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Abstract 

The evaluation of explainable artificial intelligence is challenging, because automated and human-

centred metrics of explanation quality may diverge. To clarify their relationship, we investigated 

whether human and artificial image classification will benefit from the same visual explanations. In 

three experiments, we analysed human reaction times, errors, and subjective ratings while 

participants classified image segments. These segments either reflected human attention (eye 

movements, manual selections) or the outputs of two attribution methods explaining a ResNet (Grad-

CAM, XRAI). We also had this model classify the same segments. Humans and the model largely agreed 

on the interpretability of attribution methods: Grad-CAM was easily interpretable for indoor scenes 

and landscapes, but not for objects, while the reverse pattern was observed for XRAI. Conversely, 

human and model performance diverged for human-generated segments. Our results caution against 

general statements about interpretability, as it varies with the explanation method, the explained 

images, and the agent interpreting them.  

Keywords: explainable artificial intelligence (XAI), interpretability, image classification, Deep Neural 

Networks (DNN), attention maps  
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1 Introduction 

A major challenge in contemporary human-technology interaction is to make black-box AI models 

more transparent. This can be achieved by methods of explainable artificial intelligence (XAI). In recent 

years, XAI has been applied in different domains such as healthcare (Srinivasu et al., 2022) and human-

robot interaction (Roque & Damodaran, 2022). They can assist humans in a wide variety of tasks such 

as evaluating the toxicity of both mushrooms and social media (Chien et al., 2022; Leichtmann et al., 

2023). A common application of XAI methods is in explaining the outputs of image classifiers based on 

Deep Neural Networks (DNN). For instance, during radiological diagnosis or industrial fault detection, 

it is desirable not only to know that an image classifier has detected a particular problem but also to 

know why. What areas in an image have contributed to the classifier’s decision? And are these areas 

actually relevant, based on what areas human experts would consider when classifying the image? In 

particular, XAI attribution methods provide attention maps that highlight those image areas that have 

the highest impact on the DNN’s decision1. Numerous XAI attribution methods have been proposed 

(e.g., Arras et al., 2019; Ribeiro et al., 2016; Selvaraju et al., 2017), but it is not always clear whether 

they generate useful visual outputs, under what conditions, and how this depends on whether you ask 

a human or DNN. These issues were addressed in the present study.  

The motivation to conduct this study arose from a methodological gap in the literature: it is not clear 

how the quality of explanations should be evaluated. In particular, it is much more common for 

evaluations of XAI methods to solely rely on automated fidelity metrics than to take human users into 

account (Rong et al., 2023). Therefore, it is important to know whether the same explanations are 

favourable from a human perspective and from a technical perspective. A straightforward way of 

approaching this question empirically is to have both agents, humans and DNN, rely on the same 

attention maps to perform the same task: infer the image class from the image areas selected by an 

XAI method. To this end, the present study used a diverse set of explanations that were generated 

either by humans or by XAI, and on different types of images. We evaluated the explanations with 

human users and with a DNN, and checked in what ways these two evaluation approaches generated 

converging or diverging outcomes. Taken together, the article makes the following contributions: 

 In two experiments with human participants, we tested how human classification performance 

depends on the origin of attention maps (i.e., whether these explanations reflect the implicit 

or explicit attention of humans, or the attention of a DNN as revealed by two XAI methods). 

We show that human interpretability depends on an interaction of attention map and image 

type. One XAI method was easily interpretable for some images, and even as interpretable as 

human-generated explanations, but it faced serious problems for other images. The pattern 

reversed for another XAI method. 

 In a third experiment, we demonstrate that the findings on human classification performance 

generalised to human subjective ratings of the same attention maps. 

 We demonstrate in what ways humans and DNN agree or disagree. This was done by 

comparing the results from the human experiments to DNN classification of the same 

attention maps. We observed a high agreement regarding XAI attention maps, but a striking 

disagreement in the case of human attention maps. 

                                                           
1 The visual outputs of attribution methods are often referred to as saliency maps or attribution maps. However, 
both terms are either misleading or not applicable at all for visualisations of human attention. As the latter will 
be compared to XAI visualisations in the present study, we decided to use the term “attention maps” as it is 
applicable to both the image areas selected by humans and AI models.  
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 Taken together, we show that interpretability is in the eye of the beholder, and thus thorough 

evaluations of XAI methods require a concurrent consideration of three factors: the images to 

be classified, the explanation method, and the agent interpreting the explanation. 

It is important to note that we do not propose any new DNN model or XAI method. Instead, we use 

standard methods that are well-known in the literature and apply them in a user study to address 

questions about human-computer interaction. Therefore, we neither claim nor provide proof that the 

DNN and XAI methods used in this study are superior to other methods. We did not intend them to be, 

and instead aimed to select methods that are among the most common ones. Generalising and 

extending the present findings to other methods will be an issue for future research. 

Before specifying our research questions, we first need to consider the challenges of evaluating XAI 

methods in general, and the interpretability of XAI from the perspective of humans versus DNN in 

particular. To this end, Section 2 summarises related work in three areas: evaluation approaches for 

XAI methods, empirical findings about the effects of XAI attention maps on human performance, and 

results of previous studies comparing the interpretability of XAI attention maps to that of human-

generated attention maps. This comparison also represents the core of the present study. Therefore, 

in Section 3, we report an experiment to analyse human classification performance of XAI versus 

human attention maps. In Section 4, we replicate this experiment while using a stricter method. To 

check whether the observed performance results extend to subjective evaluations, Section 5 reports 

an experiment in which participants rated the quality of the attention maps. To test how 

interpretability for humans compares to interpretability for DNN, Section 6 reports DNN classification 

performance on the same attention maps. Finally, Section 7 discusses our results and provides an 

outlook for future research.  

2 Related work 

2.1 The evaluation of explainable artificial intelligence  

How can the quality of XAI methods be evaluated? Contemporary evaluations of XAI usually focus on 

automated metrics that describe the XAI methods’ fidelity to the DNN model (Arras et al., 2022; Vilone 

& Longo, 2021). This comes with two problems. The first one is methodological: evaluation metrics 

often suffer from insufficient reliability and validity (Arras et al., 2022; Tomsett et al., 2020; Wang et 

al., 2020). The second problem is more conceptual: fidelity-based evaluation metrics only assess 

whether an XAI method has actually highlighted the areas that were most important to the DNN, but 

not whether these areas are meaningful from the perspective of human decision-makers. This is a 

serious shortcoming, because XAI attention maps that do not make sense to humans can cause distrust 

in the DNN, even when its classification performance is high (Nourani et al., 2019). Therefore, human 

interpretability should complement measures of fidelity in XAI evaluations (Rong et al., 2023). 

A common but rather indirect way of assessing human interpretability is to gather subjective ratings. 

This can be done by asking humans to judge the quality of XAI outputs (Sundararajan et al., 2019), to 

indicate how confident they are that the AI will make correct decisions (Karran et al., 2022), or to reveal 

how willing they are to use the AI in the future (Ebermann et al., 2023). However, this subjective 

approach presupposes that humans are aware of their information needs, and able to judge the ability 

of XAI outputs to fulfil these needs. Therefore, a promising alternative way to assess human 

interpretability is to directly measure whether human information needs are fulfilled. This can be 

achieved by testing whether XAI attention maps enhance human task performance. 
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2.2 Assessing interpretability via human task performance  

Does XAI support human task performance? Contrary to the prevailing optimism about XAI attention 

maps among the public, recent studies suggest that their usefulness is quite limited. They may help 

users detect bugs and biases in AI models (Balayn et al., 2022; Colin et al., 2022; Ribeiro et al., 2016), 

but do they also enhance the performance of human-AI teams in the actual task they intend to explain? 

That is, do they allow for more accurate image classification? Two recent studies cast doubt on the 

usefulness of XAI attention maps for image classification (Chu et al., 2020; Nguyen et al., 2021). In 

these studies, human classification performance with explanations was not superior to performance 

without them. Moreover, the lack of XAI benefits did not depend on XAI quality: human performance 

appeared to be unaffected by the attention maps, regardless of whether they selected highly relevant 

or completely irrelevant image areas. However, it needs to be considered that classifying a fully visible 

image may not be the most suitable task for assessing the benefits of XAI attention maps. Such benefits 

may be highly task-specific. For instance, in one study, XAI attention maps supported users in detecting 

the biases of a DNN and in inferring its visual strategies, but not in understanding failure cases (Colin 

et al., 2022). Thus, it is important to use evaluation paradigms in which there is a close match between 

XAI capabilities and human information requirements.  

One such paradigm is the classification of image segments generated via XAI attributions (Knapič et al., 

2021; Lu et al., 2021; Rong et al., 2021; Slack et al., 2021). For this purpose, gradual attention maps are 

transformed into binary masks, which can be overlaid on the image. There are two versions of this 

basic approach. First, only the most important areas can be kept visible, while the rest of the image is 

hidden. If the areas are useful to humans, accurate classification should still be possible, even though 

only a small part of the image remains visible. A second version of the paradigm reverses this principle, 

hiding exactly those image areas that are deemed most relevant by the XAI. If the areas are useful to 

humans, classification performance should deteriorate. 

Using this segment classification paradigm, a recent study not only investigated whether XAI was 

beneficial to human performance, but how these performance effects varied between four XAI 

methods (Lu et al., 2021). The authors found clear evidence that the XAI methods had different impacts 

on human performance. For instance, a method that produced connected attributions enabled more 

accurate classification than methods that produced more pixelated attributions. At the same time, 

these human-related results did not match those obtained with automated fidelity metrics. Such 

discrepancies highlight the importance of involving humans in the evaluation of XAI. Apparently, user 

studies can generate insights beyond those obtained with automated metrics. 

So far, we have argued that human interpretability, particularly when assessed via objective 

performance measures in suitable paradigms, can be a valuable criterion for evaluating XAI methods. 

However, it is not desirable either to favour XAI methods that make sense to humans but provide 

inaccurate information about the inner workings of a DNN. Therefore, it is important to know whether 

an XAI method’s interpretability and its fidelity go hand in hand. Do image areas that make sense to 

humans also make sense to DNN? Such correspondence in information needs can be investigated by 

comparing human and DNN classification performance on image segments that have been generated 

by either XAI methods or other humans (gathered via eye tracking or manual selection). Some previous 

studies have investigated how effectively humans can classify XAI versus human attention maps, while 

others have investigated the same for DNN. In the following section, we will review these studies, 

explain why they leave important questions unanswered, and describe our own contribution to closing 

this gap. 
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2.3 The interpretability of human versus DNN attention 

Are attention maps that reflect human visual processing more interpretable than XAI that reflects DNN 

processing? Several previous studies have empirically investigated whether humans and DNN attend 

to similar image areas (e.g., Das et al., 2017; Ebrahimpour et al., 2019; Hwu et al., 2021; Lanfredi et al., 

2021; Rong et al., 2021; Singh et al., 2020; van Dyck et al., 2021; Zhang et al., 2019). Usually, these 

studies found low to medium similarity, and we have provided a detailed review of their findings in a 

recent article (Müller, Dürschmidt, et al., 2023). But what does this lack of similarity mean? In principle, 

it could mean at least three things: that a DNN does not use suitable image areas for classification, that 

XAI methods do not adequately reflect which areas were actually relevant to the DNN, or that humans 

are mistaken in terms of which areas are most relevant. This ambiguity cannot be resolved by only 

assessing the similarity between human and XAI attention maps. Instead, these attention maps must 

actually be used for classification by humans and DNN. The resulting classification performance can 

contribute to answering two questions: whether XAI attention maps are more or less interpretable 

than human attention maps, and how this depends on whether it is a human or DNN who needs to 

interpret them. Two previous studies suggest divergent hypotheses. On the one hand, it has been 

reported that humans can better classify images based on the areas selected by XAI than by other 

humans (Zhang et al., 2019). On the other hand, it has been reported that DNN can better classify 

images based on the areas selected by humans than by XAI (Liu et al., 2023; Rong et al., 2021). Does 

this mean that humans can better interpret XAI, while DNN can better interpret humans? Probably 

not, as several methodological differences between the two studies complicate their integration.  

In the study by Zhang et al. (2019), human attention maps were generated by a first group of 

participants who saw images of complex scenes split into 50 segments, and had to manually order 

these segments according to their relevance for classification. It was found that participants assigned 

the most relevance to the class-defining object, so their attention maps lacked the rich information 

provided by the scene context. Conversely, DNN assigned high relevance to this context, and thus more 

context information was included in XAI attention maps. As scene context is of paramount importance 

for human scene classification (Oliva, 2005; Torralba & Oliva, 2003), human-generated segments were 

less interpretable for other humans than XAI-generated segments. Accordingly, when a new group of 

participants saw the segments successively in their order of relevance assigned by either humans or 

DNN, they needed fewer XAI segments than human segments to infer the correct image class. From a 

practical perspective, this might call into question the use of humans as a “ground truth” for relevance 

estimation. However, before drawing such far-reaching conclusions, we need to critically consider the 

methodological approach of the study. Specifically, human attention maps were based on manual 

ordering of pre-defined image segments. It is not too surprising that when asked to select the most 

relevant segments to classify an object in a scene, humans first select all segments pertaining to this 

object. This may not correspond to the areas they actually use for classification. Thus, it is important 

to contrast different procedures for eliciting human attention maps. The results might change when 

human image segments are generated in a way that is closer to human attentional processes, for 

instance by tracking eye movements during classification. 

The suitability of eye movements for eliciting human attention maps has been corroborated by other 

studies. Rong et al. (2021) recorded eye movements while participants performed fine-grained 

classification of close-up images showing one of two highly similar bird species. The authors found that 

the attention maps derived from these eye movements were more discriminative than XAI attention 

maps – they more specifically targeted the feature that actually differentiated between the two bird 

species. Accordingly, when a DNN had to classify image segments generated by either humans or XAI, 

a smaller image area was sufficient to reach high performance with human segments. Similarly, other 

studies also suggest that human attention can improve the performance of DNN (Boyd et al., 2023; 
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Karargyris et al., 2021; Lai et al., 2020). A particularly interesting, recent study has shown that the 

fidelity of human attention can be higher than that of XAI attributions (Liu et al., 2023). The authors 

compared attention maps that were either based on human eye movements or based on four XAI 

methods. Surprisingly, eye movements had a much higher fidelity to the DNN, although obviously, 

humans were not actually explaining the inner workings of the DNN. Apparently, the computations 

that actually took place in the model were well-aligned with human vision, even though XAI could not 

adequately explain this. 

All these previous findings on the interpretability of attention maps are hard to integrate, because the 

studies differed with regard to several methodological factors. They used different types of human 

attention maps (i.e., manual selection vs. eye tracking) and XAI attention maps (i.e., SHAP vs. Grad-

CAM, CAM, IG, and IxG) on different types of images (i.e., complex scenes vs. individual objects), and 

the attention maps had to be interpreted by different agents (i.e., humans vs. DNN). To understand 

the impact of these methodological variations, we manipulated them in one and the same study.  

2.4 Present study 

In the present study, human and XAI attention maps were transformed into binary image segments 

that only revealed the most important areas of an image. Their interpretability was evaluated by 

assessing how effectively they supported classification. We asked whether this interpretability 

depended on who has generated the segments, what type of image they stemmed from, and who had 

to interpret them. First, to investigate how interpretability depended on who has generated the image 

segments, we compared four segment types, two of them generated by humans (i.e., gaze, drawing) 

and two generated by XAI (i.e., Grad-CAM, XRAI). Concerning the human segment types, gaze reflects 

which areas humans actually looked at during classification, whereas drawings reflects which areas 

humans explicitly considered most relevant. These two elicitation procedures come with different cost 

and benefits (for a detailed discussion see Müller, Dürschmidt, et al., 2023). While gaze avoids the 

problem of humans being unaware of their true information needs (Zhang et al., 2019), it is prone to 

systematic viewing biases, such as central fixation bias (Tatler, 2007) or attentional capture by salient 

but task-irrelevant features (Itti & Koch, 2000). Moreover, gaze-based attention maps were found to 

be less similar to XAI than drawing-based attention maps (Müller, Dürschmidt, et al., 2023). To 

generate XAI segments, we used Grad-CAM (Selvaraju et al., 2017) and XRAI (Kapishnikov et al., 2019), 

which have both been deemed to be particularly human-friendly, because they provide connected 

regions instead of isolated pixels. Despite this similarity, it has been shown that the attention maps 

generated by Grad-CAM are more similar to human attention than those generated by XRAI, at least 

for Convolutional Neural Networks (Morrison et al., 2023). Thus, it will be interesting to investigate 

whether these two XAI methods will also differ in their effects on human performance. Comparing two 

different XAI methods was necessary to both generalise and differentiate our findings. Regarding 

generalisation, it is important to ensure that our results are not merely an artefact of the capabilities 

and limitations of a particular XAI method. Regarding differentiation, we would like to understand 

whether different XAI methods are more or less suitable in different situations. For instance, one XAI 

method might be more interpretable when classification relies on specific objects (e.g., lighthouses), 

but another one when classification relies on global scene properties (e.g., deserts). 

This directly leads to the second influence on interpretability that was investigated in the present 

study, namely the differentiation between image types. Our segments stemmed from images of either 

objects, indoor scenes, or landscapes. The rationale for choosing these image types was that the areas 

needed for their classification varied in specificity or diversity. That is, while a classification of objects 

mainly relies on a particular image area, the classification of indoor scenes largely draws on object-to-

object relations and the classification of landscapes exploits global scene properties (Greene & Oliva, 
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2009; Henderson, 2017; Torralba & Oliva, 2003; Võ et al., 2019). Accordingly, these image types lead 

to remarkably different attention maps, and different degrees of similarity between humans and XAI 

(Müller, Dürschmidt, et al., 2023). For objects, this similarity was highest, but also most dependent on 

the procedure of eliciting human attention maps (i.e., XAI was much more similar to segments 

generated by drawing than gaze). In contrast, for landscapes human-XAI similarity was lowest, 

independent of the elicitation procedure. Indoor scenes were located somewhere in between. 

However, what remains unclear from these findings is whether the differences in similarity go along 

with differences in interpretability.  

The third influence on interpretability that was investigated in the present study is whether image 

segments had to be classified by humans or DNN. This is important, because previous studies suggest 

different outcomes, either reporting that humans benefit more from XAI or that DNN benefit more 

from human attention. However, it is unclear whether this double dissociation will hold when humans 

and DNN classify the same segments. To test how easily humans can interpret image segments, we 

conducted three experiments. In Experiment 1, the basic task was to indicate whether an image 

segment matched a previously shown class label. For instance, participants saw the word “desert” 

followed by an image segment, and had to press one key if they thought the segment indeed was part 

of a desert, and another key if they did not. In half of the trials, the label and segment were compatible 

(i.e., same class, e.g., desert), whereas in the other half they were incompatible (i.e., the label referred 

to one of the remaining classes, e.g., lighthouse, windmill, office, dining room, or wheat field). 

Experiment 2 served to replicate and extend our findings by making classification more challenging 

and specific. To this end, incompatible trials only used labels of the same image type as the segment 

(e.g., desert segments were preceded by the word wheat field that also refers to a landscape, but not 

by a word that refers to an object or indoor scene). Experiment 3 tested how closely the classification 

results matched with subjective interpretability by asking participants to rate how well each image 

segment depicted its respective class. Finally, to assess how interpretability depended on the agent 

interpreting the segments, we fed all human and XAI segments into the DNN that was supposed to be 

explained by the XAI segments, and compared DNN classification performance to human classification 

performance. Ultimately, this should allow us to examine whether the human interpretability of XAI 

segments goes hand in hand with its fidelity to the DNN model, or under what conditions these two 

criteria for evaluating XAI methods diverge. 

3 Experiment 1 

In the first experiment, participants had to decide whether image segments matched a previously 

shown class label, and non-matching labels were randomly drawn from all alternative classes. We 

hypothesised that humans can classify human segments better than XAI segments. In this regard, we 

diverged from Zhang et al. (2019), who reported inferior performance with human segments. This 

divergence resulted from the fact that their presumed reason for human inferiority (i.e., loss of scene 

context) does not apply in the present study. As our image segments were derived from a previous 

study (Müller, Dürschmidt, et al., 2023), we knew that both procedures for eliciting human image 

segments (i.e., gaze and drawing) resulted in an inclusion of ample scene context. Therefore, we went 

with the reasoning put forward by Rong et al. (2021) and expected superior classification performance 

with human segments, assuming that these segments are more focused on diagnostic features than 

XAI segments. Moreover, we expected human classification performance to be indifferent to the 

specific type of human segment (i.e., gaze or drawing). First, we knew that these segments largely 

overlapped in their contents, despite differences in visualisation details (Müller, Dürschmidt, et al., 

2023). Second, although human classification of visual materials can benefit from seeing another 

person’s gaze (for a review see Emhardt et al., 2023), the usefulness of transferring eye movements 
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typically does not differ from that of transferring mouse movements (Müller et al., 2014; Müller et al., 

2013). Thus, we expected human classification performance to be similar for the two human segment 

types and higher for human segments than XAI segments. 

Moreover, we hypothesised that the effects of segment type would interact with image type. For 

objects, we expected no major differences between the four segment types. This is because object 

segments were quite similar across segment types, typically highlighting the relevant object (Müller, 

Dürschmidt, et al., 2023). However, informal observations suggested that Grad-CAM was slightly 

inferior to XRAI (e.g., tending to highlight the lower part of lighthouses and windmills, or highlighting 

distractor objects). Thus, for object images we expected performance to be somewhat lower with 

Grad-CAM than the other segment types. For indoor scenes, we expected large differences between 

segment types. For one, segments might be harder to tell apart between different indoor scene classes 

(e.g., tables are present in both offices and dining rooms). This should amplify the importance of 

selection specificity, which is higher for humans than XAI (Rong et al., 2021; Zhang et al., 2019). 

Moreover, indoor scenes are challenging to classify for computational models (Quattoni & Torralba, 

2009). Informal inspections of our segments revealed that XRAI produced some puzzling results (e.g., 

highlighting a window to explain dining room). Thus, we expected performance for indoor scenes to 

be higher with human segments than XAI segments. Moreover, again we expected no major 

differences between the two human segment types. If anything, performance might be somewhat 

lower with gaze segments, because eye movements easily get distracted by salient but irrelevant 

features, which could result in more fragmented segments. Finally, for landscapes we expected no 

differences between segment types. Although their areas had a lower overlap than for objects and 

indoor scenes (Müller, Dürschmidt, et al., 2023), these differences presumably are non-consequential. 

This is because large-scale outdoor scenes are characterised by global properties, with major parts of 

the image being equally informative (Greene & Oliva, 2009; Torralba & Oliva, 2003). Thus, we expected 

all segment types to provide information of similar relevance for classification despite differences in 

their selected areas. 

3.1 Method 

3.1.1 Open Science 

All images and human participant data are made available via the Open Science Framework 

(https://osf.io/pvmfj/). The source code for our DNN, XAI, and attention maps is made available on 

GitHub (https://github.com/cknoll/Humans-vs.-CNN-Effects-of-task-and-image-type). 

3.1.2 Participants 

Twenty-four participants (corresponding to all possible block orders of the four segment types) were 

recruited via the TUD Dresden University of Technology participant pool (ORSEE, Greiner, 2015), 13 of 

them were female and 11 were male, and their age ranged from 19 to 73 years (M = 27.8, SD = 14.1). 

They took part in the experiment in exchange for 10 € or partial course credit. None of them had 

participated in the experiment from which the image segments were generated (Müller, Dürschmidt, 

et al., 2023). Moreover, participants had to be native speakers of German. The research was approved 

by the Ethics Committee at the TUD Dresden University of Technology (file sign: SR-EK-400092020), 

participants provided written informed consent, and all procedures followed the principles of the 

Declaration of Helsinki. 

 

 

https://osf.io/pvmfj/
https://github.com/cknoll/Humans-vs.-CNN-Effects-of-task-and-image-type
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3.1.3 Apparatus and stimuli 

Lab setup. All experimental sessions took place in a dimly lit lab room at TUD. Stimuli were presented 

on a 24″ LCD display with a resolution of 1920 x 1080 pixels at a refresh rate of 60 Hz. Responses were 

entered with a standard QWERTZ keyboard and computer mouse. The experiment was programmed 

with the SR Research Experiment Builder (SR Research Ltd., Ontario, Canada). 

Types of screens. During the experiment, six types of screens were shown: label screens and segment 

screens, as well as additional screens for instructions, ratings, feedback, and demographics. Label 

screens presented the verbal label for one class (i.e., lighthouse, windmill, office, dining room, desert, 

or wheat field). This word was presented centrally on a white background in black font (Tahoma, 30 

pt). The labels and all other verbal materials were presented in German. Segment screens presented 

one image per screen at a resolution of 1024 x 1024 pixels on a white background. Only the most 

important 5 % of the image were visible (see below for a description of the segment generation 

procedure) and the rest was hidden (i.e., covered by a black mask). Rating screens required participants 

to indicate how many trials they thought they had solved correctly by selecting a number between 0 

and 100 %. Feedback screens presented the words “richtig” or “falsch” (German for correct and 

incorrect) in green and red font, respectively, on a white background (Tahoma, 30 pt). Instruction 

screens explained the task, and demographics screens asked participants to input their age and gender. 

Image types. Example stimuli are presented in Figure 1 and the full set of stimuli is available at the 

Open Science Framework. We presented 240 image segments in total, visualising the most relevant 

areas of 60 images according to four segment elicitation procedures that created four segment types 

(i.e., gaze, drawing, Grad-CAM, XRAI). Moreover, we used 20 additional, fully visible images (i.e., 

without segment extraction) for practice.  

The original images that were used for segment generation were taken from the Places365 dataset 

(Zhou et al., 2017). This dataset offers about 1.8 million images from 365 different classes with up to 

5,000 images per class. We chose this specific dataset due to its wide variety of complex natural images 

from different scene types (i.e., objects, indoor scenes, landscapes). This distinguishes the dataset from 

more object-focused datasets like ImageNet (Deng et al., 2009). In the present study, the complexity 

of natural scenes was important as it allowed us to distinguish between images that rely on singular, 

diagnostic objects, systematic object-to-object-relations, and global scene properties. Moreover, 

Places365 provides images at a much higher and more consistent spatial resolution than other datasets 

like ImageNet. In this way, small image segments can easily be recognised, even when they only span 

5 % of the entire image area. 

The 60 images used in the main experiment consisted of 20 images per image type (i.e., objects, indoor 

scenes, landscapes). Moreover, each image type consisted of two classes, resulting in 10 images per 

class. The two classes within an image type were chosen to be highly similar, in order to make 

classification more challenging. For the image type objects, scenes included a clearly discernible, 

localised object that defined the class (i.e., lighthouse, windmill). These objects were embedded in a 

large-scale scene context, which could be more or less typical (e.g., lighthouses in front of a coastline 

vs. in an urban area). Images of indoor scenes showed a room with a specific function (i.e., office, dining 

room), and all of them included chairs and tables. Images of landscapes presented a wide, open 

outdoor scene (i.e., desert, wheat field) that consisted of large, uniformly structured and coloured 

areas, and some landscapes contained additional objects (e.g., agricultural machinery, houses).  
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Figure 1 

Stimulus examples for each combination of segment type and image type. 

 

 

Image segment generation. These procedures for generating the four segment types selected the most 

relevant 5 % of each image (see Figure 2). Segments could consist of one or several parts and the value 

of 5 % referred to the sum of all parts. The rest of the image was covered with a black mask. A segment 

size of 5 % was chosen because it adequately differentiates between human and XAI segments, while 

larger segments can easily render human and XAI too similar (Rong et al., 2021). Moreover, segment 

sizes above 5 % could not be implemented for several of our object images, because in the human 
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conditions (i.e., gaze, drawing) large parts of the image never received more attention even when 

summed over all participants who contributed to segment generation. 

The human segments were based on an earlier study with 25 participants and the full details of 

segment generation are provided in the respective article (Müller, Dürschmidt, et al., 2023). For 

generating gaze segments, participants’ eye movements were tracked while they classified the fully 

visible image by pressing one of six keys. They were asked to intentionally look at the relevant image 

areas (i.e., gaze-pointing). Based on these eye movement recordings, a Gaussian kernel was applied in 

an area of 2 degrees of visual angle (58 pixels) around each fixation, so that the weight decreased 

(proportional to a symmetric Gaussian 2D distribution) from the centre to the outside. This kernel was 

multiplicatively weighted by fixation duration, so that longer fixations had more impact. The weighted 

kernels of all fixations were added over all participants. Subsequently, binary segments were created 

by keeping only those 5 % of the image area visible that received the most weight.  

To generate drawing segments, participants had to draw a polygon around the image area they 

considered most relevant for classification, clicking the intended location of a polygon corner with their 

mouse. All image areas inside a participant’s polygon received a value of 1 and all areas outside 

received a value of 0. After summing the polygons of all participants, we again only kept the most 

highly weighted area visible. To this end, a gradualisation procedure was applied to make sure that 

exactly 5 % were selected.  

Our XAI segments were based on a ResNet-152 architecture (He et al., 2016) and classification 

decisions of this DNN were explained by Grad-CAM (Selvaraju et al., 2017) and XRAI (Kapishnikov et 

al., 2019). We chose ResNet and Grad-CAM, because they are by far the most frequently used DNN 

model and XAI method in previous user studies investigating the effects of XAI on human performance. 

Using these standard methods will make our results more comparable to the existing literature. We 

additionally chose XRAI, because it has been argued that this segmentation-based XAI algorithm can 

mitigate problems of Grad-CAM from a user perspective (Kapishnikov et al., 2019). Given that the DNN 

and XAI methods were not developed by us but are very common technologies, we will only provide a 

brief overview of them here. For more details concerning the technical implementation, we refer the 

reader to the respective original publications. 

In short, the ResNet-152 consisted of many convolutional layers to extract features, followed by a fully 

connected layer (i.e., classification head), which was used to calculate a score for each class. The 

distinct feature of the ResNet architecture is that it has a special internal structure including residual 

connections, which are leapfrogging some of the convolutional layers and thus providing a secondary 

data path. This significantly reduces the problem of vanishing gradients during training, which 

otherwise would limit the number of layers. The ResNet-152 was implemented using the PyTorch 

machine learning framework. It was trained from scratch on the Places365 dataset for 10 epochs on a 

GPU cluster of the Center for High Performance Computing (ZIH) at the TUD Dresden University of 

Technology. We followed the standard training procedure proposed in the original paper. This 

procedure includes resizing the images and extracting 224 x 224 random crops, which are then used in 

the training process. 

Grad-CAM (Selvaraju et al., 2017) rests on the assumption that the activation values of feature maps 

in the final convolutional layer of the DNN represent the location of those features in the input image. 

Thus, the algorithm weights these activations based on their relative contribution to the class decision 

and combines them into an importance map. This map can be upsampled to the original image size. 

From the upsampled map, we extracted the 5 % of all pixels with the highest importance values. 
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XRAI (Kapishnikov et al., 2019) is based on an XAI method called “Integrated Gradients” (Sundararajan 

et al., 2017) combined with a particular segmentation procedure (Felzenszwalb & Huttenlocher, 2004). 

Integrated Gradients provides importance values for each pixel. This is done by iteratively applying the 

DNN to variations of the original image blended with a black or white image baseline and accumulating 

(i.e., integrating) the derivative (i.e., gradient) of the output value with respect to each input pixel. 

While the resulting pixel map shows the impact of individual pixels on DNN classification, it is poorly 

interpretable for humans due to its sparsity and fragmentation. To increase interpretability, the XRAI 

method uses the Felzenszwalb algorithm for decomposing the original image into segments. These 

segments are then weighted with the attributions generated by Integrated Gradients to create a dense 

importance map for the image. To ensure comparabilty with the other segment types, we smoothened 

the XRAI importance map by averaging each pixel value of the map over its direct neighbourhood. 

After this gradualisation procedure, we selected the 5 % of the image with the highest importance. 

Figure 2  

Generating image segments that uncover the most important 5 % of the image area, depending on 

segment type. 

 

3.1.4 Procedure 

Design. An overview of the procedure is provided in Figure 3. Throughout the experiment, participants 

had to decide whether an image segment belonged to the class indicated by a label beforehand. In a 

within-participants design, we varied two factors: segment type (gaze, drawing, Grad-CAM, XRAI) and 

image type (objects, indoor scenes, landscapes). Segment type was varied between blocks and image 

type was varied between trials. 

Overview of the experiment. The experiment took between 20 and 30 minutes. A session started with 

participants receiving a brief summary of the procedure and providing written informed consent. 
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Specific task instructions were provided on-screen. Importantly, although these instructions stated 

that the experiment dealt with XAI, participants were not told which segments were generated by XAI 

versus humans or even that some segments were not generated by XAI. After the instruction, 

participants performed a practice block (20 trials) in which they did not see segments but fully visible 

original images (i.e., without masks) from all six classes. None of these images reappeared in the main 

experiment. Participants’ task was the same as in the main experiment (see below), but they 

additionally received feedback on the correctness of their responses.  

Block structure of the experiment. The main experiment consisted of four blocks with 60 trials each 

(i.e., 60 images, presented in random order). The blocks corresponded to the four segment types (i.e., 

gaze, drawing, Grad-CAM, XRAI) and their order was counterbalanced across participants. After each 

block, participants were asked to rate how many trials they thought they had solved correctly on a 

scale between 0 and 100 %. 

Procedure of a trial. The basic procedure of a trial was identical for each block. A trial started with the 

presentation of a label (corresponding to one of the six classes, e.g., “desert”). This label remained on 

the screen for 1000 ms and was then followed by a segment that remained on the screen until 

participants submitted their keypress response. They had to indicate as quickly and accurately as 

possible whether the image matched the label by pressing the X key (match) or N key (mismatch). 

Participants were asked to rest their index fingers on these keys throughout the experiment. In the 

main experiment, they no longer received feedback about the correctness of their responses. 

Figure 3 

Overview of the procedure of Experiments 1 and 2. CR = correctness rating. 

 

3.1.5 Data analysis 

To quantify human performance, we statistically analysed mean response times and error rates using 

4 (segment type: gaze, drawing, Grad-CAM, XRAI) x 3 (image type: objects, indoor scenes, landscapes) 

repeated measures ANOVAs. An alpha value of p = .05 was used to determine statistical significance, 

and all pairwise comparisons were performed with Bonferroni correction. If the sphericity assumption 

was violated, a Greenhouse-Geisser correction was applied and the degrees of freedom were adjusted.  

3.2 Results 

3.2.1 Response times 

Response time was defined as the latency from segment onset until participants pressed a key to 

indicate whether the label and segment matched. We excluded all trials with response times higher 

than 3000 ms (2.0 % of the data). The ANOVA revealed a main effect of segment type, F(3,69) = 23.372, 

p < .001, ηp² = .504. This effect was due to participants responding more slowly to XRAI segments (1104 

ms) than to gaze, drawing, and Grad-CAM segments (956, 936, and 968 ms, respectively), all ps < .001, 
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while responses did not differ between these three segment types, all ps > .9. Moreover, a main effect 

of image type, F(2,46) = 27.492, p < .001, ηp² = .544, resulted from faster responses for objects (918 

ms) than indoor scenes and landscapes (1028 and 1027 ms, respectively), both ps < .001, while 

response times to these two scene-centric image types did not differ, p > .9. The two main effects were 

qualified by a significant interaction, F(4.1,93.5) = 12.566, p < .001, ηp² = .353, indicating that the 

direction and magnitude of the differences between segment types depended on image type (see 

Figure 4A). For objects, both human segment types yielded faster responses than both XAI segment 

types. That is, responses were faster for gaze and drawing segments (881 and 850 ms, respectively) 

than for Grad-CAM and XRAI segments (980 and 962 ms, respectively), all ps < .012. Neither the two 

human segment types differed from each other nor the two XAI segment types, both ps > .9. For indoor 

scenes, only responses to XRAI segments (1210 ms) were slower than responses to gaze, drawing, and 

Grad-CAM segments (980, 985, and 938 ms, respectively), all ps < .001, while the latter three segment 

types did not differ from each other, all ps > .4. The same pattern was observed for landscapes: only 

responses to XRAI segments (1141 ms) were slower than responses to gaze, drawing, and Grad-CAM 

segments (1006, 974, and 987 ms, respectively), all ps < .001, while the latter three segment types did 

not differ from each other, all ps > .9.  

Figure 4 

Response times (A) and error rates (B) for Experiment 1, depending on segment type and image type. 

Error bars represent standard errors of the mean. 

 

 

3.2.2 Error rates 

Errors were defined as participants indicating that a label and segment matched when in fact they did 

not, or vice versa. There was a main effect of segment type, F(3,69) = 17.545, p < .001, ηp² = .433. This 

effect was due to participants committing more errors with XRAI segments (13.2 %) than gaze and 

drawing segments (6.0 and 7.1 %, respectively), both ps < .001. For Grad-CAM segments (9.5 %), the 

results were less clear: while they produced more errors than gaze segments, p = .014, they neither 

were significantly worse than drawing segments, p = .084, nor significantly better than XRAI segments, 

p = .0552. Moreover, the two human segment types did not differ from each other, p > .9. Second, a 

main effect of image type, F(2,46) = 14.483, p < .001, ηp² = .386, resulted from more errors for 

                                                           
2 Both comparisons passed the significance level when excluding a single participant with extreme error rates for 
indoor scenes. For this image type, the participant committed between 40 and 45 % errors for gaze, drawing, 
and Grad-CAM segments, while the mean of all other participants was between 3.5 and 3.7 %, and not a single 
other participant committed more errors than 15 %. However, we saw no theoretical reason for excluding this 
participant, and thus decided to keep him in the sample – also because we think that one should be sceptical 
about significant effects that are highly dependent on individual participants. If the non-significant trends are 
meaningful, they should become significant in a replication (Experiment 2).  
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landscapes (12.8 %) than objects and indoor scenes (7.1 and 6.9 %, respectively), both ps < .001, while 

objects and indoor scenes did not differ, p > .9. Third, the main effects were qualified by a significant 

interaction, F(3.9,90.6) = 5.437, p < .001, ηp² = .191, indicating that the differences between segment 

types depended on image type (see Figure 4B). For objects, both human segment types yielded more 

correct responses than both XAI segment types. That is, error rates were lower for gaze and drawing 

segments (3.1 and 4.2 %, respectively) than for Grad-CAM and XRAI segments (11.9 and 9.2 %, 

respectively), all ps < .011. Neither the human segment types differed from each other nor the XAI 

segment types, both ps > .2. For indoor scenes, only responses to XRAI segments (12.5 %) were less 

correct than responses to gaze, drawing, and Grad-CAM segments (4.9, 4.9, and 5.4 %, respectively), 

all ps < .018, while the latter three segment types did not differ, all ps > .9. For landscapes, gaze and 

Grad-CAM segments (10.0 and 11.3 %, respectively) yielded fewer errors than XRAI segments (17.9 %), 

while drawing segments (12.1 %) did not significantly differ from any other segment type, all ps > .05. 

3.3 Discussion 

Experiment 1 investigated whether humans could better interpret image segments generated by other 

humans (i.e., gaze, drawing) or by XAI (i.e., Grad-CAM, XRAI). Overall, participants were able to quickly 

and accurately classify human segments regardless of whether they had been generated from eye 

movement recordings or manual selections. Moreover, participants’ ability to classify XAI segments 

depended on the specific XAI method. XRAI consistently slowed down responses and increased error 

rates compared to the human segments. In contrast, Grad-CAM only deteriorated performance for 

objects, but it was just as easy to use as human segments for indoor scenes and landscapes.  

Why were XRAI segments so hard to classify for human observers? An inspection of these segments 

provided several hints. First, for indoor scenes XRAI preferably selected unitary areas with clear edges, 

presumably due to its segmentation approach to generating XAI highlights. Thus, it selected areas like 

the seats of chairs, legs of tables, windows, or computer screens. Apparently, this selection was not 

particularly distinctive. In contrast, Grad-CAM tended to select the dishes on dining room tables, which 

more clearly gave away the identity of the room. Similarly, XRAI often selected computer monitors, 

but when they appeared as dark squares in the small segment area without sufficient context, they 

were hard to identify. In line with this apparent object focus, XRAI also tended to select distractor 

objects like trees in wheat fields. Conversely, Grad-CAM included more diverse context instead of 

focusing on one particular object. The very same might contribute to explaining the difficulties 

participants experienced with Grad-CAM for objects. Some Grad-CAM segments did not seem well-

positioned but mostly targeted the lower part of a lighthouse or windmill, including its scene context, 

while the more diagnostic upper part remained hidden. A similar criticism of Grad-CAM has been put 

forward before, namely that it does not precisely target relevant objects, while XRAI supposedly avoids 

this problem (Kapishnikov et al., 2019). The problems of XRAI may not have come to light in that study, 

because it was only evaluated on the highly object-centric ImageNet dataset (Deng et al., 2009). 

Before drawing conclusions about the interpretability of human versus XAI segments, we need to 

address a methodological problem. In principle, it was possible for participants to work by exclusion 

instead of actually identifying a segment. Even when not knowing for sure that a dark square was a 

computer monitor in an office, they could exclude that it stemmed from a desert or lighthouse. This is 

because low-level physical properties of scene patches (e.g., structure and colour) reliably tell apart 

superordinate-level scene categories (e.g., indoor or outdoor) and even more specific basic-level 

categories (e.g., desert or meadow) (Greene & Oliva, 2009; Torralba & Oliva, 2003). This created a 

problem in Experiment 1, because participants had to judge the match between a label and segment, 

while labels in incompatible trials were randomly drawn from all alternative classes. Thus, they often 

referred to images that strongly differed from the current image in their global properties, making 
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incompatible trials very easy to solve, regardless of segment quality. Indeed, a separate analysis of 

incompatible trials indicated that performance was very high and did not differentiate between 

segment or image types. To make incompatible trials more informative, we conducted Experiment 2. 

4 Experiment 2 

Experiment 2 was identical to Experiment 1, with the only difference that all labels in incompatible 

trials stemmed from the same image type (e.g., desert images could be preceded by the label “wheat 

field”, but not “lighthouse” or “office”). In this way, it was less feasible to simply work by exclusion due 

to a mismatch in global image properties. Conceptually, this makes Experiment 2 more similar to fine-

grained classification (Lai et al., 2020; Rong et al., 2021). For this task, segments do not only have to 

be inspected more carefully, they also have to specifically target the most diagnostic image areas to 

benefit classification.  

We hypothesised that these higher requirements would exacerbate the differences between our four 

segment types. Specifically, we expected the non-significant trends to become significant, making 

Grad-CAM worse than both human segment types overall, but clearly better than XRAI. However, we 

were most interested in whether the classification requirements would also affect the interaction 

between segment and image type. In Experiment 1, Grad-CAM had been descriptively worse than XRAI 

for object images in terms of error rates and we speculated that this was due to their suboptimal 

positioning (cf. Kapishnikov et al., 2019). We expected this positioning to become more consequential 

now, leading to slower and less accurate responses with Grad-CAM than all other segment types for 

objects. For landscapes and indoor scenes, we still expected performance to be worst with XRAI. 

4.1 Method 

4.1.1 Participants 

The general participant sample characteristics were identical to Experiment 1, as both experiments 

shared one and the same recruiting process: the first half of the people who registered were assigned 

to Experiment 1, and the second half to Experiment 2. Thus, 24 new participants took part in the 

experiment, 15 of them were female and 9 were male, and their age ranged from 18 to 38 years (M = 

24.9, SD = 5.4). One additional participant took part, but her data were not analysed, because she was 

not a native German speaker and indicated problems in processing the labels quickly enough. 

4.1.2 Apparatus and stimuli 

The apparatus and stimuli were identical to Experiment 1. 

4.1.3 Procedure 

The procedure was identical to Experiment 1, with the exception that in incompatible trials, the label 

always corresponded to the other class of the same image type (e.g., when the segment was taken 

from an image of a lighthouse, the label was windmill, and vice versa). This led to the label-segment 

combinations presented in Table 1. Only these combinations were presented. 
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Table 1 

Possible combinations of labels and segments for incompatible trials in Experiment 2 

Image type Label Segment 

Objects 
Lighthouse Windmill 

Windmill Lighthouse 

Indoor scenes 
Office Dining room 

Dining room Office 

Landscapes 
Desert Wheat field 

Wheat field Desert 

 

4.1.4 Data analysis 

The data analysis procedures were identical to Experiment 1. 

4.2 Results 

4.2.1 Response times 

The 4 (segment type) x 3 (image type) ANOVA revealed a main effect of segment type, F(2.0,45.2) = 

16.075, p < .001, ηp² = .411. This effect was due to participants responding more slowly to XRAI 

segments (1109 ms) than to gaze, drawing, and Grad-CAM segments (980, 924, and 1012 ms, 

respectively), all ps < .010, and more slowly to Grad-CAM than drawing segments, p = .002, while all 

other differences were non-significant, all ps > .3. Moreover, a main effect of image type, F(2,46) = 

35.943, p < .001, ηp² = .610, indicated that all image types differed from each other, all ps < .001, with 

responses being fastest for objects (934 ms), slowest for indoor scenes (1072 ms) and intermediate for 

landscapes (1013 ms). The main effects were qualified by a significant interaction, F(6,138) = 23.198, 

p < .001, ηp² = .502, indicating that the effects of segment type strongly depended on image type (see 

Figure 5A). For objects, we replicated the finding that Grad-CAM segments (1059 ms) yielded slower 

responses than gaze and drawing segments (900 and 828 ms, respectively). However, in contrast to 

Experiment 1, this XAI cost was less clear for XRAI segments (947 ms), which enabled faster responding 

than Grad-CAM segments, p = .010, and similar performance to gaze segments, p = .470. It only was 

inferior to drawing segments, p = .004. The latter were particularly effective in Experiment 2 and even 

yielded faster responses than gaze segments, p = .023. A very different picture emerged for indoor 

scenes, where we replicated the finding that XRAI segments (1292 ms) led to slower responses than 

all other segment types, all ps < .001, while gaze, drawing, and Grad-CAM segments (1026, 995, and 

976 ms, respectively) did not differ from each other, all ps > .4. The results were similar for landscapes, 

where responses were slower for XRAI segments (1088 ms) than gaze and drawing segments (1014 

and 947 ms, respectively), both ps < .044. However, the difference to Grad-CAM segments (1002 ms) 

did not reach significance, p = .099. Again, gaze, drawing, and Grad-CAM segments did not differ from 

each other, all ps > .3.  
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Figure 5 

Response times (A) and error rates (B) for Experiment 2, depending on segment type and image type. 

Error bars represent standard errors of the mean. 

 

4.2.2 Error rates 

In the error rates we found a main effect of segment type, F(3,69) = 19.999, p < .001, ηp² = .465, 

indicating that overall, both human segment types yielded fewer errors than both XAI segment types. 

That is, error rates were lower for gaze and drawing segments (7.7 and 7.8 %, respectively) than for 

Grad-CAM and XRAI segments (12.0 and 14.4 %, respectively), all ps < .009. Neither the two human 

segment types nor the two XAI segment types differed from each other, both ps > .3. Second, a main 

effect of image type, F(2,46) = 24.575, p < .001, ηp² = .517, resulted from more errors for landscapes 

(14.4 %) than objects and indoor scenes (7.7 and 9.4 %, respectively), both ps < .001, while error rates 

for objects and indoor scenes did not differ, p = .152. Third, there was a significant interaction, F(6,138) 

= 10.613, p < .001, ηp² = .316, indicating that the differences between segment types depended on 

image type (see Figure 5B). For objects, more errors were committed with Grad-CAM segments (15.0 

%) than all other segment types, all ps < .004, while no differences appeared between gaze and drawing 

segments (4.0 and 4.2 %, respectively), p > .9, but also XRAI segments (7.5 %) did not differ from the 

two human segment types, both ps > .140. Conversely, for indoor scenes, XRAI segments (16.2 %) 

yielded higher error rates than gaze, drawing, and Grad-CAM segments (6.2, 9.0, and 6.0 %, 

respectively), all ps < .001, while these three segment types did not differ from each other, all ps > .3. 

For landscapes, XRAI segments (19.4 %) led to higher error rates than gaze and drawing segments (12.9 

and 10.4 %, respectively), while these two did not differ, p > .6, and Grad-CAM segments (15.0 %) did 

not differ from any of the other segment types, all ps > .2. 

4.3 Discussion 

Experiment 2 replicated the main findings of Experiment 1, but also extended them by more clearly 

differentiating between the two XAI methods. The main findings we replicated were that humans could 

more easily deal with human segments than XAI segments, while their problems with XAI depended 

on the specific XAI method and image type. With Grad-CAM segments, performance decrements were 

only evident for objects but not for indoor scenes and landscapes. The opposite pattern emerged for 

XRAI segments, which enabled high performance for objects but created problems for indoor scenes 

and landscapes. In contrast to Experiment 1, the increased classification requirements led to a clearer 

differentiation of performance effects between segment types and an even stronger dependence of 

segment interpretability on image type. Before comparing our human performance results to the 

performance of our DNN when classifying the same segments, we will report a final human 

experiment. This experiment examined whether the effects observed in objective performance 

measures could also be picked up by subjective ratings of segment quality. 
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5 Experiment 3 

While conducting Experiment 1, it turned out that the experimental sessions took less time than 

anticipated. This gave us the opportunity to complement our objective performance assessment with 

a subjective rating of segment quality. That is, after participants had completed the classification task 

(Experiment 1 or 2), we asked them to evaluate each segment. To this end, they saw the correct class 

label next to a segment and had to indicate how well the segment reflected this label. Our hypotheses 

were analogous to Experiment 2. This is because we expected the ratings to mirror performance 

measures, while retaining the high specificity that can be achieved when contrasting segments with 

meaningful alternatives. In comparing subjective ratings and performance, we aimed to qualitatively 

analyse individual images to investigate not only the average differences but also the variations in each 

measure. However, this analysis was highly exploratory, thus we had no hypotheses about its results.  

5.1 Method 

5.1.1 Participants 

The general participant characteristics were the same as in the previous two experiments, because 

Experiment 3 was performed as the second part of an experimental session for a subset of participants. 

Accordingly, 7 participants had previously taken part in Experiment 1 and 25 in Experiment 2. Of these 

32 participants who joined Experiment 3, 19 were female and 13 were male, and their age ranged from 

18 to 72 years (M = 27.2, SD = 11.2).  

5.1.2 Apparatus and stimuli 

The apparatus was identical to Experiments 1 and 2. Stimuli consisted of a segment on the left-hand 

side of the screen and a word plus rating scale on the right-hand side. Segments corresponded to the 

240 images used in Experiments 1 and 2 (i.e., 60 images overlaid with the masks of four segment types). 

Words corresponded to the labels used in Experiments 1 and 2 and represented the six classes. 

However, in Experiment 3 they were presented on the same screen as the segments and were always 

compatible (i.e., participants always saw a segment with its correct label). Ratings were submitted on 

a ten-point scale with the question “How well does the segment depict the category?” and the anchors 

“very poorly” (1) and “very well” (10), presented in German. The scale consisted of ten numbered 

boxes with grey frames that changed their frame colour to yellow upon clicking them with the mouse, 

providing feedback that the click had been registered. 

5.1.3 Procedure 

All 240 segments were presented in random order. Note that participants already were familiar with 

these segments and their range of possible variation, as they had completed Experiment 1 or 2 just 

before. During Experiment 3, their task was to rate how adequately a segment depicted the class that 

was indicated by a label presented next to it. Participants submitted their rating by selecting the 

respective number box with their mouse and could alter their selection as often as they wanted. Once 

they were done, they had to press the Space bar to move on to the next trial. 

5.1.4 Data analysis 

The analysis procedure was the same as in Experiments 1 and 2, as ratings were subjected to the same 

4 (segment type) x 3 (image type) ANOVA that had been used for response times and errors. 
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5.2 Results 

5.2.1 Subjective ratings 

The 4 (segment type) x 3 (image type) ANOVA revealed a main effect of segment type, F(2.5,76.4) = 

287.638, p < .001, ηp² = .903. This effect was due to participants giving higher ratings for gaze and 

drawing segments (7.9 and 7.8, respectively) than Grad-CAM and XRAI segments (7.0 and 6.3, 

respectively), all ps < .001. While Grad-CAM segments were also rated more favourably than XRAI 

segments, p < .001, the two human segment types did not differ, p > .9. A main effect of image type, 

F(2,62) = 88.811, p < .001, ηp² = .741, further indicated that segments from object images (8.6) were 

rated higher than segments from indoor scenes and landscapes (6.4 and 6.7, respectively), both ps < 

.001, while the difference between the latter two did not pass the significance threshold, p = .064. 

Furthermore, there was a significant interaction, F(3.9,122.3) = 204.065, p < .001, ηp² = .868, revealing 

that the effects of segment type varied with image type (see Figure 6). For objects, all differences 

between segment types were significant, all ps < .001. Although both human segment types yielded 

ratings close to the maximum value (10), ratings still were significantly higher for drawing than gaze 

segments (9.7 vs. 9.4, respectively). XRAI segments (8.6) were rated lower than the two human 

segment types but clearly higher than Grad-CAM segments (6.7). For indoor scenes, XRAI segments 

(4.5) were rated lower than gaze, drawing, and Grad-CAM segments (7.0, 6.8, and 7.2, respectively), 

all ps < .001. Moreover, Grad-CAM segments were rated even higher than drawing segments, p < .001, 

but not lower than gaze segments, p = .064. The human segment types did not differ significantly, p = 

.179. Finally, for landscapes, XRAI segments (5.7) were rated lower than gaze, drawing, and Grad-CAM 

segments (7.2, 7.0, and 7.0, respectively), all ps < .001, while no significant differences were found 

between these three segment types, all ps > .053. 

Figure 6 

Ratings from Experiment 3, depending on segment type and image type. Results are presented (A) in 

their original coding (i.e., higher values reflect better ratings) and (B) in inverse coding (i.e., higher 

values reflect discrepancy from optimum) to facilitate visual comparison with the results of Experiments 

1 and 2 presented in Figures 4 and 5. Error bars represent standard errors of the mean. 

 

 

5.2.2 Qualitative assessment of image-specific effects 

To understand how the effects of segment and image type depended on individual images, we looked 

at the inter-image variability in response times, error rates, and subjective ratings for each factor 

combination (see Figure 7). Overall, an inspection of the figure suggests that from left to right, the 

differentiation between design cells or factor combinations increased, while the differentiation within 

the cells decreased. That is, ratings seemed to produce more consistent values for a particular factor 

combination, with relatively little difference between individual images, at least for objects and indoor 
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scenes. Response time data appeared somewhat more differentiated and error rates seemed most 

susceptible to image-specific effects. The figure also allows for some more specific observations. First, 

for objects, any indications of XRAI segments being inferior to human segments were driven by only 

two images, while the inferiority of Grad-CAM seemed rather consistent. The reverse was true for 

indoor scenes, where it was the inferiority of XRAI that seemed quite consistent. For deserts, the 

picture was somewhat less clear, as strong image-specific effects seemed to have occurred with all 

four segment types, perhaps because with these large-scale scenes it is less relevant which exact area 

is shown in a segment. 

Figure 7 

Comparison of objective and subjective measures in their ability to reflect differences between image 

types and segment types. Each line represents an individual image. Darker shades of red indicate worse 

performance, and the coding of subjective ratings was inverted accordingly. Each cell contains the 

average values of 24 participants for errors and response times, and of 32 participants for ratings. 

 

5.3 Discussion 

The subjective ratings assessed in Experiment 3 generally mirrored the performance effects of 

Experiments 1 and 2, only with higher consistency and thus larger effect sizes. Once again, we found 

that on average, humans could deal better with human segments than XAI segments. However, again 

the type of XAI cost depended on image type, with Grad-CAM being rated less favourably only for 

objects and XRAI being rated less favourably only for indoor scenes and landscapes.  

A possible methodological concern is that the participant sample of Experiment 3 included participants 

from both Experiments 1 and 2, although the two experiments imposed different classification 

requirements. In principle, the divergence in prior experience could have affected the ratings. 

Therefore, in a control analysis we only included participants from Experiment 2. However, the overall 

pattern of results was the same. Thus, the specificity requirements experienced before the rating 

assignment did not have any noteworthy impacts on participants’ ratings. Given that our investigations 

of human interpretability yielded highly consistent results across three experiments, we can now 

compare these findings to the DNN’s performance in classifying the same segments.  
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6 DNN performance 

In the final step, we investigated whether our four segment types affected DNN classification in similar 

ways to humans. If humans and DNN benefit from the same visual information, DNN performance 

should mirror the results of the human experiments: inferior performance with Grad-CAM segments 

for objects, inferior performance with XRAI segments for indoor scenes and landscapes, and highest 

performance for human segments across all image types. However, we anticipated that the latter 

would not be realistic, because the XAI segments explained the very same DNN that now had to classify 

them. This is because the question we set out to answer was about the correspondence between 

fidelity and human interpretability: whether segments that were true to the DNN they were supposed 

to explain were also interpretable for humans. Given that the DNN now had to classify explanations of 

its own performance in the case of XAI segments, we expected higher performance with XAI segments 

than human segments overall. We had no specific hypotheses about whether the two types of human 

segments would differentially affect our DNN. On the one hand, several previous studies found that 

DNN benefitted from human eye movements, either when classified during testing (Liu et al., 2023; 

Rong et al., 2021) or when used for training (Boyd et al., 2023; Karargyris et al., 2021; Yang et al., 2022). 

However, we are not aware of any previous studies that contrasted DNN performance with different 

types of human attention maps in general or eye movements versus manual selection in particular. 

We initially intended to test our DNN with only the 5 % area segments used in the human experiments. 

However, as we will see below, this only yielded acceptable performance under specific conditions. 

Therefore, we also tested how DNN performance would change with increasing segment size for the 

different segment types. Note that this comparison can only include human segments for rather small 

segment sizes, because large parts of several images received no human attention at all.  

6.1 Method 

To evaluate DNN performance on the segments, the original images were masked by changing all pixels 

to black (0, 0, 0) unless they were part of the segment. The resulting image was then fed into the 

network. We analysed true class certainty and top-5 accuracy. True class certainty denotes the 

likelihood that the DNN assigns to the correct class. This metric provides fractions of 1, with 1 being 

the total score summed over all 365 classes of the Places365 dataset. Thus, a value of 1 would result if 

the DNN decided that only the true class was a viable option, while all 364 alternative classes cannot 

possibly be correct. Top-5 accuracy can either be 1 or 0 for each image, indicating that the true class 

either is considered to be among the five most likely classes for this image or not. We then averaged 

the individual images’ values across all 20 images included for a given combination of segment type 

and image type.  

Table 2 

Number of images included in each segment size for the human segment types. Numbers for the XAI 

segment types are not included as they were always 20 (i.e., all images were included). 

  Segment size in % of the total image area 
  5 10 15 20 25 30 35 40 45 50 

Objects 
Gaze 20 5 1 0 0 0 0 0 0 0 
Drawing 20 12 8 6 2 0 0 0 0 0 

Indoor scenes 
Gaze 20 20 19 10 5 0 0 0 0 0 
Drawing 20 20 20 20 20 20 20 20 20 19 

Landscapes 
Gaze 20 20 20 18 11 6 1 0 0 0 

Drawing 20 20 20 20 20 20 20 20 20 20 
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For the main comparison, we used the segments from the human experiments with a size of 5 %. 

However, as this hides much of the relevant image information, DNN performance was notoriously 

low, and thus we performed a second analysis in which we successively increased segment size in 

steps of 5 %, up to 50 %. Table 2 presents the numbers of images that could be included in this 

comparison for the human segment types. We were able to include all XAI segments at each step, as 

each image received at least some attention across its entire area. 

6.2 Results 

6.2.1 Segment size of 5 % 

The DNN performance results for the 5 % segment size are summarised in Table 3. When averaged 

across the three image types, true class certainty was highest for drawing segments (.084), 

intermediate for XRAI segments (.057) and similarly low for gaze and Grad-CAM segments (.018 and 

.020, respectively). However, DNN performance was highly dependent on image type. Only objects 

yielded high performance (.123) and drove the overall results presented above: for this image type, 

the values were high for drawing segments (.238), medium for XRAI segments (.161), and low for gaze 

and Grad-CAM segments (.047 and .046, respectively). Conversely, for indoor scenes (.001), all 

segment types yielded consistently low performance (ranging from .000 to .002). For landscapes, the 

values were slightly higher (.010). Moreover, drawing and Grad-CAM segments yielded higher 

performance (.012 and .013, respectively) than gaze and XRAI segments (.007 and .008, respectively). 

The top-5 accuracy results showed a somewhat different pattern. Overall, drawing segments (.317) 

still outperformed all other segment types. However, these three segment types yielded similar 

performance, although accuracy still was lowest for gaze segments, followed by Grad-CAM segments 

and then XRAI segments (.133, .150, and .167, respectively). In line with the true class certainty 

analysis, performance strongly depended on image type. Only objects yielded high performance (.488), 

and here the top-5 accuracy was highest for drawing segments (.800), medium for XRAI segments 

(.500) and similarly low for gaze and Grad-CAM segments (.350 and .300, respectively). Also in line with 

the previous analysis, it was impossible to classify indoor scenes with a 5 % segment size, yielding 

values of .000 for all segment types. Finally, for landscapes the values were low overall (.088) but 

somewhat higher for drawing and Grad-CAM segments (.150 for both) than for gaze segments (.050), 

while classification was impossible for XRAI segments (.000). 

Table 3 

Mean values and standard deviations (in parentheses) for DNN performance in terms of true class 

certainty and top-5 accuracy, depending on segment type and image type 

  Objects Indoor scenes Landscapes 

True class 
certainty 

Gaze .047 (.078) .000 (.000) .007 (.009) 

Drawing .238 (.241) .001 (.001) .012 (.014) 

Grad-CAM .046 (.067) .001 (.001) .013 (.016) 

XRAI .161 (.228) .002 (.007) .008 (.010) 

Top-5 
accuracy 

Gaze .350 (.489) .000 (.000) .050 (.224) 

Drawing .800 (.410) .000 (.000) .150 (.366) 

Grad-CAM .300 (.470) .000 (.000) .150 (.366) 

XRAI .500 (.513) .000 (.000) .000 (.000) 
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6.2.2 Stepwise increase of segment size 

The results of the stepwise increase in segment size are illustrated in Figure 8. In terms of performance 

changes with increasing segment size, a first notable observation was that classification performance 

did not improve but actually got worse for objects, while it improved considerably for indoor scenes 

and landscapes. Thus, larger areas were needed to correctly classify the scene-centric image types. 

The stepwise changes in DNN performance also revealed interesting interactions between segment 

type and image type. For objects (see Figure 8A and D), the segment types that originally enabled high 

performance at 5 % segment size (i.e., drawing, XRAI) showed a decrease in performance with 

increasing segment size. Such a decrease was also apparent for gaze segments but these results should 

be interpreted with caution, given that already at 10 %, three quarters of the images had dropped out 

of the set. For Grad-CAM segments, performance remained at a consistently low level. Taken together, 

the results for objects suggest that including other areas than the class-defining object tended to 

decrease DNN classification performance. The opposite pattern emerged for indoor scenes and 

landscapes, for which classification progressively got better with increasing segment size. The only 

segment type that deviated from this pattern was gaze, which initially increased, but only for top-5 

accuracy, and then showed a performance drop (at least for landscapes) with larger segment sizes. 

However, it needs to be noted that for these larger segment sizes, only a fraction of the gaze segments 

remained in the set. For indoor scenes, XRAI segments yielded the highest performance overall, as well 

as the steepest increase. It surpassed all others segment types at about 25 % segment size, which is 

interesting given that XRAI segments had yielded worse performance than all others with 5 % segments 

in the human experiments. Grad-CAM segments were consistently harder to classify than XRAI 

segments. The results for drawing segments fell in between them. For landscapes, Grad-CAM segments 

were classified somewhat better than XRAI and drawing segments. However, overall the results and 

their increase with segment size were quite similar. Drawing segments seemed to reach a local plateau 

at around 30 %, and at around 35 or 40 % were surpassed by the two XAI segment types, which 

remained higher in accuracy than drawing segments for all larger segment sizes. Performance for gaze 

segments was inferior to all other segment types throughout. 

Figure 8 

DNN performance change with increasing segment size in terms of true class certainty and top-5 

accuracy, depending on image type and segment type. For the human segments, larger segment sizes 

only include the data of images in which attention was spread beyond the respective area size. Thus, 

incomplete lines indicate that no participant attended a larger area for any of the 20 images. The dot 

at a segment size of 100 % indicates DNN performance on the original, unmasked image. 
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6.3 Discussion 

We investigated whether the segment types that were most interpretable for humans also could be 

classified most accurately by the DNN that the segments were based on. In one way, DNN performance 

results replicated the human findings with regard to the differences between XAI segments. They again 

indicated that XRAI segments enabled a better classification of objects than Grad-CAM segments, while 

the reverse was true for landscapes. In another way, DNN performance clearly diverged from the 

human findings, namely with regard to the relative interpretability of the two human segment types. 

While both human segment types had yielded highly similar, good results in terms of human 

performance and ratings, drawing segments outperformed gaze segments by far in terms of DNN 

performance. In fact, drawing segments enabled higher DNN performance than any other segment 

type, including the XAI segments extracted from the very same network. This finding casts doubt on 

whether it is feasible to make general statements about the interpretability of human versus XAI 

attention maps, because it strongly depends on the way human attention is elicited. 

7 General Discussion 

A good XAI attribution method is one that can adequately explain an image classifier by highlighting 

relevant areas. But what does this mean? Three questions should be considered in this regard. First, 

do the attention maps reflect the information that is actually used by the DNN? Second, are they 

interpretable for humans? And third, do these two evaluation criteria go hand in hand? The 

contribution of this study is to specify how the notion of interpretability depends on evaluation 

context: the images and explanations that are used, and whether interpretability is assessed from a 

human or technical perspective. To elucidate the role of these context features, we presented the 

same image segments generated by two XAI methods (i.e., Grad-CAN, XRAI) to humans and DNN for 

classification. As a baseline for representing the information that humans actually need, we also 

included two types of human-generated segments (i.e., gaze, drawings). Human and DNN performance 

with these four segment types was compared for images that either focused on singular objects, 

object-to-object relations, or global scene properties (i.e., objects, indoor scenes, landscapes). 

7.1 Overview of results 

Across three experiments, humans had a harder time interpreting XAI segments than human segments 

overall, and more problems with XRAI than Grad-CAM segments. However, such general conclusions 

cannot be upheld as the effects were highly dependent on image type. Grad-CAM tended to generate 

suboptimal explanations for objects, with its segments often being ill-positioned and not targeting the 

most diagnostic parts of the object (cf. Kapishnikov et al., 2019; Rong et al., 2021). Conversely, Grad-

CAM did quite well for indoor scenes and landscapes, where it often was on par with human segments. 

The reverse was true for XRAI. When looking at DNN performance, the differences between our two 

XAI segment types resembled the human findings: again, Grad-CAM led to inferior performance for 

objects, while XRAI was less interpretable for landscapes (indoor scenes could not be classified at all 

with the small segments). It is quite remarkable that the two XAI methods produced such different 

outcomes, given that they explained the same decisions of the same DNN. 

How does the interpretability of XAI segments compare to that of human segments, and does it matter 

how the latter are generated? In this regard, humans and DNN differed quite fundamentally. For 

humans, the interpretability of the two human segment types was similar, except for a numerically 

small but significant drawing benefit for objects in response times and ratings. In contrast, for the DNN 

it had a tremendous impact which type of human segment needed to be classified. The DNN performed 

fairly well with drawing segments – even better than with XAI segments! This result is in line with a 
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recent observation that the fidelity of human attention can be higher than that of common XAI 

methods (Liu et al., 2023). However, DNN performance plummeted with gaze segments. Given that 

the two human segment types provided similar contents (Müller, Dürschmidt, et al., 2023), this 

suggests that some aspects of the gaze visualisation were inconsequential for humans but highly 

problematic for DNN. We will return to this issue in the next section.  

Taken together, while humans and DNN largely agreed on the interpretability of different XAI methods, 

they strongly disagreed on the interpretability of human explanations. Thus, we cannot provide a 

general answer to the question whether the same explanations are easily interpreted by humans and 

DNN. Instead, this depends on the procedure of eliciting explanations, the type of image, and the agent 

who needs to deal with the explanations. Thus, all these factors should be taken into account when 

evaluating XAI methods. Moreover, methodological decisions in the generation of explanations may 

affect the results, and two of them will be discussed below. Before turning to that, we first want to be 

transparent about the answers our study cannot provide. 

7.2 Insights about the impacts of XAI: balancing applied versus basic research 

There is an important question that we cannot answer with this study, namely to what extent XAI 

attention maps are useful. This is because we did not compare them to a baseline without 

explanations, and thus no general impacts of XAI (either benefits or costs) could be revealed. This 

distinguishes the present study from previous user studies that asked whether XAI attention maps 

supported human performance (Adebayo et al., 2022; Chu et al., 2020; Colin et al., 2022; Leichtmann 

et al., 2023; Nguyen et al., 2021; Shen & Huang, 2020). These studies provided XAI attention maps in 

addition to the original images. Conversely, we presented image segments. Thus, a baseline without 

XAI would necessarily have removed the mask that was hiding the remaining 95 % of the image. It is 

obvious that classification performance would have been higher for this baseline than for any segment.  

From a practical perspective, one might therefore ask why we decided to use such a harmful 

visualisation of explanations – one that clearly makes the task harder for users, compared to a situation 

without explanations. In this regard, it is important to note that the present study is not an application 

study. Rather, we conducted basic research to investigate the usefulness of specific information 

contents selected by XAI. To assess this usefulness, one may have to deviate from the actual 

application context. This also becomes evident from previous studies, in which XAI consistently failed 

to improve human image classification performance, regardless of its quality (Chu et al., 2020; Nguyen 

et al., 2021). This makes sense when considering that humans can easily infer the meaning of a scene 

in an instant (Oliva, 2005). XAI attention maps might still support classification in some tasks, for 

instance when the class-defining area is hard to detect (Müller, Reindel, et al., 2023). However, they 

certainly are not needed to classify natural images in order to judge whether a DNN has made the right 

decision. If this classification is hard, for instance because the image is ambiguous or users do not know 

the class in principle, even faithful attention maps are unlikely to fix this problem (Colin et al., 2022; 

Leemann et al., 2023; Nguyen et al., 2021). Presumably, attention maps simply are not the right tool 

when the challenge is to answer questions about what is in an image, rather than where it is (Fel et al., 

2023).  

Regarding practical application, this means that one should critically consider which cognitive tasks can 

or cannot be supported by which types of XAI (Colin et al., 2022; Sanneman & Shah, 2022). Regarding 

basic research, it could mean that researchers may sometimes have to abstract away from the actual 

application context, for instance by presenting only the core information selected by a given XAI 

method. This still does not guarantee that significant effects of XAI will be found (e.g., Knapič et al., 

2021). However, it will make it possible in principle to study non-trivial questions about the detailed 
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cognitive mechanisms of using XAI attention maps. To this end, an interdisciplinary collaboration 

between computer scientists and cognitive psychologists seems like a fruitful approach. 

7.3 Methodological issues of generating image segments 

7.3.1 DNN model and XAI methods 

How appropriate are the technical methods we used in this study? It needs to be noted that our XAI 

segments were based on only two XAI methods and one particular DNN architecture and our artificial 

segment classification was also performed only by this one DNN. Thus, one might criticise that we do 

not provide evidence for the superiority of our technical methods over other state-of-the-art methods. 

Two things should be noted here. First, we did not propose any new DNN or XAI methods but used 

established ones to conduct a study on human-computer interaction. Accordingly, our aim was not for 

the DNN or XAI methods to be superior. Instead, we wanted them to be comparable to other methods 

used in similar studies, because this would increase the comparability of our results to related work. 

This is why we chose the DNN architecture (ResNet) and XAI method (Grad-CAM) that are by far the 

most common in this field. Still, we cannot make any claims about the generalisability of our results to 

other DNN and XAI methods. It is beyond the scope of this article to repeat our experiments with a 

large set of DNN architectures and XAI methods. However, our results suggest that the type of XAI 

method makes a large difference. We assume that the same will be true for the DNN architecture. It 

should be noted, that this actually is the main point we tried to make in this article: that it depends on 

the method. Future studies should specify what exactly this means. Specifically, how does the 

agreement between human and automated metrics for evaluating XAI vary for different DNN and XAI 

methods, used on different datasets, and supporting different tasks? Such comparative studies will 

provide a much more nuanced picture of what it means for XAI to be interpretable. 

7.3.2 Segment visualisation 

A major point of disagreement between humans and DNN was their sensitivity to differences between 

the two human segment types: the DNN had considerable problems with gaze segments. At first 

glance, this seems to be at odds with two previous studies, in which human gaze was more conducive 

to DNN performance than XAI (Liu et al., 2023; Rong et al., 2021). However, the gaze elicitation 

procedure in that study was optimised for obtaining highly focused eye movements that only targeted 

a single diagnostic image feature. This leads to a possible explanation for our findings, namely that the 

DNN had problems with the fragmented gaze visualisation as a collection of blobs that were broadly 

spread across the image (at least for indoor scenes and landscapes, see Figure 1). Such fragmentation 

had not been an issue in previous studies, because the eye movements were either represented as 

segments but restricted to a single and highly localised image feature (Rong et al., 2021) or were 

represented as gradual heatmaps (Liu et al., 2023). 

In our study, unlike the DNN, humans could easily ignore such low-level differences in visualisation and 

sustain a high level of performance as long as the relevant contents were visible. Presumably, this 

visibility was similar for both human segment types, as their areas had considerable overlap (Müller, 

Dürschmidt, et al., 2023). Remarkably, even subjective ratings hardly differed between the human 

segment types. One might conclude that humans paid little attention to visualisation details but were 

highly sensitive to changes in segment content. This also suggests a new perspective for future 

evaluations of XAI methods with human users, as these studies tend to be more concerned with 

visualisation than content (Karran et al., 2022; Sundararajan et al., 2019). 

There are two complementary ways of testing whether the DNN’s problems with gaze segments can 

actually be traced back to their visualisation. First, one could generate XAI segments that reflect the 
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inner workings of the DNN, while mirroring the low-level visualisation details of gaze. This is not 

possible with the XAI methods we used, because they are intentionally designed to highlight connected 

regions. However, other XAI methods highlight individual pixels, such as Integrated Gradients 

(Sundararajan et al., 2017). Such methods could be adapted by using a visualisation procedure 

analogous to the one we used for our gaze segments (i.e., applying a Gaussian kernel with a diameter 

corresponding to human foveal vision, and multiplying it with DNN weights rather than fixation 

durations). Such gaze-like XAI segments could then be presented to the DNN. We do not claim that 

this is a suitable way of visualising XAI in practice. Rather, it would help us understand the relative 

impacts of deeper content features versus superficial presentation features on human versus DNN 

performance. Perhaps this would even lead us to revise our conclusion that humans and DNN largely 

agree on the interpretability of XAI. Perhaps, a more gaze-like XAI visualisation might leave human 

interpretability unaffected, but deteriorate the ability of DNN to make sense of the same segments. In 

this case, the interpretability of XAI outputs for humans and DNN would strongly diverge.  

A second, complementary option would be to adjust the visualisation of gaze. Instead of using binary 

masks with sharp edges, attention maps could be visualised in a more gradual manner, comparable to 

the way XAI outputs are typically visualised (see Figure 2, second row). Occluding images with 

heatmaps would not make it possible to test how attention maps support classification. However, 

gradualness can alternatively be implemented by luminance, illuminating only those image areas that 

received sufficient attention (Giulivi et al., 2021; Leichtmann et al., 2023; Shen & Huang, 2020; Shitole 

et al., 2021). Such gradual visualisations might fundamentally change our results, because our DNN’s 

problems with gaze should disappear if they were in fact due to the fragmentation and sharp edges in 

gaze segments. An additional benefit of gradual luminance maps is that they would make it transparent 

(quite literally!) how thoroughly an area was attended, which might provide additional guidance and 

facilitate classification. 

7.3.3 Segment size  

A second methodological aspect with major impacts on our results is the size of image segments. In 

line with previous work (Rong et al., 2021), DNN performance was low in general with segments of 

only five percent and only increased with larger segments. Moreover, the increases in segment size 

did not only have quantitative effects (i.e., more is always better) but also influenced the relative 

performance of the four segment types. In fact, it even reversed some of our conclusions, such as the 

inferior interpretability of XRAI segments for indoor scenes: with increasing segment size, the XAI 

method that had originally yielded the worst results now turned out to be the best one by far, reaching 

top-5 accuracies of .9 with image segments larger than 30 %. 

In future research, it would be interesting to perform such stepwise uncovering procedures with 

humans as well (cf. Zhang et al., 2019) and compare the changes in performance to those of DNN. 

However, this would require images that have relatively large attention maps. For our eye movement 

recordings, this would not have worked out, given that many images did not contain even a single 

fixation outside the most important 5 % of their area. Even for indoor scenes and landscapes, the 

attended areas were relatively small (see Table 2). However, it would definitely be possible to find 

images on which human attention is spread more broadly. Given such images, it would be interesting 

to study under what conditions humans and DNN experience a similar increase in interpretability with 

an increase in visual evidence.  
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7.4 Limitations of the present study 

A number of methodological and conceptual limitations might restrict the generalisation of our 

findings. For the human experiments, a limitation of the stimulus material is that we used a rather 

small set of images (60 in total, 20 per image type) and within image types we aimed for a high 

similarity. For instance, both lighthouse and windmill images presented a long, vertical building, with 

the most discriminative part being its top. Perhaps the problems Grad-CAM exhibited for objects would 

have been ameliorated if other objects had been used, for instance with all of their parts being similarly 

informative. The same goes for indoor scenes and landscapes. It is possible that indoor scenes with a 

higher diagnosticity of particular objects (e.g., a stove in a kitchen) would have yielded better results 

for XRAI when its segments contained only this one object. This would be in line with the finding that 

humans can easily infer scene classes from single objects if they occur frequently and specifically in the 

respective scene class (Wiesmann & Võ, 2023). 

The recognisability of image segments goes hand in hand with a limitation in the way we implemented 

our basic task. As participants saw the label before the image, it is debatable whether their mental 

processes were sufficiently similar to free classification. For instance, the requirement to match a label 

and image might have led them to work by exclusion. This would be problematic if the latter required 

systematically different image information than a typical classification task. Therefore, an alternative 

task implementation would be to present the classification alternatives only after the image (van Dyck 

et al., 2021). While this would create other problems, it would be desirable to learn how different task 

procedures affect the results.  

Another set of limitations concerns our experimental design or the way we assigned segment types to 

participants and blocks. First, participants saw segments from the same images four times, which 

opens the door for confounds with preview and practice effects. Given that we counterbalanced the 

order of segment type blocks, systematic influences on the main effect of segment type are unlikely. 

However, we cannot exclude systematic influences on the interaction of segment and image type. This 

is because practice effects presumably depend on segment similarity, which strongly varied with image 

type (Müller, Dürschmidt, et al., 2023). For objects, the four segments taken from one and the same 

image were much more similar than for indoor scenes and landscapes. That is, participants might have 

seen four almost identical views of the same lighthouse, but four rather different parts of the same 

office. A related concern results from the blockwise manipulation of segment type in Experiments 1 

and 2, which might induce transfer effects between images. Such effects are conceivable in different 

directions, manifesting either as contrast effects or halo effects. An example for the latter is that 

participants might have perceived a given segment as more problematic after having seen suboptimal 

segments throughout the entire block. However, transfer effects are more likely to affect subjective 

ratings than response times and error rates. When we assessed these ratings in Experiment 3, the 

presentation was fully random and yet we observed the highest consistency. Nevertheless, future 

studies should test whether the present results can be replicated in other experimental designs such 

as between-subjects designs or designs with complete randomisation of all factors. 

Concerning our DNN, a critical point is that we used the same network for segment generation and 

segment evaluation – in contrast to using different humans. This might be partly responsible for our 

finding that the DNN could better classify XAI segments than eye movements, which differs from the 

outcome of a previous study that trained a new DNN for segment evaluation (Rong et al., 2021). In our 

study, using the same DNN was necessary, given that we wanted to investigate how accurately the XAI 

segments reflected the DNN they were supposed to explain (and whether this went along with high 

human interpretability). However, one should keep in mind that we cannot conclude from our data 
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whether humans and DNN benefit from the same image areas in general. Such inferences would 

require independence of the segment generation and evaluation processes.  

Finally, a conceptual limitation arises from our basic approach of testing whether the interpretability 

of XAI segments for humans and DNN go hand in hand. We based our answer to this question on 

whether the same factors (i.e., segment type, image type) affect the two agents (i.e., humans, DNN) in 

the same way (e.g., both times revealing Grad-CAM problems with objects but XRAI problems with 

indoor scenes or landscapes). A different approach would be to generate a very large dataset of XAI 

segments that includes measures of human interpretability (e.g., reaction times, error rates, ratings) 

and measures of DNN interpretability (e.g., true class certainty, top-5 accuracy). These different kinds 

of measures could then be correlated statistically. In principle, such analyses would be possible within 

our design as well, but it would be hard to derive a meaningful interpretation of their results. This is 

because we used different image types and thus correlations could easily be misleading. For instance, 

a correlation could emerge from the mere fact that both human and DNN performance are high for 

objects and low for landscapes – even when within these image types human and DNN performance 

are not correlated at all. This is a well-known statistical phenomenon called Simpson’s paradox 

(Simpson, 1951). Thus, performing separate analyses for each image type might be a better choice, but 

this would hardly make sense with the small number of images we presented for each image type 

(Schönbrodt & Perugini, 2013). In the future, large-scale studies should obtain human performance 

measures for large and varied datasets to assess the statistical relations between human and DNN 

performance.  

7.4 Conclusion 

Is it sufficient for evaluations of XAI methods to rely on automated fidelity metrics or should they also 

consider human interpretability? Our contribution to answering this question is an empirical user study 

to reveal under what conditions the two evaluation criteria go hand in hand or diverge. In contrast to 

previous studies, we varied three important influences: the image context, the general origin and 

specific method of explanations, and the agent interpreting them. In this way, we intended to provide 

a broad perspective on the evaluation of XAI quality. Indeed, our results underline the importance of 

taking all these factors into account. On the one hand, interpretability and fidelity do not seem to be 

completely incompatible concepts, because when XAI segments were easy to classify for humans 

under particular conditions, they also tended to be easy to classify for the DNN under the same 

conditions. However, automated XAI metrics do not seem sufficient, as we still found substantial 

differences between human and DNN performance. These differences were particularly striking when 

it came to human-generated segments. Relying only on automated metrics of these segments’ 

explanation quality would have painted a completely different picture than relying on their usefulness 

for humans. 

At the same time, the striking dependence on image type highlights a need to evaluate XAI methods 

on images with different characteristics, instead of merely relying on the common object-centric 

datasets that are often used in similar studies. Moreover, the particular visualisation of attention maps 

seems to play a large role for DNN but not for humans. Future research should explore the boundary 

conditions of these results, for instance by examining whether our conclusions can still be upheld when 

visualisations of XAI and human attention are more alike. Such differentiated comparisons would have 

practical value in that they can serve as a basis for better XAI evaluations. Moreover, they would help 

us understand the commonalities and differences in the processing mechanisms of humans and deep 

learning architectures. 
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