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ABSTRACT

Tailoring materials to achieve a desired behavior in specific applications is of significant scientific and
industrial interest as design of materials is a key driver to innovation. Overcoming the rather slow and
expertise-bound traditional forward approaches of trial and error, inverse design is attracting substantial
attention. Targeting a property, the design model proposes a candidate structure with the desired property.
This concept can be particularly well applied to the field of architected materials as their structures can be
directly tuned. The bone-like spinodoid materials are a specific class of architected materials. They are of
considerable interest thanks to their non-periodicity, smoothness, and low-dimensional statistical description.
Previous work successfully employed machine learning (ML) models for inverse design. The amount of
data necessary for most ML approaches poses a severe obstacle for broader application, especially in the
context of inelasticity. That is why we propose an inverse-design approach based on Bayesian optimization
to operate in the small-data regime. Necessitating substantially less data, a small initial data set is iteratively
augmented by in silico generated data until a structure with the targeted properties is found. The application
to the inverse design of spinodoid structures of desired elastic properties demonstrates the framework’s
potential for paving the way for advance in inverse design.

Keywords Inverse design · Bayesian optimization · Structure-
property linkage · Architected materials · Spinodoid

1 Introduction

Tailored materials are of widespread interest in both industry
and academia. Being able to design the internal structure of
a material to achieve a desired behavior is a key enabler for
innovative applications. In this context, architected materials
have attracted considerable attention. Their defining structure,
i.e., their morphology on a mesoscopic scale, can be precisely
controlled, for instance by additive manufacturing [1, 2, 3, 4].
In contrast, the heterogeneous microstructure of materials
comprising, e.g., the texture and morphology of metal grains,
can hardly be directly controlled.

Traditionally, expertise and a lot of experimentation is nec-
essary to design structures with preferable properties. Fur-
thermore, this forward design approach of trial and error, i.e.,
choosing a structure, generating it, and determining its prop-
erties, can span multiple years. This process can be signifi-
cantly accelerated by in silico experiments, in which synthetic
structures are generated [5, 6, 7] and numerically simulated
to obtain their properties [8, 9, 10]. Extensive knowledge
regarding the determination of effective properties and scale-
transition has been developed in the context of multiscale
modeling [11, 12, 13, 14]. Extracting and setting up quanti-
tative linkages between an adequate description of the struc-
ture and the properties of interest further assist in this ap-
proach [15, 16, 17]. Still, it is intensive in time and resources
to find even acceptable choices in the usually vast design
spaces. For this reason, data-driven inverse design approaches
are extensively studied.
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In inverse design, contrary to the forward concept, the tar-
geted property serves as input. Two main categories can be
distinguished: direct and indirect inverse design. In direct
inverse design property-structure linkages are employed to
map directly from the property space to the design space of
the structure. Therein, machine learning approaches are es-
pecially present. The reader is kindly referred to the reviews
of Zheng et al. [18] and Lee et al. [19] for a comprehensive
introduction. Hereafter, a brief overview is given.

An established approach is the utilization of both an inverse
and forward model, where the latter effectively supports the
training of the former. Bastek et al. [20] employed a su-
pervised learning approach in a framework that combines
stochastic and physics-guided neural networks for the design
of truss-based architected materials, trained on 3 000 000 data
points. The idea of a tandem MultiLayer Perceptron (MLP)
is also pursued in the work of Kumar et al. [21] for success-
fully designing the stiffness tensor of architected materials
based on a data set of 21 300 structure-property pairs. Deng
et al. [22] utilized the same model for an application in an
experimental context. Another example is the work of Van’t
Sant et al. [23] in which growth-based cellular architected
materials are inversely designed for desired stiffnesses based
on 800 000 structure-property pairs. Recently, also video
denoising diffusion models have been employed for the in-
verse design of 2D cellular architected materials for specific
stress-strain curves. Bastek et al. [24] used 53 007 pairs of 2D
images and nonlinear stress-strain response for the training of
their model. Such a denoising algorithm is utilized by Vlassis
and Sun [25] in the context of fine-tuning nonlinear material
properties of 2D topologies.

Unsupervised machine learning methods have been applied
to inverse design, too. Challapalli et al. [26] employed Gen-
erative Adversarial Networks (GANs) to propose lattice cells
of desired performance. Zheng et al. [27] designed 3D cel-
lular materials of targeted stiffness and porosity through a
conditional GAN that is trained on 10 000 data points. A
convolutional neural network in combination with a modified
Cycle-GAN is utilized by Tian et al. [28] for the design of 2D
structures with deformation-dependent Poisson’s ratio based
on 8 000 molecular dynamics simulations. Also large trans-
former networks, that are commonly used in natural language
processing, have been used for the generation of structures
on the basis of text inputs and might be considered inverse
design models [29]. The training of such models necessitates
a huge amount of data, in case of the aforementioned work
400 000 000 image-text pairs.

Once the model is established, most direct inverse design
methods allow to obtain the desired structure in rather short
time. However, the requirement of large training data sets
poses a critical challenge. In contrast, most indirect inverse
design approaches can operate on less initial data.

Indirect inverse design utilizes only forward structure-property
linkages to predict the property of a given structure followed
by an optimization or selection step. Examples comprise high-
throughput screening, genetic algorithms, or Bayesian opti-
mization. In high-throughput screening, large data bases are

scanned for structures with properties close to the desired tar-
get. A common application can be found in alloy design [30].
Recently, Thalkolkaran et al. [31] presented an optimization
framework that utilizes a physics-enhanced machine learning
model. It works directly on 321 experimental data points
for designing a class of architected materials to fit a targeted
stress-strain curve. Rixner and Koutsourelakis [32] employed
an active learning strategy for the optimization of 2D random
material microstructures in the small-data regime considering
the process-structure-property linkages. A genetic algorithm
is used by Wang et al. [33] for designing shell-based materials
for customized loading curves using a initial data set of 7 000
structure-loading curve pairs. Deng et al. [34] also utilized
an evolution strategy in combination with an MLP trained on
30 000 data points for finding architected materials of desired
nonlinear mechanical responses.

In Bayesian optimization, a structure-property model and an
acquisition function are used to select points in the design
space that should be investigated. The model needs to include
a measure of uncertainty and is most commonly a Gaussian
process regression. The acquisition function assigns each
point in the design space a scalar value indicating how worth
it is to investigate a structure at this specific point. This acqui-
sition metric is based on the mean value and its uncertainty.
It guides the optimization either towards potentially good
structures (exploitation) or tries to minimize the uncertainty
in the design space (exploration) or a combination of both.
Gongora et al. [35] applied this strategy in an experimental
context using 600 data points for designing barrel like struc-
tures for a certain toughness. Cauchy symmetric structures
are designed through Bayesian optimization in the work of
Sheikh et al. [36]. Kusampudi et al. [37] utilized a Bayesian
optimization to inversely design the 2D microstructure of a
dual-phase steel in a numerical study.

Bayesian optimization is a rather universal approach for ex-
ploring and exploiting structure-property linkages. The ability
to operate on small to moderate data sets constitutes a ma-
jor advantage. However, the optimization of a cost function
and the iterative procedure are computationally demanding,
especially in high dimensional design spaces.

Regardless of the specific choice of the design approach, the
topical challenge in setting up the forward or inverse structure-
property linkages is the acquisition of enough data. Machine
learning models need training data as can be seen from the
aforementioned direct inverse design examples. Yet, the gen-
eration of such large data sets is expensive and hinders the
broader application to real-world scenarios. In this context,
iterative indirect approaches that necessitate less initial data
are promising.

The adequate encoding of the structure poses a second sig-
nificant challenge. The ability to describe the structural
key characteristics in few meaningful numbers, the descrip-
tors [38, 39, 40], is a prerequisite for any model. By this,
the design space can be restricted to a reasonable number of
dimensions. Additionally, the generation of a structure from
these descriptors must be possible [5, 41, 42]. While some
machine learning models seem to directly link structures in
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terms of images to properties, they commonly comprise the
encoding within their architecture.

Kumar et al. [21] overcame the latter challenge for a spe-
cific class of architected materials, so-called spinodoids. The
morphology of these potentially anisotropic structures can be
described by few interpretable variables, resulting in a low-
dimensional design space. This is contrary to more universal
approaches, in which either machine learning is employed to
get a low-dimensional but rather abstract latent space encod-
ing [43, 44, 45] or high-dimensional descriptors are employed
that require further dimensionality reduction [5, 46]. The
bone-like spinodoid materials are a particularly interesting
nature-inspired class of structure thanks to their smoothness
as well as non-periodicity. They are successfully utilized in
two-scale frameworks [47]. Kumar et al. [21] pursued a direct
inverse design approach for predicting the design parame-
ters given a desired stiffness tensor. As mentioned before,
the tandem MLP model is trained on a large set of 21 300
structure-property pairs.

The present article aims at overcoming the issue of necessi-
tating large amounts of data for inverse structure design by
employing Bayesian optimization. At the example of spin-
odoids, an iterative approach is presented. Starting with a
small data set of few structures of known descriptor and prop-
erties, structure-property linkages are modeled in the whole
descriptor space and promising new structures are proposed in
an active learning approach. Their properties are derived from
numerical simulations. These candidate structures are added
to the data set. This loop is run until the design goal, herein,
the acquisition of a spinodoid structure of desired properties,
is reached.

This framework and its necessary steps are described in Sec-
tion 2. Applying this inverse design concept to three examples
of increasing complexity, the results are presented in Section 3.
The article ends with a discussion in Section 4.

In the following, vectors and arrays are indicated by bold,
upright letters (x, ξ), their coordinates by non-bolt, upright
letters (xi, ξi), and other scalar quantities by italic letters
(n, β). In the present work, the morphology of spinodoid
materials is considered only, that is hereafter referred to as
structure.

2 Methods

2.1 General workflow

This contribution’s objective of inversely designing spinodoid
structures is pursued in an indirect, iterative approach to en-
sure applicability to the small-data regime. That is particularly
important as data, especially if experimentally obtained, is in
general expensive to acquire. Augmenting a small initial data
set within the design process in an actively guided manner
facilitates a significant reduction of the data needed.

Figure 1 illustrates the idea of such an active learning loop.
The starting point is a data set of ninit descriptor-property
pairs D =

{
i(Θ,P)

}ninit

i=1
. The descriptor Θ (S) characterizes

a structure S in a statistical and translation-invariant manner.
If two structures are similar then so are the corresponding
descriptors. The property array P (S) comprises all properties
of interest for the design of a specific structure. The indicated
dependence on S is omitted in the following.

In a first step, the structure-property linkage2 P(Θ) is derived.
Here, a Gaussian process regression, see Section 2.3, is uti-
lized to yield an estimate of the properties at each location in
the descriptor space alongside a measure of uncertainty. This
is the required input to the actual optimization.

The optimization step, see Section 2.4, requires the definition
of a quantity to be optimized, that is here referred to as cost
C (P). Depending on the optimization goal, which could be
either an exploration of the descriptor space, i.e., a reduction
of uncertainty, or an exploitation, i.e., the objective to find
an optimal structure, or a mix of both, the so-called acquisi-
tion function α (C) is chosen. Maximizing it in the descriptor
space yields a set of ncand candidate descriptors

{
jΘ∗}ncand

j=1

that, based on the current structure-property linkage, might
potentially achieve the desired properties. They are selected
either in regions of low uncertainty and assumed matching val-
ues or in regions of high uncertainty, i.e., a trade-off between
exploitation and exploration.

For the numerical simulation, a set of spinodoid structures{
jS∗}ncand

j=1
is now generated from the proposed descriptors as

explained in Section 2.2. In the subsequent step, numerical
simulations are performed to obtain the properties of each
candidate

{
jP∗}ncand

j=1
.

In a last step, the acquired set of ncand new descriptor-property
pairs

{
j(Θ,P)

}ncand

j=1
is added to the data set

D =
{
i(Θ,P)

}ninit

i=1
∪
(

iiter⋃
k=1

k
{
j(Θ,P)

}ncand

j=1

)
,

where iiter denotes the index of the current iteration. This
augmented data set is the starting point for the next iteration,
starting with deriving updated structure-property linkages et
cetera. This procedure is repeated until a certain criterion, e.g.,
the number of iterations or a specific cost value, is reached.

The following subsections describe the details of the method
introduced. In Section 2.2 the generation of spinodoid struc-
tures is outlined. Details on the Gaussian process regression
are given in Section 2.3, followed by Section 2.4 describing
the Bayesian optimization itself. For the numerical simula-
tions DAMASK’s [48] efficient spectral solver is employed.
More information is given in Appendix B.

2.2 Spinodoid structures

The bone-like spinodal structures have smooth, non-inter-
secting surfaces and are of great interest for architected ma-
terials as they can be seamlessly tailored for specific prop-
erties [21, 49, 50]. These structures are naturally created in

2The structure-property linkage maps a descriptor to the property
of the corresponding structure.
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Figure 1: Active learning loop for the inverse design of spinodoid structures. Starting with an initial set of ninit descriptor-
property pairs D =

{
i(Θ,P)

}ninit

i=1
Gaussian process regression is utilized to model the structure-property linkage P(Θ).

Secondly, Bayesian optimization is employed to propose a set of ncand descriptors
{
jΘ∗}ncand

j=1
(indicated by the diamond) of

new structures to be investigated. Using them, spinodoid structures
{
jS∗}ncand

j=1
are generated as voxelized simulation domains.

In a last step, the properties of the corresponding structures
{
jP∗}ncand

j=1
are derived from numerical simulations. The so obtained

set of in silico generated structure-property pairs D∗ =
{
j(Θ∗,P∗)

}ncand

j=1
is added to the data set D ← D ∪D∗ and the next

iteration starts. For the sake of simplicity, the index range is not indicated in the figure.

spinodal decomposition processes during phase separation.
Solving the time-dependent Cahn-Hilliard equation to get the
phase-field solution is impractical for design purposes as it
is rather computationally demanding. Following the idea of
Cahn [51], Kumar et al. [21] proposed an efficient approach
to model and generate spinodal-like structures, so-called spin-
odoids. This approach is recapitulated hereafter in brief.

Cahn [51] showed that the concentration phase-field φ(x) of
one of two phases at a spatial position x ∈ R3 in the early
phases of spinodal decomposition can be approximated by a
Gaussian random field

φ(x) ≈
√

2

nwave

nwave∑
i=1

cos (βni · x + γi) , (1)

i.e., a superposition of nwave standing waves of the same
wavenumber β > 0, if nwave is sufficiently large. The
direction and phase angle are denoted by n ∼ US2 and
γ ∼ U[0,2π), respectively, where U indicates a uniform dis-
tribution and S2 :=

{
k ∈ R3 | |k| = 1

}
is the surface of the

3D unit sphere.

Kumar et al. [21] extended this isotropic Gaussian random
field approach to anisotropy. By restricting the wave directions

ni ∼ US̃2 , S̃2 :=
{

k ∈ S2 | (|k · ê1| > cos θ1)

∨ (|k · ê2| > cos θ2) ∨ (|k · ê3| > cos θ3)
}
, (2)

to lie within cones of a certain angle θi around the respective
Cartesian basis vector êi, anisotropic structures can be gener-

ated as shown in Figure 2. Choosing an appropriate thresh-
old concentration3 φthresh :=

√
2erf−1 (2vf − 1) to meet the

desired volume fraction vf of the solid phase, the binary spin-
odoid structure S is obtained as

S(x) :=
{
1 if φ(x) ≤ φthresh

0 else
. (3)

Using this approach, spinodoid structures with a large mor-
phological variety can be generated. Keeping the volume
element length lVE, the resolution of the equidistant spatial
discretization, i.e., the number of voxels nvoxel, the wavenum-
ber β and the number of waves nwave constant, the spinodoids
are statistically fully described by their three morphological
angles

θi ∈ Sθ with i ∈ {1, 2, 3} ,

the volume fraction

vf ∈ Svf ,

and three rotational angles

ϕi ∈ Siϕ with i ∈ {1, 2, 3} ,

3The Gauss error function is defined as erf(z) :=
2√
π

∫ z

0
e−t2dt.

4



Inverse design of spinodoid structures using Bayesian optimization A PREPRINT

(a) θ⊺ = (90◦, 0◦, 0◦) (b) θ⊺ = (15◦, 15◦, 15◦) (c) θ⊺ = (15◦, 0◦, 0◦) (d) θ⊺ = (15◦, 15◦, 0◦)

(e) Isotropic (f) Cubic (g) Lamellar (h) Columnar

Figure 2: Characteristic examples of spinodoid structures. The morphological angles θ are given in the subcaptions (a)-(d).
In (e)-(h) the elastic surfaces of a corresponding representative exemplar, i.e., the directional Young’s moduli are given,
visualizing the anisotropy class.

describing a subsequent intrinsic rotation around the z-, y-
and x-axis. The spaces of these quantities

Sθ := {0} ∪
{
ϑ ∈ R

∣∣∣∣ π12 ≤ ϑ ≤ π

2

}
, (4)

Svf := {x ∈ R | 0.3 ≤ x ≤ 0.8} , and (5)

Siϕ :=

{{ϑ ∈ R | 0 ≤ ϑ ≤ 2π} if i ∈ {1, 3}
{ϑ ∈ R | 0 ≤ ϑ ≤ π} if i ∈ {2} , (6)

are defined such that connected domains are ensured and such
that a rotation in each 3D spatial direction is possible. The
state θ = 0, where all morphological angles are equal to zero,
is not admissible.

There are four borderline types of spinodoid morphologies
that are controlled by the morphological angles θ:

(i) Columnar spinodoids as depicted in Figure 2d with one
stiff direction, see Figure 2h, for which a single mor-
phological angle is 15◦ and the remaining are equal to
zero.

(ii) Lamellar spinodoids as depicted in Figure 2c with two
stiff directions, see Figure 2g, for which two angles are
15◦ and the remaining is equal to zero.

(iii) Cubic spinodoids as depicted in Figure 2b with three stiff
directions, see Figure 2f, for which all angles are 15◦.

(iv) Isotropic spinodoids as depicted in Figure 2a with equally
stiff directions, see Figure 2e, for which at least one angle
is 90◦.

Summarizing the descriptors in one quantity, the total descrip-
tor of a spinodoid

Θ := (θ⊺ vf ϕ
⊺) ∈ SΘ ,

SΘ := Sθ × Sθ × Sθ × Svf × S1ϕ × S2ϕ × S3ϕ (7)

is defined. This serves as input to the structure-property link-
ages, as described in the next subsection.

2.3 Gaussian process regression

A structure-property linkage that not only maps the descrip-
tor Θ to the expected value of a single property P(Θ) but
also to a measure of uncertainty, more specifically to a dis-
tribution over property values p = p (P), is a prerequisite for
employing Bayesian optimization. The standard choice is a
Gaussian process. It is defined as a stochastic process, i.e., a
sequence of random variables, that has normally distributed
finite dimensional marginal distributions. The reader is kindly
referred to, e.g., [52], for a detailed introduction to Gaussian
processes. Hereafter, a brief summary is given.

A Gaussian process is a non-parametric, probabilistic model
that is defined by a mean function µ(Θ) and a covariance or
kernel function k(Θ,Θ′), from which the mean array

Mi :=
(
µ
(
iΘ
)
, . . . , µ

(
NΘ
))

, i ∈ {1, . . . , nk}
and covariance matrix

Kij := k(iΘ, jΘ), i, j ∈ {1, . . . , nk}
are computed for all known nk descriptor-property pairs in
the data set. The notation

fGP(•) ∼ GP (µ(•), k(•, •))

5
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is commonly used to indicate that the function distribution
fGP is drawn from a Gaussian process GP .

The descriptors of the input data set are normalized to the inter-
val [0, 1] for each coordinate and the properties are standard-
ized to have zero mean and a unit variance for each coordinate
to form the nk known data points

D̃ =
{(

iΘ̃, ĩP
)}nk

i=1
.

Gaussian process regression can be utilized to predict the
distribution of the property

p̃⋆ | D̃, Θ̃⋆ ∼ N (M⋆,K⋆) (8)

at any location Θ̃
⋆

in the descriptor space based on the data
set D̃ by sampling from a normal distribution N with mean
vector M⋆ and covariance matrix K⋆. Further details are
given in Appendix A, where also M⋆ and K⋆ are defined
in Equation 22 and Equation 23.

For the present work, the established Matérn kernel function

kMatern(Θ,Θ′) :=
21−ν

Γ(ν)

(√
2νd
)ν

Kν

(√
2νd
)

(9)

is chosen, where d := (Θ −Θ′)⊤λ−2(Θ −Θ′) is the dis-
tance between Θ and Θ′ scaled by the lengthscale parameter
λ, ν ∈ {0.5, 1.5, 2.5} is a smoothness parameter, and Kν is
the modified Bessel function4, and Γ is the gamma function5.
To allow for a better fitting, a parameter sK is introduced to
scale the covariance matrix

Kij := sKkMatern(Θi,Θj) .

These hyperparameters λ and sK are inferred from the data by
maximizing the logarithmic marginal likelihood.

2.4 Bayesian optimization

The goal of the optimization step is to find points in the de-
scriptor space which should be added to an initial data set,
such that these points correspond to good properties or help
decreasing the overall uncertainty of property predictions.

The optimization is conducted in three main steps, as illus-
trated in Figure 3.

(i) The structure-property linkage is set up. Using Gaussian
process regression, the distribution of each property Pi

in the descriptor space is modeled.
(ii) The distribution of the cost C(P) is computed from the

property distributions.
(iii) The acquisition function α(C) is maximized to propose

suitable descriptors of candidate structures iΘ∗.

4Kν(x) :=
∫∞
0

e−x cosh t cosh(νt) dt
5Γ(ν) :=

∫∞
0

tν−1e−t dt , ν ∈ {x ∈ R|x > 0}

Figure 3: Gaussian process for two examplary properties
P1 and P2, distribution of the cost C (P1,P2) and acquisition
value α (C) in a 2D descriptor space. New candidate descrip-
tors iΘ∗ are selected based on the acquisition value.

In this work, the cost

C (P) := −
nm∑
i=1

wi
Pi

Pref
i

+

N∑
i=nm+1

wi

[
exp

(
c

〈
Pi

Pthresh
i

− 1

〉)
− 1

]
(10)

is formulated rather flexibly, where wi denote scalar weights,
Pref
i and Pthresh

i denote reference and threshold values, respec-
tively, c = 2 is a constant factor, nm denotes the number of
main properties that are to be maximized, N denotes the total
number of properties, and ⟨•⟩ denote Macaulay brackets6. As
the optimization is formulated as a minimization problem,
a low cost is aimed at. This can be achieved by increasing
the first summation term, i.e., by maximizing the nm main
properties, and by minimizing the second penalizing summa-
tion term in keeping the properties below its threshold value.
While Equation 10 defines the design goal in finding struc-
tures of possible high or low properties, the formulation could
be modified to aim at a specific desired property value Pdes,
e.g., by penalizing the distance to it.

Instead of computing the cost C for all points in the data set
and applying the Gaussian process regression on it directly,
i.e., to model

fGP : SΘ → R, Θ 7→ C(P) ,
6Also known as ramp function or in machine learning as rectified

linear unit (ReLU).
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here, the properties are modeled

fGP : SΘ → RN , Θ 7→ P

and then a cost distribution C (fGP (Θ)) is derived from them.
Otherwise, the cost function would have to be inferred from
the data, complicating the modeling in most cases and neces-
sitating more data. The cost distribution’s mean

µ (C (Θ)) = C (µ (fGP,i (Θ)) , · · · , µ (fGP,N (Θ)))

is computed as the cost of the properties’ means. The covari-
ance matrix of the cost

KC :=

N∑
i=1

w2
i KPi

is here defined as the weighted sum of the properties’ covari-
ance matrices.

The acquisition function α guides the optimization as candi-
dates

Θ∗ := argmax
Θ∈SΘ

α (C (fGP (Θ)))

are chosen by maximizing the acquisition value. The expected
improvement function

α(Θ) := E
[
⟨C∗ − C⟩ | C ∼ N

(
µ(Θ), σ2(Θ)

)]
(11)

is selected, where µ is the mean value and σ the standard
deviation. C∗ denotes the lowest cost in the data set.

For a faster design process, the proposition of multiple can-
didates per iteration is desired. For this purpose, so-called
batched acquisition functions can be used as readily avail-
able in the Python package botorch [53]. The main idea is
not to solve the maximization problem analytically but by
a sampling strategy. A Monte-Carlo approach is utilized to
approximate Equation 11 by

α(Θ) ≈ 1

N

N∑
i=1

⟨C∗−Ci⟩ , Ci ∼ N
(
µ(Θ), σ2(Θ)

)
(12)

through sampling N cost values from its distribution at Θ. To
allow for an optimization of a batch of q descriptors

Θ := (Θ1, . . . ,Θq) ,

Equation 12 is extended to

αb(Θ) ≈ 1

N

N∑
i=1

max
j=1,...,q

⟨C∗ − Cij⟩ , (13)

where Ci is sampled from the joint posterior distribution.

3 Results

The inverse design procedure proposed in Section 2.1 is ap-
plied to three examples of increasing dimensions of the design
space. Starting from three different data sets as given in Ta-
ble 1, the design goal is to maximize the effective Young’s
modulus Ē in certain directions.

The section starts by explaining details on the implementation,
followed by three design examples.

3.1 Implementational details

The methods explained in Section 2 are implemented in an
autonomous High Performance Computing (HPC) framework
as the iterative inverse design approach is computationally
demanding. The loop itself is controlled by a bash script
that is run on a HPC cluster using the Batch-System SLURM
(Simple Linux Utility for Resource Management).

The 3D spinodoid structures are generated using the open-
source MATLAB [54] toolbox GIBBON [55]. The wave-
number is set to β = 15π and the number of waves to
nwave = 1000. Following the results of a study on a suit-
able size of the volume elements as explained in Appendix C
and a trade-off with performance, the volume element length
is set to lVE = 1 at a spatial discretization into nvoxel = 643

voxels.

The numerical simulations for obtaining effective Young’s
moduli Ē are conducted utilizing DAMASK [48] as described
in Appendix B. The material parameters are given in Table 4.
They are chosen to mimic polyvinyl chloride (PVC) for the
solid part of the spinodoids.

The optimization step is implemented in Python. The efficient
PyTorch-based [56] package botorch [53] is used as it allows
for the usage of GPUs. Running on an NVIDIA A100, a
single optimization step of reading and pre-processing the
data, setting-up the Gaussian process model, and doing the
Bayesian optimization takes approximately 2.5min for a set
of 400 points7 (6D descriptor, 2D property). The smooth-
ness parameter of the Matérn kernel function (Equation 9) is
set to ν = 2.5. The batched expected improvement acquisi-
tion function (Equation 13) is approximated by N = 10 240
Monte-Carlo samples. The design loop is run for a fixed
number of iterations.

Table 2 lists an approximation of the necessary resources re-
quired for the design loop of the present examples. Assuming
40 iterations, the proposition of 5 candidates per iteration and
3 simulations to obtain three properties per candidate, the
resources R accumulate to

RGPU = 40 · 2.5GPUmin = 1.7GPUh

RCPU = 40 · 5 · (2 + 3 · 24)CPUmin = 247CPUh .

3.2 Inverse design in a 2D design space

The goal of the first example is to design a spinodoid structure
such that it possesses the maximum possible effective Young’s
modulus in z-direction Ēz while targeting a volume fraction
below vtresh

f = 0.55. This is formulated in the cost function as

C := − Ēz

2GPa
+ 2

(
exp

(
2

〈
vf

0.55
− 1

〉)
− 1

)
. (14)

The space
SΘ2D := S ′θ × Svf

7The initial data sets are much smaller (ninit ≤ 16). The addi-
tional data points are generated in silico during the iterative design
process.
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Table 1: Descriptor settings for the data sets of the present examples. U denotes the uniform distribution.

i ninit θ1 θ2 θ3 vf ϕ1 ϕ2 ϕ3

I 4 ∼ U[30◦,90◦] 0◦ 0◦ ∼ U[0.3,0.45]∪[0.65,0.8] 0◦ 0◦ 0◦

II 16 ∼ U[30◦,90◦] ∼ U[30◦,90◦] ∼ U[30◦,90◦] ∼ U[0.3,0.45]∪[0.65,0.8] 0◦ 0◦ 0◦

III 16 0◦ ∼ U[30◦,90◦] ∼ U[30◦,90◦] ∼ U[0.3,0.45]∪[0.65,0.8] ∼ U[0◦,360◦) ∼ U[0◦,75◦]∪[115◦,180◦) ∼ U[0◦,360◦)

Table 2: Approximate resources for the steps of the inverse
design procedure for the present examples.

Step Hardware Time Resources

Optimization 1x NVIDIA A100 2.5min 2.5GPUmin
Generation 1x Intel Xeon 8470 2min 2CPUmin
Simulation 8x Intel Xeon 8470 3min 24CPUmin

of the reduced 2D descriptor

Θ2D := (θ1 vf) ∈ SΘ2D

is limited to the first morphological angle θ1 and the volume
fraction vf, where

S ′θ :=
{
ϑ ∈ R | π

12
≤ ϑ ≤ π

2

}
(15)

and Svf is defined according to Equation 5. Limiting the angle
θi to the interval as defined in Equation 15 facilitates the
optimization problem as this space is continuous in contrast
to the total possible space for θi as defined in Equation 4 and
the inadmissible state of θ = 0 is avoided.

The remaining descriptors are set to the values as given in Ta-
ble 1. It can been seen that the initial data set consists of only
four descriptor-property pairs. The free descriptors θ1 and
vf are randomly sampled from a uniform distribution. The
distributions are restricted to not contain the expected out-
come of the inverse design process, that is a lamellar structure
(θ1 = 15◦) of vf = 0.55 volume fraction.

Figure 4a shows the evolution of the properties including
the cost over iterations of the augmentation loop. For each
iteration, the values of the structure with the lowest cost are
plotted. The quantities are given as relative deviation

∆Prel
i :=

Pi − Pinit*
i

Pinit*
i

(16)

from the initial data set’s best structure’s property Pinit*. As
can be seen from the line graph, already after the first iteration,
a structure of significantly less cost is found. The overall
best structure is found after seven iterations, indicated by the
red star. The spinodoid is depicted in Figure 4d. It has the
expected descriptor

Θ2D* := (θ∗1 v
∗
f ) with θ∗1 = 15.0◦, v∗f = 0.55 .

The Young’s modulus Ēz increases significantly, while the
volume fraction vf converges to its threshold value.

Figure 5 illustrates the distribution of the data points in the
descriptor space after nine iterations. The diagonal plots
show the relative distribution of a descriptor coordinate as

kernel density estimate. It can be seen that most of the data
points added during the design process tend to the optimal
respective value of θ∗1 = 15◦ and v∗f = 0.55. The off-diagonal
scatter plots visualize potential cross correlations between
two descriptors coordinates. Descriptors from the initial data
set are indicated by crosses while the points added during
the Bayesian optimization are represented by circles. The
markers’ color encode the cost C ranging from yellow for
a desired low cost to purple for high cost. The red circle
represents the best structure found.

Three conclusions can be drawn from the data:

(i) The best structure is found at θ1 = 15◦ and vf = 0.55
within 9 iterations, exactly meeting the expected value.

(ii) A smaller angle θ1 correlates with lower cost at a con-
stant volume fraction.

(iii) The cost increases more sharply for increasing volume
fractions above vthresh

f = 0.55 compared to the increase
for decreasing volume fractions below this value.

Considering the formulation of the cost function from Equa-
tion 14, the results are plausible and underline the potential
of the present design approach. The morphology and volume
fraction of the solid material influence the effective Young’s
modulus. In general, increasing the volume fraction increases
the stiffness. This explains the decreasing cost for increasing
volume fractions up to the threshold value vthresh

f . The fol-
lowing decrease is explained by the penalization in the cost
function. Continuous structural features in a certain direction
stiffen the material in this particular direction. That is the
reason for low cost at small θ1 as this angle controls the tran-
sition from an isotropic morphology for large values towards
a lamellar one for small values.

3.3 Inverse design in a 4D design space

The second example aims at a structure of high effective
Young’s moduli in all three Cartesian directions x, y, and
z. Again, a volume fraction of vtresh

f = 0.55 should not be
exceeded. Hence, the cost function

C := − Ēx

2GPa
− Ēy

2GPa
− Ēz

2GPa

+ 2

(
exp

(
2

〈
vf

0.55
− 1

〉)
− 1

)
(17)

is formulated.

The reduced descriptor for this example is limited to four
coordinates

Θ4D := (θ1 θ2 θ3 vf) ∈ SΘ4D ,

SΘ4D := S ′θ × S ′θ × S ′θ × Svf , (18)

8
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(a) 2D example (Table 1 I) (b) 4D example (Table 1 II) (c) 6D example (Table 1 III)

(d) 2D example (Table 1 I) (e) 4D example (Table 1 II) (f) 6D example (Table 1 III)

Figure 4: Evolution of the relative deviation of the properties ∆Prel (Equation 16) of the structure of the lowest cost C referred
to the initial structure of lowest cost over iterations for the corresponding example (a)-(c). The best spinodoid structures found
are shown in (d)-(f) for the corresponding example.

Figure 5: Correlation plot of both dimensions of the 2D de-
sign space of data set I (Table 1) after nine iterations. The
data points added during the Bayesian optimization (BO) are
indicated as circles. All points are color-coded by their cost C
as defined in Equation 14.

with the spaces defined in Equation 15 and Equation 5. Con-
sidering all coordinates of the morphological angle array θ al-
lows for the largest possible variations of the morphology. The
remaining descriptors are set to constant values as given in Ta-
ble 1. The initial data set consists of 16 descriptor-property
pairs.

As can be seen from the line graph in Figure 4b, already
after three iterations the best structure is found. Shown are
the relative properties as defined in Equation 16. The best
structure of each iteration is of nearly vf = 0.55 volume
fraction, while there are some variations in the directional
Young’s moduli. For the best structure at iteration 3 all three
moduli are rather high, forming the best trade-off between
all directions. In contrast, at iteration 5, only Ēx and Ēz are
relatively high, thereby forcing Ēy to a lower value. Figure 4e
shows the optimally designed spinodoid with the descriptor

Θ4D* := (θ∗1 θ∗2 θ∗3 v∗f )

with θ∗1 = 15.0◦, θ∗2 = 15.0◦, θ∗3 = 15.0◦, v∗f = 0.55.

It has pronounced continuous features in the three spatial
directions. They provide the desired cubic anisotropy.

The occupation of the 4D descriptor space after ten iterations
is visualized in Figure 6. The distribution plots on the diagonal
show no pronounced concentrations to specific values for
the angles θi and only a slight peak at the threshold value
for the volume fraction vf. Considering the cost encoded
in the colors, it is apparent that all structures of low cost
(yellow) can be found at a volume fraction near the threshold
value as expected. As explained for the 2D example in the
preceding Section 3.2, smaller volume fractions correspond
to less low costs than higher ones as the latter are penalized in
the cost function formulated in Equation 17.

Focusing on the correlation between volume fraction vf and
the angles θi, it can be concluded that the smallest possible
value of θi = 15◦ is optimal as it is of lowest cost. The
optimal structure, indicated by the red circle, is at exactly this
location in the descriptor space.

9
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Figure 6: Correlation plot of all dimensions of the 4D design space of data set II (Table 1) after 10 iterations. The data points
added during the Bayesian optimization (BO) are indicated as circles. All points are color-coded by their cost C as defined
in Equation 17.

Another finding can be retrieved by examining the cross
correlation plots of two angles: For both extreme values
θi ∈ {15◦, 90◦} significantly lower costs are observed than
within this interval. This can be explained by the formation
of isotropic spinodoid structures if one of the angles is at
θi = 90◦. It is plausible that these isotropic structures are of
low cost as they provide a decent trade-off between the stiff-
nesses in the desired three directions. However, the cubical
structure at θ∗i = 15◦ is of even lower cost as the material can
be distributed such that the stiffness is increased in only three
specific directions compared to all possible directions in the
isotropic case.

Designing spinodoid structures such that multiple properties
are considered can be achieved by applying the proposed
algorithm. The initial data set comprises 16 structures that
are to be described in a 4D space, underlining the capability
of the concept to operate on few data in spaces of multiple
dimensions. To illustrate this further, another example in 6D
is given in the following Section 3.4.

3.4 Inverse design in a 6D design space

A third inverse design process is exemplary conducted to ex-
amine the capability of the present design approach to handle
a larger design space with few data and to handle ambiguities.
For this reason, the reduced descriptor

Θ6D := (θ2 θ3 vf ϕ1 ϕ2 ϕ3) ∈ SΘ6D ,

SΘ6D := S ′θ × S ′θ × Svf × S1ϕ × S2ϕ × S3ϕ , (19)

is constructed to comprise six coordinates. The spaces are
defined in Equation 15, Equation 5, and Equation 6. The
descriptor now includes the rotational angles ϕ, allowing for
any possible rotation.

For structures of specific symmetries, the representation of a
rotation by

ϕ ∈ S1ϕ × S2ϕ × S3ϕ
is ambiguous, thus, posing a challenge to solving the design
task. For incorporating the need of a rotation, the example
is designed such that a high effective Young’s modulus in
z-direction Ēz is aspired but the choice of the morphological
angles θ2 and θ3 without any rotation does not allow for the
formation of columnar features in z-direction. To that end,
θ1 = 0◦ is chosen. Now, the best possible morphology for a
maximum unidirectional stiffening is a columnar structure at
θ2 = θ3 = 15◦. However, with this configuration and ϕ = 0,
the columns are aligned in x-direction. Consequently, a ro-
tation such that the rotated x-axis aligns with the (unrotated)
z-axis is a prerequisite for columnar features in z. Intuitively,
a rotation of

ϕ =

(
0◦

90◦

0◦

)
(20)

could be chosen, i.e., a rotation around the y-axis. The same
formulation of the cost function as in Equation 14 is chosen.
The number of initial descriptor-property pairs is restricted to
16 only as given in Table 1.

Figure 4c supports the assumption that an optimization in 6D
is more challenging as 33 iterations are necessary to find the

10



Inverse design of spinodoid structures using Bayesian optimization A PREPRINT

best solution within a maximum of 40 iterations. In most
iterations one of the five added structures is of lower cost then
the previous ones. From iteration 2 to 12 the cost is stagnating
as the Bayesian optimization does not propose better candi-
dates. This indicates some kind of training or exploration
interval in which more data is added to the data set such that
the structure-property model is improved. After iteration 33
the cost increases sharply, hinting a possible exploration of
different subspaces further away from the current optimum.

To gain more insight on the evolution of the design process,
intermediate results are summarized in Table 3. For multiple
iterations i, the structure, the descriptor, and the properties are
given. Elastic surfaces, i.e., the visualization of the effective
Young’s modulus in all directions, support in understanding
the preferable directions of the material. The same scaling
and color-coding is used. It can be seen that the best structure
of the initial data set (i = 0) is of particularly high cost due to
the low Young’s modulus as result of the low volume fraction
and no strongly pronounced anisotropy. In the intermediate
results, the formation of anisotropic features in directions not
too far away from the z-axis can be observed. Nonetheless,
they also comprise structures with isotropic elastic responses
as can be seen for iteration 10. From iteration 20 on, the best
candidates have pronounced columnar or lamellar features.
While the structure from iteration 20 is already close to the
optimal choice of the morphological angles θ, the rotation
angles ϕ are not optimal as the stiffest direction does not point
in z-direction. The structure of the lowest cost at iteration 33
is characterized by the descriptor

Θ6D* := (θ∗2 θ∗3 v∗f ϕ∗
1 ϕ∗

2 ϕ∗
3)

with θ∗2 = 17.0◦, θ∗3 = 16.1◦, v∗f = 0.55,

ϕ∗
1 = 358.5◦, ϕ∗

2 = 83.6◦, ϕ∗
3 = 289.0◦ (21)

and is shown in Figure 4f, too. It is apparent that a structure
close but not identical to the perfect structure is found. The
rotation vector is close to the expected value from Equation 20
in terms of inducing a rotation around the y-axis of approxi-
mately 90◦. This is due to the insignificance of ϕ1 and ϕ3 for
the alignment of the columns in z-direction as these angles
effectively cause a rotation around this axis only.

This ambiguity in the rotations has to be inferred from the
data in a 6D space, posing a challenge to the regression model,
especially when considering the statistical deviations in the
structures derived from the exact same descriptor, see Ap-
pendix C. Figure 7 illustrates the Gaussian process regression
model for the effective Young’s modulus Ēz and the distri-
bution of the cost C for different descriptor values. To allow
for an interpretable visualization of the 6D space, the distribu-
tions are shown as 1D cross section through the hypersurface
spanned by the structure-property model. This highly limited
view on the model is given for visual impression rather than
for drawing solid conclusions. The descriptor values which
are not variable, i.e., not the descriptor on the x-axis, are set
to the optimal descriptor Θ6D* found in the inverse design
and indicated by the golden dashed line. The circular markers
indicate all data points within the augmented data set after 33
iterations.

For the specific choice of Θ = Θ6D* (Equation 21) of the
respective other descriptors, the following observations can
be made:

(i) Smaller morphological angles θi correspond to lower
costs.

(ii) At ϕ2 = 90◦ is the expected minimum of cost.
(iii) There is a strong correlation between Young’s modulus

and volume fraction for all data points.
(iv) Volume fractions larger than the threshold value vthresh

f
are effectively penalized, indicated by the increasing
cost.

(v) The insignificance of ϕ3 on both cost and Young’s mod-
ulus is hinted by an only slightly varying model.

(vi) Though known to have no influence, a large value of ϕ1

seems to correlate with lower costs.

Especially the last point might be caused by having data points
with good other descriptors rather randomly distributed to-
wards larger values of ϕ1. However, as the specific choice of
this angle is not important, it does not deteriorate the result at
all.

Several conclusions can be drawn from this example:

(i) The design procedure can be applied to higher dimen-
sional spaces (6D) even with sparse data.

(ii) The ambiguities in the rotation are no insurmountable
obstacle.

(iii) More dimensions and few data necessitate more itera-
tions of the design loop.

(iv) Only a solution close to the perfect solution is found
within 40 iterations.

4 Discussion

The proposed framework for approaching the inverse design
of spinodoid structures in an autonomous iterative scheme
through Bayesian optimization is implemented and success-
fully applied to three demonstration problems of increasing
dimension and complexity. The hypotheses that this allows
for an inverse design even in the small-data regime is proven.

From the results of the three numerical experiments, the fol-
lowing conclusions can be drawn:

(i) The design procedure yields plausible results. The three
demonstration problems are selected such that the opti-
mal results are known. They are found by the present
implementation, proving the concept.

(ii) The design for multiple targeted properties is possible as
shown in the second example in Section 3.3. Thanks to
the flexibility in formulating the cost function different
design goals can be pursued. Although limited to two or
four properties here, e.g., whole stiffness tensors can be
achieved in principle.

(iii) The design procedure can be applied to higher dimen-
sional spaces (6D) even with sparse data as shown in the
third example in Section 3.4. Only 16 initial descriptor-
property pairs are necessary to conduct the design in a

11



Inverse design of spinodoid structures using Bayesian optimization A PREPRINT

Table 3: Intermediate results of the design in 6D of data set III (Table 1) for selected iterations i. Given are the descriptors θ,
vf, and ϕ as well as a visualization of the stiffness tensor C in terms of the elastic surface, the effective directional Young’s
modulus in z-direction Ēz , and the cost C.

i iS iθ ivf
iϕ iC iĒz

iC

0

(
0.0◦

66.1◦

30.3◦

)
0.43

(
186.8◦

129.9◦

315.9◦

)
0.46GPa −0.23

5

(
0.0◦

50.8◦

45.9◦

)
0.55

(
109.6◦

97.2◦

216.9◦

)
1.13GPa −0.56

10

(
0.0◦

88.8◦

49.9◦

)
0.55

(
225.3◦

48.4◦

279.6◦

)
0.88GPa −0.44

15

(
0.0◦

37.1◦

15.0◦

)
0.55

(
137.5◦

75.7◦

107.8◦

)
1.19GPa −0.59

20

(
0.0◦

16.9◦

16.3◦

)
0.55

(
167.0◦

104.4◦

10.7◦

)
1.41GPa −0.70

25

(
0.0◦

15.0◦

32.5◦

)
0.55

(
207.0◦

98.6◦

335.1◦

)
1.32GPa −0.66

30

(
0.0◦

15.0◦

22.3◦

)
0.55

(
345.1◦

99.0◦

176.2◦

)
1.42GPa −0.71

33

(
0.0◦

17.0◦

16.1◦

)
0.55

(
358.5◦

83.6◦

289.0◦

)
1.61GPa −0.80
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Figure 7: Effective young’s modulus Ēz and cost C for all structures in the augmented data set III (Table 1) after 33 iterations.
The dimensions of the 6D design space are depicted for the optimal spinodoid found, indicated by the vertical dashed line. The
single plots show only 2D cross-sections. The continuous line and band indicate the Gaussian process regression’s predicted
mean and variance. The points are projected onto the 2D cross-section plane.

6D space. Compared to most machine learning-based
approaches the necessary amount of initial data is ex-
tremely small. For instance, Kumar et al. [21] utilized
roughly 20 000 data points for optimizing the whole stiff-
ness tensor of spinodoid structures.

(iv) Ambiguities in the optimization problem are no insur-
mountable obstacle. This is demonstrated by the third
example in Section 3.4, where rotational angles are to be
designed.

(v) More dimensions and few data necessitate more itera-
tions of the design loop as can be seen from the third
example. An almost perfect result but not the perfect
result itself is found within limited iterations.

(vi) Employing an efficient implementation of the Bayesian
optimization, that harnesses the potential of GPUs, and
the possibility to explore multiple candidates in each iter-
ation thanks to the batched formulation of the acquisition
function allows to perform the Bayesian optimization in
perfectly acceptable wall-clock time, see Table 2, on an
HPC cluster, even in higher-dimensional spaces.

Considering these conclusions, it can be stated that the pre-
sented inverse design approach allows to efficiently tailor the
internal structure of architected materials based on few data.
The latter point is of particular interest as data, especially if
experimentally obtained, is expensive.

While the illustrative examples underline the large potential
of this approach, they are currently limited to one or three
elastic properties. For harnessing the full potential of spin-
odoids, the design space of the morphological angles ought
to include the zero angle {0}. In the present examples this
is excluded for the sake of simplicity in the formulation of
the boundary conditions of the optimization problem. Addi-
tionally, this augmentation approach is limited to properties
for which a simulation model is available. However, if such a
model is known, multi-fidelity Bayesian optimization could
be employed for data fusion applications, where expensive ex-

perimental data is augmented by in silico computations. The
utilization of statistical descriptors that allow for characteriza-
tion and reconstruction of volume elements seems promising
in this context. They can form the link between real and in
silico generated structures through a uniform description.

Building up on the efficiency and remarkably low need for
data, future research might apply the framework to design spin-
odoid structures with targeted inelastic or fatigue related prop-
erties. Due to the extensively higher cost compared to elastic
properties, the generation of large data sets that, e.g., com-
prise whole yield surfaces, is nearly unfeasible but would be
required for most machine learning-based design approaches.
An extension from the class of spinodoid structures to general
structures ought to be investigated in future research. Owing
to the flexible choice of the acquisition function, the augmen-
tation loop could be employed to iteratively explore large
design spaces rather than targeting a specific design, resulting
in possibly improved structure-property linkages of reduced
variance. This feature could be employed for an adaptive
sampling strategy, e.g., for more informative model-aware
training set generation, when facing expensive functions.

In conclusion, an indirect inverse design approach for spin-
odoid structures is presented that overcomes the obstacle of
data availability by operating in the small-data regime. Exam-
ples demonstrate its potential for paving the way for advance
in the inverse design of material structures.
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A Prediction with Gaussian process regression

Gaussian processes can be applied to regression problems as
described, e.g., in [52] in detail. Starting with nk known data
points

D̃ =
{(

iΘ̃, ĩP
)}nk

i=1
,

the goal of the regression problem is to find a function fGP ,
such that

ip̃ = fGP

(
iΘ̃
)
+ iε ,

holds, where ε ∼ N (0, σ2) and p̃ denotes the distribution of
the property P̃ at Θ̃. Assuming a zero-mean prior Gaussian
distribution over functions

fGP(•) ∼ GP (0, k(•, •)) ,

any set of functions drawn from it must have joint multivariate
Gaussian normal distribution, so for the points of the data set
D̃ and for n⋆ unknown points

D̃⋆ =
{(

jΘ̃
⋆
, jP̃

⋆
)}n⋆

j=1
,

i.e.,(
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The same applies to the noise distribution(
Aε

A⋆
ε

)
∼ N

(
0,

[
σ2I 0
0 σ2I

])
.

For the sake of simplicity, to allow for the collection of all
elements of an ordered set of a generic quantity • in an array,
the definitions

A
({

i•
}n
i=1

)
:=


i•

i+1•
...
n•

 and

FGP

({
i•
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)
:=


fGP(
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...
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n•)

 ,

are introduced. Using them, the abbreviations

AΘ̃ := A
({

iΘ̃
}nk

i=1

)
, A⋆

Θ̃
:= A

({
jΘ̃

⋆
}n⋆
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)
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}nk
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)
are defined.

As the sums of independent Gaussian random variables are
also Gaussian,(
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holds. Using the rules for conditioning Gaussians, it can be
rewritten as

A⋆
p̃ | D̃,A⋆
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where

M⋆ := κ
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)−1 AP̃ and
(22)
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.

(23)

In this way the distribution of a property p̃ can be evaluated at
each location Θ̃ in the descriptor space.

B Numerical simulation

The numerical simulations of the mechanical behavior are
conducted using the simulation toolkit DAMASK [48]. Its
efficient spectral solver allows to perform the simulations
directly on the voxelized spinodoids structures. However, this
necessitates to model both solid and void phase.

For the present study only the elastic properties are of interest,
more specifically the effective directional Young’s moduli
Ē and the stiffness tensor. While a purely elastic material
model would suffice, an inelastic model is employed as well.
This does not reduce the performance as it is not activated
for the considered load cases here. However, it allows to run
possible future simulations, including inelasticity, using the
same model.

More details on the constitutive modeling can be found in [48].
Hereafter, the key equations are briefly listed. A generalized
Hooke’s law

S := C : Ee ,

where S denotes the second Piola-Kirchhoff stress tensor,
Ee denotes the elastic Green-Lagrange strain tensor, and C
denotes the fourth-order stiffness tensor, is used to model the
elastic response.
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Table 4: Material parameters for the numerical simulations
with DAMASK.

Parameter PVC Void

C1111 in GPa 7.5 0.075
C1122 in GPa 5.0 0.05
C1123 in GPa 1.25 0.0125
ξ0 in MPa 15.0 -
ξ∞ in MPa 150.0 -
h0 in MPa 10 -

γ̇0 0.001 -
n 20 -
a 2 -

A phenomenological power law

γ̇p := γ̇0

(√
3

2

∥Sdev∥F

3ξ

)n

,

where γ̇p denotes the plastic strain rate, γ̇0 denotes the ini-
tial strain rate, n is the stress exponent, ∥(·)∥F denotes the

Frobenius norm of the deviatoric part Sdev := S− 1

3
tr(S)I of

the second Piola-Kirchhoff stress, and ξ denotes the material
resistance, is selected for the inelastic behavior.

The evolution of the material resistance

ξ̇ := γ̇h0

∣∣∣∣1− ξ

ξ∞

∣∣∣∣a sign
(
1− ξ

ξ∞

)
depends on the initial hardening h0, the initial ξ0 and final
resistance ξ∞, and a fitting parameter a.

The parameters of the constitutive equations are selected to
model polyvinyl chloride (PVC) as the solid part of the spin-
odoid. The void voxels are assigned 100 times smaller stiff-
nesses to approximate the behavior of air and to avoid numer-
ical issues. The parameters are listed in Table 4.

For the determination the effective Young’s modulus in a
certain direction a small deformation ∆F = 5 · 10−6 is ap-
plied and prescribed in DAMASK in terms of the deformation
gradient F and first Piola-Kirchhoff stress P, e.g., for the
x-direction as

F =

(
1 + ∆F 0 0

0 − 0
0 0 −

)
and P =

(− − −
− 0 −
− − 0

)
,

where ’-’ means that this coordinate is not prescribed. This
desired state is to be reached in a single increment. The re-
sulting fields of F and P are volume averaged per increment,
translated into the Green-Lagrange strain tensor and second
Piola-Kirchhof stress tensor, and the Young’s modulus is com-
puted. For more details on the homogenization, the reader is
kindly referred to [57].

C Study on volume element size

The size of the volume element to be simulated has to be
representative to a certain extent to allow for meaningful re-
sults from a single simulation. This is particularly relevant
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Figure 8: Relative deviation of the effective directional
Young’s modulus for 10 structures of the same descriptor Θ
consisting of the arrays θ = (15◦, 15◦, 0◦), ϕ = (0◦, 0◦, 0◦),
and vf = 0.5 but different random seed for differently sized
volume elements. The volume scales linearly with the number
of voxels nvoxel used for the spatial discretization, see Figure 9
for examples. The relative modulus is referred to the mean
modulus of the structures with a resolution 2563. The boxes
range from the first quartile (Q1) to the third quartile (Q3) and
indicate the median by a line within the box. From the box,
the whiskers stretch to the furthest point that is still within 1.5
times the inter-quartile range (Q3-Q1) from the box. Outliers
are marked as points.

for the statistical generation of spinodoid, where the structure
S is a random instance derived from a descriptor Θ. Conse-
quently, two spinodoids generated from the same descriptor
are statistically similar to a certain extent but the voxel-valued
representation in terms of there structure S is most probably
different. However, the more characteristic features can be
incorporated in the volume element, i.e., the larger the volume
element, the more similar should be the mechanical behavior.
In terms of the spinodoid structures this size can be easily set
by the volume element length lVE as introduced in Section 2.2.

Figure 8 shows the result of a study on the representativness
of volume elements of certain size. For this study, columnar
spinodoid structures of different sizes but the same descriptor
are generated. The discretization in nvoxel is scaled linearly
with the varying element length lVE to secure comparability.
Figure 9 shows three exemplary structures of different sizes
alongside their elastic surface. For each size 10 structures are
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(a) nvoxel = 323

(b) nvoxel = 1283

(c) nvoxel = 2563

Figure 9: Exemplary volume element and corresponding elas-
tic surfaces for differently sized volume elements. The volume
scales linearly with the number of voxels nvoxel used for the
spatial discretization.

generated from different random seeds.

The relative deviation of the effective Young’s modulus from
the mean modulus of the set of the largest size (nvoxel = 2563)
is plotted in Appendix C for the x-, y-, and z-direction. It can
be seen, that the median deviation of all sets for the x- and
y-direction, i.e., the directions perpendicular to the columnar
features, is comparatively small. However, the smallest size
(nvoxel = 323) has a significantly larger variance. Concen-
trating on the relevant z-direction, it can be seen that both
the median deviation and the variance within a set drastically
decrease for larger sizes.

As a good trade-off between higher demand for computa-
tional resources with increasing size and representativness,
the discretization in nvoxel = 643 is chosen for the present
article.
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