. µ–e conversion is considered so that all
existing self-energy and penguin topologies are in t-channel only and are shown explicitly. All channels for boxes
are calculated directly. The sum over all represented diagrams can be matched to the corresponding C

q

X coefficients
without intermediate steps. For convenience, NPointFunctions topology names are shown.

In contrast to µ → 3e, there are no u-channel penguin and self-energy diagrams and no co-
efficient vanishes due to Fierz identities. So that LEFT ↔ LMa matching can be done directly by
the consultation with Figure A.6. Let us again compare with the MRSSM results of Ref. [26]
for concreteness. For four-fermion coefficients one, in general, adds self-energy, penguin, and box
diagrams:

−iCV ,q
X

∣

∣

γ
= −ieQqAX

1 , −iCV ,q
X

∣

∣

Z
= −i

g2
Z

2m2
Z

AX
Z (ZL

q + ZR
q ), CS,q

X

∣

∣

hi,Ai
≈ 0, (A.20)

where we justify the lhs. by stressing that diagrams of Figure A.6 represent amplitudes. Note the
additional minus sign from photon embedding, which corresponds to the chosen order of external
fermions in µ−

1 q−
2 → e−

3 q−
4 . Box diagrams contribute to all types of Wilson coefficients, so that:

CI,q
X = CI,q

X

∣

∣

γ
+ CI,q

X

∣

∣

Z
+ CI,q

X

∣

∣

boxes
. (A.21)

Gluonic coefficients might be relevant in general, and are changed when heavy quarks c, b are
integrated out, as stated in Ref. [38]:

mq q̄q → −
αs

12π
Ga

µνGaµν , CG
X → C̃G

X = CG
X −

1

12π

∑

q=c,b

1

mqmµGF
CS,q

X . (A.22)

To match LEFT onto Lcoh
N , on-mass-shell condition is used for the same initial and final nucleon

state |N〉, see Refs. [32–37, 39–42]. This is realized for a nucleon N , quark q, and coefficient type
I with a help of GI,q

N form factors:

〈N |LEFT|N〉 ≈ 〈N |Lcoh
N |N〉 →

[q̄ΓIq] =
∑

N=p,n

GI,q
N [N̄ΓIN ],

αsGa
µνGaµν =

∑

N=p,n

mNGG
N [N̄N ],

(A.23)

where gluonic form factors are obtained using a trace of the energy-momentum tensor, while others
can be found in Table A.9:

GG
N = −

8π

9



1 −
∑

q=u,d,s

mq

mN
GS,q

N



 . (A.24)

16Gluon dimension-7 operators OG

X are important for µ–e conversion in general, see Ref. [38]. It was not necessary
for our purposes to use mµGF prefactor in the gluonic operator, as for considered models it was neglected, but we
keep it to preserve the form of the operator in Ref. [32].
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GS,u
p = 0.021(2)

mp

mu
GS,d

p = 0.041(3)
mp

md
GS,s

p = 0.043(11)
mp

ms

GS,u
n = 0.019(2)mn

mu
GS,d

n = 0.045(3)mn

md
GS,s

n = 0.043(11)mn

ms

GV ,u
p = GV ,d

n = 2 GV ,d
p = GV ,u

n = 1 GV ,s
p = GV ,s

n = 0

GT,u
p = GT,d

n = 0.77(7) GT,d
p = GT,u

n = −0.23(3) GT,s
p = GT,s

n = 0.008(9)

Table A.9: Matching (Lcoh
N ↔ LEFT) form factors, see Appendix B.3. Scalar form factors measure the contribution

of the quark condensate to the mass of nucleon. They are determined from pion-nucleon σπN term for u, d-quarks
[43, 44] and from the lattice calculation for s-quark. Vector form factors do not suffer from theoretical uncer-
tainty during the matching and are derived from the conservation of vector current (counting of valence quarks).
For tensor form factors the values calculated in lattice Quantum Chromodynamics (QCD) at 2 GeV [41, 45] are
taken. See both src/observables/l_to_l_conversion/settings.cpp used for the storage of form factors and
templates/observables/l_to_l_conversion.cpp.in for observable implementation.

At finite recoil, tensor operator contributes to scalar ones [41, 42], which is expressed via the
replacement:

[ēσµνPXµ][N̄σµνN ] →
mµ

mN
[ēPXµ][N̄N ]. (A.25)

The relevant for µ − e conversion Lagrangian takes the following form:

Lcoh
N =

∑

X=L,R



CD
XOD

X +
∑

N=n,p

(

gS,N
X OS,N

X + gV ,N
X OV ,N

X

)

+ h.c.



 , (A.26)

where new coefficients and operators are introduced (GV
N,s are zero and may be omitted):

gS,N
X = mNmµGF GG

N C̃G
X +

∑

q=u,d,s

(

GS,q
N CS,q

X +
mµ

mN
GT,q

N CT,q
X

)

, OS,N
X = [ēPXµ][N̄N ],

gV ,N
X =

∑

q=u,d,s

GV ,q
N CV ,q

X , OS,N
X = [ēγµPXµ][N̄γµN ].

(A.27)

Appendix B. Additional features and examples

In this section we show several advanced ways to use FlexibleSUSY in order to obtain more
freedom in both input and output formats, as well as to perform non-conventional intermediate
calculations. Though it is currently possible to use these features in the way described below, they
might be automatized in future.

Appendix B.1. Example 4: post-processing in h → gg

Let us demonstrate a possible way to do post-processing when additional user input is required
after NPointFunctions calculations. When all external particles are fermions, one can consult the
implementation of ℓi → ℓjℓkℓc

k and µ–e conversion. In this example, we consider external bosons
which implies several changes to aforementioned observables.

The code template of this section can be integrated into FlexibleSUSY by the execution of the
following command:

./examples/new-observable/make-observable example-4
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The observable defined in this example calculates amplitudes required for the h → gg process
(but not the branching ratio itself) with the help of NPointFunctions. After NPointFunctions

calculations are done, one is left with amplitudes containing many abbreviations. From physics we
know that the computed amplitudes must contain several structures of covariants. For h → gg,
the possible covariants are

ǫµ
2ǫ3µ, ǫµ

2 p3µ, ǫµ
3p2µ, εαβµνǫ2αǫ3βp2µp3ν , (B.1)

where ǫi is the polarization vector of the corresponding gluon and ε is the Levi-Civita tensor.
It is the coefficients of these structures which are relevant for the calculation of the branching

ratio. Hence we need to extract the prefactors of these structures. This can be performed as
shown in Listing 40. There, we apply all remaining sub-expressions in line 1, then abbreviate all
basis structures in lines 2–8, and extract the coefficients that come as prefactors of the second
argument of InterfaceToMatching in line 9 (similarly to line 28 in Listing 18). Finally, the C++

code definitions are generated by the function NPFDefinitions in line 14 (similarly to line 32 in
Listing 18; note, that NPFDefinitions may accept strings that are different to the last argument
of InterfaceToMatching):

Listing 40: Content of HiggsTo2Gluons/FlexibleSUSY.m.

1 npf = NPointFunctions`ApplySubexpressions[npf];

2 npf = npf /. {

3 SARAH`sum[__, FormCalc`ec[2, l_] FormCalc`ec[3, l_] SARAH`g[__]] :> "e2e3",

4 SARAH`sum[__, FormCalc`ec[2, l_] SARAH`Mom[3, l_] SARAH`g[__]] :> "e2m3",

5 SARAH`sum[__, FormCalc`ec[3, l_] SARAH`Mom[2, l_] SARAH`g[__]] :> "e3m2",

6 FormCalc`Eps[FormCalc`ec[2], FormCalc`ec[3], SARAH`Mom[2], SARAH`Mom[3]] :> "eps",

7 SARAH`sum[__, SARAH`Mom[2, l_] SARAH`Mom[3, l_] SARAH`g[__]] :> SARAH`Mass[higgs]^2/2

8 };

9 npf = WilsonCoeffs`InterfaceToMatching[npf, {"eps", "e2e3", "e2m3" "e3m2"}];

10

11 ...

12

13 AppendTo[npfDefinitions,

14 NPointFunctions`NPFDefinitions[npf, "cpp_name", SARAH`Delta, {"eps", "e2e3", "e2m3_e3m2"}]

15 ];

In principle, one can apply the routines from the code snippet above for the processes with external
fermions as well. This might be relevant, in particular, if one prefers to ignore the setting chains

from Section 3.5.5 and deal with Dirac chains in some other ways.

Appendix B.2. Example 5: flavio output in b → sµµ

One might want to generate the output of Wilson coefficients to be used later via other pro-
grams, like flavio [46] that requires a .json file with specific content. The code template of this
section can be integrated into FlexibleSUSY by the execution of the following command:

./examples/new-observable/make-observable example-5

Currently, the way to fill a .json file can be demonstrated by the operators required for b → sµµ
using JavaScript Object Notation (JSON) library [47] distributed with FlexibleSUSY:
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Listing 41: Content of templates/observables/br_d_l_to_d_l.cpp.in.

#include <fstream>

#include <iomanip>

#include "json.hpp"

// Definition of C9_bsmumu and other Wilson coefficients

nlohmann::json j;

j["eft"] = "WET";

j["basis"] = "flavio";

j["scale"] = dynamic_cast<@ModelName@_mass_eigenstates const&>(context.model).get_scale();

j["values"] = {

{"C9_bsmumu", {{"Re", Re(C9_bsmumu)}, {"Im", Im(C9_bsmumu)}}},

// Other Wilson coefficients

};

std::ofstream wc_json("WET_bsmumu.json");

wc_json << std::setw(4) << j << std::endl;

wc_json.close();

The code from the listing above will generate the file WET_bsmumu.json filled with the numerical
values obtained by FlexibleSUSY and, in principle, ready to be used for the program flavio. It
is clear, that one is generally required to calculate the complete set of operators closed under the
RGE running and only then use it for phenomenological studies. In particular for this example,
one is expected currently to generate several .json files and appropriately merge them before the
execution of flavio, which is planned to be improved.

Appendix B.3. Example 6: additional LH input blocks in µ–e conversion

The process of µ–e conversion depends on several parameters, see Table A.9, and contains
multiple factors that might not be relevant for a given model, see Appendix A.3. There is a way to
modify these settings during the runtime of C++ spectrum generator via an additional Les Houches
input block that is automatically added if FlexibleSUSY is configured to calculate µ–e conversion.

Let us provide more information about how this functionality works and can be used for other
observables as well if they require additional configuration options.

First of all, multiple changes within C++ template files should be made in FlexibleSUSY

globally. This is realized in the function WriteClass via its additional output value, called "C++

replacements", see Section 3.3 and the LToLConversion/FlexibleSUSY.m file.
On the C++ side, one defines files to store new values in the src/obsevables/@Oi_filename@/

directory (see the definition for descriptions and their default values in the function reset) and
lets FlexibleSUSY know about the new Les Houches block name in src/slha_io.* files (in this
case, the name is "LToLConversion").

For example, if we want to enable the tensor contributions from Eq. (A.25), then we need to
include the following line into the input Les Houches file:

Listing 42: In models/Ma/LesHouches.in.Ma , if FlexibleSUSY is configured to calculate µ–e conversion.

Block LToLConversion

0 1 # include tensor contribution

Similarly, one can change numerical values of all coefficients from Table A.9.
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