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CHAPTER 1

Motivation

The pulsation reactor is an established apparatus for processing various kinds of ma-

terials. This ranges from simple spray drying applications, thermal treatment of powders,

to the synthesis of catalysts and battery materials from precursors solved in combustible

carrier liquids. Compared with other means of mass production, material treatment in

a pulsation reactor can achieve advantageous properties, such as nano particle sizes and

high speciőc surface areas. Pulsation reactors have been in use for several decades in

industry and have reached technology readiness level 9, while adaptation and optimiza-

tion still rely heavily on empirical knowledge and trial and error approaches. These

approaches are time consuming and costly. This work provides a simple model for the

heat and mass transfer to particles in pulsating and oscillating ŕows, with the focus on

process conditions achievable in a pulsation reactor. Such a mathematical model enables

the solving of adaptation and optimization problems theoretically and, therefore, with

minimal effort. In this regard, the dimensionless Nusselt number and Sherwood number

are key parameters for evaluating how the particular conditions in a pulsating ŕow trans-

late to the heat and mass transfer rate at the individual level of the entrained particle.



CHAPTER 2

Introduction

The pulsation reactor [1], as displayed Figure 2.1, is a thermo-acoustic device and

can be operated with a mixture of combustible gas and air. It consists of two main

parts, a combustion chamber and an attached resonance tube, which together form a

Helmholtz resonator [2]. If the volumes of the combustion chamber and the resonance

tube are attuned to each other, a standing pressure wave will form in the resonance

tube [3], leading to a pulsating ŕow as described in section 4.2. This reactor can be used

for various forms of material treatment, from simple drying applications [4, 5] all the

way to achieving special properties for high performance materials [6]. The material for

treatment is introduced to the pulsating ŕow at the beginning of the resonance tube and

is dragged along to the end, where a őlter chamber is positioned [7]. This chamber has

two functions. On the one hand, it decouples the exhaust gas system from the pulsation

reactor acoustically by providing a sudden increase in diameter as well as a volume which

is not in tune with the pulsation reactor. Therefore, no additional Helmholtz resonator,

which might interfere with the pulsation reactor, is created. On the other hand, it houses

a őlter system (fabric or cyclone) in order to separate the treated material from the gas

stream.

The geometry of a PR determines the pulsation frequency (Helmholtz resonator), inde-

pendent of the operating parameters (except for the inŕuence of the ŕuid temperature

and the resulting shift in the speed of sound), while a set PR can mainly be operated by

controlling the fuel and air inŕow. The dependencies between the operating parameters
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Figure 2.1. Schematic of a pulsation reactor @IBU-tec [7].

and the resulting process parameters in a PR are complex and have been the subject

of past and ongoing research [8]. Many investigations into this topic were conducted

for pulsating combustors only, detached from material treatment [9,10]. Together with

the material properties, those quantities form a new set of operating parameters, as il-

lustrated in Figure 2.2. Those operating parameters generate process conditions in the

PR, such as ŕuid temperature, ŕuid velocity, distinguishable into velocity amplitude and

frequency, as well as the particle parameters of size and density. This work does not focus

on the operating parameters itself, but is concerned with the process parameters they

generate, and it is investigated how the heat and mass transfer (HMT) to the material

particles is inŕuenced by the process parameters in the PR. These process parameters

function as input parameters for modelling the HMT to a single particle, as displayed

in Figure 2.2. Pulsation reactors can be scaled in quite large ranges with respect to

operating and process parameters, but rough estimates, supported by existing plants,
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Figure 2.2. Classiőcation of inŕuential parameters and interaction with the
model.

industry experts, and literature, are listed in Table 2.1. Nevertheless, the model is de-

signed to deal with input parameter ranges far exceeding those listed in Table 2.1 in order

to provide a comprehensive treatment of the HMT to particles (even small spheres) in

pulsating (oscillating) ŕows. This also enables a better assessment of potential for PR

technology and pulsating ŕow HMT enhancement to particles in general. The model

can be operated analytically in most cases, while it is not conőned to only gases but

also incorporates liquids. The model can also be applied for a particle trapped in an

ultra sonic levitator (USL), which is highlighted at points throughout the work. After

this short introduction, the current state of the research on this topic is presented in

Chapter 3. Then, the basic assumptions, consideration, simpliőcations, and constraints

are discussed in Chapter 4. This is followed by the model, which can be divided into

three distinct stages, as highlighted in Figure 2.2. Chapter 5 lays out the őrst stage

of the model, which describes the motion of particles in oscillating ŕows. The second

stage in Chapter 6 introduces the ŕow patterns developing in the vicinity of the particle,

while depending directly on the motion of the particle relative to the surrounding ŕow.
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Table 2.1. Operational and constructional parameter ranges of pulsation reac-
tors [6,11,12].

Parameter Range (approximately) Often applied

Reaction pipe length 1m to 10m 5m
Combustion chamber volume 0.01m3 to 1m3 0.1m3

Fuel natural gas, hydrogen natural gas
Flow velocity 1m/s to 50m/s 10m/s
Pulsation frequency 1-100 20Hz
Temperature 300 ◦C to 1200 ◦C 450 ◦C to 950 ◦C
Pressure amplitude up to 5000Pa 350Pa to 1500Pa
Absolute pressure 105 Pa 105 Pa
Residence time 0.05 s to 2 s 0.5 s
Throughput (raw material) 0.1 kg/h to 20 kg/h 3 kg/h

Chapter 7 presents an analytical way of determining the HMT intensity to the particle,

resulting from the őrst two stages of the model. The entire algorithm for determining

the HMT to the particle is then summarized in Chapter 8 along with a case study of the

pulsation reactor. Finally, possible opportunities of utilizing and expanding the model

are presented in Chapter 9.



CHAPTER 3

State of the Art

This chapter starts with an overview of the literature on material treatment in pul-

sation reactors in general. This if followed by a more narrow focus on particle behaviour

in pulsating ŕows. Here it follows a structure similar to the model itself. Similar to

the derived model, which was introduced in Chapter 2, the literature is divided into the

three distinct stages accordingly. First, the central works for the motion of particles

and the literature important for the following considerations in this thesis are presented.

Afterwards, a selection of literature for the ŕow patterns in the vicinity of a particle is

introduced. A common approach in this literature is to assume a harmonic oscillating

or pulsating slip velocity between particle and ŕuid and to investigate the behaviour of

single particles in this manner. This research is often not connected to the previous bulk

of literature and treated as a separate problem. Although the state of the research is not

limited to the special phenomenon of Steady Streaming, most literature for ŕow patterns

in oscillating ŕows is concerned with it. Subsequently, the state of literature for the HMT

to particles is summarized while, again, being mostly disconnected to the previous two

subtopics. Since the third stage of the model is approached with a structured literature

review and a resulting meta correlation, more literature can be found within Chapter

7. Finally, it is laid out how non continuum effects for the motion and the HMT in

connection with small particles are handled in the literature.
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3.1. Material Treatment in the Pulsation Reactor

A comprehensive summary of pulsating combustion and applications is given by

Zinn [9] and later by Meng et al. [10]. A more speciőc overview, tailored to pulsation

reactors, is delivered by Hoffmann & Ommer [1], including working principle, historical

development, enhanced heat and mass transfer, and possible applications. Complemen-

tary to their paper, Begand et al. [13] provide a good overview of the application of

pulsation reactor technology in different őelds for various tasks, namely drying, dehydra-

tion, decomposition reactions, oxidation, and change of modiőcation. This is followed

up by a detailed investigation into various inŕuential parameters of material synthesis in

the pulsation reactor, such as pressure oscillations, temperature, and residence time, by

Begand [14]. The subjected materials were aluminum oxide, titanium oxide, yttrium(III)

oxide, and zirconium oxide, while the particle size distribution, speciőc surface area, and

crystal structure were investigated. Kudra [4] gives a structured overview on the status

and potentials of pulse combustion spray drying. Wu & Lu [15] conducted a numerical

study of a pulsation reactor for spray drying, which was partly validated by experiment.

The atomization of the solution was achieved by the pulsating ŕow itself and led to a

50% reduced particle size compared to a nozzle-type atomizer. The evaporation rate was

found to be around 6 times higher than for traditional spray drying applications.

3.2. Particle Motion in an Oscillating Fluid

While plenty of literature exist on the motion of particles in oscillating ŕows, only the

most inŕuential works and most relevant works for this thesis are presented. Basset [16],

Boussinesq [17], and Oseen [18] laid the basis for most of the following considerations
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with their drag formulation for unsteady particle motion (BBO equation):

FBas = 3πηdu+
π

12
d3ρf

du

dt
+

3

2
d2
√
πρfη

∫ t

t0

du/dt√
t− t′

dt′ (3.1)

where ρp, ρf , η, d, t and u(t) denote, respectively, the particle and ŕuid density, the dy-

namic ŕuid viscosity, the particle diameter, time, and the slip velocity between particle

and ŕuid. The őrst term considers pure drag, while the second term considers added

mass. The last term was theoretically derived and is referred to as the history term. The

transformed formulation for a unsteady ŕuid motion by Tchen [19] was later corrected by

Maxey & Riley [20]. Equation 3.1 was solved analytically for a harmonic ŕow by Hjelm-

felt & Mockros [21] and further examined by Chan et al. [22] and Coimbra & Rangel [23].

The case of a particle falling through a vertically oscillating ŕuid received much atten-

tion [24ś27] because of its perceived practical signiőcance [28], though Molerus [29]

questioned the practical applicability of the approach. Houghten [30] formulated a non-

linear Langevin equation, predicting retardation in the settling velocity [31] due to the

oscillating motion of the ŕuid. The theory could not be sufficiently validated by exper-

iment, with several possible reasons for the discrepancies suggested by Herringe [32].

Abbad & Souhar [33] could conőrm the validity of the history term in the Basset for-

mulation by experiment for small particle displacement amplitudes ϵ ≤ 1 and moderate

Reynolds numbers Re ≤ 2.5. Since these formulations are mathematically only valid for

small Reynolds numbers Re ≤ 1, the terms in Equation 3.1 have been corrected with

empirically derived factors by Odar & Hamilton [34] in order to extent their applicability

to higher Reynolds numbers:

FBas = c1 (3πηdu) + ∆A

(
π

12
d3ρf

du

dt

)

+∆H

(
3

2
d2
√
πρfη

∫ t

t0

du/dt√
t− t′

dt′
)

, (3.2)

with c1 = 1 + 0.15Re2/3 ∆A = 1.05− 0.066

0.12 +Ac
∆H = 2.88 +

3.12

(1 +Ac2)3
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with the acceleration number Ac = u2/(apd). On the one hand, these factors alter the

drag model by making it non-linear, requiring a numerical solution; on the other hand,

Correlation 3.2 has been validated experimentally extensively and widely applied in engi-

neering [35]. The range of validity for gas-solid ŕows has been shown to reach Reynolds

numbers of 16,000 [36]. While several other authors, e.g. Karanőlan & Kotas [37], cor-

rected the drag coefficient of the falling spheres with factors depending on the Reynolds

number, Baird et al. [38] suggested a factor depending on the amplitude parameter ϵ.

Mei [39] investigated the ŕow around a harmonically oscillating sphere with a Fourier

mode expansion in the frequency domain, a time dependent őnite difference technique in

the time domain, and a matched asymptotic expansion for high-frequency oscillations.

The author found that the total unsteady drag compares well with the experiments by

Odar [40], while the inner of three boundary layers around the particle is governed by the

quasi steady Stokes equation for large particle displacement amplitudes ϵ ≫ 1, and small

Reynolds numbers Re ≪ 1. For the same parameter case, Mei et al. [41,42] suggested a

correction to the Basset history force. Landau & Lifshitz [43] derived an analytical drag

model by linearizing the Navier-Stokes equations (NSEs) around small particle displace-

ment amplitudes ϵ ≪ 1, which was later experimentally validated by Gupta et al. [44].

3.3. Steady Streaming (Flow Pattern)

Steady Streaming describes the second order phenomenon of steady (one directional)

rotating vertices developing in the vicinity of a particle oscillating with a small amplitude

parameter ϵ. It was őrst pointed out by Lord Rayleigh [45] and was then theoretically

and practically considered by Schlichting [46]. Andres & Ingard [47] investigated the

Steady Streaming pattern around a cylinder for a low Reynolds number oscillating ŕow

by applying the Oseen approximation in order to solve the Navier-Stokes equations.

Lane [48] took the previously developed model for Steady Streaming in the vicinity of
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a cylinder by Raney et al. [49] (see also Holtsmark et al. [50]), which is based on a

perturbation method, and adopted it for a sphere. Based on Lane’s model, Thrasher &

Westervelt [51] showed that the thickness of the inner Steady Streaming region increases

with a decreasing Womersley number. Nyborg formulated a mathematical framework for

Acoustic Streaming [52], a form of compressible ŕow Steady Streaming which is often

associated with high sound frequencies. Based on the Nyborg framework, analytical

models for this kind of streaming were derived in the case of rigid particles by Klaseboer

et al. [53] and droplets and bubbles by Baasch et al. [54]. Nyborg also adopted the

Acoustic Streaming framework for Steady Streaming near a rigid boundary [55]. Riley

[56] developed a more general formulation of Steady Streaming, also via perturbation

methods, after laying the groundwork before [57]. This is achieved by calculating the

solutions for the oscillatory boundary layer and the outer ŕow separately, a concept

worked out by Wang [58] and Stuart [59], and then matching them at the interface.

Riley introduced the four dimensionless parameters, which are also adopted in this work

and used in order to characterize ŕow states and ŕow patterns for particles in oscillating

ŕows:

amplitude parameter ϵ = U/ωd; (3.3)

Womersley number Wo2 = ωd2/ν; (3.4)

Reynolds number Re = Ud/ν; (3.5)

Streaming Reynolds number Res = U2/ων (3.6)

with the slip velocity amplitude U , the kinematic ŕuid viscosity ν and the angular os-

cillation frequency ω. These dimensionless numbers are not independent and can be

transformed into one another. Their meaning and dependencies are discussed more in
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depth in Section 4.6. Since Riley only considered ϵ ≪ 1, in order to be able to linearize

the equations of motion, the criteria for the following case descriptions also imply the

ranges of the other parameters 3.3.

• Wo2 = O(1) (Case I): Steady Streaming extends beyond the oscillatory

boundary layer in the form of a Stokes ŕow and affects a large region compared

with d.

• Re = O(1) (Case II): The Reynolds number does not play a vital role in this

consideration and the ŕow patterns are comparable to Case I in nature.

• ReS = O(1) (Case III): While for ReS ≪ 1 (Case I + II) the outer ŕow is

Stokes-like, for ReS ≫ 1 the outer ŕow assumes a boundary-layer character in

which the inner boundary layer is embedded. Here it becomes obvious that in

the case of Steady Streaming, the Streaming Reynolds number is the primary

determinant of the ŕow state and the ŕow pattern is similar to the Reynolds

number for steady ŕows.

• Wo2 ≪ 1 (Case IV): In this case, the oscillatory (inner) boundary layer will

extend over a much wider region than d, comparable to the outer boundary

layer in Case I + II.

The mathematical framework of Steady Streaming is further developed by Riley [60,61],

while a clear distinction is drawn to Acoustic Streaming (aka Quartz Wind), which

describes jet-like winds caused by the dissipation of acoustic energy in high frequency

acoustic beams [62]. Steady Streaming near and in bubbles and droplets was exper-

imentally investigated by Elder [63] and then theoretically considered by Davidson &
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Riley [64] while applying Riley’s case structure above. Longuet-Higgins [65,66] showed

that a volume oscillation superimposed on the lateral oscillation considered by David-

son & Riley increases the Steady Streaming by an order of magnitude. Pozrikidis [67]

investigated the oscillatory ŕow past spheroid particles numerically by linearizing the

equations of motion with the restraint of ϵ < 1 and then applying the boundary-integral

method. Similar ŕow patterns were discovered for all considered particle shapes. Chang

& Maxey [68] used a direct numerical simulation based on spectral methods in order to

investigate the oscillatory motion of the ŕow around a sphere. They considered small

Reynolds numbers and 0.1 ≤ ϵ ≤ 10, which differs from major portions of the literature,

where the condition ϵ ≪ 1 is used to deduce linearized equations of motions. They found

that ŕow separation occurs at lower Reynolds numbers in oscillating ŕows compared with

steady ŕows. The steady streaming patterns of ϵ > 1 were qualitatively similar to those

of ϵ < 1. A simulation of the same problem was conducted by Alassar & Badr [69],

where the ŕow was calculated using truncation methods, with the Reynolds number be-

ing 10 ≤ Re ≤ 200 and the amplitude parameter 0.16 ≤ ϵ ≤ 1.3. In this simulation, they

were able to reproduce the anticipated double layer structure around the particle. This

study was recently reproduced by Mishra et al. [70]. Alassar [71] conducted a numerical

study which concluded that increasing the amplitude parameter ϵ strengthens the sec-

ondary streaming and the inner, rotating layer gets thinner at higher Reynolds numbers.

This work investigated 25 ≤ Re ≤ 200 and 0.125 ≤ ϵ ≤ 5. Klotsa et al. [72] investigated

two close spheres in an oscillating ŕow and found an equilibrium gap between them due

to a short range repulsive force and a long range attractive force. Then they investigated

the resulting forming of chains of spheres due to this phenomenon [73]. This research was

then intensiőed by Jalal et al. [74ś76]. Steady Streaming was visualized experimentally
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by Kotas et al. [77] using phase-locked particle pathlines and by Otto et al. [78] applying

particle imaging velocimetry.

3.4. Heat and Mass Transfer in Oscillating Flows

Baxi & Ramachandran [79] experimentally investigated the heat transfer from os-

cillating spheres in air. They found a many-fold increase in heat transfer due to the

oscillations. Larsen & Jensen [80] were able to experimentally enhance the mass transfer

at a suspended droplet in air by up to 90% when applying a sound őeld with a loud-

speaker. Mori et al. [81] investigated the heat and mass transfer from a sphere (solid and

liquid) in a pulsating ŕow (steady ŕow superimposed with an oscillating ŕow). The setup

was comparable to the ŕow in a pulsation reactor, with a quarter standing wave due to an

open end resonance tube. They found an overall reduced heat and mass transfer, compa-

rable with a steady ŕow. While Davidson [64] considered the heat transfer from a cylinder

executing small oscillations in a ŕuid, Gopinath & Mills [82] adapted the approach for

spheres with the condition of large Womersley numbers Wo ≫ 1. They presented the em-

pirically derived relation for the average Nusselt number Nu = 1.413(Re)1/2(ϵ)1/2Pr0.7

for a Prandtl number of Pr ≈ 1, which was validated by experiment. The double overline

indicates the average over the surface of the sphere and the oscillation cycle. Gopinath

also considered small torsional particle oscillations [83] and the superposition of trans-

verse and torsional oscillations [84]. Since large Womersley numbers relate to the acoustic

streaming in an acoustic levitator, Kawahara et al. [85] built on the work of Gopinath

when investigating the mass transfer at particles and droplets suspended in such a devices.

They suggested the Sherwood number relation Sh = 1.89U/
√
ωD ≈ 1.336Re1/2ϵ1/2 with

the mass diffusivity D, after laying the foundation and discussing the ŕow patterns in

Yarin et al. [86] and [87], respectively. Al Taweel & Landau [88] composed a compre-

hensive meta analysis on the mass transfer between solid spheres and oscillating ŕuids by
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incorporating eleven previously published experimental studies and correlations for the

average Sherwood number [89ś98]. They suggested the following correlations for gases

depending on the Schmidt number Sc:

Sh = 1.1Re1/2ϵ1/2Sc1/2 for ϵ < 0.4 (3.7)

Sh = 0.88Re1/2ϵ1/2Sc1/2 for 0.4 ≤ ϵ < 0.75 (3.8)

Sh = 2 + 0.382Re1/2Sc1/3 for ϵ ≥ 0.75 (3.9)

Drummond & Lyman [99] applied a pseudospectral numerical method on the considera-

tions of Al Taweel & Landau and suggested that the ŕow transition already takes place at

ϵ ≈ 0.25 and the Sherwood number becomes independent from ϵ above this value. Their

consideration was conőned to 1 < Re < 150. A qualitatively similar behavior was found

by Alassar et al. [100] in case of the average Nusselt number for a sphere in an oscillating

ŕow. A minimum at ϵ ≈ 1 was found in this numerical study. Ohmi et al. [101] theoreti-

cally considered a pulsating ŕow by superimposing previous suggested Sherwood correla-

tions for steady and oscillating ŕows around spheres [81,94,98]. The theoretically found

Sherwood correlation could not be conőrmed by experiments with a naphthalene covered

sphere [102]; instead, the correlation Sh = 2+ [0.11 + 0.38(U/U)3/5(ϵ)1/5]1/4Sc1/3Re1/2

was suggested. Ha [103] and then Ha & Yavuzkurt [104] found an up to 290% enhance-

ment of the average Nusselt number in the presence of an acoustic őeld at the particles.

In this numerical simulation, only particles of 100 µm were considered, while the ŕuid

velocity amplitude was varied 2.5ms−1 ≤ Uf ≤ 15ms−1. Frequencies of 50Hz, 1000Hz,

and 2000Hz are applied, which results in amplitude parameters of 12.5 ≤ ϵ ≤ 500. The

following empirical relation is suggested for the average Nusselt number:

Nu− 2 = 0.41954
√
RePr1/3 (3.10)
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This study is followed by a similar one with a pulsating ŕow instead of an oscillat-

ing ŕow [105]. It delivers an empiric correlation of the space- and time-averaged Nus-

selt(Sherwood) number:

Nut − 2

Nu0 − 2
=

Sht − 2

Sh0 − 2
= F

(
U

U

)

F = 1 + 9.608× 10−3U

U
− 0.109608

(
U

U

)2

(3.11)

It depends on the ratio of steady velocity U to the acoustic velocity amplitude U . Parts

of this study where reproduced by Jiang et al. [106]. The results are the inŕuence of

body curvature in relation to the inŕuence of ŕow acceleration when considering pres-

sure gradient, shear stress, and ŕow separation. This paper investigates the speciőc ŕow

characteristics in the vicinity of coal particles in a boiler. It assumes a constant par-

ticle diameter of 100 µm and a constant gas temperature of 1200 ◦C, which determines

all gas properties. The oscillation frequencies were chosen as 50 Hz and 5000 Hz. This

is a remake of Ha’s study [103] with different parameters and is in accordance with

Ha’s results. Jiang et al. also conőrmed the work of Gopinath & Mills, while present-

ing a detailed analysis of the inŕuential phenomenon of heat transfer due to acoustic

streaming [107,108]. Blackburn [109] conducted a numerical investigation on the drag

coefficient and the Sherwood number with 0.05 ≤ ϵ ≤ 5 and 1 ≤ Re ≤ 100. It was

concluded that the drag matches Basset’s solution well, even for high Reynolds numbers.

Nevertheless, the mean Sherwood number was lower in every case than in the steady case

when calculated with the corresponding rms ŕow value. A good overview and introduc-

tion into particles and droplets in standing wave levitator is given by Lierke [110], with

an emphasize on heat and mass transfer in [111]. It is complemented by Sadhal’s [112]

overview of the ŕow pattern around a solid spheroid particle in a acoustic levitator.
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3.5. Heat and Mass Transfer in Pulsating Flows

Guinon et al. [113] fostered a steady state approach for mass transfer to particles in

pulsating ŕows by applying an averaged slip velocity. They found experimentally that

pulsation dampens the mass transfer without ŕow reversal and enhances mass transfer

with ŕow reversal. The following quasi steady Sherwood correlations were proposed:

Sh = 1.23Sc1/3Re0.23 for Re ≤ 20 (3.12)

Sh = 0.39Sc1/3Re0.58 for Re > 20 (3.13)

Mishra et al. [70] conducted a numerical study of pulsatile ŕows around a sphere for

power-law ŕuids. In case of a Newtonian ŕuid, the correlation for the average Nusselt

number at the particle Nu = 2 + 0.232Re0.547Pr0.398[1 + ϵ−0.044(U/U)0.154] was sug-

gested. Carvalho [114] derived an equation of motion for solid particles in pulsating

ŕows. The equation was solved by using a fourth-order RungeśKutta method, while the

behavior of coal-ash-type and coal material particles was investigated in the hot ŕow

of a Rijke pulsating combustor. The author found that the particle average velocity is

higher in pulsating ŕows, while also possessing sinusoidal behavior. Mass transfer in a

pulsed column was experimentally investigated by Krasuk & Smith [115, 116]. They

found an increase in the mass transfer coefficient with pulse velocity. Liu et. al. [117]

experimentally investigated the mean heat transfer from a brass sphere in an pulsating

ŕow, created by a pulse combustor. An empirical equation for the mean Nusselt number

with the mean Reynolds number Re and the pulsation frequency f was suggested:

Nu =
(

2 + 0.6Re
1/2

Pr1/3
)

(1 + f)0.15 for 3.5 < Re < 76000 (3.14)
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Teiwes et al. [118] calculated the process conditions in a pulsation reactor by CFD and

then calculated the motion of discrete particles in it. An enhanced heat and mass transfer

between gas and particles up to 40% was found compared with steady ŕow conditions.

Dahm [119] investigated the heat transfer at particles in pulsation reactors. A correlation

for the Nusselt number is suggested, considering the enhanced degree of turbulence Tu

in a pulsation reactor compared with an entrained ŕow reactor:

Nu = 2 + 0.364

(√
Re+ 3.54Re

Pr

Prturb
Tu2

)

(3.15)

The value of Prturb is discussed and assumed to be 0.5 for pulsation reactors. Further-

more, only a maximum of 3% of the occurring heat transfer from the hot gas to the

particles is attributed to radiation by the author, which is negligible.

3.6. Non-continuum Effects

The general applicability of the Navier-Stokes equations is tied to the continuum

regime, where the characteristic length L of the system is much larger than the free

mean path λmfp of the gas molecules. The Knudsen number Kn = λmfp/L can be

utilized as a criterion for this condition. Cunningham [120] and then Knudsen and

Weber [121] suggested a correcting factor that accounts for the reduction in drag when

considering small particles. They suggested a form of the so called Cunningham factor:

CC = 1 +Kn [α+ β exp (−γ/Kn)] (3.16)

with the corrected Stokes drag force

FD = −3πηdu

CC
(3.17)

α, β, and γ are coefficients determined by correlation of experimental data. Pioneering

work in this regard was done by Millikan (also known for his precise quantiőcation of the
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elementary charge [122]) with his famous Millikan apparatus [123]. For oil droplets in

air, the correlation

CC = 1 +Kn

[

1.209 + 0.471 exp

(

−0.596

Kn

)]

(3.18)

was suggested. Many experiments were conducted over the years proposing various val-

ues of α, β, and γ, while varying inŕuential parameters like gas temperature, pressure,

particle surface nature, particle shape, gas composition, and droplet viscosity. Allen &

Raabe [124] reevaluated and conőrmed Millikan’s work, improved Millikan’s apparatus,

and then investigated solid particles [125]. The following correlation for the Cunningham

factor was suggested:

CC = 1 +Kn

[

1.142 + 0.558 exp

(

−0.999

Kn

)]

(3.19)

Rader [126] reevaluated Millikan’s work on the slip correction for various gases [127]

and suggested for oil droplets in air:

CC = 1 +Kn

[

1.209 + 0.440 exp

(

−0.789

Kn

)]

(3.20)

The author also stated that the slip correction correlation for air lies around the average

of the other gases (Ar, He, H2, CH4, C2H4, i-C4H10, N2O, CO2), which implies that air

constitutes an approximation for an unknown gas composition in this regard. Hutchins

et al. [128] used modulated dynamic light scattering to measure the slip correction,

which differs in nature from the apparatus used by previous researchers. Instead of the

size of the solid particles, which was kept at 1 µm to 2 µm, the pressure was varied in

order to obtain Knudsen numbers of 0.06 to 500. The following Cunningham factor was
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suggested:

CC = 1 +Kn

[

1.231 + 0.470 exp

(

−1.178

Kn

)]

(3.21)

Kim et al. [129] investigated the slip correction explicitly for nanosized particles (20 nm

to 100 nm) and for Knudsen numbers of 0.5 to 83. The following empirical correlation

was proposed

CC = 1 +Kn

[

1.142 + 0.505 exp

(−0.936

Kn

)]

(3.22)

for this parameter range (free molecular regime). Barber & Emerson [130] proposed an

analytical applicable expression for the slip correction of a sphere in a gas:

Total Drag = −3πηdu

(

1 + 42−σu
σu

Kn

1 + 62−σu
σu

Kn

)

In this case, σu is the tangential momentum accommodation coefficient (TMAC). It

describes which fraction of the gas molecules are reŕected divisively (with momentum

transfer) in contrast to reŕected specularly (without momentum transfer) at the surface

of the particles. This depends on the particle material as well as the gas. Moshfegh et

al. [131] numerically investigated the incompressible slip ŕow regime past a spherical

particle by imposing the analytical slip boundary condition from [130]. In contrast to

previous slip corrections, a correlation is presented that depends on the Knudsen number

and the Reynolds number:

FD

FD,Slip
= 0.24Re+ 2.00Kn+ 0.98 (3.23)

for 0 ≤ Re ≤ 1 and 0.01 ≤ Kn ≤ 0.1

Non-continuum effects affect not only the drag between particle and ŕuid, but also the

heat and mass transfer. While for drag this can be imagined as a velocity jump at the

particle surface, for heat transfer it behaves like a temperature jump. Smoluchowski [132]



3.6. NON-CONTINUUM EFFECTS 21

suggested a description for the temperature jump between gas and a wall in the slip ŕow

regime:

Tg − Tw =

(
2κ

κ+ 1

)(
2− σT
σT

)(
Kn

Pr

)(
∂T

∂n

)

(3.24)

Here, Tw is the dimensionless wall temperature, Tg the dimensionless temperature of the

őrst layer of gas adjacent to the wall, κ the gas speciőc heat capacity ratio, σT the ther-

mal accommodation coefficient, and ∂T/∂n is the normal temperature gradient at the

wall. Some researchers have incorporated this approach recently. Mohajer et al. [133]

conducted a numerical simulation for the heat transfer at microspherical particles in the

slip ŕow regime. They found that, while the slip leads to a higher slip velocity, which in

turn leads to a higher Nusselt number, the temperature jump, which goes along with the

slip, leads to a decrease in the Nusselt number. For small temperature differences the

former effect is dominant and for large temperature differences the later effect dominates.

In that case, the gas properties need to be considered variable within the boundary layer.

Liu et al. [134] also put an emphasis on the necessity to incorporate variable gas prop-

erties, substantiating the work of Mohajer et al. in their numerical study. Additionally,

they found that the Nusselt number is higher when the gas temperature is higher than

the particle temperature and compressibility effects are considered. Anbarsooz & Niaz-

mand [135] conducted a numerical calculation in order to investigate the heat transfer

characteristics of slip ŕows over solid spheres with 0 ≤ Re ≤ 50, 0.7 ≤ Pr ≤ 7.0, and

0 ≤ Kn ≤ 0.1. The authors showed the inŕuence of the above mentioned opposing effects

of increased slip velocity and temperature jump. For small Prandtl numbers (Pr ≈ 0.7

- gases), the Nusselt number decreases with increasing Knudsen numbers (temperature

jump dominates). For the limiting case of Re → 0 (pure conduction), the temperature
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proőle can be calculated analytically with

T = T∞ − T∞ − Tw

1 + 4κ
κ+1

2−σT
σT

Kn
Pr

R

r
(3.25)

with the corresponding Nusselt number

Nu =
2

1 + 4κ
κ+1

2−σT
σT

Kn
Pr

(3.26)

Ben-Ami & Manela [136] investigated under which conditions the Navier-Stokes-Fourier

description of a pulsating sphere in a rareőed gas breaks down. And Yap & Sader [137]

considered the combined effect of rarefaction and unsteady motion on a sphere.

As shown, the state of the art in this topic is already quite developed with many

different exiting models, theories, and experiments. But each of them only covers small

parameter ranges of the behaviour of particles in pulsating and oscillating ŕows, while an

overarching framework is still missing. Often, only the motion of particles is considered,

while the heat and mass transfer is omitted. In many works, the motion of the particles

is considered an input parameter when the HMT is investigated. The same is true for

ŕow patterns around the particles. In the following, an algorithm is presented in order to

model the motion of particles in an oscillating ŕow by considering relaxation with a few

broad range input parameters. The model employs two central dimensionless numbers,

which help afterwards to transition directly to modelling the respective ŕow patterns and

HMT to the single particle.



CHAPTER 4

Basic Assumptions and Considerations

The aim of this work is to model the inŕuence of the few parameters listed in Table

4.1, with broad ranges, on the processes involved, from the basic motion of a single

particle in Chapter 5, to the various ŕow patterns forming around it in Chapter 6, to

the resulting heat and mass transfer to the particle in Chapter 7. The analytical model

can be applied for a gaseous as well as a liquid environment. Each value combination

of input parameters is related to a value of the Nusselt (Sherwood) number. In the

őrst section, the input parameters and their ranges are discussed. This is followed by a

discussion of the nature of pulsating and oscillating ŕows in PRs and in general, while

several simpliőcations are introduced. Subsequently, several potential forces acting on

the particle are considered or neglected in Section 4.3. Then, in Section 4.4, the analytic

solution for the motion of the particle in a pulsating ŕow is derived with the Stokes drag

model. The last simpliőcation for enabling a harmonic analysis is applied by neglecting

the transient part and transferring the solution to the oscillating ŕow case. Afterwards, in

Section 4.5, the harmonic analysis is conducted with the Stokes drag model and a simple

expression for the slip velocity is derived, which can also be interpreted graphically. An

overview and brief discussion of the dimensionless numbers and their relations is presented

in Section 4.6. Finally, the ϵ-Re plane is introduced, which functions as a uniting basis

for many following considerations.
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4.1. Input Parameters

The considered input parameters are listed in Table 4.1, with their investigated

ranges, which are larger than the range of achievable process conditions in a pulsa-

tion reactor (see Table 2.1). This is by design, on the one hand, in order to capture

effects outside of the current scope of pulsation reactors and to provide educated advice

for further development on the one hand. On the other hand, this allows to expand the

theoretical considerations to ultra sonic levitators (USL), which create process conditions

similar to those of PRs. Additionally, the parameter range requirements for a pulsation

reactor are so large that expanding them further does not add much complexity to the

model, because many extreme cases need to be taken into account anyways. The in-

put parameters can be fundamentally categorized into ŕuid related and particle related.

These two categories are considered to be completely independent, hence this model

utilizes one way coupling only (see Horwitz & Mani [138, 139] for two way coupling

corrections). This assumption is discussed in more depth in Section 4.3. Many input pa-

Table 4.1. List of input parameters.

Matter Parameter Symbol Range Unit

Fluid
Velocity Amplitude Uf 0 - 50 m/s

Frequency f 0 - 100000 Hz

Temperature T 300 - 1500 K

Particle
Diameter d 10-3 - 10-9 m

Density ρp 100 - 10000 kg/m3

rameters lead to secondary input parameters or can be exchanged for other parameters

due to known dependencies. For example, under the assumption of an ideal gas [140], a

known gas temperature T enables the calculation of various other properties, such as the

kinematic viscosity ν, the dynamic viscosity η, as well as the gas density ρg via power
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relations [141]:

ρg
ρ0

=

(
T

T0

)−1 ηg
η0

=

(
T

T0

)nη νg
ν0

=

(
T

T0

)nη+1

(4.1)

The reference values at T0 = 273K, as well as the exponents, are material properties and

are tabled in literature for various gases. Similar dependencies are known for liquids as

well, but must be modelled for each liquid separately. Another example would be the

exchange of the ŕuid velocity amplitude Uf for the pressure amplitude P , since they can

be converted into each other via the speed of sound c in the ŕuid under the assumption

of linear acoustics [142]:

P = ρfcUf (4.2)

4.2. Pulsating Flow

A pulsating ŕow can be deőned as an oscillating ŕow superimposed on a non-vanishing

steady velocity [143]. For the special case of a pulsating pipe ŕow, complete solutions

were derived by Sexl [144], Womersley [145], and Uchida [146]. Following the lines of

Hussain & Reynolds [147], any ŕow variable can be split into 3 components

f(x, t) = ζ̄(x) + ⟨ζ(x, ϕ)⟩+ ζ ′(x, t) (4.3)

with the temporally averaged (steady) part ζ̄(x), the oscillating part ⟨ζ(x, ϕ)⟩, depending

on the angle in the cycle ϕ, and a part that is statistically (randomly) ŕuctuating ζ ′(x, t).

This work assumes a spatially constant steady and oscillating part as well as a negligible

ŕuctuating part in the dimensions of the particle. Figure 4.1 shows a typical velocity

proőle of pulsating pipe ŕow e.g. in the resonance tube of a pulsation reactor. The proőle

is dominated by the annular effect, discovered by Richardson [148], which describes an

increased absolute ŕow velocity close to the tube walls and an even velocity proőle in
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the center (plug ŕow), in contrast to the parabolic velocity distribution of a pipe ŕow.

The particle diameter d is much smaller than the diameter dtube of the resonance tube

Figure 4.1. Pulsating ŕow velocity proőle in a tube.

d ≪ dtube. This allows a simpliőcation of the plug ŕow velocity proőle of the ŕuid in

the center of the pipe at the resolution of the particle to one-directional and, therefore,

one-dimensional. Additionally, the pressure gradient and velocity gradient are considered

harmonic. The validity of this assumption was demonstrated by experiment [8], in which

the pressure in a pulsation reactor was measured with a heat resistant microphone with a

high sampling rate. As an example, one of the operation points is displayed in Figure 4.2.

There, the measured pressure proőles in time for 4 measurement points along the tailpipe

of a PR are shown. The pressure amplitude decreases along the tailpipe as predicted by

Helmholtz resonator theory [2]. For the sake of comparison, an ideal harmonic pressure

proőle is plotted on top of the measured proőles. It can be seen that they do not differ

signiőcantly, even though they become less harmonic towards the end of the tailpipe.

The total harmonic distortion (THD) [149]

THDF =

√∑∞
n=2 P

2
n

P1
(4.4)
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Figure 4.2. Comparison of an artiőcially generated fundamental with mea-
sured pressure data at 4 different points along the tailpipe (TP1 − TP4 −→
a)− d)) at a PR.

was calculated with the fundamental order of the pressure amplitude P1 and the higher

harmonics Pn for various operation points (different fuel and air intakes). It was demon-

strated that the THD never exceeded 20% at any point, even if the pulsation was at its

stability limit [8]. In the parameter areas where a PR is usually operated, the THD is

signiőcantly smaller. The pressure proőle can be converted into the velocity proőle and

the velocity amplitude Uf can be calculated with

Uf =
P

ρfc
(4.5)

Therefore, the pressure curve and the oscillating ŕow velocity can be considered harmonic.

This assumption is also often applied in literature for USLs [86, 87]. Hence, the ŕow

velocity of a one-dimensional, harmonic, pulsating ŕow can be described as:

uf (t) = ūf + Uf cosωt (4.6)
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with the steady mean velocity component ūf = f
∫ t+1/f
t uf (t) dt, the ŕuid velocity

amplitude Uf , and the angular pulsation frequency ω = 2πf .

4.3. Forces on the Particle

Several (potential) forces are acting on a single particle in a pulsation reactor [150].

In the following they are each examined and neglected or taken into account:

Gravity G

Gravity is a force in the direction of the gravitational acceleration g and can be

calculated via G = (1− 1/γ)g with the density ratio between ŕuid and particle

γ = ρp/ρf . The density ratio plays a vital role in many following considerations

and is discussed in length in Section 5.2. In case the terminal settling velocity

Uset,t = Gτ , calculated with the characteristic particle relaxation time τ =

γd2/(18ν), is much smaller than the ŕuid velocity amplitude Uset,t ≪ Uf , gravity

can be neglected [151]. Most pulsation reactors are constructed horizontally [6],

and if Uset,t ≫ Uf holds true, the particle would sink to the bottom of the reactor

and then deposit there, which would be an undesirable conőguration in the őrst

place. Also, the limit case of Uset,t ≈ Uf , where particles are dragged along in

the ŕuid stream as they bounce off the bottom of the tube, is not considered.

Therefore, gravity is neglected in this work.

Saffman Force FS

The shear induced lift force investigated by Saffman [152] that can be calcu-

lated via the expression 3.084Uxν/(γd)
√

|dUf/dy|/ν acts on particles in shear

ŕows, and should be taken into account close to walls when considering deposi-

tion. Here, dUf/dy is the ŕuid velocity gradient perpendicular to the main ŕow

direction, while Ux is the slip velocity between particle and ŕuid in the main
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ŕow direction. The slip velocity is one of the main concerns of this work and

is mainly discussed in the next section and Section 5.1. In this work, only the

ŕow in the center of the tube with plug ŕow character is considered, as derived

in Section 4.2. Therefore, this force is neglected in this context. Nevertheless,

in a PR, the Saffman force can help or hinder particle depositing, depending on

the phase lag of the particle [153].

Thermophoretic Force Ftherm

This force is associated with temperature gradients in the ŕuid and can be

calculated with Ftherm = −(ηtherm/mp)∇ ln (T ) and the thermophoretic force

coefficient ηtherm = 2.34(3πηνd)(λr+4.36Kn)/[(1+6.84Kn)(1+8.72Kn+λr)].

Here, λr = λf/λp is the thermal conductivity ratio between the ŕuid and the

particle [154]. The dimensionless Knudsen number Kn = λmfp/d is the ratio

between the mean free path of gas molecules and the particle diameter and is

treated more in depth in Section 5.6. The thermophoretic force acts against

the temperature gradient, towards the cooler medium. It can be substantial for

very small particles over very small dimensions, but does not need to be taken

into account in a free stream, which the ŕow in a PR can be considered as for

small particles.

Electrostatic Force FE

This force requires a charged particle and an electric őeld and can be calcu-

lated with FE = 3q2/8π2ϵ0ρpd
3y2. Here, q is the charge on the particle and ϵ0

(8.854 187× 10−12 Fm−1) is the electric permittivity of vacuum, which is close

to air. While particles can get charged by many processes, including mirror
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charging, interacting with other particles, etc., the charges and occurring elec-

tric őelds in a pulsation reactor are usually small and can be neglected.

Collision with other particles

This phenomenon can not be attributed to a force in the convectional sense,

but rather the exchange of momentum. Still, it is an important aspect enabling

change in particle velocities, sintering of particles, or charging as mentioned in

the previous paragraph. Taking the usual dimensions of a PR into account with

the usual material throughput, as listed in Table 2.1, mean particle distances

of around 300d can be expected. This is enough to exclude particle-particle

interaction and treat single particles on an individual level [155].

Drag Force FD

Particle drag is a force resulting from the friction between a particle and a sur-

rounding medium when the particle moves at a different velocity as the medium.

It is modelled in this work and is covered substantially in the next section and

Section 5.1.

Inertia FI

The inertial force is acting against a forced motion of any body and can be

described in the case of a particle as FI = (π/6)ρpd
3ap, with the acceleration

of the particle ap. Similar to drag, it is applied in this work in the next section

and Section 5.1.

An overview of the forces acting on a particle which are included and neglected in this

work is shown in Figure 4.3. The two forces considered in this work are the particle
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drag and the inertia of the the particle which are in a constant equilibrium state. This

equilibrium state is the starting point for deriving the motion of the particle in the next

section.

Figure 4.3. Various forces acting on a single particle. Forces with őlled arrows
are included in this work and forces with empty arrows are neglected.

4.4. Motion of Particles - Stokes Solution

The slip velocity

u(t) = uf (t)− up(t) (4.7)

between the ŕuid velocity uf (t) and the particle velocity up(t) is the central quantity

for many particle considerations. Modelling this quantity is achieved by calculating the

actual particle velocity for a known ŕuid velocity and then deriving the instantaneous slip

velocity via Equation 4.7. Starting point is the constant force equilibrium on the particle,

while the main forces in many cases are drag and inertia, as laid out in the previous

section. In a őrst step, the one dimensional particle motion will be derived speciőcally

with the Stokes drag model and then generalized for other drag models presented later, in

Section 5.1. The Stokes drag model is derived from the Navier-Stokes equations (NSEs)

by asymptotic analysis for negligible small inertial and dominating viscous forces in the
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ŕuid [156]. The ratio of inertial to viscous forces is expressed via the Reynolds number

Re = ud/ν. Even though the Stokes model is derived for the limit case of Re → 0, it is

commonly considered valid up to Re = 1. The drag force FD,Stk predicted by the Stokes

model and the inertial force of a spherical particle FI

FD,Stk = 3πηdu (4.8)

FI = ρp
π

6
d3a (4.9)

together with the ŕuid velocity expressed in Equation 4.6, lead to the ordinary differential

equation (ODE) of the force equilibrium

u̇p +
1

τ
up =

1

τ
[ūf + Uf cos (ωt+ ϕ0)] (4.10)

A detailed derivation and solution of this ODE can be found in Appendix A. Various

parameters of the particle and the surrounding ŕuid are summarised in the relaxation

time τ = ρpd
2/18η, which are input parameters from Table 4.1 or can be calculated

from input parameters via Relations 4.1. These properties do not depend on the motion

of the particle and are therefore considered to be constant. This can also be assumed

for the angular frequency ω of the pulsating ŕow, while the product of τ and ω merges

all constant inŕuential parameters of the problem to a single dimensionless number, the

oscillation Stokes number Stk = ωτ [157]. The relaxation time τ indicates how fast a

particle can adapt to changing ŕow conditions, while the angular frequency ω indicates

how fast the ŕow conditions change. Hence, the Stokes number indicates how well a
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particle can follow the changing ŕow. ODE 4.10 can be solved to

up(t) =

[

u0 − ūf − Uf

1 + Stk2
[cos(ϕ0) + Stk sin(ϕ0)]

]

e−
t
τ

︸ ︷︷ ︸

transient

(4.11)

+ ūf +
Uf

1 + Stk2
[cos (ωt+ ϕ0) + Stk sin (ωt+ ϕ0)]

︸ ︷︷ ︸

resident

and the slip velocity can be calculated with

u(t) = uf (t)− up(t)

=

[

ūf − u0 +
Uf

1 + Stk2
[cos(ϕ0) + Stk sin(ϕ0)]

]

e−
t
τ

︸ ︷︷ ︸

transient

(4.12)

+ Uf
Stk

1 + Stk2
[Stk cos (ωt+ ϕ0)− sin (ωt+ ϕ0)]

︸ ︷︷ ︸

resident

Equations 4.11 and 4.12 are divided into a transient and a resident part. The transient

part describes how the particle is brought up to the resident particle velocity (not the

ŕuid velocity), while the resident part describes how the particle behaves in the continu-

ously oscillating ŕow, as shown in Figure 4.4. The transient part diminishes, while time

progresses:

lim
t→∞

([

ūf − u0 +
Uf

1 + Stk2
[cos(ϕ0) + Stk sin(ϕ0)]

]

e−
t
τ

)

= 0 (4.13)

After t = 3τ , the transient part has shrunk to 5% of its initial value and is considered

negligible. It is dominated by the difference of the initial particle velocity u0 and the mean

ŕuid velocity ūf . Furthermore, the time in the cycle of the oscillating ŕuid velocity ϕ0

when the particle is injected into the ŕow is crucial. After the decay of the transient part,

hence after t = 3τ , the motion of the particle becomes repetitive, so further constraints
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Figure 4.4. Initial particle motion split into resident and transient part. After
t = 3τ the transient part has shrunk to 5% of its initial value. All velocities are
in relation to ŕuid amplitude Uf . Stk = 1;ϕ0 = 0;u0 = ūf = 0 m/s.

and simpliőcation can be applied:

u(t > 3τ) ≈ Uf
Stk

1 + Stk2
[Stk cos (ωt+ ϕ0)− sin (ωt+ ϕ0)] (4.14)

A display of this motion behavior can be seen in Figure 4.5, where it is shown that the

particle will perform an oscillating motion with the same frequency as the ŕuid, but with

smaller amplitude and a phase shift, which both depend on the Stokes number Stk. In

this work, only the resident part of the particle motion (t > 3τ) is considered, which

enables harmonic, time independent investigations. Nevertheless, the application of the

Stokes drag model with Equation 4.12 delivers an educated, conservative guess of the

slip velocity for the consideration of transient effects, even for Re > 1 [151,158]. Since

USLs feature a standing sound wave and the particles can be considered őxed in place,

no transient effects occur in the őrst place.
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Figure 4.5. Repetitive motion of a particle in an oscillating ŕow, calculated
analytically with the Stokes drag model. All velocities are in relation to the
ŕuid velocity amplitude Uf .

4.5. Harmonic Analysis

Not only can the ŕuid velocity be modelled as harmonic, as shown in Section 4.2,

but so can the particle velocity and the slip velocity, as long as t > 3τ , as laid out

in the previous section and visualized in Figure 4.5. This means that each velocity is

deőned by an amplitude, frequency, and phase shift. The phase shift is only important

for describing the timely relations between the velocities and is therefore neglected in

the following considerations. As stated in Section 4.4, the slip velocity is the most

important quantity for all following considerations. Since the slip velocity oscillates with

the same frequency as the ŕuid, which is an input parameter, this quantity is already

known, leaving the slip velocity amplitude as the only undetermined quantity needed in

order to describe the slip velocity. The amplitude of the slip velocity oscillation is the

extreme value of Equation 4.14 and is solely dependent on the Stokes number and the
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ŕuid velocity amplitude, which can be calculated directly from input parameters:

U

Uf
=

1
√

1 + 1
Stk2

(4.15)

Equation 4.15 is displayed in Figure 4.6. For small Stokes numbers Stk ≪ 1, the ratio of

slip velocity amplitude to ŕuid velocity amplitude is equal to the Stokes number itself,

while for large Stokes numbers Stk ≫ 1 the ratio becomes unity. These phenomenon

are labeled fast relaxation limit (FRL) and slow relaxation limit (SRL) in this work,

and are covered in more depth in Section 5.3. The ŕuid velocity amplitude Uf , particle

Figure 4.6. Plot of Equation 4.15. Slip velocity amplitude in relation to ŕuid
velocity amplitude in respect to the Stokes number Stk.

velocity amplitude Up, and relative velocity amplitude U can be expressed as vectors,

which form a right triangle as displayed in Figure 4.7. It becomes obvious that many

geometrical relations can be applied to this problem, such as trigonometric functions

and the Pythagorean theorem. Furthermore, the internal angle ϕp between the ŕuid

velocity amplitude vector and the particle velocity amplitude vector indicates the phase

shift between ŕuid velocity oscillation and particle velocity oscillation. It is very similar
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for the the internal angle ϕ between the ŕuid velocity amplitude vector and the relative

velocity amplitude vector, but in this case it is the negative phase shift between ŕuid

velocity oscillation and relative velocity oscillation. The relations in Figure 4.7 are valid

at any instance in time, independent of the applied drag model.

Figure 4.7. Vectorial representation of ŕuid velocity amplitude Uf , particle
velocity amplitude Up, and relative velocity amplitude U , including phase shift
angles in reference to the ŕuid oscillation of the particle velocity ϕp and relative
velocity ϕ.

4.6. Dimensionless Numbers

The large range of considered input parameters in general and the exhaustive range of

considered particle sizes in particular bring the necessity to apply different sub-models for

drag, ŕow patterns, as well as heat and mass transfer. Many different states and regimes

are considered, often ranging from one extreme to the other. Dimensionless numbers are

the primary source of criteria to evaluate phenomenon qualitatively [159], especially in

ŕuid dynamics, and then choose the appropriate sub-models accordingly. An overview

of all the utilized dimensionless numbers in this work can be found in Table 4.2. The

Reynolds number, as introduced in Section 4.4, is the central dimensionless number and

important in most ŕuid dynamic considerations. In the case of oscillating ŕows, the

oscillation Reynolds number Re = Ud/ν is utilized, which is calculated with the slip

velocity amplitude instead of the instantaneous slip velocity. The oscillation Reynolds
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number is paired with the amplitude parameter ϵ = A/d with the displacement amplitude

A = U/ω, as laid out in Chapter 3. It describes how far the particle oscillates in relation

to its own diameter. This dimensionless number is important in order to determine the

type of boundary layer that forms around the particle, as discussed in Chapter 6. In

some literature, the Strouhal number Sr = 1/ϵ is used, which is the reciprocal amplitude

parameter. The Womersley number Wo2 = Re/ϵ = d2/δ2 sets the particle diameter in

relation to the boundary layer thickness δ =
√

ν/ω. It is primarily utilized in this work

as an indicator if the ŕow can be considered quasi steady, as described in Section 5.1. The

Streaming Reynolds number ReS = Reϵ = U2/(ων) provides an indication as to if the

second order effect of Steady Streaming needs to be taken into consideration, while taking

the place of the classic Reynolds number, when dealing with this phenomenon, as laid out

in Chapter 6. The oscillation Stokes number was already introduced in Section 4.4 and

is discussed in more depth in Section 5.3. The Knudsen number Kn = λmfp/d sets the

mean free path λmfp of gas molecules in relation to the particle diameter. Small Knudsen

numbers allow for the application of continuum ŕuid dynamics, while large Knudsen

numbers require the consideration of non-continuum effects. Large Knudsen numbers

are connected to small particle sizes (d ≤ 10−6) in gases, which is utilized in Sections 5.6

and 7.7. The Mach number Ma = Uf/c sets the velocity of the ŕuid in relation to the

speed of sound in the ŕuid. Small Mach numbers allow for the treatment of gas ŕows as

incompressible, which often reduces the complexity of the ŕow models. In this work, all

considered ŕows are treated incompressible. The ratio γ = ρp/ρf between the density of

the particle ρp and the density of the ŕuid ρg is a central quantity for the consideration of

drag models in Section 5.1 and particle relaxation in Section 5.3. Some of the discussed

dimensionless numbers have multiple labels or can be expressed by a combination of other

dimensionless numbers. Figure 4.8 displays the important relations between some of the
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Table 4.2. Overview of dimensionless numbers.

Phenomenon Dimensionless number ≪ 1 ≈ 1 ≫ 1

F
lu

id
d
y
n
a
m

ic
s

Flow regime Reynolds number Re = Ud
ν

Creeping ŕow
Transition

regime
Potential ŕow

Flow pattern Amplitude parameter ϵ = U
ωd

Steady Stream-

ing

Transition

regime

Classic bound-

ary layer

Quasi-steady ŕow Womersley number Wo2 = d
δ

Quasi-steady

ŕow

Transition

regime
Unsteady ŕow

Steady Streaming
Streaming Reynolds number

ReS = Re ϵ

Steady Stream-

ing negligible

Transition

regime

Steady Stream-

ing dominant

Particle relaxation Stokes number Stk =
ωρfd2

18η
FRL Relaxation SRL

Flow description Knudsen number Kn = λ
d

Continuum ŕow Slip ŕow
Free molecular

ŕow

Incompressible ŕow Mach number Ma =
Uf

c
Subsonic ŕow

Transition

regime
Supersonic ŕow

Density ratio γ =
ρp
ρf

ŕuid denser approx. equal particle denser

H
ea

t
a
n
d

m
a
ss

tr
a
n
sf

er

Thermal boundary

layer thickness
Prandtl number Pr = ν

α

thermal

diffusivity

dominant

approx. equal

momentum

diffusivity

dominant

Mass boundary

layer thickness
Schmidt number Sc = ν

D

mass

diffusivity

dominant

approx. equal

momentum

diffusivity

dominant

Heat transfer Nusselt number Nu = hd
k

convective

heat transfer

dominant

approx. equal

conductive

heat transfer

dominant

Mass transfer Sherwood number Sh = hd
D

convective

mass transfer

dominant

approx. equal
diffusion

dominant

dimensionless numbers used in this work. After this brief introduction of the important

dimensionless numbers for the motion of particles in oscillating ŕows and the associated

ŕow pattern around the particle, additional dimensionless numbers for the description of

the resulting HMT at the particle are introduced. The Prandtl number Pr = ν/α sets the

momentum diffusivity in relation to the thermal difussivity α. Another interpretation is

the relation between the momentum boundary layer thickness and the thermal boundary

layer thickness. Together with the Reynolds number, the Prandtl number can be used

to determine the Nusselt number Nu = hd/k in steady ŕows, as laid out in Section

7.3. The Nusselt number is calculated with the convective heat transfer coefficient h and

the thermal conductivity k and sets the conductive heat transfer in relation with the
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convective heat transfer. Overall it can be used as a criterion for the intensity of the

occurring heat transfer. When dealing with mass transfer instead of heat transfer, the

counterpart to the Prandtl number is the Schmidt number Sc = ν/D and the counterpart

to the Nusselt number is the Sherwood number Sh = hmd/D. The Schmidt number sets

the momentum diffusivity in relation to the mass difussivity D, while the Sherwood

number sets the convective mass transfer, expressed by the convective mass transfer

coefficient hm, in relation to the occurring diffusion. The Sherwood number is utilized

in Chapter 7 alongside the Nusselt number.

Figure 4.8. Dependencies and relations between the central dimensionless
numbers in oscillating multi-phase ŕow.

4.7. The ϵ-Re Plane

In case the particle is őxed in position (or the particle executes harmonic oscillations

in a ŕuid at rest), the interaction between the ŕuid and the particle as well as the

resulting ŕow state is deőned by two dimensionless numbers: the oscillation Reynolds

number Re and the amplitude parameter ϵ, as introduced in the previous section. In

case particle relaxation needs to be considered, as described in Section 5.3, the ŕow state
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also depends on the density ratio γ, which acts as a parameter. Reynolds number and

amplitude parameter span a plane in which all ŕow states can be pinpointed, as shown

in Figure 4.9. The bisectors of this plane are the Womersley number Wo2 = Re/ϵ [145]

Figure 4.9. ϵ-Re plane by Heidinger et al. [160] in which all ŕow states of a
single particle in an oscillating ŕow can be deőned.

and the Streaming Reynolds number ReS = ϵ Re [61]. The ϵ-Re plane was introduced

by Wang [161] and then adopted by Chong et al. [162]. In this work, it functions as a

uniting basis for the discussion of particle motion (Section 5.1), slip velocity (Section 5.2),

particle relaxation (Section 5.3), ŕow patterns (Chapter 6), and HMT (Chapter 7). For

this endeavour, the axis of the plane are sometimes expressed in the decimal logarithmic

scale. This has several advantages and disadvantages. Advantages are that the plane

now has its origin at O(0, 0), enabling a direct use of Euclidean vectors without the need

of any origin transformation, as discussed in Section 5.4. Additionally, complex vectors

can be used in order to describe points in the plane and perform vector calculations.

Disadvantages are the need to transform into the logarithmic scale and back afterwards

in order to conduct calculations, as well as the lack of relatability to the size of the
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treated quantities. From here on, the ϵ-Re plane is simply referred to as ‘plane’ in this

context.



CHAPTER 5

Motion of the Particle

The particle motion in a one-dimensional pulsating ŕow was derived and discussed

in Section 4.4 with the simple drag model by Stokes. Stokes has a comparably small

range of validity of Re ≤ 1 and not all ŕow states resulting from the parameter ranges

of Table 4.1 can be modelled by it. Therefore, in Section 5.1 an investigation will be

carried out to discern which drag models can be utilized in various areas of the plane

introduced in Section 4.7 in order to cover large parts of it. Subsequently, the resulting

slip velocity amplitude is determined in Section 5.2, which is the őrst target quantity

as discussed in Section 4.2. After this, particle relaxation in one-dimensional oscillating

ŕows is generalized in Section 5.3. Utilizing the derived relaxation limits, Section 5.4

provides a crude way of navigating the plane on the basis of a sensitivity analysis. This is

followed by an investigation in Section 5.5, on the limits in which the simple Stokes model

differs insigniőcantly from other drag models. If the Stokes model differs insigniőcantly

from another model, even outside of its perceived range of validity, it can be applied in

the respective parameter range as a substitution. Section 5.6 lays out how the plane can

be adapted for small particles, for which continuum ŕow mechanics provide insufficient

descriptions. Chapter 5 is then concluded by a short summary in Section 5.7.

5.1. Drag Models

An important step is choosing the appropriate drag model for the prevalent ŕow

regimes around the particle. There are several cases to consider. A major distinction to

draw is between a ŕow that can be considered steady compared with an unsteady ŕow.
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The main criterion for differentiating is whether the boundary layer δ =
√

ν/ω is larger

or smaller than the particle itself. This phenomenon is expressed by the Womersley

number Wo2 = d2/δ2 [145]. The Womersley number is sometimes also referred to as

Stokes number [163] or frequency parameter M2 [76] in literature. If Wo2 ≪ 1, the ŕow

can be considered steady [43]. In case the Reynolds number is also smaller than unity

Re < 1, the viscous forces dominate and creeping ŕow can be assumed. This assumption

leads to mathematical simpliőcations expressed via the Stokes drag model presented in

Section 4.4. If Wo2 ≪ 1, while the Reynolds number exceeds the validity range of the

Stokes model Re > 1, the ŕow can still be considered steady, but a drag model with

a higher range of validity regarding the Reynolds number has to be applied. In this

case, the Schiller & Naumann (SN) model [164] (see also [165]) can be used, which is

applied widely in literature [139,166,167]. It differs in nature from the Stokes model

in two important aspects. On the one hand, it is an empirical model derived via the

correlation of experimental data, rather than being derived from the NSEs by omitting

inertial forces. On the other hand, applying the drag model by Schiller & Naumann

leads to a non-linear motion ODE, which can only be solved numerically. In the opposite

case of Wo2 ≫ 1, the drag model by Landau & Lifshitz [43] can be applied, as long as

the displacement amplitude A = U/ω is smaller than the particle diameter itself. This

ratio is expressed by the amplitude parameter ϵ = A/d. The drag model by Landau &

Lifshitz is derived by linearizing the NSEs around small oscillation amplitudes ϵ ≪ 1.

In case neither Wo2 ≪ 1 nor Wo2 ≫ 1, but Re < 1, the drag model by Basset [16]

can be considered valid, which is explicitly derived for unsteady ŕow conditions and was

introduced in Chapter 3. It is an extension of the Stokes model that, besides pure drag,

also considers added mass and the pressure gradient. Additionally, the "history" of the

ŕuid is factored in by an additional, theoretically derived term. In this work, only the
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steady state is considered and therefore the lower boundary of the history integral t0 is

set to −∞. The Reynolds number Re, the Womersley number Wo2, and the amplitude

parameter ϵ are the central dimensionless numbers used to characterise oscillating ŕows,

though they are not independent from each other. The ϵ-Re plane, as introduced in

Section 4.7, can be utilized in order to graphically distinguish ranges of validity for

drag models, as seen in Figure 5.1. An undeőned area is recognizable where none of

the above models are valid from a mathematical point of view. Here, the empirical

correlations by Odar & Hamilton [34], as introduced in Chapter 3, can be applied or

the NSEs need to be solved numerically. The models by Stokes and Landau & Lifshitz

Model
Range of
validity

Signiőcant
features

Stokes
Re < 1
Wo2 ≪ 1

linear/
asymptotic
analysis

Schiller&
Naumann

Wo2 ≪ 1
Re < 1000

non-linear/
empiric

Basset Re < 1

linear/
half-empiric/
asymptotic
analysis

Landau&
Lifshitz

Wo2 ≫ 1
ϵ ≪ 1

linear/
asymptotic
analysis

Figure 5.1. Models considered for various combinations of Reynolds number
Re, amplitude parameter ϵ, and Womersley number Wo2. left: Various drag
models displayed in the ϵ-Re plane. The frames indicate the limits of validity,
while the colored areas mark the preferable model. right: Various drag models
with their limits of validity and signiőcant features.

are derived from the NSEs by asymptotic analysis for extreme conditions and achieving

mathematical simpliőcation. Those extreme conditions are Re ≪ 1 or ϵ ≪ 1. As long as

the NSEs can be considered valid and the extreme conditions are met, these models can

also be considered valid, although it is often not clear when these conditions are met, as

pointed out in Section 5.5. In contrast, empiric models like Basset, Schiller & Naumann
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and Odar & Hamilton are approximations of relations retrieved by őtting regressions to

experimental data. Therefore, they inherently provide less theoretical reliability due to

the multiple sources of error in the model building process. This is also highlighted by

the vast amount of different, yet competing empiric correlations for the same parameter

areas [168], as pointed out in Section 3.2. Additionally, Stokes and Landau & Lifshitz,

as well as Basset, lead to linear and therefore analytically solvable differential equations

of particle motion. Hence, they grant more mathematical accessibility and are easier

to implement than non-linear models. A detailed derivation and solution of the motion

ODE with the Landau & Lifshitz model can be found in Appendix B, while the solutions

to the ODEs for the other models are well known in literature [21]. In parameter areas

where multiple models are valid, linear models are preferable to non-linear models and

asymptotic analysis is preferable to empiric models. A good treatise on drag model

validity ranges in sound waves can be found with Temkin & Leung [169]. In Figure 5.1,

the validity limits of the models are indicated by frames, while the preferable models are

indicated by the areas in various colours. This classiőcation was conducted along the

arguments laid out above. The limits of validity for the discussed drag models and their

main features are presented in Table 5.1.

5.2. Slip Velocity Amplitude

Each drag model from Table 5.1 expresses the drag force on the particle differently.

If the algorithm presented in Section 4.4 is applied to the remaining drag models, an

expression for the slip velocity amplitude can be found, as listed in Table 5.1. In each

case, the slip velocity amplitude U , normalized with the ŕuid velocity amplitude Uf , is

solely dependent on the Womersley number and the density ratio, while the Cunningham

factor CC is set to 1 for now and addressed later in Section 5.6. The Womersley number

Wo2 = Re/ϵ can be expressed with the amplitude parameter and the oscillation Reynolds
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Table 5.1. Normalized slip velocity amplitude U/Uf for several drag models
depending on the Womersley number Wo2 and the density ratio γ.

Name Drag force FD Velocity ratio U/Uf

Stokes 3πηdu
CC

�

1 +
�

18
Wo2γCC

�2
�−1/2

Schiller &

Naumann

3πηduSN
CC

�

1 +
�

18 SN
Wo2γCC

�2
�−1/2

SN = 1 + 0.158Re2/3

Basset

3πηdu
CC

− π
6
d3 ∂p

∂x
+ π

12
d3ρf
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dt

+ 3
2
d2
√
πρfη

R t

t0

du/dt√
t−t′

dt′

h

1 + 1
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2
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h
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2Wo

i

[1−γ]
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2Wo

�2
+
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2Wo

i2
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18
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+ 9√
2Wo

�

[1−γ]

�
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Wo2CC

+ 9√
2Wo

�2
+
h
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2Wo

i2

Landau &

Lifshitz

3πηdu
CC

(

1 + d
2δ

�

+ 3
4
πd2

q

2ηρ
ω

(

1 + d
9δ

�

du
dt

�

�

18
Wo2γCC

+ 1√
2Woγ

�2

+
�

1√
2Woγ

+ 3/2
√

γ
+ 1
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number as presented in Figure 4.8. This implies that the ŕow state not only depends on

the Reynolds number Re and the amplitude parameter ϵ, but also on the density ratio

γ = ρp/ρf between particle and ŕuid when particle relaxation needs to be considered. The

slip velocity amplitude U is the only unknown value in order to calculate the oscillation

Reynolds number Re = Ud/ν and the amplitude parameter ϵ = U/(ωd), while the

density ratio acts as a parameter for the plane. The position on the plane can still be

pinpointed by calculating the Reynolds number and the amplitude parameter, but the

plane looks different for each value of the density ratio. The result of calculating the slip

velocity amplitude ratio with the drag model formulations from Table 5.1 can be seen

in Figure 5.2, where this phenomenon is observable as plane a) with γ = 25000 looks

different from plane c) with γ = 8. The őrst analysis of the slip velocity, which takes

place in Section 5.3, is conőned to the case γ ≫ 1, displayed in the left plot of Figure

5.2. The case γ > 1, with its apparent model discontinuities, is addressed then in Section

5.5.
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Figure 5.2. Normalized slip velocity amplitude, calculated with various drag
models. a: γ = 25000 (logarithmic z-axis scale); b: γ = 25000; c: γ = 8.

5.3. Particle Relaxation

Particle relaxation is the transient phenomenon of particles adapting to changed ŕow

conditions. A special case of initial particle relaxation is described in Section 4.4, where

particles are released into a pulsating ŕow. In case of an oscillating ŕow, the ŕow velocity

keeps changing, while the entrained particles can never fully adapt their velocity, leading

to an oscillating, but resident slip velocity as described in Section 4.4. This slip velocity

(expressed by the slip velocity amplitude U) depends on the drag at the particle, and

therefore theoretically on the applied drag model. The result of calculating the slip

velocity amplitude with appropriate drag models from Table 5.1 is displayed in Figure

5.2. Two areas of slip velocity behaviour can be distinguished in graph a) of Figure

5.2; one area where U/Uf ≈ 1 and another area where U/Uf < 1. In the őrst area,

the inertia of the particle is so high that it can not follow the ŕow, leading to a slip

velocity as high as the ŕuid velocity. In the second area, the inŕuence of relaxation

is signiőcant and the slip velocity needs to be considered more carefully. In this case,

the particle motion presented in Section 4.4 takes place (see Figure 4.5), where the

particle performs (harmonic) oscillations with the same frequency as the ŕuid, but with

smaller amplitude. Here, the slip velocity can be calculated with an appropriate drag

model, listed in Table 5.1. This area is tied to moderate Womersley numbers. Similar to
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negligible relaxation at very high Womersley numbers, relaxation can also be neglected

at very low Womersley numbers. In this case, the slip velocity amplitude becomes very

small. Graph a) in Figure 5.2 is displayed with a logarithmic z-axis in order to better

capture the slip velocity amplitude behaviour. The negligible relaxation at very low

Womersley numbers becomes obvious when displaying the same data from 5.2 a) without

a logarithmic scaled z-axis, as can be seen in graph b). This means that there is not

only a limit for negligible relaxation associated with high Womersley numbers, but also

a limit for negligible relaxation associated with low Womersley numbers. These limits

are dubbed fast relaxation limit (FRL) and slow relaxation limit (SRL), respectively,

referring to the ability of the particle to adapt to the ŕow. As explained in Section 5.2,

and observable in the discrepancy of Figure 5.2 a) and c), the plane for the slip velocity

amplitude is different, depending on the density ratio. This is also the case for the size

of the three areas of negligible and impactful particle relaxation. The limits between the

areas move towards higher Womersley numbers for lower density ratios and vice versa.

Therefore, with the utilization of cut-off criteria, two values of the Womersley numbers

can be deőned, depending on a critical density ratio, above and below which particle

relaxation can be neglected. This is shown in Figure 5.3, where the critical density ratio

γcrit is plotted against the Womersley number for various cut-off criteria, while above

the solid line (SRL) and below the dashed line (FRL) the particle relaxation can be

neglected. Additionally, this phenomenon is also displayed for the case of very small

particles (UCC
), but only discussed later in detail in Section 5.6. Since the Womersley

number and the density ratio combined depend on all őve input parameters of the model,

as listed in Table 4.1, an asymptotic behaviour in the SRL and FRL can be determined

for each input parameter as well. This asymptotic behaviour can then be expressed in
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Figure 5.3. Critical density ratio depending on the Womersley number for
various cut-off criteria. The particle relaxation can be neglected above the solid
line and below the dashed line. Cut-off criteria for non-continuum ŕows are
indicated with UCC

for a Knudsen number of Kn = 100 relating to nano-sized
particles.

terms of amplitude parameter and Reynolds number, as shown in the next section, which

deals with effective navigation in the plane.

5.4. Navigation in the ϵ-Re Plane

Each ŕow state can be pinpointed in the plane as described in Section 4.7, with the

support of the density ratio as a parameter in case of particle relaxation, as laid out

in Section 5.3. A sensitivity study was conducted on the change in the position on the

plane to a change of the various input parameters in order to utilize the plane effectively.

The inŕuence on the position on the plane is őrst derived with the particle diameter

as an example and then transferred to the other input parameters listed in Table 4.1.

Figure 5.4 shows the logarithm of the amplitude parameter and the Reynolds number

displayed over the logarithm of the particle diameter. Similar to the previous section,

three general areas are highlighted. In detail, this is the yellow area a), where particle
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relaxation happens so fast that it can be neglected (FRL). This area is associated with

small particle diameters. The red area c) is tied to large particle diameters, and here,

the particle relaxation happens so slowly that it can be neglected as well (SRL). In the

last, green area b), between the other areas, particle relaxation needs to be considered.

While the general shape of the curves are independent of the other input parameters,

the absolute values are not. This becomes clear for the curves of ϵ and Re differentiated

with respect to the particle diameter, also shown in Figure 5.4. While the asymptotic

values in area a) and c) are constant and independent of the other input parameters,

this is not the case for area b). Its location, slope, and width with respect to the

diameter do depend on the value of the other input parameters. Now the sensitivity of

Figure 5.4. Logarithmic amplitude parameter log (ϵ) and logarithmic Reynolds
number log (Re) in respect to the logarithmic particle diameter log (d). Areas
of a) fast relaxation limit, highlighted in yellow; b) considerable relaxation,
highlighted in green; c) slow relaxation limit, highlighted in red. Additionally,
the őrst derivatives of the logarithmic amplitude parameter log (ϵ′) and the
logarithmic Reynolds number log (Re′) are plotted.

the Reynolds number and the amplitude parameter in respect to the particle diameter

can be derived for the fast and the slow relaxation asymptotic case, independently of

the other input parameters. This information can be displayed by the length and the
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direction of a vector in the logarithmic plane, as shown in Figure 5.5. Here, the fast

Figure 5.5. Sensitivity of the input parameters to the position on the plane.
Vectors give the direction and sensitivity of a shift in position on the plane, for
an increase in the respective input parameter. Solid vectors mark the shift in the
fast relaxation limit, while dashed vectors show the shift in the slow relaxation
limit. These red vectors are only valid if the ŕuid is a gas.

relaxation limit is indicated by a solid vector and the slow relaxation limit by a dashed

vector. In case particle relaxation cannot be neglected, the sensitivity of the change in

position on the logarithmic plane in respect to the diameter falls in between the fast and

slow relaxation limit (indicated by vector length and orientation). This general approach

can be transferred to the other input parameters, as shown in Figure 5.5. While a fast

and slow asymptotic relaxation limit can also be derived for the frequency and ŕuid

temperature, this is not the case for the ŕow velocity amplitude and the density of the

particles. Note that the red vectors in Figure 5.5 are only valid in case the ŕuid is

a gas, since the viscosity derivation in respect to the temperature has a different sign

compared with a liquid. In case of a liquid, the red vectors would be mirrored at the ϵ

axis. Additionally, for a liquid, the temperature dependencies cannot be modelled with

the exponential functions presented in Section 4.1, leading to another length of the red
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vectors in Figure 5.5. The sensitivity with respect to the ŕow velocity amplitude is

constant and independent of other input parameters or particle relaxation, leading to a

single vector in Figure 5.5 representing the inŕuence of the ŕow velocity amplitude. In

contrast, the slow relaxation limit of the particle density is zero, while the fast relaxation

limit is the same as the velocity amplitude. This leads to the two vectors overlapping

one another in Figure 5.5. Note that the logarithmic scale of the plane leads to a linear

behaviour of the vectors, but, nevertheless, implies an exponential effect. Even though

Figure 5.5 delivers a good overview of the inŕuence of the various input parameters

on the location on the logarithmic plane, quantiőcation is needed in order to properly

calculate any shift in position. While the vectors have the correct proportion to each

other and the correct angles, absolute values are listed in Table 5.2 for each coordinate

and input parameter. This is especially useful when a set point P1(log(ϵ1), log(Re1)) on

the ϵ-Re plane is given. Then, the new position can be calculated for a change of an

input parameter or, the other way around, in order to gain knowledge on how to change

an input parameter to reach the desired location P2(log(ϵ2), log(Re2)). The following

calculation describes transformation with the particle diameter as an example:

P2 = P1 + [log(d2)− log(d1)]
−→
Ψ (5.1)

with
−→
Ψ =

(

lim
d−→FRL/SRL

(log (ϵ′(d))), lim
d−→FRL/SRL

(log (Re′(d)))

)

(5.2)

This relation holds true for any other input parameter, as long as the respective values

from Table 5.2 are applied. Several constraints need to be noted here. This calculation

can only be considered valid for negligible relaxation. In case relaxation needs to be

considered, Figure 5.5 gives a good impression of the amount and direction of the shift

in position, but it does not deliver precise values. In case of relaxation, it is advised to

apply the full algorithm in order to determine ϵ and Re as lined out in Section 5.1. Figure
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5.5 and Table 5.2 provide logarithmic values only, hence, the size of a vector provides

a good impression of how the location on the logarithmic ϵ-Re plane shifts, but a poor

impression of the change in actual values of ϵ and Re.

Table 5.2. Calculated sensitivity of amplitude parameter ϵ and Reynolds num-
ber Re in respect to the input parameters. The values for the ŕuid temperature
are only valid for gases.

Input Parameter Relaxation Limit lim (log (ϵ′)) lim (log (Re′))
−→
Ψ |−→Ψ | β

Particle fast 1 3 (1, 3)
√
10 0.4π

diameter slow −1 1 (−1, 1)
√
2 0.75π

Oscillation fast 0 1 (0, 1) 1 0.5π
frequency slow −1 0 (−1, 0) 1 π

Particle fast 1 1 (1, 1)
√
2 0.25π

density slow 0 0 (0, 0) 0 −
Fluid velocity fast 1 1 (1, 1)

√
2 0.25π

amplitude slow 1 1 (1, 1)
√
2 0.25π

Fluid fast 0 −1.67 (0,−1.67) 1.67 1.5π
temperature slow −0.67 −2.34 (0.67,−2.34) 2.43 1.6π

5.5. Extension of the Stokes Model

As pointed out in Sections 5.1 and 5.2, models derived by asymptotic analysis can

be considered valid in the extreme value limits on which their formulations are based. It

is often stated that a certain value has to be very small or very large for the application

of the model, without delivering quantiőcation. This is due to the problem that often

the behavior of other inŕuential parameters of the model are not speciőed or limited. If

one or more of these other inŕuential parameters reach extreme values themselves, the

characteristic values that led to the simpliőed model must still be extreme in relation to

those parameters. As an example, the Stokes model can be considered valid under the

conditions of Re ≪ 1 and Wo ≪ 1, as laid out in Section 5.1. As a rule of thumb, Stokes

delivers reasonable results up to Re ≤ 1 in most cases. This is still true in many cases

for Re > 1, while the number of cases becomes less and less with increasing Reynolds

number. It behaves similarly with the second condition of Wo ≪ 1. For most cases,
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Wo = 0.01, as applied in all graphs of Figure 5.2, is sufficient. In graph c) of Figure

5.2 this is not the case, which is made obvious by the signiőcant model inconsistencies.

There, the density ratio γ = 8, which can be considered an extreme value (the particle

has almost the same density as the ŕuid), and, in relation to this small γ, Wo = 0.01

does not fulőll the condition of Wo ≪ 1 sufficiently. Therefore, it is now pointed out

how the various models in Figure 5.1 relate to each other and under which conditions the

deviations between the models become minimal. This enables the Stokes model, which

is preferable over the other models as argued in Section 5.1, to be applied outside of its

commonly perceived range of validity for some parameter ranges.

As soon as the transient part of the particle motion has decayed as described in Section

4.4, the resident part becomes repetitive. Since the particle then oscillates with the same

frequency as the surrounding ŕuid, further constraints can be applied in order to enhance

mathematical accessibility. With a straight, steady motion, the differences in acceleration

and drag of the models lead to an ever increasing difference in velocity, while the different

motions due to different drag models in an oscillating ŕow are continuously compensated

for due to the repetitive nature of the motion. Therefore, the velocities calculated with

the presented drag models deviate signiőcantly less in oscillating ŕows. For large parts of

the plane, U/Uf ≈ 1 holds true. In this area, all the drag models deliver insigniőcantly

different values for the slip velocity amplitude ratio and are therefore interchangeable

there. For medium and large values of the density ratio γ = ρp/ρf , Stokes reaches

U/Uf ≈ 1, within its limits of validity, while for small values of γ this is not the case.

This phenomenon is pointed out in Figure 5.2, where γ = 25000 in graph a) (e.g. iron

particles in hot gas) and γ = 8 in graph c) (e.g. iron particles in water). For γ = 25000,

U/Uf ≈ 1 is reached within the Stokes model for Re < 1 and therefore Stokes can be

extended into the unsteady area of Basset and Landau & Lifshitz (LL), since the results
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deviate there only insigniőcantly. In contrast, for γ = 8, U/Uf ≈ 1 is not reached within

Stokes’ limits of validity and it deviates therefore signiőcantly from the other models.

More so, the edges of all the considered models do not align properly to their neighbours.

Even a slight deviation between Basset and LL is recognisable. While Basset converges

to U/Uf = 1 for large Stokes numbers, this is not the case for LL, where a part dependent

on γ, remains:

lim
Stk→∞

UBasset/Uf = 1 (5.3)

lim
Stk→∞

ULL/Uf =

√
γ

√
γ + 3/2

(5.4)

The deviation between Stokes and the other models increases with a decreasing γ. This

őnding is also in keeping with other approaches in the literature [21,151,155]. For large

γ, the quasi-steady approximation is valid for the entire relaxation part of the plane,

and the slip velocity amplitude can be calculated by Stokes or SN. For small γ this is

not the case. The same approach can be applied to the comparison between Stokes

and Schiller & Naumann (SN). Here it is not γ, but rather the ratio between Re and

Stk, which is the determining factor. This relates to the distinction of U/Uf ≈ 1 being

reached before or after Re becomes unity. Even though the limit Wo2 ≪ 1 is set here to

Wo2 = 0.01 in Figure 5.2, the slip velocity amplitude calculated with the Basset model

still deviates substantially from the Stokes model. Similar to the comparison between

Stokes and Basset, on the right-hand side of Figure 5.2, the values at the model limits

between Stokes and SN and even between Basset and LL do not match well, although this

effect is not as pronounced. This is contrary to the high-density ratio case displayed in

graph a) of Figure 5.2, where the values at the model limits do match well. This raises

the question of under which conditions the models connect to each other well or can

even be applied interchangeably. The relation between Stokes and other models can be
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calculated with the expressions presented in Table 5.3, while harmonic particle velocities

and slip velocities are assumed. The derivation of the deviation between Stokes and the

SN model is given in detail in Appendix C. The expressions in Table 5.3 are derived

from the expressions in Table 5.1 and also depend only on γ and Wo2. This time,

however, the oscillation Stokes number Stk = ωτp = γWo2/18 is utilized [157]. It sets

the characteristic time of the particle τp = ρpd
2/18η in relation to the characteristic time

of the ŕow τf = 1/ω. It functions as a criterion for how well the particle can adapt to the

changing ŕow conditions. When the normalized slip velocity amplitude in an oscillating

ŕow is calculated with the Stokes model, it is only dependent on the oscillation Stokes

number U/Uf = 1/
√

1 + 1/Stk2. Therefore, the oscillation Stokes number is utilized

in comparing the Stokes model with the other models. The criterion for an acceptable

deviation between the models was deőned as 5%, and the parameter areas where the

deviation is above and below this criterion are displayed in Figure 5.6 for the various

models. The density ratio γ is the decisive parameter for the comparison between Stokes

and Basset, as well as Stokes and the LL model, while for the comparison between

Stokes and the SN model it is the Reynolds number. Additionally, at least one criterion is

presented in Table 5.3 for the deviation between Stokes and the other drag models to stay

below 5%, while multiple criteria are set in relation to each other via logical operators. In

this case, the Stokes model can be applied in the validity range of the respective model.

These criteria are also plotted in Figure 5.6. Simple criteria were chosen for the sake of

convenience, as they can not match the 5% error interface perfectly. This means that the

deviation will stay below 5% if the criterion is met, but it can also stay below 5% if the

criterion is violated, as can be seen in Figure 5.6. Stokes can be used in order to calculate

the slip velocity amplitude in the entire colored area of the plane when all criteria in Table

5.3 are met, hence (γ > 1000)∧(γStk6/5 > 370)∧(Stk <
√
3Re). Graphically, it is even

suggested that this őnding is also valid for the undeőned area, where the NSEs need to be
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Table 5.3. Relations of the drag models listed in Table 5.1 to the Stokes model,
expressed with the oscillation Stokes number Stk and the density ratio γ. Ad-
ditionally, the limit is given up to which the deviation stays below 5%, in which
case the Stokes model can be applied in the validity range of the respective
model. Multiple criteria are set in relation to each other via the logic operator
∧Ð‘and’.

Name Relation to Stokes Ui/UStk |Ui − UStk|/UStk < 5%

Schiller &
Naumann

{
Stk2+1

Stk2+SN2

}1/2

SN = 1 + 0.158Re2/3

√
3Re
Stk < 1

Basset

{[
1 + 1
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] [
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2
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√
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2
+(1+2γ+3

√
γ

Stk )
2

f2 =
2(1−γ)(2 γ

Stk
+3
√

γ
Stk )

(2 γ
Stk

+3
√

γ
Stk )

2
+(1+2γ+3

√
γ

Stk )
2

(γStk6/5 > 370)∧ (γ > 5)

Landau &
Lifshitz







Stk2+1

Stk2
��

3√
2γStk

+ 1
Stk

�2
+
�

3
2
√
γStk

+ 1√
2γ

+1
�2

�







1/2

(γ > 1000)

Figure 5.6. Areas where the deviation between Stokes and the respective drag
model is above (blueÐSchiller & Naumann; purpleÐBasset; greenÐLandau &
Lifshitz) and below (red) 5%. In the red areas, the Stokes model can be applied
in the validity range of the respective model.

solved numerically from a mathematical point of view. For large density ratios γ, which

can be found with solid particles in hot gas ŕows, the Stokes model can be applied for

large parts of the plane. This makes it especially interesting for modelling of particles in

one-dimensional oscillating ŕows, for example in the investigation of a pulsation reactor.

Table 5.4 shows a collection of typically treated materials in a PR with the respected
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densities and the density ratios for various gas temperatures. It can be seen that the

criteria for applying Stokes over the other drag models listed in Table 5.3 are met in

most constellations, especially for high gas temperatures.

Table 5.4. Typical treated materials in a PR with the respected density and
density ratios for various gas temperatures.

Gas temperature [°C] 20 100 500 1000

Material
Density
[kg/m3]

1.188 0.933 0.450 0.273

Zirconium dioxide 6000 5051 6432 13327 21946
Zinc oxide 5600 4714 6003 12439 20483
Aluminium oxide 4000 3367 4288 8885 14631

5.6. Additional Effects at Micro Scale

If the characteristic length, in this case the particle diameter, gets small enough,

non-continuum effects will start to emerge. This is primarily the case for a gaseous

environment, and this is the only case for which it is considered in this work. The

dimensionless Knudsen number Kn = λmfp/d serves as a criterion deciding whether

those effects have to be considered. It is expressed by the ratio of the free mean path

length of gas molecules λmfp to the particle diameter d. The free mean path length can

be calculated as

λmfp =
1√

2nπd2m
(5.5)

with the mean diameter of gas molecules dm and n is the number of molecules per unit

volume

n =
p

kBT
(5.6)

with the absolute pressure p, the absolute gas temperature T , and the Boltzmann con-

stant kB (1.380 649× 10−23 JK−1). The mean size of gas molecules is available in liter-

ature and is tabulated for air at 3.7 nm [140]. The non-continuum effect with the most
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inŕuence on the problem presented here is the emerging retroactive effect of momentum

transfer from the gas molecules to the particle surface. It can be factored into the drag

models via an adaptation of the no slip condition at the particle surface [163] and a

correction to the drag coefficient with the Cunningham factor CC [120]:

CD,Slip =
CD

CC
(5.7)

This factor can be expressed via three empiric coefficients α, β, γ or via the experimentally

determined tangential momentum accommodation coefficient σu:

CC =







1 +Kn [α+ β exp (−γ/Kn)]

1+6 2−σu
σu

Kn

1+4 2−σu
σu

Kn

(5.8)

Here, the values for the coefficients α = 2.34, β = 1.05, and γ = −0.39 from Allen &

Raabe [125] for a correlation of all solid particle sizes within 2.1% [170] are applied,

leading to

CC = 1 +Kn

[

2.34 + 1.05 exp

(

−0.39

Kn

)]

(5.9)

Even though it is conceptually incorrect to imagine the particles with large Knudsen

numbers "slipping" through the gas [170], the factor CC is widely referred to as the slip

correction factor in literature [125,126,129,131]. It is unity for large particle diameters

and increases with decreasing particle size. Its effect becomes signiőcant for particles

smaller than 1 µm. The drag models presented in Section 5.1 are derived by asymptotic

analysis or by empirical analysis of phenomenon in the continuum regime. Therefore,

they can only be considered valid in the continuum regime. When particles are below

dimensions of a few micrometers, the drag can then be adapted with the Cunningham

factor CC , as shown in Table 5.1. Similar to the density ratio, the Cunningham factor

works as a parameter for the utilization of the plane, which is unity for most parameter
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ranges. The relation between Cunningham factor and the Knudsen number is plotted

on the right side of Figure 5.7, while the resulting normalized slip velocity amplitude is

plotted on the left side for Knudsen number of Kn = 100. It becomes obvious that the

Figure 5.7. Effect of Cunningham factor. left: Normalized slip velocity with
a density ratio of γ = 25000 (corresponds to iron particles in hot gas) and a
Knudsen number of Kn = 100 (corresponds to nano-sized particles); right:
Dependency of the Cunningham factor on the Knudsen number.

non-continuum drag leads to an overall enhanced slip velocity between particle and ŕuid

and increasing the parameter area where U/Ug ≈ 1 can be assumed. This information

can also be retrieved from Figure 5.3, where the dashed lines indicate the cut-off criteria

for this case. The non-continuum effects on heat and mass transfer are considered later

in Section 7.7.

5.7. Analytical Particle Motion - Summary and Conclusion

The motion of a spherical particle in a one-dimensional pulsating ŕow was considered.

The slip velocity between ŕuid and particle was identiőed as the target quantity in order

to function as an input parameter for later stages of the model and was derived using the

Stokes drag model. Strong simpliőcations were achieved by neglecting the transient part,
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leading to only harmonic oscillating quantities. In case of negligible particle relaxation,

the interaction of a single particle with an oscillating ŕow is mainly determined by the

dimensionless amplitude parameter ϵ = U/(ωd) and the oscillation Reynolds number

Re = Ud/ν. Therefore, the ϵ-Re plane was introduced, serving as a graphical basis for

most of the following discussions. Beside Stokes, the more sophisticated ŕow resistance

models by Schiller & Naumann, Landau & Lifshitz, and Basset were utilized in order

to cover large parts of the previously introduced plane and in order to discuss particle

relaxation in the plane comprehensively. The slip velocity amplitude was then calculated

with all ŕow resistance models and the density ratio γ = ρp/ρf between particle and

ŕuid was introduced as a parameter. Criteria were derived under which circumstances

relaxation has to be considered in order to determine the slip velocity amplitude. A

sensitivity analysis on how the input parameters affect the position in the plane was

presented and then it was laid out how this can be utilized in order to navigate the

plane. This was followed by a discussion on the circumstances in which the preferable

Stokes drag model differs insigniőcantly from the other models, while formulations for

calculating the deviation between the models directly were presented. It was shown that

the Stokes drag model is sufficient in most parameter ranges for modeling the particle

motion in a hot pulsating gas ŕow, as featured in a pulsation reactor. Finally, the

adaption of the previously presented models for small particles in the non-continuum

regime was laid out. The next stage of the model is presented in the following Chapter,

where the ŕow patterns in the vicinity of the particle are considered.



CHAPTER 6

Flow Patterns in the Vicinity of the Particle

In this chapter, the ŕow patterns around a őxed spherical particle in an oscillat-

ing ŕuid are considered. Alternatively, the case of an oscillating particle in a ŕuid at

rest is covered as well, since the two cases are mathematically indistinguishable when

the ŕow can be considered incompressible [96,171]. All ŕows in this work are consid-

ered incompressible and all presented ŕow patterns around the particle are the result

of conducted direct numerical simulations (DNS). They are presented here in order to

qualitatively discuss inŕuential ŕow phenomena in various parts of the plane. The ŕow

around the particle is considered to be symmetrical to the axis of oscillation, enabling a

two-dimensional ŕow analysis. The ŕow pattern are only discussed qualitatively at this

point, but a more in depth explanation of the utilized data processing algorithm, the

settings, the programs, the mesh, and the investigated parameter combinations of the

DNS can be found in Appendix D.

6.1. Creeping Flow

First, the trivial case of creeping ŕow at Re ≪ 1 and arbitrary ϵ is dealt with.

Independent of the particle displacement amplitude A, the ŕow in the direct vicinity of

the particle behaves as a creeping ŕow, where all inertial forces can be neglected, and the

ŕow pattern is point-symmetrical to the particle center. The according area in the plane

is highlighted in the graph on the left-hand side of Figure 6.1, while the ŕow pattern is

displayed on the right side.
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Figure 6.1. Flow pattern around the particle at maximum velocity for small
Reynolds numbers Re ≪ 1. left: ϵ-Re plane with the respective area highlighted
in red; right: Creeping ŕow pattern around the particle. Stream line colors are
displayed normalized with the ŕuid velocity amplitude.

6.2. Quasi-steady Flow

In case the the amplitude parameter is large enough, the particle travels enough

distance, compared with its own size, that a classic boundary layer, described by Prandtl

[172], will form. In this case, the steady boundary layer dominates, and the ŕow pattern

can be considered quasi-steady. The shape and features of this boundary layer depend

primarily on the Reynolds number of the ŕow [173]. For Re ≪ 1, this translates into

a creeping ŕow as already described in the previous paragraph and displayed in Figure

6.1. For an increasing Reynolds number Re ≈ 1, the point-symmetry to the particle

centre is lost, while the streamlines shift towards the wake of the particle. The respective

area on the plane is highlighted on the left side of Figure 6.2, while the according ŕow

pattern around the particle is displayed on the right side. If the Reynolds number is

further increased, back ŕow vortices will form in the wake of the particle, while the ŕow

pattern is still symmetric to the axis of oscillation. With an increasing Reynolds number

Re ≫ 1, the prominent Kármán vortex street behind the particle develops. This can be

observed in Figure 6.3
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Figure 6.2. Flow pattern around the particle at maximum velocity for large
amplitude parameters ϵ ≫ 1 and moderate Reynolds numbers Re ≈ 1. left:
ϵ-Re plane with the respective area highlighted in yellow; right: Flow pat-
tern around the particle, where the streamlines start to shift towards the wake.
Stream line colors are displayed normalized with the ŕuid velocity amplitude.

Figure 6.3. Flow pattern around the particle at maximum velocity for large
amplitude parameters ϵ ≫ 1 and high Reynolds numbers Re ≫ 1. left: ϵ-Re
plane with the respective area highlighted in blue; right: Flow pattern around
the particle with Kármán vortex street in the wake. Stream line colors are
displayed normalized with the ŕuid velocity amplitude.

6.3. Steady Streaming

After dealing with the quasi-steady case, the inŕuence of unsteady oscillation is now

discussed. In the case of a small amplitude parameter ϵ ≪ 1 and a small Reynolds

number Re ≪ 1, the creeping ŕow pattern as presented in Figure 6.1 occurs. With an

increasing Reynolds numbers Re > 1, while keeping ϵ ≪ 1, the second order phenomenon
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of Steady Streaming becomes more and more pronounced and a distinction between pri-

mary and secondary ŕow must be made. While the primary ŕow still behaves very similar

to the quasi-steady case, wake shedding is prevented and second order steady rotating

vortices form in four quadrants around the particle. Each ŕow pattern of the primary

ŕow is a snapshot of the ŕow around the particle taken at the maximum slip velocity,

while secondary ŕow patterns result from averaging the velocity distribution over one (or

several) full oscillation cycle(s). The phenomenon is displayed in Figure 6.4, where, on

the bottom right-hand side, the secondary ŕow around the particle is presented. Four

Figure 6.4. Flow pattern around the particle at maximum velocity for small
amplitude parameters ϵ ≪ 1 and high Reynolds numbers Re ≫ 1. left: ϵ-Re
plane with the according area highlighted in green; top right: Primary ŕow
pattern around the particle. bottom right: Secondary ŕow pattern (Steady
Streaming) around the particle with thick inner boundary layer. Stream line
colors are displayed normalized with the ŕuid velocity amplitude.

steady rotating vortices are visible, which stretch close to the particle’s surface. Here, the

inner, so-called Stokes layer, extends far into the ŕow. In contrast, in case the Reynolds

number is large Re ≫ 1, while the the amplitude parameter is moderate ϵ ≈ 1, the inner

boundary layer becomes thinner and is enclosed by another outer boundary layer. This

outer boundary layer also consists of 4 steady rotating vortices. High velocities close to

the particle surface emerge in this conőguration. This is visible in the bottom right-hand

corner of Figure 6.5, where there are not just four, but eight steady vortices to be seen.
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The inner boundary layer is magniőed and, due to the velocity color code, a substan-

tial velocity compared with the free stream velocity amplitude (30-40%) directly at the

particle surface is noticeable. These special ŕow patterns with their distinctive velocity

distributions relate directly to the occurring heat and mass transfer at the particle, as

is derived in the next chapter. An overview of the distinctive ŕow patterns for various

areas of the plane can be found in Figure 6.6.
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Figure 6.5. Flow pattern around the particle at maximum velocity for moderate amplitude
parameters ϵ ≈ 1 and high Reynolds numbers Re ≫ 1. left: ϵ-Re plane with the respective area
highlighted in purple; top right: Primary ŕow pattern around the particle. bottom right:
Secondary ŕow pattern (Steady Streaming) around the particle with thin inner boundary layer.
Stream line colors are displayed normalized with the ŕuid velocity amplitude.

Figure 6.6. Overview of ŕow patterns around the particle in the ϵ-Re plane: a) Steady Stream-
ing with thin inner boundary layer at ϵ ≈ 1 and Re ≫ 1 (purple); b) Steady Streaming with thick
inner boundary layer at ϵ ≪ 1 and Re ≫ 1 (green); c) Quasi-steady ŕow with Kármán vortex
street behind the particle at ϵ ≫ 1 and Re ≫ 1 (blue); d) Quasi-steady ŕow with asymmetry
towards the wake of the particle at ϵ ≫ 1 and Re ≈ 1 (yellow); e) Creeping ŕow around the
particle at an arbitrary ϵ and Re ≪ 1 (red); f) ϵ-Re plane with respective areas of ŕow patterns.
Stream line colors are displayed normalized with the ŕuid velocity amplitude.



CHAPTER 7

Heat and Mass Transfer to Particles

In Chapters 4, 5, and 6 of this work, it was established how the motion of a particle

in an oscillating ŕow and the resulting ŕow patterns around it can be deőned by two

dimensionless numbers: the oscillation Reynolds number Re and the amplitude parame-

ter ϵ, which span a plane as shown in Figure 4.9. These two dimensionless numbers are

also central for the consideration of the heat and mass transfer (HMT) resulting from

the oscillation of the ŕow. This means that not only is the motion of particles deőned

for each point in the ϵ-Re plane, but also the resulting ŕow patterns, as well as the heat

transfer in the form of the Nusselt number Nu and the mass transfer in the form of the

Sherwood number Sh. The Nusselt number expresses the ratio of convective to conduc-

tive heat transfer intensity over any boundary layer; in this case, to the particle surface.

It can be utilized more generally as a metric of intensity of convective heat transfer to

the particle. The Sherwood number is deőned analogously for mass transfer.

In this chapter, a Nusselt(Sherwood) number correlation for the entire plane is derived.

For this purpose, a structured literature review is presented in order to cover large parts

of the plane with experimental, numerical, and analytical data for the occurring HMT.

First, the structure of the acquired data is presented in Section 7.1. This is followed by a

discussion on how the quasi-steady part of the plane is deőned and how modelling in this

part is handled in Section 7.2. A separate meta correlation is suggested for this part of

the plane. Afterwards, Section 7.3 handles the data for the HMT in oscillating ŕows and

a meta correlation for the entire plan is presented while incorporating the steady meta
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correlation in the model building process. Subsequently, the design of the meta correla-

tion and the deviations to the considered models are discussed in Sections 7.4 and 7.5.

Then, in Section 7.6, the meta correlation is compared to the quasi-steady assumption in

order to highlight areas in the plane of enhanced and reduced HMT due to the oscillation

of the ŕow. The discussion of non-continuum effects for the consideration of particle drag

in Section 5.6 is extended here in Section 7.7 since these effects also play a role in the

HMT to particles. Chapter 7 is then summarized and concluded in Section 7.8. Large

parts of this chapter have already been published separately by the author [174], but are

laid out here again for the sake of comprehensiveness.

7.1. Data

A list of the 33 considered works can be found in Table 7.1 and a graphical overview

in Figure 7.1. The Reynolds analogy (Prandtl analogy) is considered applicable in oscil-

lating ŕows [162,175,176], leading to the interchangeability of correlations for Nusselt

number and Sherwood number by exchanging the Schmidt number for the Prandtl num-

ber and vise versa. Therefore, the correlations for the HMT to particles suggested by

many authors can be expressed generally as

Nu(or Sh) = A+
(
BRei + CRej

)
Prk(or Sck)ϵl (7.1)

while the parameters (A, B, C, i, j, k, l) differ for individual correlations. For steady

HMT, this approach has been used by Yavuzkurt et al. [176] and is extended here with

the term ’ϵl’ in order to incorporate correlations for oscillating ŕows. All correlations

in Table 7.1 őt this general ansatz except one. Sometimes, no correlation was provides

by the respective authors, but their data sets were utilized directly. In the upper part

of Table 7.1, correlations for the HMT to particles in steady ŕows are listed, while the



7.1. DATA 71

Figure 7.1. Overview of considered experimental and numerical data and cor-
relations for the HMT to particles in oscillating ŕows. Colored patches indicate
a provided correlation by the authors, while single points indicate individual
measurement and simulation points without a correlation provided by the re-
spective authors.

lower part displays correlations for the HMT in oscillating ŕows. At the end of each

part, the meta correlations derived here are displayed. Additionally, the validity range

of each correlation is mentioned, which was explicitly stated by the authors or implicitly

derived by the range of their data. The validity ranges are in terms of solely the Reynolds

number for steady correlations and Reynolds number and amplitude parameter for oscil-

lating ŕows. Furthermore, the normalized root mean squared deviation (NRMSD) and

the normalized root maximum squared deviation are presented for the deviation of the

individual correlation or data set from the respective meta correlation. The NRMSD is

calculated via

NRMSD =

√
∑n

i=1 (yi − ŷi)
2

jȳ2
(7.2)
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with the value of the respective correlation or single data point yi, the value of the

meta correlation ŷi, the value range of the respective correlation ȳ, and the number of

sample points j. Note that the R2 value (coefficient of determination) is not a suitable

measure for the correlation of nonlinear regressions [177] and is therefore not used here.

The source of the data is cited in the last column of Table 7.1. Figure 7.1 provides an

overview of where in the plane data exist in literature. The colored patches indicate

correlations provided by the respective authors, while dots indicate individual points of

data. All of the data from oscillating ŕows, which are also listed in the lower part of

Table 7.1, are displayed there, while the quasi-steady area is only marked with a black

rectangle. In this area, the steady models from the upper part of Table 7.1 can be applied,

but are not plotted individually for the sake of clarity. It is now discussed in the next

section how this area is deőned and how the steady models are incorporated.
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Table 7.1. A list of investigated works in literature dealing with the HMT to spherical particles in steady
(upper part) and oscillating ŕows (lower part). The conducted data preparation for some marked works
(†, ‡, ††) can be found in Appendix E.

Authors Re [ - ]
Steady
NRMSD

[%](max)

Meta
NRMSD

[%](max)
A B C i j k l Source

Mori et al. 4 - 24 8.4 (12.3) 8.7 (15.1) 2.000 0.550 0.000 0.500 0.000 0.333 0.000 [81]
Ranz & Marshall 0.1 - 2 × 102 3.8 (10.3) 3.8 (24.3) 2.000 0.600 0.000 0.500 0.000 0.333 0.000 [178]
Hsu et al. 60 - 320 6.4 (9.0) 8.4 (30.2) 2.000 0.544 0.000 0.500 0.000 0.333 0.000 [179]
Whitaker 3.5 - 7.6 × 104 7.0 (21.9) 5.2 (46.1) 2.000 0.400 0.060 0.500 0.667 0.400 0.000 [180]

Gnielinski 1 - 104 9.8 (32.9) 7.2 (28.1) 2.000 0.664 0.000 0.500 0.000 0.333 0.000 [181]
Ke et al. 10 - 200 9.7 (19.2) 9.0 (21.7) 1.910 0.545 0.019 0.500 0.667 0.333 0.000 [182]
Richter & Nikrityuk 10 - 250 6.9 (15.5) 6.8 (24.6) 1.760 0.550 0.014 0.500 0.667 0.333 0.000 [183]
Sayegh & Gauvin 0.2 - 100 3.4 (5.1) 3.8 (28.3) 2.000 0.473 0.000 0.552 0.000 0.780 0.000 [184]
Melissari &
Argyropoulos

102 -
5 × 104

2.9 (7.2) 3.5 (36.7) 2.000 0.470 0.000 0.500 0.000 0.360 0.000 [185]

Witte
3.5 × 104-
1.5 × 105

26.2 (35.8) 20.9 (72.2) 2.000 0.386 0.000 0.500 0.000 0.500 0.000 [186]

Chuchottaworn et al. 1 - 200 7.8 (26.5) 6.3 (23.4) 2.000 0.370 0.000 0.610 0.000 0.510 0.000 [187]
Bagchi et al. 50 - 500 10.2 (15.1) 11.7 (23.1) data points - no given correlation [188]
Blackburn 1 - 100 6.0 (11.2) 6.0 (13.8) data points - no given correlation [109]

Acrivos & Taylor 0 - 1 6.4 (7.4) 6.2 (14.0) Nu = 2 + 1
2RePr + 1

4 (RePr)2 log (RePr) [189]

Steady
meta correlation

10−1 -
1.5 × 105

4.3 (27.1) 1.7 (24.0) 2.000 0.500 0.000 0.500 0.000 0.333 0.000 [174]

Authors Re [ - ] ϵ [ - ]
Meta
NRMSD

[%](max)
A B C i j k l Source

Fiklistov & Aksel’rud 10.5 - 93.5 0.24 - 0.7 21.1 (38.4) 0.000 0.490 0.000 0.700 0.000 0.333 0.130 [91]

Burdukov &
Nakoryakov †

5.5 × 102

8.4 × 103
2 × 10−3

4.5 × 10−2 8.2 (20.8) 0.000 1.300 0.000 0.500 0.000 0.500 0.500 [89]

Subramaniyam et al.
4.5 × 103

2.0 × 105
1
2.5

7.4 (33.5) 0.000 0.259 0.000 0.620 0.000 0.333 0.000 [190]

Burdukov &
Nakoryakov ‡

2 × 102

1.4 × 104
3.2 × 10−2

0.18
23.1 (62.2) 0.000 0.640 0.000 0.500 0.000 0.333 0.167 [90]

Noordzij &
Rotte

16
2.6 × 102

3 × 10−2

6 × 10−2 29.7 (61.8) 0.000 0.096 0.000 0.500 0.000 0.500 0.000 [190]

Padamanabha &
Ramachandran

4 × 102

2.9 × 103
0.2
0.87

27.5 (107.4) 0.000 0.505 0.000 0.640 0.000 0.000 0.630 [93]

Hara et al.
5.5 × 104

6.1 × 104
4.4 × 10−3

0.11
26.8 (50.1) 0.000 7.500 0.000 0.500 0.000 0.333 0.167 [190]

Boldarev et al. ††
35.4
1.4 × 106

3.1 × 10−4

0.25
15.4 (52.5) 0.000 0.640 0.000 0.500 0.000 0.333 0.167 [95]

Gibert &
Angelino

2 × 102

5 × 103
0.2
0.75

10.3 (29.0) 0.000 0.592 0.000 0.538 0.000 0.333 0.269 [96]

Gibert &
Angelino

3 × 102

4 × 103
0.75
2

23.9 (40.0) 0.000 0.558 0.000 0.538 0.000 0.333 0.000 [96]

Ha & Yavuzkurt 16 - 94 12.5 - 500 7.9 (16.0) 2.000 0.420 0.000 0.500 0.000 0.333 0.000 [191]
Al Taweel &
Landau (gas)

10 - 106 10−4 - 1 1.2 (10.5) 0.000 1.100 0 0.500 0 0.500 0.500 [190]

Al Taweel &
Landau (liquid)

10 - 106 10−4 - 1 8.3 (51.6) 0.000 0.640 0 0.500 0 0.500 0.500 [190]

Kawahara et al. 1.9 × 103 1.48 × 10−2 55.9 data points - no given correlation [85]

Gopinath & Mills 2.87 × 102 0.54 15.8 data points - no given correlation [83]

Drummond & Lyman 1 - 150 10−4 - 1 64.0 (190.7) data points - no given correlation [99]

Alassar et al. 10 - 200 0.16 - 5 39.3 (76.7) data points - no given correlation [100]
Xu et al. 1.25 - 18 0.22 - 2.7×103 11.5 (39.5) data points - no given correlation [192]

Blackburn 1 - 100 5 × 10−2 - 5 30.6 (73.1) data points - no given correlation [109]

Meta correlation
(gas)

10−1 - 106 10×10−3 - 103 0.8 (10.4) Nu = 2 + 0.5Re1/2Pr1/3
h

1

0.45ϵ−1/2+1
+ 1

2.50 exp(log(ϵ))2−1.25

i

[174]

Meta correlation
(liquid)

10−1 - 106 10×10−3 - 103 3.7 (51.5) Nu = 2 + 0.5Re1/2Pr1/3
h

1

0.78ϵ−1/2+1
+ 1

2.50 exp(log(ϵ))2−1.85

i

[174]



7.2. THE QUASI-STEADY HMT AREA OF THE PLANE 74

7.2. The Quasi-Steady HMT Area of the Plane

Several authors concluded that, for a large enough amplitude parameter ϵ, the HMT

in oscillating ŕow can be described by correlations for steady ŕow with sufficient accuracy.

In these cases the quasi-steady assumption hold true. This threshold was suggested as

ϵ > 0.75 by Gibert & Angelino [96] and supported by Al Taweel & Landau [190], while

Drummond & Lyman [99] derived it to be ϵ > 0.25. The general quasi-steady assumption

for large ϵ is also supported by the theoretical work of Ha & Yavuzkurt [191] and the work

of Subramaniyam et al. [190]. Additionally, the experimental work of Xu et al. [192]

őt the quasi-steady assumption quite well, for ϵ > 1 but also for ϵ < 1. The simulation

results of Blackburn [109] and Alassar et al. [100] match each other well and also match

the steady state assumption for ϵ ≫ 1. In light of the review of the bulk of recent data,

the approach of modelling the HMT for large ϵ validly with the quasi-steady assumption

is substantiated. Nevertheless, the exact quasi-steady limit remains unclear, but it is

approximately ϵ ≈ 1. For the sake of a comprehensive approach and in order to avoid

model discontinuities (which other authors accepted), a conservative ϵ ≥ 3 is chosen as the

quasi-steady limit in this work. A black rectangle marks the quasi-steady area in Figure

7.1, where a multitude of steady data is available. For this area, a őrst structured review

of steady models for the HMT to particles is conducted. While meta studies on this topic

by Whitaker [180] and Gnielinski [181] provide good insights and also incorporate a large

number of works, they arrive at somewhat different correlations. These two studies, along

with central preceding studies and newer experimental and numerical works, are plotted

in Figure 7.2. Solid lines indicate correlations given by the respective authors in the

stated ranges of validity, or implicitly by the investigated ranges, while dots represent

data points without a correlation provided by the authors. The dependencies of the

investigated correlations on the Prandtl number (Schmidt number) are not considered in
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this work in order to achieve a better comparison of the Reynolds number dependencies.

A meta correlation of the steady Nusselt number (Sherwood number) averaged over the

surface of the particle

Nu(Sh) = 2 + 0.5Re1/2Pr1/3(Sc1/3) (7.3)

is suggested for its simplicity, while őtting the data well. The normalized root-mean-

square deviation (NRMSD) of each correlation or data set from Steady Meta Correlation

7.3 is provided in Table 7.1. The meta correlation őts most of the correlations very

Figure 7.2. Overview of considered experimental and numerical HMT data
for single spherical particles in steady ŕow. Solid lines indicate correlations
provided by the respective authors, while single points indicate individual mea-
surements or simulation points without correlations provided by the authors.
Additionally, Steady Meta Correlation 7.3 is plotted, which is őtted to the
listed data. The Prandtl number is set to Pr = 0.71 as it is found with air at
STP.

well with each NRMSD ≤ 10%, as shown in Figure 7.4. The only outlier is Witte

(26.2%), which represents a special case with the investigation of the HMT to a tantalum

sphere in liquid sodium. Based on the deviation from the other experimental setups and

investigated systems, a somewhat different correlation is expected. Since the steady meta
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correlation of this work over-predicts the lowest values of the meta study by Whitaker

(7.0%) to a similar degree as it under-predicts the highest values of the meta study by

Gnielinski (9.8%), it is deemed acceptable at this point based on the lack of any further

data for spheres in high Reynolds number ŕows. The Meta Correlation 7.3 is now used

in order to model the HMT to particles in oscillating ŕows for ϵ ≥ 3, together with the

data from oscillating ŕows.

7.3. Models for Oscillating Flows

Several works exist in literature which have investigated the HMT to spheres in an

oscillating ŕow with an ϵ ≥ 3. Their data often őt the quasi-steady assumption well or

they suggested a steady correlation themselves, as discussed in Section 7.2. This is not the

case for ϵ ≪ 1, where the amplitude parameter has to be taken into account, especially

if, in addition to a small ϵ, also large Womersley numbers Wo2 ≫ 1 occur. In these

cases, the Streaming Reynolds number ReS = Re ϵ is signiőcant, leading to an increased

inŕuence of Steady Streaming in the HMT process [61]. Most investigated authors

account for the inŕuence of Steady Streaming by correcting the steady HMT correlations

with a term ”ϵl”, or sometimes directly working with the Streaming Reynolds number.

Taxonomy 7.1 was updated to incorporate these models accordingly. The meta study

by Al Taweel & Landau [190], conőned to the mass transfer in the Steady Streaming

area of the plane, laid the groundwork for this updated meta study. On the one hand,

unfortunately, some of their referenced papers are no longer available, leaving only the

data as stated by Al Taweel & Landau. On the other hand, even more data could be

retrieved from some of the works investigated by Al Taweel & Landau with the help

of the relations presented in Figure 4.8. A detailed explanation of the conducted data

preparation can be found in Appendix E. However, more data from various recent works

are available now, especially for a gaseous environment: Gopinath & Mills [83] based

their work on the ŕow formulations by Riley [57] for the region of impactful Steady

Streaming with ϵ ≪ 1 and Wo2 ≫ 1. They derived the governing equation of energy

for this case, which is numerically solved along with the equation of motion in order to

provide several data points for a regression. A simple experiment was conducted for the

validation of the resulting correlation. Kawahara et al. [85] investigated the mass transfer
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from a camphor-covered sphere placed in an USL. They found good agreement with the

experiments of Gopinath & Mills and Burdukov & Nakoryakov. Drummond & Lyman

[99] applied a pseudospectral method in order to solve the NSEs and mass transport

equations. They found a decreasing HMT for an increasing amplitude parameter, which

is a unique result within the literature. Additionally, they suggested a quasi-steady

limit of ϵ ≥ 0.25. Alassar et al. [100] solved the NSEs and energy equations for a

Boussinesq ŕuid. The Prandtl number was assumed constant, Pr = 0.71, as was done

in this work. While the authors investigated the forced and mixed convection regimes,

only data for forced convection were utilized in this work for better comparability. Ha

& Yavukurt [191] solved the two-dimensional, unsteady, laminar conservation equations

for mass, momentum, and energy transport numerically in order to investigate the heat

transfer to a particle. They found that for ϵ ≫ 1 it can be approximated well with

the steady HMT approach. Xu et al. [192] investigated the heat transfer from a coal

particle in a power plant boiler in the presence of an acoustic őeld. The mathematical

framework of Ha & Yavukurt was utilized, while the particle size was kept constant at

100 µm and the ŕue gas properties were kept constant at a temperature of 1200 ◦C. The

oscillation frequency and oscillation amplitude were varied and they found a decrease

in heat transfer intensity at ϵ ≪ 1, an increase at ϵ ≈ 1, and a decreasing dependency

on the amplitude parameter for ϵ ≫ 1. The numerical calculations were validated by

experiments with copper spheres in an acoustic őeld. Blackburn [109] investigated the

heat and mass transfer to a particle in an oscillating ŕow numerically. The author also

utilized the two deőning dimensionless numbers of amplitude parameter 0.05 ≤ ϵ ≤ 5 and

oscillating Reynolds number 1 ≤ Re ≤ 100. Additionally, the steady case was calculated

for comparison. Blackburn found a slightly decreased HMT intensity for the oscillating

case compared with the steady case. This is a unique result in the literature, even though

the author’s values for the steady case are slightly higher than those found in many other

works.

The HMT in gases and liquids are quite similar to each other since it is subject to

the same physical phenomena and, therefore, often modelled similarly. Although the

Prandtl numbers (Schmidt numbers) are commonly several magnitudes greater in liquids

than in gases, the basic models and correlations are the same. This is not the case for

Steady Streaming, where different asymptotic behaviour for ϵ → 0 could be observed

in gases and liquids, necessitating a distinction of cases [190]. Therefore, similar to the
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approach for the steady models in the previous section, two meta correlations were found

covering the entire plane, one being applicable for a gaseous environment and the other

for a liquid environment. The Nusselt number (Sherwood number) is averaged over the

particle surface and averaged over one oscillation cycle in this case.

Meta correlation for gaseous environments:

Nu
�

Sh
�

= 2 + 0.5Re1/2Pr1/3
�

Sc1/3
��

1

0.45ϵ−1/2 + 1
+

1

2.50 exp(log(ϵ))2 − 1.25

�

(7.4)

Meta correlation for liquid environments:

Nu
�

Sh
�

= 2 + 0.5Re1/2Pr1/3
�

Sc1/3
��

1

0.78ϵ−1/6 + 1
+

1

2.50 exp(log(ϵ))2 − 1.85

�
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Figure 7.3 displays all the investigated models in the plane together with Meta Correla-

tion 7.4 for gaseous environments. The Prandtl number is set to Pr = 0.71 as is found

with air at STP.

7.4. Meta Correlation Design

The plane captures the extremes of very small and very large amplitude parameters

and Reynolds numbers. It was ensured that Meta Correlations 7.4 and 7.5 follow all the

various asymptotic behaviours that the experimental and theoretical works in literature

derived. For small Reynolds numbers, the conductive (diffusive) limit of Nu(Sh) = 2 for

a sphere is ensured with the term ‘A’. The quasi-steady behaviour of ϵ ≫ 1 is modeled

with term ‘B’, which reŕects the Steady Meta-Correlation 7.3. While term ‘C’ tends

towards unity for large ϵ, term ‘D’ tends towards zero. The steady Term ‘B’ is then

corrected for ϵ ≪ 1 with Term ‘C’. This term places the dependency on ϵ and corrects

the factor accordingly. Here, a distinction needs to be drawn between the asymptotic

behaviour in gases and liquids, hence the two correlations differ here. The enhancement
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Figure 7.3. Nusselt number averaged over the particle surface and averaged
over one oscillation cycle predicted by various investigated models plotted in
the ϵ-Re plane. Additionally, Meta Correlation 7.4 for gaseous environments is
plotted, while the Prandtl number is set to Pr = 0.71 as is found with air at
STP.

of the HMT at ϵ ≈ 1, which is suggested by several models, is described by term ‘D’.

By form, the standard normal distribution of a probability density function was utilized

here. It describes the enhancement of the HMT at ϵ ≈ 1 well, especially for ϵ < 1.

The expectation and the standard deviation were őtted well to values of zero and unity,

respectively. This term also differs for gases and liquids, mostly in order to offset the

difference in Term ‘C’ and to ensure model consistency. The split of correlations in the

Steady Streaming area for gases and liquids in Figure 7.3 is noticeable, especially with

their different asymptotic behaviour for ϵ → 0, while the asymptotic behaviour for gases

is captured well with Meta Correlation 7.4.
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7.5. Deviations

Figure 7.4 shows the deviations of Meta Correlations 7.4 and 7.5 from the respective

individual models. The colored bars show the NRMSD, calculated with Equation 7.2,

Figure 7.4. Deviations from Meta Correlations 7.4 and 7.5 from the respective
individual models investigated and listed in Table 7.1. The colored bars show
the NRMSD, calculated with Equation 7.2, while the white bars highlight the
maximum normalized deviation. The deviation presented for Meta Correlations
7.4 and 7.5 is for all investigated models and data combined.

while the white bars highlight the maximum normalized deviation. Meta Correlations

7.4 and 7.5 deviate insigniőcantly from Steady Meta Correlation 7.3 and from the inves-

tigated steady models in general, as pointed out in Section 7.2. While the correlations

for steady ŕow behave very similarly, this is not so clear for oscillating ŕows. Besides the

mentioned necessity for a distinction between gaseous and liquid ŕows, due to their differ-

ent asymptotic behaviour, the overall measured and simulated data diverge substantially.

Drummond & Lyman are the obvious outlier here since they are the only authors who

predicted an increase of HMT intensity with a decreasing amplitude parameter ϵ, which
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is also reŕected in a large deviation of their data. Blackburn [109] commented on this

study and suggested that the mesh resolution near the surface of the sphere might be too

low. This would result in the inability to capture the ŕow behaviour for small oscillation

amplitudes properly. The other models for oscillating ŕow, which often cover the same

region of the plane, deliver scattered data. This implies an insufficient experimental or

simulation design by many authors, or additional dependencies beyond solely the oscil-

lation Reynolds number and the amplitude parameter, contrary to the consensus in the

literature. Nevertheless, based on the currently available data, Meta Correlations 7.4

and 7.5 are viable, especially with regard to the large parameter ranges covering several

orders. This is also reŕected in their NRMSD from all combined data of 0.8% for gases

and 3.7% for liquids. Additionally, Meta Correlations 7.4 and 7.5 only slightly deviate

from the previous meta analyses in their respective part of the plane (1.2% for gases and

8.3% for liquids).

7.6. Quasi-Steady Assumption

The quasi-steady assumption is often applied in the literature for the HMT to par-

ticles in oscillating ŕows. Figure 7.5 shows a comparison of Meta Correlation 7.4 with

the derived Steady Correlation 7.3. It shows that the quasi-steady approach is only valid

for ϵ ≫ 1 or Re < 1. For ϵ ≈ 1, it under-predicts the intensity of the HMT, while it

over-predicts the intensity of the HMT for ϵ ≪ 1 and Re ≫ 1.

7.7. Heat and Mass Transfer to Small Particles

Similar to the drag at particles smaller than d<1 µm,as discussed in Section 5.6,

non-continuum effects need to be taken into account for the HMT to small particles as

well. The retroactive effect of momentum transfer also inŕuences heat transfer. While

an imagined slip (jump in ŕuid velocity at the surface of the particle) was introduced in
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Figure 7.5. Comparison of Meta Correlation 7.4 with Steady Correlation 7.3.

the case of reduced drag in order to help with the concept, here the change in momentum

transfer behaves as a temperature jump at the surface of the particle. This concept is

displayed on the left side of Figure 7.6. For the conductive limit (U → 0) it can be

calculated with [135]

T (r) = T − T − Tp

1 + 4κ
κ+1

2−σT
σT

Kn
Pr

a

r
(7.6)

with the corresponding Nusselt number

Nu =
2

1 + 4κ
κ+1

2−σT
σT

Kn
Pr

(7.7)

Here, σT is the thermal accommodation coefficient (TAC) and κ the speciőc heat ca-

pacity ratio. Very small particles (d<1 µm) fall in the fast relaxation limit in most

circumstances, as introduced in Section 5.3, leading to a negligible slip velocity between

particle and ŕuid. This means that very small particles will always be close to a van-

ishing slip velocity and the conductive limit regarding the HMT, bringing the possibility

to calculate the Nusselt number with Equation 7.7. The right side of Figure 7.6 shows
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the Nusselt number in respect to the Knudsen number, while the Prandtl number is set

to Pr = 0.71 and the speciőc heat capacity ratio to κ = 1.4, as found with air at STP.

The TAC is set to 0.61 as suggested by Dharmadurai [193] for air even though the TAC

is inŕuenced by a plethora of factors, e.g. surface rough roughness of the particle [194].

The Nusselt number decreases with increasing Knudsen number (with decreasing particle

diameter). In contrast to this stands the decrease of particle drag and the resulting in-

crease in slip velocity and increase in HMT with increasing Knudsen number, as pointed

out by Mohajer et al. [133]. They concluded that, for a small temperature difference

between particle and ŕuid, the increased slip velocity has a larger effect on the HMT

than the temperature jump and vice versa. In addition to the Nusselt number, the Cun-

ningham factor for slip correction is plotted on the right side of Figure 7.6.

Figure 7.6. Temperature jump at small particles (d<1 µm). left: Scheme of
the imagined temperature jump and its effect on the temperature distribution
in the vicinity of small particles. right: Plot of Relation 7.7 and Cunningham
factor in respect to the Knudsen number. The Prandtl number is set to Pr =
0.71 and the speciőc heat capacity ratio to κ = 1.4, as found with air at STP.
The TAC is set to 0.61.

7.8. Conclusion of Heat and Mass Transfer to Particles

33 data sets from the literature were correlated into a meta correlation, covering

the entire plane. First, the area of quasi-steady HMT was deőned and then a steady
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meta correlation for this part of the plane was found by correlating 14 data sets from

the literature. This meta correlation was then utilized along with 19 data sets for the

HMT to particles in oscillating ŕows in order to derive two meta correlations - one for

gaseous and one for ŕuid environments. With an overall NRMSD of 0.8% for an gaseous

environment and 3.7% for an ŕuid environment, the meta correlations can be considered

in good agreement with the data. The major insights of this chapter, besides the utility

of the meta correlations, are the enhanced HMT up to 60% for an amplitude parameter

of ϵ ≈ 1 and the reduced HMT for ϵ ≪ 1 compared with the quasi-steady approach.

Finally, it was laid out how to deal with non-continuum effects inŕuencing the HMT to

small particles.



CHAPTER 8

Summary & Discussion

The pulsation reactor was introduced as an apparatus for particle treatment in a

pulsating hot gas stream. It was pointed out that despite being in use in the industry for

several decades, the processes in the reactor and at the level of the single particle are not

yet fully understood. One of these aspects is the heat and mass transfer to particles in

the pulsating ŕuid. Therefore, a three stage model (particle motion, ŕow patterns, and

HMT) was derived in order to predict the HMT to a single particle in such a ŕow. The

starting point of the model were the őve central input parameters that characterize the

particle ŕow interaction: ŕuid velocity amplitude, pulsating frequency, ŕuid temperature,

particle size, and particle density. After providing an overview of the state of the research

on this topic, the basic assumptions and considerations were laid out, before the model

itself was explained. The model itself and the interaction of the three stages of the model

is summarized in the following section by describing the algorithm to determine the HMT

to the particle. Afterwards, the inŕuence of the őve input parameters on the HMT to the

particle is discussed in Section 8.2. Since the model utilizes few input parameters with a

very broad value range, far exceeding the physical capabilities of pulsation reactors, the

HMT in pulsating ŕows within the limitations of pulsation reactors is discussed in Section

8.3. This is followed by a more general discussion on the advantages and shortcomings

of the model in Section 8.4 and possible ways to overcome the shortcomings and improve

the model in Section 9.
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8.1. Model Algorithm

The model algorithm is presented here, enabling a structured approach to determining

the HMT intensity from oscillating ŕows to entrained particles. The important steps are

visualized in Flow Chart 8.1. This algorithm can also be applied to a pulsating ŕow,

in case the transient part of the slip velocity can be neglected, as shown in Section 4.4.

The presented model utilizes the input parameters (ŕuid velocity amplitude, frequency,

ŕuid temperature, particle diameter, particle density). Those can be partly exchanged for

other quantities as demonstrated in Section 4.1. The input parameters can be interpreted

as process conditions in a pulsation reactor or ultra sonic levitator, as pointed out in

Figure 2.2, while they translate into several dimensionless numbers via the relations

in Figure 4.8. The meaning of the important dimensionless numbers is discussed in

Section 4.6, but the oscillation Reynolds number Re and the amplitude parameter ϵ are

highlighted here. They span a plane, as derived in Section 4.7, and completely deőne

the motion of the particle in the oscillating ŕow, as long as particle relaxation can be

neglected. The intensity of occurring particle relaxation can be determined with the

help of the Womersley number Wo2 and the density ratio γ via the relations in Table

5.1 and Figure 5.3. In case the density ratio falls between the density ratio for the

FRL and SRL, which both depend on the Womersley number, γcrit,FRL(Wo2) ≤ γ ≤

γcrit,SRL(Wo2), particle relaxation needs to be taken into account. In this case, a drag

model with an appropriate validity range must be utilized in order to determine the slip

velocity amplitude. Several drag models are presented in Section 5.1 and cover large

parts of the plane as displayed in Figure 5.1. The slip velocity amplitude can now be

calculated for large parts of the plane with the relations in Table 5.1, while the density

ratio functions as a parameter of the plane. Many drag models are derived through

asymptotic analysis and it is not explicit what constitutes a sufficient extreme value for
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the suggested simpliőcations, as discussed in Section 5.5. Therefore, analytic relations

are provided in order to calculate the deviations between the simple Stokes model and

the other models in Table 5.3. Additionally, criteria are provided for the deviation to

stay below 5%, which are graphically displayed in Figure 5.6. In case these criteria are

met, the Stokes model can be utilized regardless of its range of validity. In case the

approximate position on the plane is not known for an input parameter combination,

the Stokes model can be used in order to deduce an educated guess on the position and

then recalculate with an appropriate drag model, if necessary. For a particle with small

diameter (d ≤ 1 µm), non-continuum effects start to emerge, as discussed in Section 5.6.

In this case, the drag terms in each model need to be corrected with the Cunningham

factor CC , acting as a parameter of the plane. With the determination of the slip velocity

complete, the exact position on the plane is known. Table 5.2 together with Figure 5.5

provide the possibility to roughly but simply navigate the plane.



8.1. MODEL ALGORITHM 88

Figure 8.1. Flow Chart of the model algorithm for determining the Nusselt or
Sherwood number for a particle in an oscillating (pulsating) ŕow.
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The characteristics of the ŕow pattern in the vicinity of the particle are linked to the

value of oscillation Reynolds number and amplitude parameter, as described in Section

6. Therefore, knowledge of the position on the plane enables direct inference of the ŕow

pattern around the particle, as pointed out in Figure 6.6. Conclusions can be drawn from

the characteristics of the ŕow pattern on the intensity of occurring HMT, but this step in

the modelling process is optional, since the intensity of the HMT is already determined by

the position on the plane. As soon as the oscillation Reynolds number and the amplitude

parameter are determined, Meta Correlation 7.4 or 7.5 can be employed, for a gaseous

or liquid ŕuid, respectively, and together with the Prandtl or the Schmidt number, the

Nusselt or the Sherwood number can be calculated directly. The Nusselt number for

gas is plotted in Figure 7.3, while Figure 7.5 provides good insights on the locations of

areas of enhanced, reduced, and unaffected HMT intensity in the plane, compared with

a steady ŕow. In cases dealing with a very small particle (d ≤ 1 µm), the Nusselt number

can be calculated with Equation 7.7 in the conductive limit.

8.2. Inŕuence of input parameters on the HMT

This is a discussion on the inŕuence of the őve input parameters from Table 4.1 on the

HMT to the particle. The sensitivity of the input parameters on the position on the plane

(Figure 5.5) and the HMT intensity to a particle in an oscillating ŕow compared with a

steady ŕow (Figure 7.5) are displayed in Figure 8.2 again, side by side, for convenient

comparison. However, Figure 7.5 displays the HMT intensity in relation to the HMT in

a steady ŕow and not the actual Nusselt number, which would be Figure 7.3. For a more

quantitative analysis Table 5.2 can be consulted, instead of the graphical interpretation

of the sensitivities in Figure 5.5. Note that the sign, orientation, and length of the

red vectors are only valid for gases, as highlighted in Section 5.4. The impact of input
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Figure 8.2. Inŕuence of input parameters on the heat and mass transfer to the
particle, emphasised by direct comparison of Figure 5.5 and Figure 7.5.

parameters is discussed in terms of the fast relaxation limit (FRL) and slow relaxation

limit (SRL), as presented in Section 5.3.

Particle Diameter

The diameter of the particle has the largest inŕuence on the position on the ϵ-Re plane,

especially towards the FRL. Even in the SRL, the inŕuence is substantial and always has

a positive component in the Re direction. This implies that the particle diameter has

the largest inŕuence on the HMT to the particles as well, since a large Reynolds number

is associated with high HMT, as long as the amplitude parameter ϵ is not much smaller

than unity. While, for the FRL, the inŕuence of the particle diameter on the amplitude

parameter is substantial in the positive ϵ direction, it changes sign in the relaxation area

and has the same inŕuence in the negative ϵ direction at the SRL. This combination

leads to large particles being at risk of occupying a position in the low HMT area of the

plane when not compensated for with the other input parameters.

Frequency

The frequency affects the position on the plane solely in the positive Re direction in

the FRL, while it effects solely the negative ϵ direction in the SLR. This implies that a

combination of both inŕuences occurs in the relaxation area. In the FRL, an increase
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in frequency results in pure increase of Reynolds number and therefore Nusselt number.

The frequency is the only option in order to actively shift the position of small particles

to smaller amplitude parameters, even though its impact is limited.

Temperature

The ŕuid (gas) temperature has a large inŕuence in the negative Re direction (all relax-

ation cases), while it is especially large for the SRL, which is due to a change in ŕuid

viscosity. In this case, it also has a slight positive inŕuence in the ϵ direction due to a

change in ŕuid density.

Velocity Amplitude

Completely independent of particle relaxation, an increase in ŕow velocity amplitude will

always lead to an equal increase in ϵ and Re.

Particle Density

The particle density behaves similarly to the velocity amplitude. It has no inŕuence in

the SRL, but the same inŕuence as the velocity amplitude in the FLR of increasing ϵ

and Re to the same degree.

8.3. The ϵ-Re Plane in the Special Case of the Pulsation Reactor

In order to fully utilize the potential of the pulsation reactor as an apparatus for the

synthesis of high performance materials with conőgurable material properties, the HMT

at the particle must become adjustable itself. Often the goal is to maximize the heat and

mass transfer in order to enhance the effect of the shock-like treatment with its short

residence times, which are characteristic of pulsation reactors. However, a reduced HMT

can be utilized to inŕuence occurring chemical reactions as well. In both cases, an ad-

justable HMT is desirable. This can be achieved theoretically by following the algorithm

summarized in Section 8.1 and then to change the process conditions in a PR accordingly.
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While the ϵ-Re plane provides valuable insights for all parameter ranges, only certain ar-

eas are accessible in pulsation reactors, due to physical and constructional constraints.

In order to investigate the potential of a PR, the extreme values of the achievable process

conditions in a PR, as listed in Table 2.1, are used as input parameters for the presented

model and the algorithm from Section 8.1 is applied. A visualisation of the reachable

locations on the ϵ-Re plane can be seen in Figure 8.3. Here, the color code of the

background indicates the Nusselt number at the respective location. In the foreground,

different frequencies are indicated by the shape of the marker, while the particle diameter

is differentiated by marker color. The density of the particle is displayed by the marker

edge color. Low and high ŕuid velocity amplitudes are highlighted by the thickness of

the marker edge, while high ŕuid temperatures are indicated by a magenta circle around

the marker. The upper and lower extreme value of the parameters were utilized, while

also an intermediate particle diameter was applied. Also, an oscillation frequency of 1

MHz is displayed, which can not be achieved with conventional pulsation reactors, but

is rather the high end for ultra sonic apparatus, e.g. ultra sonic levitators (USL). These

devices create process conditions similar to those of a PR in terms of velocity behaviour

and are the focus of many scientiőc investigations and publications [86]. The inŕuences

of the input parameters behave as explained in Section 5.4. The particle diameter has

by far the largest inŕuence, while simultaneously spanning the largest parameter range

of six orders here. In the FRL (mirco and nano sized particles), the particle diameter

dominates the inŕuence on the Reynolds number, while when moving into the relaxation

regime and the SRL (milli sized particles) the inŕuence towards the amplitude parame-

ter becomes more pronounced. The inŕuence of the pulsation frequency on the Reynolds

number is quite noticeable in the FRL, but the inŕuence on the amplitude parameter in
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Figure 8.3. Locations on the ϵ-Re plane with extreme value combinations for
the pulsation reactor, as listed in Table 2.1. Different frequencies are indicated
by the shape of the marker, while the particle diameter is differentiated by
marker color. The density of the particle is displayed by the marker edge color.
Low and high ŕuid velocity amplitudes are highlighted by the thickness of the
marker edge, while high ŕuid temperatures are marked by a magenta circle
around the marker. The color code of the background indicates the Nusselt
number at the respective location.

the SRL is remarkable, even though the frequency only spans two orders here. As de-

rived earlier, the particle density is inŕuential in the FRL, but becomes negligible in the

SRL. The ŕuid velocity amplitude spans almost 3 orders here, which translates directly

to the Reynolds number and the amplitude parameter alike, independent of the position

on the plane, hence the occurring relaxation. Even though the gas temperature (PRs are

only operated with gases) has a strong nominal inŕuence on the position in the plane, it

spans not even half an order here and, therefore, its inŕuence is minimal. But still, the

behaviour of only inŕuencing the Reynolds number in the SRL and inŕuencing also the

amplitude parameter in the FRL by temperature can be observed.

It was derived that the achievable Reynolds number and amplitude parameter, even

with the extension of USL, are mainly conőned to the fourth quadrant of the ϵ-Re plane,
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which is especially true for micro sized particles and smaller. These small (and there-

fore non-inert) particles follow the ŕow almost perfectly, allowing for an only vanishing

small slip velocity between particle and ŕuid. This translates into a small oscillation

Reynolds number, and to the conductive (diffusive) limit of Nu(Sh) = 2 for the HMT at

the particle. In case of particles smaller than micrometer size, this is even lower due to

non-continuum effects and the temperature jump discussed in Section 7.7. For millimeter

size particles, Reynolds numbers of up to 1000 can be achieved, resulting in a drastically

increased HMT compared with steady ŕow reactors (e.g. entrained ŕow reactors). A

further enhanced HMT due to the ŕow conditions was found at ϵ ≈ 1, on top of the

enhanced HMT due to an persistent slip velocity, as derived in Chapter 7. The pulsation

frequency provided by a PR enables these amplitude parameters to be achieved, but only

in combination with small ŕow velocity amplitudes. This is due to high ŕow velocities

leading to high amplitude parameters, as well as high Reynolds numbers, necessary for a

meaningful enhancement of HMT intensity. High velocity amplitudes could be offset in

order to return to the area of ϵ ≈ 1, with even higher pulsation frequencies, which can

be found with USLs, but not PRs. Similarly, high particle densities result in larger ϵ,

where the ŕow can be modelled as quasi-steady and an increase in HMT results from a

constant quasi-steady slip velocity only. The ŕuid temperature can only be varied mini-

mally in a PR compared with the other parameters, and has therefore little inŕuence on

the location in the ϵ-Re plane as well. Since this is the most crucial parameter for many

possible chemical reactions at the particle, the temperature should be chosen according

to this basis and not in order to shift the position on the plane.

8.4. Discussion

A model was presented which enables enables the estimation of particle motion and

the occurring heat and mass transfer at single particles in one-dimensional oscillating
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ŕows. It can be utilized for many cases of a pulsating ŕow as well. The model utilizes a

few input parameters (ŕuid temperature, ŕuid velocity amplitude, oscillation frequency,

particle diameter, particle density), with large ranges. It revolves around two central

dimensionless numbers: the oscillation Reynolds number and the amplitude parameter.

These span a plane, enabling direct visual access to the model and providing an intuitive

way of interacting with the model. This plane has so far only been utilized in the literature

to discuss qualitative asymptotic analyses, but not yet for a quantiőed approach. Also,

only parts of the plane were approached or discussed individually, while this work treats

the plane comprehensively. It can best be utilized as a tool in order to őnd the position on

the plane for a set of input parameters and to gain a general direction on how to change

the input parameters in order to change the position on the plane and the resulting

HMT accordingly. This work provides an easy to implement model for the consideration

of HMT to particles in oscillating and pulsating ŕows. It draws from various sources in

the literature, which are often on an abstract mathematical basis and cover only small

parts of the whole picture. This work unites those many approaches on a shared graphical

basis with the ϵ-Re plane, while displaying the algorithm as accessibly as possible for the

end using process engineer.

Even though the model brings a lot of value for the discussion on the HMT to particles,

some limitations for applications must be pointed out. A central feature of the model is

the simpliőcation of transferring from a pulsating to an oscillating ŕow. This is possible

in many cases, especially for long periods of consideration. Pulsation reactors often apply

a shock-like treatment to the material, where the őrst contact between gas and particles

and the initial particle relaxation can be crucial. In these cases, the transient part can

still be signiőcant and the effects on the HMT can be better estimated without this

simpliőcation. Often the heat up of the particles is almost instantaneous, especially for
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small particles, while a possible mass transfer occurs over a longer time period. Therefore,

in such a case, it is questionable whether the heat transfer should be calculated with the

model, but a calculation of the mass transfer would be reasonable. In contrast, the model

can be applied to particles in USLs in all circumstances, since the transient effects wear

off much faster than the observation period is long. Even though the absolute velocity

proőles in a pulsation reactor resonance tube are generally as displayed in Figure 4.1, no

information about the degree of turbulence is conveyed. While the center part of the ŕow

behaves like a plug, it still can have a substantial degree of turbulence in some cases [195].

The presented model assumes a harmonic, one-dimensional ŕow velocity, which might

not be sufficient if the size of the particle matches the dimensions of the eddies. There,

the slip velocity between particle and gas can be substantially higher than predicted by

the model, affecting the HMT to the particle as well. Again, the model can be applied

to particles in USLs, since the ŕuid dynamic case of ϵ ≪ 1 is covered by the model. The

model predicts (substantiated by the literature) an increased HMT to the particle for an

amplitude parameter of ϵ ≈ 1 and an oscillation Reynolds number of Re ≫ 1 compared

with the quasi-steady case. At this point in time it is not possible to create suitable

process conditions (input parameter combinations) in a PR to capitalise on this effect.

This leaves only the enhanced heat and mass transfer due to a sustained slip velocity

between particle and gas in a PR compared with an entrained ŕow reactor, which has

already a substantial effect in most cases. This implies that the HMT to particles in a

pulsation reactor can be sufficiently modelled under the quasi-steady assumption. This is

not the case for considerations of high oscillation frequencies, e.g. with USLs, or particles

with larger diameters.



CHAPTER 9

Outlook

The presented model provides insights into the occurring heat and mass transfer to

solid particles in one-dimensional oscillating ŕows. One of its main features is the com-

prehensive analytical approach and mathematical accessibility. Many further, interesting

phenomena could be investigated by adding sub models, which, however, would often re-

sult in the loss of this feature. Nevertheless, the model could be further aligned with the

special conditions in a pulsation reactor, namely by modelling the shock-like treatment

when particles have őrst contact with the hot gas. Additionally, a way could be found

in order to incorporate various degrees of turbulence which might occur in a pulsation

reactor. Often, pulsation reactors are operated by spraying the product precursors solved

in a combustible carrier into the the resonance tube. Therefore, the model could be im-

proved by working in corrections for liquid droplets, e.g. via the work of Sirignano [196],

namely droplet deformation and reduced drag, due to internal back ŕow. Another inter-

esting point to consider could be the effect of pressure oscillations on the integrity of the

droplet. There could be a high heat transfer during a high pressure phase, heating the

droplet up to the boiling point. The following pressure drop could result in an explosive

vaporization of the droplet, leading to nano sized particles found with pulsation reactor

synthesis. Some additional insights could be gained in considering the decrease of the

droplet diameter on the particle trajectory along the resonance tube.
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APPENDIX A

Derivation and Solution of Particle Motion in the Stokes

Model

The basis for deriving a motion equation for particles in a pulsating ŕow is the

constantly existing equilibrium between the drag force FD and the inertial force FI . The

inertial force in its general form

FI = m · a (A.1)

is expressed by acceleration a and mass m. In this case, the shape of the particle is

assumed to be spherical, which leads to an equation where the mass is

m = ρp · V = ρp
π

6
d3 (A.2)

with the density of the particle ρp, the volume of the particle V , and the diameter of the

particle d. This leaves the inertial force of a particle to be

FI = ρp
π

6
d3a (A.3)

The drag force, acting on the particle, can be expressed by the general form of Newton’s

resistance law

FD = CD
π

8
ρfd

2u2 (A.4)

, where ρf is the density of the surrounding ŕuid, CD is the drag coefficient, and u is

the relative velocity between the particle and the ŕuid, which can be expressed with the
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velocities of particle up and ŕuid uf :

u = uf − up (A.5)

The ŕuid velocity is considered utilizing the wave form

ūf + Uf cos (ωt+ ϕ0) (A.6)

with the mean ŕuid velocity ūf , the amplitude of the ŕuid velocity Uf , and the angular

frequency ω = 2πf . The equilibrium between drag force and inertia is

FD =FI (A.7)

CD
π

8
ρfd

2u2 =ρp
π

6
d3a (A.8)

a =
3

4
CD

ρf
ρp

u2

d
(A.9)

Various drag models, valid for different Reynolds number ranges, can be applied to this

law by forms of the drag coefficient CD. Here, Stokes is applied

CD,S =
24

Re
(A.10)

Inserting A.10 into A.9 leads to

a =
18η

ρpd2
u (A.11)

The acceleration a can also be denoted as u̇p since it is the derivation of the particle

velocity in respect to time. All the factors in the fraction of A.11 are not dependent on

the motion and can be combined and expressed by the relaxation time τ :

τ =
ρpd

2

18η
(A.12)
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Finally, using equations A.5 and A.6 leads to a form of the relation where the character

of a homogeneous linear differential equation with constant coefficients becomes obvious:

u̇p +
1

τ
up =

1

τ
[ūf + Uf cos (ωt+ ϕ0)] (A.13)

This ODE is solved by superimposing the solution of the homogeneous form

u̇p +
1

τ
up = 0 (A.14)

and the particular solution. The homogeneous solution to equation A.13 is found by

using the ansatz up = ceλt, leading to the characteristic equation

λ+
1

τ
= 0 (A.15)

Solving this equation and inserting λ into the ansatz delivers the homogeneous solution

up = ce−
t
τ (A.16)

with a constant c, which is determined later by an initial condition. The particular

solution to the ODE A.13 is found with the coefficient comparison approach. Each term

in the perturbation function is accounted for with a similar term including undetermined

coefficients A-C:

ūf =̂ A (A.17)

Uf cos (ωt+ ϕ0) =̂ τB sin (ωt+ ϕ0) + τC cos (ωt+ ϕ0) (A.18)
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The superposition of these terms leads to an undetermined form of the solution:

up = A+B cos (ωt+ ϕ0) + C sin (ωt+ ϕ0) (A.19)

u̇p = − ωB sin (ωt+ ϕ0) + ωC cos (ωt+ ϕ0) (A.20)

These equations can be reinserted in the original ODE A.13:

− ωτB sin (ωt+ ϕ0) + ωτC cos (ωt+ ϕ0) (A.21)

+ A+B cos (ωt+ ϕ0) + C sin (ωt+ ϕ0)

= ūf + Uf cos (ωt+ ϕ0)

Now the coefficients of each term can be compared with their counterparts from the

perturbation function to determine A, B, and C:

A = ūf (A.22)

−ωτB sin (ωt+ ϕ0) + C sin (ωt+ ϕ0) = 0 (A.23)

ωτC cos (ωt+ ϕ0) +B cos (ωt+ ϕ0) = Uf cos (ωt+ ϕ0) (A.24)

This linear system of equations can be solved to:

A = ūf (A.25)

B =
Uf

1 + (ωτ)2
(A.26)

C = Uf
ωτ

1 + (ωτ)2
(A.27)
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After reinserting expression A.25 - A.27 into equation A.19 and substituting the oscilla-

tion Stokes number Stk = ωτ , the particular solution to the ODE is

up = ū+
Uf

1 + Stk2
[sin (ωt+ ϕ0)− Stk cos (ωt+ ϕ0)] (A.28)

Superimposing the homogeneous and the particular solution leads to

up = ce−
t
τ + ūf +

Uf

1 + Stk2
[sin (ωt+ ϕ0)− Stk cos (ωt+ ϕ0)] (A.29)

Applying the initial condition of the particle having a certain velocity u0 at t = 0, c can

be determined to

up(t = 0) = u0 = c+ ūf +
Uf

1 + Stk2
[cos(ϕ0) + Stk sin(ϕ0)] (A.30)

c = u0 − ūf − Uf

1 + Stk2
[cos(ϕ0) + Stk sin(ϕ0)] (A.31)

Inserting A.31 into A.29 leads to the őnal solution of the ODE. This motion equation

can be arranged into a transient and a resident part:

up(t) =

[

u0 − ūf − Uf

1 + Stk2
[cos(ϕ0) + Stk sin(ϕ0)]

]

e−
t
τ

︸ ︷︷ ︸

transient

(A.32)

+ ūf +
Uf

1 + Stk2
[cos (ωt+ ϕ0) + Stk sin (ωt+ ϕ0)]

︸ ︷︷ ︸

resident
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and the slip velocity can be calculated with

u(t) = uf (t)− up(t)

=

[

ūf − u0 +
Uf

1 + Stk2
[cos(ϕ0) + Stk sin(ϕ0)]

]

e−
t
τ

︸ ︷︷ ︸

transient

(A.33)

+ Uf
Stk

1 + Stk2
[Stk cos (ωt+ ϕ0)− sin (ωt+ ϕ0)]

︸ ︷︷ ︸

resident



APPENDIX B

Derivation and Solution of Particle Motion in the Landau &

Lifshitz Model

A similar procedure as in Appendix A is applied for deriving the slip velocity am-

plitude calculated with the drag model by Landau & Lifshitz. As in Equation A.11, the

point of origin is the constant equilibrium of the drag force and the inertia of the particle:

FD =FI (B.1)

3πηd

(

1 +
d

2δ

)

u+
3

4
πd2
√

2ηρ

ω

(

1 +
d

9δ

)
du

dt
=ρp

π

6
d3a (B.2)

Utilizing Relation A.5 and rearranging leads to the normal form of the differential equa-

tion:

u̇p +




18η

(
1 + d

2δ

)

9d
√

ηρf
2ω

(
1 + d

9δ

)
+ ρpd2



up (B.3)

=




18η

(
1 + d

2δ

)

9d
√

ηρf
2ω

(
1 + d

9δ

)
+ ρpd2



Uf cos (ωt)

−




9d
√

ηρf
2ω

(
1 + d

9δ

)

9d
√

ηρf
2ω

(
1 + d

9δ

)
+ ρpd2



ωUf sin (ωt)
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Three coefficients are introduced for the sake of readability and convenience:

a = 18η

(

1 +
d

2δ

)

(B.4)

b = 9d

√
ηρf
2ω

(

1 +
d

9δ

)

(B.5)

c = ρpd
2 (B.6)

With these parameters, Equation B.3 simpliőes to

u̇p +
a

b+ c
up =

a

b+ c
Uf cos (ωt)−

b

b+ c
ωUf sin (ωt) (B.7)

The general solution of this ODE relates to the constant part of the particle motion as well

as the non-harmonic, transient part of the particle motion which quickly decays. Both of

these parts of the solution are neglected here in order to focus on the homogeneous part,

which delivers the desired amplitude of the slip velocity. Similar to solving the motion

of the particle described with the Stokes drag law, a coefficient comparison approach is

applied.

The ansatz,

up = A sin (ωt) +B cos (ωt) (B.8)

u̇p = ωA cos (ωt)− ωB cos (ωt) (B.9)

which matches the perturbation function, is inserted into the ODE:

ωA cos(ωt)− ωB sin (ωt) +
a

b+ c
A sin (ωt) +

a

b+ c
B cos (ωt) (B.10)

=
a

b+ c
Uf cos (ωt)−

b

b+ c
ωUf sin (ωt) (B.11)
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This equation can be split into two independent equations:

ωB sin (ωt)− a

b+ c
A sin (ωt) =

b

b+ c
ωUf sin (ωt) (B.12)

ωA cos (ωt) +
a

b+ c
B cos (ωt) =

a

b+ c
Uf cos (ωt) (B.13)

From this, the coefficients A and B can be determined to

A = Uf
acω

a2 + ω2(b+ c)2
(B.14)

B = Uf
a2 + ω2b(b+ c)

a2 + ω2(b+ c)2
(B.15)

Reinserting in Ansatz B.8 and rearranging it gives the resident solution to the original

ODE B.3:

up =
Uf

a2 + ω2(b+ c)2
[
acω sin (ωt) +

(
a2 + ω2b(b+ c)

)
cos (ωt)

]
(B.16)

The slip velocity is derived by using Relation A.5 and A.6, while the extreme value is

discovered by detecting zeros in the őrst differential and an expression for the desired

amplitude of the slip velocity is found:

ULL

Uf
=

1
√
(

a
ωc

)2
+
(
b
c + 1

)2
(B.17)

with the Coefficients B.4-B.6. The Solution B.17 can be expressed in terms of the previ-

ously introduced oscillating Stokes number Stk = ωτ = ωρpd
2/18η and the density ratio

γ = ρp/ρf :

ULL

Uf
=

1
√
(

3√
2γStk

+ 1
Stk

)2
+
(

3
2
√
γStk

+ 1√
2γ

+ 1
)2

(B.18)



APPENDIX C

Derivation of Deviation between Stokes and Schiller &

Naumann

Considering a spherical rigid particle and starting from the basic equilibrium between

the drag force FD = CD
π
2ρfd

2u2 and the inertial force FI = ρp
4π
3 d3ap for Stokes (index

S) and Schiller & Naumann (index SN):

CD,S
π

2
ρfd

2u2slip,S = ρp
4π

3
d3ap,S (C.1)

CD,SN
π

2
ρfd

2u2slip,SN = ρp
4π

3
d3ap,SN (C.2)

Dividing C.1 by C.2 and rearranging leads to

u2SN (t)

u2S(t)
=

CD,S(t)

CD,SN (t)

ap,SN (t)

ap,S(t)
(C.3)

For harmonic relations, the following statements with particle acceleration ap and particle

velocity up hold true:

ap(t) = u̇p(t) (C.4)

Up = ωAp (C.5)

Here, Up and Ap denote the particle velocity amplitude and the particle acceleration

amplitude, respectively. u̇p is the particle velocity derivation in respect to time. The

most interesting property is the maximum value of the slip velocity, hence the amplitude

of the oscillation U . Relation C.3 also holds true for the maximum values and inserting
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C.5 leads to

U2
SN

U2
S

=
CD,S

CD,SN

Up,SN

Up,S
(C.6)

CD is the maximum value of the drag coefficient when the slip velocity amplitude U is

reached with the maximum Reynolds number

Re =
Ud

ν
(C.7)

Using the relations US = Stk Up,S = τ Ap,S gives the expression

USN

US
= Stk

CD,S

CD,SN

Up,SN

USN
(C.8)

When the Pythagorean theorem,

U2
f = U2 + U2

p (C.9)

is applied, which can be derived from Figure 4.7, Equation C.8 can be further simpliőed:

USN

US
= Stk

CD,S

CD,SN

√
(

Uf

USN

)2

− 1 (C.10)

In order to set the slip velocity amplitude in relation to the ŕuid velocity amplitude, each

side of Equation C.10 can be multiplied with the right side of Equation 4.15:

USN

Uf
=

Stk
√

1 + 1
Stk2

CD,S

CD,SN

√
(

Uf

USN

)2

− 1 (C.11)
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Inserting the drag coefficients CD,S = 24/Re and CD,SN = (24/Re)SN with extreme

values, respectively, leads to:

USN

Uf
=

1
√

1 + SN2

Stk2

(C.12)

USN

US
=

√

Stk2 + 1

Stk2 + SN2
(C.13)

Since only now the different drag coefficients CD,i are inserted, Equation C.11 can also

be used in order to calculate the deviation between the Stokes drag model and any other

drag model, which follows Newton’s drag formulation and can be expressed by a drag

coefficient. Equations C.12 and C.13 are used to calculate the relative deviation between

Stokes and Schiller & Naumann:

US − USN

US
= 1−

√

Stk2 + 1

Stk2 + SN2
(C.14)

US − USN

Uf
=

1
√

1 + 1
Stk2

− 1
√

1 + SN2

Stk2

(C.15)



APPENDIX D

Parameters and Algorithm of the Direct Numerical

Simulation and Flow Pattern Visualisation

The ŕow patterns in the vicinity of the particle are the result of direct numerical

simulations (DNS), conducted with the commercial ŕuid simulation software Ansys Flu-

ent ©. The algorithm for conducting the DNS and visualisation of the ŕow pattern is

presented here, followed by the parameters of the utilized mesh and applied conditions.

Fluent does not provide the inherent settings for a DNS. However, the laminar turbu-

lence model, in connection with the very őne spacial and time resolutions as listed in

Table D.1, can be considered a direct numerical simulation. The spatial resolution is

chosen in order to be smaller than the Kolmogorov length scale [197], and the time res-

olution is chosen in order to ensure a Courant-Friedrichs-Lewy (CFL) number of unity

or smaller CFL ≤ 1 [198]. SIMPLEC is used as a solver. The boundary conditions are

a harmonically oscillating free stream velocity u(t) = Uf cos (ωt). Nine oscillation peri-

ods are calculated for the transient effects to wear off. The velocity distribution around

the particle for each time step in the tenth period is then exported via text őle into

Matlab© [199]. Here, the velocities are averaged over the tenth period and converted

into the CSV format. After being exported to ParaView© [200], the resulting vector

őeld is normalized with the free stream velocity amplitude. The streamlines are then

visualized and displayed in a circular window of 5 particle diameters around the particle.

The mesh has a spacial resolution at the surface of the particle that starts with 0.03 d

and a cell height of 3.94 × 10−5 d. The cell height increases over 300 layers with a rate
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of 1.02. The őne mesh near the particle is enveloped by a coarse mesh with a cell size of

0.39 d, as displayed in Figure D.1. In case the particle displacement amplitude was much

larger than the particle diameter (ϵ ≫ 1), a dynamic mesh was applied. The applied

parameters for the various cases, presented in Chapter 6, are listed in Table D.1.

Figure D.1. The mesh utilized in the DNS. The spacial resolution at the sur-
face of the particle starts with 0.03 d and a cell height of 3.94 × 10−5 d. The
cell height increases over 300 layers with a rate of 1.02. The őne mesh near the
particle is enveloped by a coarse mesh with a cell size of 0.39 d.

Table D.1. A list of applied parameters for the conducted DNS. The results are presented in
Chapter 6. The parameters are the oscillation Reynolds number Re, the amplitude parameter
ϵ, the kinematic viscosity ν, the velocity amplitude U , the particle diameter d, the angular
frequency ω, the time step ∆t, the spatial step ∆x, and the Courant-Friedrichs-Lewy number
CFL.

Re [-] ϵ [-] ν [m2/s] U [m/s] d [m] ω [1/s] ∆t [s] ∆x [m] CFL [-]

10−3 10−3 1.83 × 10−4 0.183 10−6 1.83 × 108 2.15 × 10−10 3.94 × 10−11 10−3

10−3 1 1.83 × 10−4 0.018 10−5 1.83 × 103 2.15 × 10−7 3.94 × 10−10 0.01

10−3 103 1.83 × 10−4 0.183 10−6 183 2.15 × 10−6 3.94 × 10−11 1

1 103 1.83 × 10−4 18.3 10−5 1.83 × 103 2.15 × 10−7 3.94 × 10−10 1

103 103 1.83 × 10−4 18.3 0.01 1.83 2.15 × 10−4 3.94 × 10−7 1

1 10−3 1.83 × 10−4 0.18 10−3 1.83 × 105 10−8 3.94 × 10−8 4.64 × 10−5

100 1 1.83 × 10−4 1.83 0.01 183 1.09 × 10−8 2 × 10−9 0.01



APPENDIX E

Conducted Data Preparation for HMT Models

The paper by Al Taweel & Landau [88] was the source for some of the works listed in

Table 7.1. The handling of these works was conducted as follows: there was an attempt

to retrieve the original paper. If this was not possible, the information stated by Al

Taweel & Landau was used. In this case, their paper was indicated as the source of the

data. In case the original paper was available, the data were compared with Al Taweel

& Landau. In some cases, they did not specify a value or range of a parameter, even

though it could be indirectly retrieved by the relations in Figure 4.8 or by other relations

in general. These steps in data preparation are listed here for each individual case:

† Al Taweel & Landau did not provide a value range for the displacement am-

plitude A and stated only that the amplitude parameter is much smaller than

unity for the work of Burdukov & Nakoryakov [89]. While this statement agrees

with the respective paper, also the applied decibel range of the utilized levitator

is stated in that paper: 150 dB to 163 dB. With the standard reference sound

pressure level of p0 = 20 µPa [201] and the linear relation between pressure

amplitude P and velocity amplitude Uf , P = ρfcUf , with the speed of sound

c in the ŕuid, the ŕuid velocity amplitude was calculated. Since no signiőcant

particle relaxation occurs [160], the slip velocity amplitude was set equal to the

ŕuid velocity amplitude as given in Table E.1. Subsequently, the displacement

amplitude and the amplitude parameter were calculated according to the rela-

tions in Figure 4.8.
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‡ Al Taweel & Landau did not provide a value for the diameter of the sphere, but

in the original paper of Burdukov & Nakoryakov [90], it is stated that the glass

sphere with mount weighed about msphere = 1.3 g. Additionally, the thickness

of benzoic acid coating was about dacid− dsphere = ∆d = 0.6mm to 1mm, with

a weight of about macid = 150mg. This information allows for two ways of

estimating the diameter of the glass sphere:

(1) Neglecting the weight of the mount and assuming the utilization of borosil-

icate glass, which is often used in a scientiőc environment, with a density of

about ρsphere = 2235 kg/m3 [202], the diameter can be calculated to about

Vsphere = ρspheremsphere =
π

6
d3sphere (E.1)

dsphere =

(
6msphere

πρsphere

)1/3

≈ 1 cm (E.2)

In case ordinary glass (sodaślime) was used with a density of ρsphere =

2520 kg/m3, the spheres would be insigniőcantly smaller.

(2) Calculating the dimensions of the coating by assuming a benzoic acid den-

sity of ρacid = 1.260 kg/m3 [203], the diameter can be calculated

Vacid = ρacidmacid =
π

6

(
d3acid − d3sphere

)
(E.3)

dsphere = −∆d

2
+

√
(
∆d

2

)2

+
∆d2

3
+

2macid

πρacid∆d
≈ 1 cm (E.4)

Even though Equation E.4 has two theoretical solutions due to its quadratic

nature, only the physically plausible solution with a positive diameter was

chosen.
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In approaches 1 and 2, the diameter of the sphere can be estimated to be

d ≈ 1 cm. Therefore, this value is used in this work. Still, this problem is

undetermined and the determination of another parameter is necessary in order

to calculate all the parameters listed in Table E.1. In the original paper it is

stated that the frequency varied from 10Hz to 125Hz, translating to angular

frequencies of 63 s−1 to 785 s−1. All other input properties listed in the őrst

row of Figure 4.8 are kept constant except the velocity amplitude U, which is

dependent on the frequency. The parameter K =
[
(U2d)/(2

√
ωνD)

]1/3
in the

original paper was varied between 100 and 1200. The Schmidt number Sc =

ν/D was estimated by Al Taweel & Landau to be approximately 1000 in this

setup. Adopting this value and linking low oscillation frequencies to low velocity

amplitudes and high oscillation frequencies to high velocity amplitudes delivers

an investigated velocity amplitude window of approximately U ≈ 0.02m s−1 to

1.43m s−1. With these values, all the parameters listed in Table E.1 can be

determined via the relations in Figure 4.8.

†† One parameter is missing in the original paper by Boldarev et al. [95] in order

to calculate all the values listed in Table E.1. The velocity amplitude is cal-

culated via the same approach as in the previous paragraph. The parameter

b = (U2/3(d/2)1/3)/((ων)1/6D1/3) is varied between 25 and 100 in the original

paper while keeping all parameters except the oscillation frequency constant.

This translates with Sc = ν/D ≈ 2200 to a velocity amplitude window of about

U ≈ 0.24m s−1 to 239m s−1.
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Table E.1. A list of investigated works by Al Taweel & Landau [88]. Some of their stated
data have been marked (†, ‡, ††) and expanded with information from the original papers.

Authors ω [s−1] A [m] d [m] U [ms−1] ν [m2s−1] ϵ [ - ] Re [ - ] Source

Fiklistov & Aksel’rud
3.8

33.3

1.2 × 10−3

3.5 × 10−3
5 × 10−3

2.1 × 10−3

1.9 × 10−2
10−6

0.24

0.7

10.5

93.5
[91]

Burdukov & Nakoryakov †
7.2 × 104

1.1 × 105

2.0 × 10−5

1.4 × 10−4

3.5 × 10−3

10−2

2.2

9.8
1.2 × 10−5

2 × 10−3

4.5 × 10−2

5.5 × 102

8.4 × 103
[89]

Subramaniyam et al.
25

126

2.7 × 10−2

3.7 × 10−2

1.3 × 10−2

2.5 × 10−2

0.3

8.0
10−6

1

2.5

4.5 × 103

2.0 × 105

[88]

[190]

Burdukov & Nakoryakov ‡
63

785

3.2 × 10−4

1.8 × 10−3
1 × 10−2

2 × 10−2

1.4
10−6

3.2 × 10−2

0.18

2 × 102

1.4 × 104
[90]

Noordzij & Rotte
0

220

7.8 × 10−4

1.6 × 10−3
2.5 × 10−2

0.17

0.33
10−6

3 × 10−2

6 × 10−2

16

2.6 × 102

[88]

[98]

Padamanabha &

Ramachandran

19

63

1 × 10−2

2.2 × 10−2

2.5 × 10−2

5 × 10−2

0.19

1.38
1.2 × 10−5

0.2

0.87

4 × 102

2.9 × 103
[93]

Hara et al.
1.2 × 104

1.2 × 105

4.4 × 10−5

7.2 × 10−4

6.8 × 10−3

10−2

5.5

9.0
10−6

4.4 × 10−3

0.11

5.5 × 104

6.1 × 104
[88]

Boldarev et al. ††
1.3 × 105

6.3 × 106

1.9 × 10−6

3.8 × 10−5

1.5 × 10−4

6 × 10−3

0.24

239
10−6

3.1 × 10−4

0.25

35.4

1.4 × 106
[95]

Gibert & Angelino
5

25

1.6 × 10−3

2.3 × 10−2

8 × 10−3

3 × 10−2

6.6 × 10−3

6.3 × 10−1
10−6

0.2

0.75

2 × 102

5 × 103
[96]

Gibert & Angelino
5

25

6 × 10−3

6.1 × 10−2

8 × 10−3

3 × 10−2

9.8 × 10−3

0.5
10−6

0.75

2

3 × 102

4 × 103
[96]
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